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RECONSTRUCTION OF ISOTROPIC CONDUCTIVITIES FROM

NON SMOOTH ELECTRIC FIELDS

Marc Briane*

Abstract. In this paper we study the isotropic realizability of a given non smooth gradient field
∇u defined in Rd, namely when one can reconstruct an isotropic conductivity σ > 0 such that σ∇u is
divergence free in Rd. On the one hand, in the case where ∇u is non-vanishing, uniformly continuous in
Rd and ∆u is a bounded function in Rd, we prove the isotropic realizability of ∇u using the associated
gradient flow combined with the DiPerna, Lions approach for solving ordinary differential equations

in suitable Sobolev spaces. On the other hand, in the case where ∇u is piecewise regular, we prove 
roughly speaking that the isotropic realizability holds if and only if the normal derivatives of u on
each side of the gradient discontinuity interfaces have the same sign. Some examples of conductivity 
reconstruction are given.
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1. Introduction
In Electrophysics there are some constraints implicitly satisfied by the electric field in a prescribed conductive 

material. For example, Alessandrini and Nesi [2] have shown that a smooth periodic electric field cannot vanish 
in dimension two, while it may vanish in dimension three as proved in [3, 6]. This three-dimensional specificity 
of the electric field allows us to derive a surprising property of the Hall effect: the sign of the Hall voltage is 
indeed inverted in a three-dimensional metamaterial inspired by a chain mail armor. The anomalous Hall effect 
has been first proved theoretically in [5], then it has been simplified and validated experimentally in [12]. Very 
recently it has been emphasized simultaneously in Physics Today [14] and Nature [15].

Conversely, starting from a regular gradient field ∇u 6= 0 in Rd (1) the natural inverse problem is to reconstruct 
from ∇u a possibly isotropic conductivity σ which satisfies the conductivity equation

div (σ∇u) = 0 in Rd. (1.1)

The gradient field ∇u is then said to be isotropically realizable. This reconstruction problem has been widely
studied in the literature in terms of uniqueness, stability or instability, and algorithms of approximate solution

Keywords and phrases: Isotropic conductivity, electric field, conductivity reconstruction, gradient flow, triangulation.

University of Rennes, INSA Rennes, CNRS, IRMAR – UMR 6625, 35000 Rennes, France.

* Corresponding author: mbriane@insa-rennes.fr
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(see, e.g., [10, 13] and the references therein). The isotropy constraint is actually appropriate in Materials
Science, since composite materials are built from isotropic phases. Moreover, the homogeneous conductivity
equation (1.1) is satisfied by the local electric fields in periodic composites. We have proved in [7] that any
gradient field ∇u which is non-vanishing and regular is isotropically realizable in Rd. The main ingredient of
this construction is the associated gradient flow

∂X

∂t
(t, x) = ∇u

(
X(t, x)

)
X(0, x) = x.

for t ∈ R, x ∈ Rd. (1.2)

The dynamical approach of [7] forces the regularity u ∈ C3(Rd). However, this smoothness is not compatible
with most of composite materials where the gradient is only piecewise regular (for instance regular in each phase
of the material). The purpose of the present work is to extend the results of [7] to less regular gradient fields.
To this end, we study two independent cases which are respectively developed in Sections 2 and 3.

In Section 2 we assume that the gradient field ∇u is continuous in Rd. The idea is to modify the strategy
of [7] applying the celebrated approach of DiPerna and Lions [9] for solving ordinary differential equations in
suitable Sobolev spaces. More precisely, we prove (see Thm. 2.1) that any gradient field ∇u in W 1,1

loc (Rd)d is
isotropically realizable in Rd if

∇u is uniformly continuous in Rd, ∆u ∈ L∞(Rd) and inf
Rd
|∇u| > 0. (1.3)

Moreover, any positive function σ ∈ L∞loc(Rd) with σ−1 ∈ L∞loc(Rd) is shown to be a suitable conductivity if and
only if roughly speaking (see Rem. 2.3) there exists E, a set of Lebesgue measure zero, such that

σ(x)

σ
(
X(t, x)

) = exp

(∫ t

0

∆u
(
X(s, x)

)
ds

)
, ∀ t ∈ R, ∀x ∈ Rd \ E, (1.4)

where X(·, x) is the gradient flow (1.2). Assumption (1.3) improves significantly the regularity u ∈ C3(Rd)
which is needed in [7]. But the price to pay is that the reconstruction of an appropriate conductivity is much
more delicate. In particular, by [9] the flow X(·, x) of (1.2) is only continuous for almost everywhere x ∈ Rd.
However, condition (1.3) is not still satisfactory since it excludes most of the Lipschitz continuous potentials u
which naturally arise in composite materials.

In Section 3 we study the case of a piecewise regular gradient ∇u in a domain Ω of Rd composed by n
“generalized” polyhedra Ωk (i.e. obtained from polyhedra through a smooth diffeomorphism). The continuous
potential u agrees in each set Ωk to a function uk ∈ C2(Ωk) such that the trajectories of (1.2) flow from an
inflow boundary face (on which the outer normal derivative of uk is negative) to an outflow boundary face (on
which the outer normal derivative of uk is positive), while the other boundary faces are tangential to ∇uk (see
Fig. 1). We prove (see Thm. 3.7) that there exists a piecewise continuous conductivity σ solution to equation
(1.1) if and only if for any contiguous polyhedra Ωj and Ωk of Ω, the normal derivatives satisfy the condition

∂uj
∂ν

=
∂uk
∂ν

= 0 on ∂Ωj ∩ ∂Ωk or
∂uj
∂ν

∂uk
∂ν

> 0 on ∂Ωj ∩ ∂Ωk. (1.5)

In the first case the common boundary face ∂Ωj ∩ ∂Ωk is tangential to the gradient, while in the second case
∂Ωj ∩ ∂Ωk is an inflow (resp. outflow) face of Ωj and an outflow (resp. inflow) face of Ωk. Actually, the picture
is a little more constrained: We need to consider a so-called ∇u-admissible domain Ω (see Def. 3.5). Figure 2
represents a ∇u-admissible set, and Figure 3 represents a non-admissible one.

We construct step by step a suitable piecewise conductivity σ such that σ = σk in Ωk as follows. If σj
is already constructed in Ωj , by [4, 16] (see Prop. 3.1 for details) there exists a unique positive function
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σk ∈ C1(Ωk) solution to the equation div (σk∇uk) = 0 in Ωk, and equal on the inflow or outflow face ∂Ωj ∩ ∂Ωk
to the boundary value γk ∈ C

(
∂Ωj ∩ ∂Ωk

)
which ensures by virtue of (1.5) the flux continuity condition

σj
∂uj
∂ν

= γk
∂uk
∂ν

on ∂Ωj ∩ ∂Ωk. (1.6)

So, the piecewise continuous function σ = σk in Ωk is a solution to the equation div (σ∇u) = 0 in the
distributional sense of Ω.

In Section 4 the results of Section 3 are illustrated by the case of piecewise constant gradients in some
triangulation (see Fig. 4), and the case of the gradient of a function u ∈ C(Rd) defined by u(x) := g±(x1) +
f(x2, . . . , xd) in each half-space {±x1 > 0}.

Notation

• int (A) denotes the interior of a subset A of Rd.
• C(A) denotes the set of continuous functions in a topological space A.
• Ck(A) denotes the space of k-differentiable functions in a subset A of Rd, and Ckc (A) denotes the subspace

of Ck(A) composed of functions with compact support in A.
• D ′(Ω) denotes the distributions space in an open set Ω of Rd.
• c denotes a positive constant which may vary from line to line.

2. Case where the gradient field is continuous

For u ∈W 2,1
loc (Rd), the gradient flow X = X(t, x) associated with ∇u is defined (if possible) by

∂X

∂t
(t, x) = ∇u

(
X(t, x)

)
X(0, x) = x.

for t ∈ R, x ∈ Rd. (2.1)

Theorem 2.1. Let u : Rd → R be a function satisfying

u ∈W 2,1
loc (Rd), ∇u is uniformly continuous in Rd, ∆u ∈ L∞(Rd), inf

Rd
|∇u| > 0. (2.2)

Then, there exists a positive function σ ∈ L∞loc(Rd) with σ−1 ∈ L∞loc(Rd), solution to the conductivity equation

div (σ∇u) = 0 in D ′(Rd), (2.3)

the flow X(·, x) is well defined by (2.1) for a.e. x ∈ Rd, and σ satisfies the following: for any t ∈ R, there exists
a set Et, of Lebesgue measure zero depending on t, such that

σ(x)

σ
(
X(t, x)

) = exp

(∫ t

0

∆u
(
X(s, x)

)
ds

)
, ∀x ∈ Rd \ Et. (2.4)

Conversely, if there exists E, a set of Lebesgue measure zero, and a positive function σ in L∞loc(Rd) such that

σ(x)

σ
(
X(t, x)

) = exp

(∫ t

0

∆u
(
X(s, x)

)
ds

)
(2.5)

holds for any t ∈ R and any x ∈ Rd \ E, then σ is solution to equation (2.3).
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Remark 2.2. Assumptions (2.2) replace the smoothness u ∈ C3(Rd) which is needed in [7].

Remark 2.3. The set E of Lebesgue measure zero where formula (2.5) is not satisfied by x does not depend on
t, while the set Et does depend on t in formula (2.4). Hence, formula (2.5) is stronger than (2.4). Both formulas
are equivalent if for instance X, ∆u and σ are continuous.

Proof of Theorem 2.1. Let (ρn)n≥1 be a sequence of mollifiers satisfying

ρn ∈ C∞(Rd), supp (ρn) ⊂ B(0, 1/n), ρn ≥ 0,

∫
Rd

ρn(x) dx = 1. (2.6)

Denote un := ρn ∗ u ∈ C∞(Rd). Since by (2.2) ∇u is uniformly continuous in Rd, the sequence ∇un = ρn ∗ ∇u
converges uniformly to ∇u in Rd. Hence, by the last inequality of (2.2) there exists a constant m > 0 such that

inf
Rd
|∇un| ≥ m > 0 for n large enough. (2.7)

Let Xn(t, x) be the flow associated with ∇un defined by
∂Xn

∂t
(t, x) = ∇un

(
X(t, x)

)
Xn(0, x) = x.

for t ∈ R, x ∈ Rd. (2.8)

By (2.7) the regular case of Theorem 2.15 in [7] shows that there exists a unique function τn in C∞(Rd) satisfying

un
(
Xn(τn(x), x)

)
= 0, ∀x ∈ Rd, (2.9)

and that, denoting

σn(x) := exp

(∫ τn(x)

0

∆un
(
Xn(s, x)

)
ds

)
for x ∈ Rd, (2.10)

we have

div (σn∇un) = 0 in Rd, (2.11)

and

σn(x)

σn
(
Xn(t, x)

) = exp

(∫ t

0

∆un
(
Xn(s, x)

)
ds

)
, ∀x ∈ Rd, ∀ t ∈ R. (2.12)

The main difficulty is now to pass to the limit n→∞ in equations (2.10), (2.11), (2.12). To this end, we will
use the approach of DiPerna and Lions [9] for solving ordinary differential equations in Sobolev spaces. First of
all, note that by condition (2.2) the field b := ∇u satisfies the condition (49) and (70) of [9], i.e.

b

1 + |x|
∈ L∞(Rd), b ∈W 1,1

loc (Rd)d and div b ∈ L∞(Rd), (2.13)

since any uniformly continuous function f(x) in Rd is bounded by an affine function of |x|. Hence, by virtue
of Theorem III.2 in [9], the flow Xn(·, x) converges in Cloc(R) to the unique flow X(·, x) ∈ C1(Rd)d defined by
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(2.1) for a.e. x ∈ Rd. Moreover, X satisfies the semi-group property: for any t ∈ R, there exists a set Et, of
Lebesgue measure zero depending on t, such that

X(s+ t, x) = X
(
s,X(t, x)

)
, ∀ s ∈ R, ∀x ∈ Rd \ Et. (2.14)

The image measure λX(t), for t ∈ R, of the Lebesgue measure λ by X(t, ·), i.e. defined by∫
Rd

ϕdλX(t) =

∫
Rd

ϕ
(
X(t, x)

)
dx, ∀ϕ ∈ Cc(Rd), (2.15)

has a density in r(t, ·) ∈ L∞(Rd) with respect to the Lebesgue measure, which satisfies for any t ∈ R,

e−|t| ‖∆u‖L∞(Rd) ≤ r(t, ·) ≤ e|t| ‖∆u‖L∞(Rd) a.e. in Rd, (2.16)

or equivalently, for any t ∈ R and for any ϕ ∈ Cc(Rd), ϕ ≥ 0,

e−|t| ‖∆u‖L∞(Rd)

∫
Rd

ϕ(x) dx ≤
∫
Rd

ϕdλX(t) ≤ e|t| ‖∆u‖L∞(Rd)

∫
Rd

ϕ(x) dx. (2.17)

We will need the following result satisfied by the flows Xn and X.

Lemma 2.4.

(i) If f ∈ L1
loc(Rd) then f ◦X ∈ L1

loc(R× Rd).
(ii) Let f ∈ L1

loc(Rd), let K be a compact of Rd, and let I be a bounded interval of R. Then, we have

lim
n→∞

∫
K

∫
I

∣∣f(Xn(s, x)
)
− f

(
X(s, x)

)∣∣ dsdx = 0. (2.18)

(iii) Let fn be a non-negative sequence of L1
loc(Rd) which converges strongly to 0 in L1

loc(Rd), let K be a compact
of Rd, and let I be a bounded interval of R. Then, we have

lim
n→∞

∫
K

∫
I

fn
(
Xn(s, x)

)
dsdx = 0. (2.19)

(iv) Let F ∈ Lp(Rd)N for N ∈ N, p ∈ [1,∞), let G ∈ Lp′(Rd)N with compact support, where p′ is the conjugate
exponent of p, and let ρn be a sequence in C∞c (R) satisfying (2.6) with d = 1. Then, we have

lim
n→∞

∫
Rd

∫
R
ρn(s)F

(
X(s, x)

)
·G(x) dsdx =

∫
Rd

F (x) ·G(x) dx. (2.20)

The proof is divided in five steps.

First step: Convergence of the sequence τn defined by (2.9).
On the one hand, since by (2.2) there exists E, a set of Lebesgue measure zero, such that for any x ∈ R \ E,

d

dt

(
u(X(t, x)

)
= |∇u|2

(
X(t, x)

)
≥ inf

Rd
|∇u|2 > 0, ∀ t ∈ R,

there exists a unique τ(x) ∈ R such that

u
(
X(τ(x), x)

)
= 0 for a.e. x ∈ Rd. (2.21)
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On the other hand, by (2.9) we have

|un(x)| =
∣∣un(x)− un

(
Xn(τn(x), x)

)∣∣ =

∣∣∣∣∣
∫ τn(x)

0

|∇un|2
(
Xn(t, x)

)
ds

∣∣∣∣∣ ≥ m2 |τn(x)| a.e. x ∈ Rd. (2.22)

Hence, since un converges uniformly to u in any compact set K of Rd, the sequence τn is bounded in L∞(K). Let
x ∈ Rd be satisfying (2.22). Up to a subsequence still denoted by n, τn(x) converges to some τx in R. Using the
uniform convergence of Xn(·, x) to X(·, x) and passing to the limit in equality (2.9) we get that u

(
X(τx, x)

)
= 0,

which by uniqueness of τ(x) implies that τx = τ(x). Therefore, we obtain for the whole sequence

lim
n→∞

τn(x) = τ(x) for a.e. x ∈ Rd. (2.23)

Since τ is measurable and ∆u ◦X ∈ L1
loc(R×Rd) by Lemma 2.4, applying Fubini’s theorem to the function

(t, x) 7→ 1[0,τ(x)](t) ∆u
(
X(t, x)

)
in L1

loc(R× Rd), we can define the measurable function σ by

σ(x) := exp

(∫ τ(x)

0

∆u
(
X(s, x)

)
ds

)
for a.e. x ∈ Rd. (2.24)

Second step: Strong convergence of the sequence wn := lnσn to w := lnσ in L1
loc(Rd).

Let K be a compact set of Rd. We have

∫
K

|wn(x)− w(x)|dx ≤
∫
K

∣∣∣∣∣
∫ τn(x)

0

∣∣∆u(Xn(s, x)
)
−∆u

(
X(s, x)

)∣∣ds ∣∣∣∣∣dx =: E1
n

+

∫
K

∣∣∣∣∣
∫ τn(x)

0

∣∣∆un −∆u
∣∣(Xn(s, x)

)
ds

∣∣∣∣∣dx =: E2
n

+

∫
K

∣∣∣∣∣
∫ τn(x)

τ(x)

∣∣∆u(X(s, x)
)∣∣ds ∣∣∣∣∣dx =: E3

n.

(2.25)

Since by the first step the sequence τn is uniformly bounded in any compact set of Rd, there exist a bounded
interval I of R such that

E1
n ≤

∫
K

∫
I

∣∣∆u(Xn(s, x)
)
−∆u

(
X(s, x)

)∣∣ dsdx.

Hence, applying the limit (2.18) of Lemma 2.4 with f := ∆u, we get that E1
n tends to 0. Similarly, applying

(2.19) with the sequence fn := ∆un −∆u = ρn ∗∆u −∆u which converges strongly to 0 in L1
loc(Rd), we get

that E2
n tends to 0. Finally, since τn is uniformly bounded in the compact K and ∆u ∈ L∞(Rd), by convergence

(2.23) and the Lebesgue dominated convergence theorem we get that

0 ≤ E3
n ≤ c

∫
K

|τn − τ |dx −→
n→∞

0.

Therefore, passing to the limit n → ∞ in (2.25) we obtain that the sequence wn converges strongly to w in
L1

loc(Rd).
Third step: Derivation of the conductivity equation (2.3).
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By (2.10) the function wn is defined by

wn(x) =

∫ τn(x)

0

∆un
(
Xn(s, x)

)
ds for x ∈ Rd. (2.26)

Since by the first step τn is bounded in any compact of Rd and ∆un = ρn ∗∆u is bounded in L∞(Rd), the
sequence wn is bounded in L∞loc(Rd). Hence, by the second step the sequence σn = ewn converge strongly to
σ = ew in L1

loc(Rd). Moreover, the sequence ∇un converges to ∇u in Cloc(Rd). Therefore, passing to the limit in
equation (2.11) we get that σ is solution to the conductivity equation (2.3) in the distributions sense. Finally,
both σ and σ−1 belong to L∞loc(Rd), since σ is the limit in L1

loc(Rd) of the sequence σn = ewn which is bounded
in L∞loc(Rd).
Fourth step: Proof of formula (2.4).

Formula (2.12) reads as

wn(x)− wn
(
Xn(t, x)

)
=

∫ t

0

∆un
(
Xn(s, x)

)
ds, ∀ t ∈ R, ∀x ∈ Rd. (2.27)

On the one hand, writing∣∣wn(Xn(t, x)
)
− w

(
X(t, x)

)∣∣ ≤ ∣∣w(Xn(t, x)
)
− w

(
X(t, x)

)∣∣+ |wn − w|
(
Xn(t, x)

)
,

applying limit (2.18) with f := w, and applying limit (2.19) with fn := |wn − w| which converges strongly to 0
in L1

loc(Rd) by the second step, we get that

wn
(
Xn(t, ·)

)
−→
n→∞

w
(
X(t, ·)

)
strongly in L1

loc(Rd), for any t ∈ R. (2.28)

On the other hand, let K be a compact set of Rd and t ∈ R. We have∫
K

∣∣∣∣ ∫ t

0

∆un
(
Xn(s, x)

)
ds−

∫ t

0

∆u
(
X(s, x)

)
ds

∣∣∣∣dx
≤
∣∣∣∣ ∫ t

0

∫
K

[ ∣∣∆u(Xn(s, x)
)
−∆u

(
X(s, x)

)∣∣+
∣∣∆un −∆u

∣∣(Xn(s, x)
)]

dxds

∣∣∣∣ .
Then, applying successively limit (2.18) with f := ∆u and limit (2.19) with fn := |∆un −∆u| in [0, t]×K, we
get that ∫ t

0

∆un
(
Xn(s, x)

)
ds −→

n→∞

∫ t

0

∆u
(
X(s, x)

)
ds strongly in L1

loc(Rd), for any t ∈ R. (2.29)

Therefore, using the limits (2.28) and (2.29) in (2.27), there exists Et, a set of Lebesgue measure zero depending
on t, such that for any t ∈ R,

w(x)− w
(
X(t, x)

)
=

∫ t

0

∆u
(
X(s, x)

)
ds, ∀x ∈ Rd \ Et. (2.30)

or equivalently formula (2.4).

Remark 2.5. A direct proof of (2.4) would consist in replacing x by X(t, x) in the definition (2.24) of σ(x)
and to use the semi-group property (2.14), to obtain the desired formula (2.4). However, since the function τ
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involving in (2.24) is only defined a.e. in Rd by (2.21), it is not clear that for an admissible point x of τ , X(t, x)
for t ∈ R, is also an admissible point of τ .

Fifth step: Formula (2.5) implies the conductivity equation (2.3).

Let σ be a positive function in L∞loc(Rd) satisfying formula (2.4). First of all by (2.2) the function b(t, x) := ∇u(x)
satisfies the assumptions (∗), (∗∗) of Theorem II.3.1 in [9] and assumptions (49), (70) of Theorem III.2 in [9].
Then, by virtue of Theorem II.3.1 in [9] and Theorem III.2 in [9] the function σ

(
X(t, x)

)
is solution to the

transport equation

∂

∂t

[
σ
(
X(t, x)

)]
= ∇u(x) · ∇x

[
σ
(
X(t, x)

)]
in D ′(R× Rd). (2.31)

Moreover, taking the derivative with respect to t in (2.5) (at this point (2.4) seems to be not sufficient) we have

∂

∂t

[
σ
(
X(t, x)

)]
= −σ

(
X(t, x)

)
∆u
(
X(t, x)

)
in D ′(R× Rd).

Equating the two previous equations we get that

∇x
[
σ
(
X(t, x)

)]
· ∇u(x) + σ

(
X(t, x)

)
∆u
(
X(t, x)

)
= 0 in D ′(R× Rd).

Since ∇u ∈W 1,1
loc (Rd), the previous equation can be read as

divx
[
σ
(
X(t, x)

)
∇u(x)

]
= σ

(
X(t, x)

) [
∆u(x)−∆u

(
X(t, x)

)]
in D ′(R× Rd),

which implies that for any ϕ ∈ C∞c (R) and ψ ∈ C∞c (Rd),∫
Rd

∫
R
ϕ(t)σ

(
X(t, x)

)
∇u(x) · ∇ψ(x) dtdx

=

∫
Rd

∫
R
ϕ(t)ψ(x)σ

(
X(t, x)

) [
∆u
(
X(t, x)

)
−∆u(x)

]
dtdx.

(2.32)

Taking ϕ(t) = ρn(t) in (2.32) and applying the limit (2.20) of Lemma 2.4 with F = σ, σ, σ∆u in Lploc(Rd) for

p := d
d−1 , and respectively G = ∇u · ∇ψ,ψ∆u, ψ in Lp

′
(Rd) with compact support, we obtain that∫

Rd

σ(x)∇u(x) · ∇ψ(x) dx = 0, ∀ψ ∈ C∞c (Rd),

or equivalently the conductivity equation (2.3).

Proof of Lemma 2.4.

(i) Let I be a bounded interval of R and let K be a compact set of Rd. We have for any t ∈ I and x ∈ K,

∣∣Xn(t, x)
∣∣ ≤ |x|+ ∣∣∣∣ ∫ t

0

∣∣∇un(Xn(s, x)
)∣∣ ds

∣∣∣∣ .
Moreover, the uniform continuity of ∇u in Rd and the equality ∇un = ρn ∗∇u imply the existence of a constant
c > 0 such that

|∇un(y)| ≤ c |y|+ c, ∀n ∈ N, ∀ y ∈ Rd.
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We thus deduce that

∣∣Xn(t, x)
∣∣ ≤ c+ c

∣∣∣∣ ∫ t

0

|Xn(s, x)| ds

∣∣∣∣ , ∀n ∈ N, ∀ t ∈ I, ∀x ∈ K.

Hence, by Gronwall’s inequality (see, e.g., [11], Sect. 17.3) there exists a constant c > 0 such that

∣∣Xn(t, x)
∣∣ ≤ c ec |t|, ∀n ∈ N, ∀ t ∈ I, ∀x ∈ K. (2.33)

Therefore, there exists a compact K̂ of Rd and E, a set of Lebesgue measure zero, such that

Xn(t, x), X(t, x) ∈ K̂, ∀n ∈ N, ∀ t ∈ I, ∀x ∈ K \ E. (2.34)

Let f ∈ L1
loc(Rd), and let fn be a sequence in C∞c (Rd) which converges strongly to f in L1

loc(Rd). We will show
that fn ◦X converges strongly to some function g in L1(I ×K). By Theorem II.3.1 from [9] and Theorem III.2
from [9] fn ◦X is in L1

loc(R× Rd). Let O be a bounded open set of Rd containing the compact set K̂, and let

ψ be a non-negative function in Cc(O) which is equal to 1 in K̂. By (2.34) and estimate (2.17) we have for any
p, q ∈ N, ∫

I

∫
K

∣∣fp(X(t, x))− fq(X(t, x))
∣∣dtdx ≤

∫
I

dt

∫
Rd

ψ(X(t, x))
∣∣fp(X(t, x))− fq(X(t, x))

∣∣dx
=

∫
I

dt

∫
Rd

ψ |fp − fq|dλX(t) ≤ c
∫
O

|fp − fq|.

Hence, fn ◦X is a Cauchy sequence in L1(I ×K) and thus converges strongly to some function g in L1(I ×
K). Therefore, due to the arbitrariness of I,K the sequence fn ◦X converges strongly to some function g in
L1

loc(R× Rd).
Finally, by estimate (2.16) we have for any bounded interval I of R, any bounded open set O of Rd and any

function ϕ ∈ Cc(O),

∫
I

dt

∫
Rd

ϕf dλX(t) =

∫
I

dt

∫
O

ϕ(x) f(x) r(t, x) dx = lim
n→∞

∫
I

dt

∫
O

ϕ(x) fn(x) r(t, x) dx

= lim
n→∞

∫
I

dt

∫
Rd

ϕfn dλX(t) = lim
n→∞

∫
I

∫
Rd

(ϕfn)
(
X(t, x)

)
dx =

∫
I

dt

∫
Rd

ϕ
(
X(t, x)

)
g(t, x) dx,

which, due to the arbitrariness of I,O, ϕ, implies that f ◦X = g ∈ L1
loc(R× Rd).

(ii) Let I be a bounded interval of R and let K be a compact set of Rd. Let ϕ ∈ C∞c (Rd) be an approximation
of f in L1(Rd). We have

lim sup
n→∞

∫
K

∫
I

∣∣f(Xn(s, x)
)
− f

(
X(s, x)

)∣∣ dsdx

≤ lim sup
n→∞

∫
K

∫
I

∣∣ϕ(Xn(s, x)
)
− ϕ

(
X(s, x)

)∣∣dsdx

+ lim sup
n→∞

∫
K

∫
I

|f − ϕ|
(
Xn(s, x)

)
dsdx+

∫
K

∫
I

|f − ϕ|
(
X(s, x)

)
dsdx.

(2.35)
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On the one hand, the uniform convergence of Xn(·, x) to X(·, x) in I combined with the continuity of ϕ yields
that ∫

I

∣∣ϕ(Xn(s, x)
)
− ϕ

(
X(s, x)

)∣∣ds −→
n→∞

0 a.e. x ∈ K,

and estimate (2.33) combined with the continuity of ϕ gives that∫
I

∣∣ϕ(Xn(s, x)
)
− ϕ

(
X(s, x)

)∣∣ds ≤ c a.e. x ∈ K.

Hence, by the Lebesgue dominated convergence theorem

lim
n→∞

∫
K

∫
I

∣∣ϕ(Xn(s, x)
)
− ϕ

(
X(s, x)

)∣∣dsdx = 0. (2.36)

Then, since by (2.34) there exists a set E, of Lebesgue measure zero, such that

1K(x) ≤ min
(
1K̂(X(t, x)), 1K̂(Xn(t, x))

)
, ∀n ∈ N, ∀ t ∈ I, ∀x ∈ Rd \ E, (2.37)

using the estimate (2.17) satisfied by the image measure λX(s) with ∆u and the similar one satisfied by λXn(s)
with ∆un, we get that

lim sup
n→∞

∫
K

∫
I

|f − ϕ|
(
Xn(s, x)

)
dsdx+

∫
K

∫
I

|f − ϕ|
(
X(s, x)

)
dsdx

≤ lim sup
n→∞

∫
I

∫
Rd

(
1K̂ |f − ϕ|

)(
Xn(s, x)

)
dxds+

∫
I

∫
Rd

(
1K̂ |f − ϕ|

)(
X(s, x)

)
dxds

= lim sup
n→∞

∫
I

∫
Rd

1K̂(y) |f − ϕ|(y)λXn
(s)(dy) ds+

∫
I

∫
Rd

1K̂(y) |f − ϕ|(y)λX(s)(dy) ds

≤ c ‖f − ϕ‖L1(K̂).

Therefore, putting this and limit (2.36) in (2.35) we deduce the desired limit (2.18).

(iii) Let I be a bounded interval of R, let K be a compact set of Rd, and let K̂ be a compact set of Rd satisfying
(2.34). Let fn be a non-negative sequence of L1

loc(Rd) which converges strongly to 0 in L1
loc(Rd). Repeating the

argument of (ii) using inequality (2.37) and the estimate (2.17) with Xn in place of X, we get that

lim sup
n→∞

∫
K

∫
I

fn
(
Xn(s, x)

)
dsdx ≤ lim sup

n→∞

∫
I

∫
Rd

(
1K̂fn

)(
Xn(s, x)

)
dsdx

≤ lim sup
n→∞

∫
I

∫
Rd

1K̂(y) fn(y)λXn(s)(dy) ds

≤ c lim sup
n→∞

‖fn‖L1(K̂) = 0,

which yields (2.19).

(iv) Let F ∈ Lploc(Rd)N for N ∈ N, p ∈ [1,∞), and let G ∈ Lp′(Rd)N whose support is included in a compact

set K of Rd. Consider a compact set K̂ of Rd satisfying (2.34) with I = [−1, 1] and K, i.e. there exists a set E,
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of Lebesgue measure zero, such that

1K̂
(
X(t, x)

)
= 1, ∀ t ∈ [−1, 1], ∀x ∈ K \ E.

Let Φ ∈ C∞c (Rd)N be an approximation of F in Lp(K̂)N . By (2.6) we have∫
Rd

∫
R
ρn(s)F

(
X(s, x)

)
·G(x) dsdx−

∫
Rd

F (x) ·G(x) dx

=

∫
Rd

∫
R
ρn(s)

[
Φ
(
X(s, x)− Φ(x)

)]
·G(x) ds

+

∫
Rd

∫
R
ρn(s)

[(
1K̂(F − Φ)

)(
X(s, x)

)
−
(
1K̂(F − Φ)

)
(x)
]
·G(x) dsdx.

Then, by the Hölder inequality combined with estimate (2.16) we get that

lim sup
n→∞

∣∣∣∣ ∫
Rd

∫
R
ρn(s)F

(
X(s, x)

)
·G(x) dsdx−

∫
Rd

F (x) ·G(x) dx

∣∣∣∣
≤ lim sup

n→∞

∣∣∣∣ ∫
Rd

∫
R
ρn(s)

[
Φ
(
X(s, x)

)
− Φ(x)

]
·G(x) dsdx

∣∣∣∣+ c ‖F − Φ‖Lp(K̂)N ‖G‖Lp′ (K)N .

(2.38)

By the continuity of Φ we have∫
R
ρn(s)

[
Φ
(
X(s, x)

)
− Φ(x)

]
ds −→

n→∞
0 a.e. x ∈ Rd.

Moreover, we have ∣∣∣∣ ∫
R
ρn(s)

[
Φ
(
X(s, x)

)
− Φ(x)

]
ds

∣∣∣∣ ≤ 2 ‖Φ‖L∞(Rd)N a.e. x ∈ Rd,

so that ∣∣∣∣(∫
R
ρn(s)

[
Φ
(
X(s, x)

)
− Φ(x)

]
ds

)
·G(x)

∣∣∣∣ ≤ c |G(x)| a.e. x ∈ Rd.

Hence, since G ∈ L1(Rd)N due to its compact support, the Lebesgue dominated convergence theorem implies
that

lim
n→∞

∫
Rd

∫
R
ρn(s)

[
Φ
(
X(s, x)

)
− Φ(x)

]
·G(x) dsdx = 0.

Using this in (2.38) we thus obtain limit (2.20). �

3. Case where the gradient field has jumps

In this section we will consider a gradient field which is piecewise regular in a finite number of so-called
gradient-admissible domains.
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3.1. Gradient-admissible domain

The starting point is the following result first due to Bongiorno, Valente [4], and well reformulated by Richter
[16].

Proposition 3.1 ([16], Lem. 2). Let Ω be a bounded domain (i.e. a connected open set) of Rd, and let u ∈ C2(Ω)
such that

inf
Ω
|∇u| > 0. (3.1)

Let Γ− be the inflow boundary of Ω, i.e. the subset of ∂Ω on which the outer normal derivative of u is negative:
∂u
∂ν < 0, and let Γ+ be the outflow boundary of Ω, i.e. the subset of ∂Ω on which the outer normal derivative of

u is positive: ∂u
∂ν > 0.

Then, each point of Ω belongs to a unique trajectory t 7→ X(t, x) which flows from Γ− to Γ+. Moreover, there
exists a unique positive function σ ∈ C1(Ω) taking prescribed values on Γ− (resp. on Γ+) which is solution to
the equation div (σ∇u) = 0 in Ω.

Remark 3.2. Actually, in [16] the existence and the uniqueness of the conductivity σ taking previous values
on the inflow boundary Γ− is proved under the weaker assumption

inf
Ω

(
min (|∇u|,∆u)

)
> 0.

However, we will need the stronger condition (3.1) in the sequel.

Proof of Proposition 3.1. The proof can be found in [16]. We will give another expression of the conduc-
tivity σ following Theorem 2.1. Let γ be a positive function in C1(Γ−). For a fixed x ∈ Ω, the trajectory
t ∈ [τ−(x), τ+(x)] 7→ X(t, x) flows from the inflow boundary Γ− to the outflow boundary Γ+, where τ−(x) <
0 < τ+(x) and X

(
τ±(x), x

)
∈ Γ±. Let y = X(τ, x) be a point on the same trajectory. Note that by the semi-group

property of the flow we have

X
(
τ−(x), x

)
= X

(
τ−(y), y

)
= X

(
τ−(y), X(τ, x)

)
= X

(
τ−(y) + τ, x

)
,

hence τ−(y) = τ−(x)− τ . Now, we can define the conductivity σγ along the trajectory by

σγ
(
X(t, x)

)
:= γ

(
X(τ−(x), x)

)
exp

(∫ τ−(x)

t

∆u
(
X(s, x)

)
ds

)
for t ∈ [τ−(x), τ+(x)]. (3.2)

Formula (3.2) does not depend on the point y = X(τ, x) on the same trajectory, since

∫ t

τ−(y)

∆u
(
X(s, y)

)
ds =

∫ t

τ−(x)−τ
∆u
(
X(s+ τ, x)

)
ds =

∫ t+τ

τ−(x)

∆u
(
X(s, x)

)
ds,

which implies that σγ
(
X(t, y)

)
= σγ

(
X(t+ τ, x)

)
. Moreover, it is immediate that formula (3.2) implies formula

(2.5). Therefore, by Theorem 2.1 σγ is a solution to the equation div (σγ∇u) = 0 in Ω, and σγ = γ on Γ−.
Conversely, consider a positive function σ ∈ C1(Ω) such that div (σ∇u) = 0 in Ω, and σ = γ on Γ−. From

the equality ∇σ · ∇u+ σ∆u = 0 in Ω, we deduce that for any x ∈ Ω,

d

dt

[
ln
(
σ(X(t, x)

)]
= −∆u

(
X(t, x)

)
, ∀ t ∈ [τ−(x), τ+(x)],
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Figure 1. The trajectories in Ω flow from Γ− to Γ+.

then

σ(x)

σ
(
X(t, x)

) = exp

(∫ t

0

∆u
(
X(s, x)

)
ds

)
, ∀ t ∈ [τ−(x), τ+(x)].

This combined with (3.2) implies that for any x ∈ Ω,

σ(x)

γ
(
X(τ−(x), x)

) =
σ(x)

σ
(
X(τ−(x), x)

) = exp

(∫ τ−(x)

0

∆u
(
X(s, x)

)
ds

)
=

σγ(x)

γ
(
X(τ−(x), x)

) .
Therefore, we obtain that σ = σγ in Ω, which shows the uniqueness of the conductivity σγ . �

We can now state the definition of a gradient-admissible set.

Definition 3.3. Let Ω be a bounded domain of Rd, and let u ∈ C2(Ω). The domain Ω is said to be∇u-admissible
if condition (3.1) holds.

Remark 3.4. The boundary of a ∇u-admissible domain Ω is split into the inflow boundary Γ−, the outflow
boundary Γ+, and surfaces which are tangential to ∇u. Figure 1 shows a two-dimensional ∇u-admissible domain
Ω with two boundary curves which are tangential to ∇u.

3.2. Piecewise regular gradient field

In connection with Definition 3.3 of a gradient-admissible set, we focus on a so-called admissible domain
defined as follows.

Definition 3.5. Let Ω be a bounded domain of Rd. The set Ω is said to be admissible if it is decomposed
into “generalized open polyhedra” (obtained from polyhedra through a smooth diffeomorphism) Ωj,k for j ∈
{1, . . . , nk} and k ∈ {1, . . . , n}, where some of the domains Ω1,k may agree, satisfying:

(i) each polyhedron Ωj,k is a ∇uj,k-admissible domain with uj,k ∈ C2(Ωj,k);
(ii) each internal face of the chain Ω1,k → Ω2,k → · · · → Ωnk,k made of nk contiguous domains, is an inflow

boundary for one domain and an outflow boundary for the contiguous domain, or equivalently

∂uj,k
∂ν

∂uj−1,k

∂ν
> 0 on ∂Ωj,k ∩ ∂Ωj−1,k for any j ∈ {2, . . . , nk}, (3.3)

where ν is the outer normal of ∂Ωj,k;
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Figure 2. An admissible domain Ω composed of n = 4 chains.

(iii) each external face of the chain Ω1,k → Ω2,k → · · · → Ωnk,k is
◦ either a boundary part of ∂Ω,
◦ or a surface tangential to some ∇uj,k,
◦ or an inflow or outflow boundary of Ω1,k which is (possibly) connected to another chain Ω1,k = Ω1,j →

Ω2,j → · · · → Ωnj ,j .

Example 3.6.

1. Figure 2 represents an admissible domain Ω composed of the n = 4 chains
Ω1,1 → Ω2,1 → Ω3,1 → Ω4,1

Ω1,1 = Ω1,2 → Ω2,2

Ω1,1 = Ω1,3 → Ω2,3 → Ω3,3

Ω1,4 → Ω2,4.

The three first chains are connected to the same set Ω1,1. The fourth one is separated from three others
by surfaces which are tangential to the gradient.

2. The domain Ω of Figure 3 is composed of n = 1 chain made of 4 ∇uk-admissible sets. It is not admissible,
since the chain Ω1 → Ω2 → Ω3 → Ω4 has an external boundary which is neither a boundary part of ∂Ω
nor a surface tangential to some gradient ∇uk. This creates a conflict for defining a suitable conductivity
σk in each domain Ωk (see Rem. 3.8, 2).

Theorem 3.7. Let Ω be an admissible domain composed of ∇uj,k-admissible open sets Ωj,k for j ∈ {1, . . . , nk}
and k ∈ {1, . . . , n}, according to Definition 3.5, and let u ∈ C(Ω) be such that u = uj,k in Ωj,k. Then, there
exists a piecewise continuous positive conductivity σ such that

{
σ|Ωk,j

∈ C1
(
Ωk,j

)
for j ∈ {1, . . . , nk} and k ∈ {1, . . . , n},

div (σ∇u) = 0 in D ′(Ω).
(3.4)
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Figure 3. A non-admissible domain Ω with n = 1 chain: Ω1 → Ω2 → Ω3 → Ω4.

Conversely, let Ω be a bounded domain of Rd composed of n generalized polyhedra Ωk, and let u be a function
in C(Ω) such that uk := u|Ωk

∈ C2(Ωk) and Ωk is a ∇uk-admissible domain for k ∈ {1, . . . , n}. Assume that

σ is a positive function in C(Ω) such that σk := σ|Ωk
∈ C1(Ωk) and div (σ∇u) = 0 in D ′(Ω). Then, for any

contiguous polyhedra Ωj and Ωk, the common face Γj,k := ∂Ωj ∩ ∂Ωk is either a surface tangential to ∇u, or
an inflow (resp. outflow) boundary of Ωj and an outflow (resp. inflow) boundary of Ωk.

Proof of Theorem 3.7. The idea is to construct in each chain Ω1,k → Ω2,k → · · · → Ωnk,k for k ∈ {1, . . . , n},
successively the conductivities σ1,k, . . . , σnk,k. To this end, the conductivity σj−1,k being constructed in the
domain Ωj−1,k for some j ∈ {2, . . . , nk}, we will choose a suitable positive continuous function γj,k on the inflow
or outflow boundary face ∂Ωj,k ∩ ∂Ωj−1,k, which

• determines the conductivity σj,k in the ∇uj,k-admissible domain Ωj,k by Proposition 3.1,
• satisfies the flux continuity condition through the surface ∂Ωj,k ∩ ∂Ωj−1,k.

For k ∈ {1, . . . , n}, fix the conductivity equal to 1 on the inflow or outflow boundary face of Ω1,k, which by
Proposition 3.1 determines a unique conductivity σ1,k ∈ C1(Ω1,k) such that div (σ1,k∇u) = 0 in Ω1,k.

Next, using an induction argument we will construct a suitable piecewise continuous conductivity along the
chain Ω1,k → · · · → Ωnk,k. Assume that for some j ∈ {2, . . . , nk}, we have built a piecewise conductivity σ = σi,k
in Ωi,k for i ∈ {1, . . . , j − 1}, solution to the equation

div (σ∇u) = 0 in int
[
Ω1,k ∪ ∪j−1

i=2 (Ωi,k ∪ Γi,k)
]
,

where Γi,k := ∂Ωi,k ∩ ∂Ωi−1,k is the common face of Ωj,k and Ωj−1,k. By the condition (3.3) on Γj,k there exists
a positive function γj,k ∈ C(Γj,k) such that

γj,k
∂uj,k
∂ν

= σj−1,k
∂uj−1,k

∂ν
on Γj,k, (3.5)

where ν is the outer normal of ∂Ωj,k. Since by the assumption (ii) of Definition 3.5 Γj,k is an inflow or outflow
boundary face of the ∇uj,k-admissible domain Ωj,k, by Proposition 3.1 there exists a positive conductivity
σj,k ∈ C(Ωj,k) taking the value γj,k on Γj,k and solution to the equation div (σj,k∇u) = 0 in Ωj,k. Then,
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equality (3.5) reads as the flux continuity condition through Γj,k. It follows that the conductivity σ := σi,k in
Ωi,k for i ∈ {1, . . . , j}, is solution to the equation

div (σ∇u) = 0 in int
[
Ω1,k ∪ ∪ji=2 (Ωi,k ∪ Γi,k)

]
,

which concludes the induction proof. Therefore, we has just constructed a piecewise continuous positive function

σ = σj,k in Ωj,k solution to div (σ∇u) = 0 in int
[
Ω1,k ∪ ∪nk

j=2 (Ωj,k ∪ Γj,k)
]
. (3.6)

Now, according to Definition 3.5 consider the partition (Ki)1≤i≤p of {1, . . . , n} such that the sets Ω1,k

agree to the same set Ω1,ki (ki ∈ Ki) for any k ∈ Ki and i ∈ {1, . . . , p}. Since for each i ∈ {1, . . . , p} the chains
Ω1,k → Ω2,k → · · · → Ωnk,k are connected to the set Ω1,ki for any k ∈ Ki, by the definition (3.6) of the piecewise
continuous conductivity σ we thus have

div (σ∇u) = 0 in int

( ⋃
k∈Ki

[
Ω1,ki ∪ ∪

nk
j=2 (Ωj,k ∪ Γj,k)

])
for any i ∈ {1, . . . , p}. (3.7)

Moreover, by the assumption (iii) of Definition 3.5 we have

∂u

∂ν
= 0 on ∂

( ⋃
k∈Ki

[
Ω1,ki ∪ ∪

nk
j=2 (Ωj,k ∪ Γj,k)

])
\ ∂Ω for any i ∈ {1, . . . , p}. (3.8)

Let ϕ ∈ C∞c (Ω). Therefore, integrating by parts and using (3.7), (3.8) we get that

∫
Ω

σ∇u · ∇ϕdx =

p∑
i=1

∫
⋃

k∈Ki
[Ω1,ki

∪∪nk
j=2 (Ωj,k∪Γj,k)]

σ∇u · ∇ϕdx = 0,

which implies that the piecewise continuous conductivity σ of (3.6) is solution to the equation div (σ∇u) = 0
in D ′(Ω).

Conversely, let Ω be a bounded domain of Rd composed of n generalized polyhedra Ωk for k ∈ {1, . . . , n}. Let
u ∈ C(Ω) be such that uk := u|Ωk

∈ C2(Ωk), and Ωk is ∇uk-admissible. Assume that σ is a positive piecewise

continuous function such that σk := σ|Ωk
∈ C1(Ωk) and div (σ∇u) = 0 in D ′(Ω). Consider two contiguous

polyhedra Ωj and Ωk, the common face of which Γj,k := ∂Ωj ∩ ∂Ωk is not a surface tangential to ∇u. The flux
continuity condition through Γj,k reads as

σj
∂uj
∂ν

= σk
∂uk
∂ν

on Γj,k, (3.9)

where ν is the outer normal to ∂Ωj , which implies that

∂uj
∂ν

∂uk
∂ν

> 0 on Γj,k.

Therefore, Γj,k is an inflow (resp. outflow) boundary face of Ωj , and an outflow (resp. inflow) boundary face of
Ωk. The proof of Theorem 3.7 is now complete. �
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Remark 3.8.

1. In the case of Figure 2 the domain Ω is composed of 9 polyhedra Ωj,k grouped into 4 chains with 11
internal faces. The step by step construction of Theorem 3.7 reads as follows:
• We prescribe the conductivity on the say inflow face ∂Ω1,1 ∩ ∂Ω2,3 of Ω1,1, which determines the

conductivity σ1,1. Then, ∂Ω1,1 ∩ ∂Ω2,1 and ∂Ω1,1 ∩ ∂Ω2,2 are outflow faces of Ω1,1.
• We choose successively the conductivities on the inflow face ∂Ω1,1 ∩ ∂Ω2,1 of Ω2,1, the outflow face
∂Ω2,1 ∩ ∂Ω3,1 of Ω3,1, and the outflow face ∂Ω3,1 ∩ ∂Ω4,1 of Ω4,1, which determine the conductivities
σ2,1, σ3,1, σ4,1 ensuring the flux continuity conditions on ∂Ω1,1 ∩ ∂Ω2,1, ∂Ω2,1 ∩ ∂Ω3,1, ∂Ω3,1 ∩ ∂Ω4,1.

• We choose the conductivity on the inflow face ∂Ω1,1 ∩ ∂Ω2,2 of Ω2,2, which determines the conductivity
σ2,2 ensuring the flux continuity condition on ∂Ω1,1 ∩ ∂Ω2,2.

• We choose successively the conductivities on the outflow face ∂Ω1,1 ∩ ∂Ω2,3 of Ω2,3 and the inflow
face ∂Ω2,3 ∩ ∂Ω3,3 of Ω3,3, which determine the conductivities σ2,3, σ3,3 ensuring the flux continuity
conditions on ∂Ω1,1 ∩ ∂Ω2,3, ∂Ω2,3 ∩ ∂Ω3,3.

• We prescribe the conductivity on the say inflow face ∂Ω1,4 ∩∂Ω2,4 of Ω1,4, which determines the conduc-
tivity σ1,4. Then, we choose the conductivity on the ouflow face ∂Ω1,4 ∩ ∂Ω2,4 of Ω2,4, which determines
the conductivity σ2,4 ensuring the flux continuity condition on ∂Ω1,4 ∩ ∂Ω2,4.

• The 4 remaining faces ∂Ω4,1 ∩ ∂Ω2,2, ∂Ω2,2 ∩ ∂Ω3,3, ∂Ω2,3 ∩ ∂Ω2,4, ∂Ω2,1 ∩ ∂Ω1,4 are tangential to the
gradient, and thus satisfy the flux continuity conditions.

2. In the case of Figure 2 the domain Ω is made of one chain composed of 4 polyhedra. For example, we
prescribe the conductivity on the say inflow face ∂Ω1 ∩ ∂Ω2 of Ω1. Then, the flux continuity conditions
on the faces ∂Ω1 ∩ ∂Ω2, ∂Ω2 ∩ ∂Ω3, ∂Ω3 ∩ ∂Ω4 determine successively the conductivities σk in Ωk for
k = 1, 2, 3, 4. But then the flux continuity condition on the face ∂Ω1 ∩ ∂Ω4 does not hold in general.

4. Examples

4.1. Example 1

Let Ω be an open set of R2 which is star-shaped with respect to the origin. Let ξ1, . . . , ξn be n ≥ 2 non-zero
vectors of R2 such that the open cones{

Ωk :=
{
s ξk + t ξk+1, , s, t > 0

}
for 1 ≤ k ≤ n− 1

Ωn :=
{
s ξ1 + t ξn, , s, t > 0

}
for k = n,

(4.1)

do not contain any vector ξj .
Consider a function u ∈ C(Ω) of finite element type P1 (see, e.g. [8], Sect. 2.2), i.e. there exists constant

vectors λk ∈ R2 such that

∇u = λk in Ωk for k ∈ {1, . . . , n}. (4.2)

This imposes the flux continuity conditions

(λk − λk−1) · ξk = 0, ∀ k ∈ {2, . . . , n} and (λ1 − λn) · ξ1 = 0. (4.3)

Up to decrease the value of n we can also assume that

λk − λk−1 6= 0, ∀ k ∈ {2, . . . , n} and λ1 − λn 6= 0. (4.4)

Similarly to the case of Figure 3 (see Rem. 3.8, 2) the chain Ω1 → Ω2 → · · · → Ωn does not satisfy the
condition (iii) of Definition 3.5. Indeed, the existence of constant conductivities σk in Ωk satisfying the flux
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Figure 4. Triangulation of Ω by the cones Ω1, Ω2, Ω3, and Ω4 = int
(
Ω4,1 ∪ Ω4,2

)
with ξ ‖ λ4.

continuity condition (3.9) reads as

σk det (ξk, λk) = σk−1 det (ξk, λk−1) , ∀ k ∈ {2, . . . , n} and σn det (ξ1, λn) = σ1 det (ξ1, λ1) ,

which thus implies the constraint

n∏
k=1

det (ξk, λk) = det (ξ1, λn)

n∏
k=2

det (ξk, λk−1) . (4.5)

A less restrictive alternative is to assume that for some k ∈ {1, . . . , n}, say k = n without loss of generality,
there exists a vector ξ ∈ R2 satisfying

ξ ∈ Ωn \ {0} and ξ ‖ λn. (4.6)

Hence, defining the subsets of Ωn

Ωn,1 :=
{
s ξ + t ξn, , s, t > 0

}
and Ωn,2 :=

{
s ξ + t ξ1, , s, t > 0

}
,

we have

∂u

∂ν
= 0 on ∂Ωn,1 ∩ ∂Ωn,2 ⊂ R ξ. (4.7)
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Therefore, by (4.2) and (4.7) the chain Ωn,2 → Ω1 → · · · → Ωn−1 → Ωn,1 satisfies the conditions (i) and (iii)
of Definition 3.5 (see Fig. 4 and compare to Fig. 3). Then, taking into account conditions (4.3) and (4.4) the
condition (ii) of Definition 3.5 is equivalent to

det (ξk, λk) det (ξk, λk−1) > 0, ∀ k ∈ {2, . . . , n} and det (ξ1, λ1) det (ξ1, λn) > 0. (4.8)

Therefore, by Theorem 3.7 ∇u is isotropically realizable in Ω if and only if condition (4.8) holds true. Finally,
due to condition (4.8) a suitable piecewise constant conductivity is given by

σ =



det (ξ1, λn)

det (ξ1, λ1)
in Ω1

det (ξ1, λn)

det (ξ1, λ1)

k∏
j=2

det (ξj , λj−1)

det (ξj , λj)
in Ωk for 2 ≤ k ≤ n− 1

det (ξ1, λn)

det (ξ1, λ1)

n∏
j=2

det (ξj , λj−1)

det (ξj , λj)
in Ωn,1

1 in Ωn,2.

(4.9)

Remark 4.1. We can also extend the previous two-dimensional example to dimension three replacing the open
cones (4.1) as follows. Let Ω be an open set of R3 which is star-shaped with respect to the origin. Let ξ1, . . . , ξn
be n ≥ 3 non-zero vectors of R3 such that the open cones

Ωi,j,k := Ω ∩
{
r ξi + s ξj + t ξk, r, s, t > 0

}
if det (ξi, ξj , ξk) 6= 0, (4.10)

do not contain any vector ξ`. For example, if (e1, e2, e3) is a basis of R3 and n = 6 with

ξ1 = e1, ξ2 = e2, ξ3 = e3, ξ4 = −e1, ξ5 = −e2, ξ6 = −e3,

there are 8 open cones of type (4.10).

4.2. Example 2

Let f be a function in W 2,∞
loc (Rd−1) for d ≥ 2, and let g, h be 2 functions in C2(R) such that

f satisfies condition (2.2) in Rd−1,

g(0) = h(0),

g′, h′ are uniformly continuous in R and g′(t)h′(t) 6= 0, ∀ t ∈ R.

(4.11)

Consider the function u ∈ C(Rd) defined by

u(x) =

{
u1(x1, x

′) := g(x1) + f(x′) if (x1, x
′) ∈ Ω1 := (0,∞)× R

u2(x1, x
′) := h(x1) + f(x′) if (x1, x

′) ∈ Ω2 := (−∞, 0)× R,
(4.12)

so that u satisfies the conditions (i) and (iii) (which is empty there) of Definition 3.5. Moreover, the function
∇u is piecewise continuous in Rd, and condition (ii) of Definition 3.5 is reduced to

g′(0)h′(0) > 0. (4.13)
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Due to the separation of the variables x1 and x′, the gradient flow X = (X1, X
′) associated with ∇u1 satisfies



∂X1

∂t
(t, x1) = g′

(
X1(t, x1)

)
X1(0, x1) = x1,

∂X ′

∂t
(t, x′) = ∇x′f

(
X ′(t, x)

)
X ′(0, x′) = x′

for t ∈ R, x = (x1, x
′) ∈ Rd,

which yields



X1(t, x1) = G−1
(
t+G(x1)

)
X1(0, x1) = x1,

∂X ′

∂t
(t, x′) = ∇x′f

(
X ′(t, x)

)
X ′(0, x) = x′

for t ∈ R, x = (x1, x
′) ∈ Rd, (4.14)

where G−1 is the inverse function of the primitive G of 1/g′ in R such that G(0) = 0. For a.e. x ∈ Rd, the
flow X(·, x) reaches the surface {x1 = 0} at the time τ1(x) = −G(x1) which implies X1

(
τ1(x), x1

)
= 0. Then,

by Theorem 2.1 and formula (2.24) with u1, for any constant λ > 0, the gradient ∇u1 is realizable with the
continuous conductivity

σ1(x) = λ exp

(∫ −G(x1)

0

[
g′′
(
X1(s, x1)

)
+ ∆x′f

(
X ′(s, x′)

)]
ds

)
for x ∈ Rd,

which using the change of variable t = X1(s, x1) = G−1
(
s+G(x1)

)
yields

σ1(x) = λ
g′(0)

g′(x1)
exp

(∫ −G(x1)

0

∆x′f
(
X ′(s, x′)

)
ds

)
for a.e. x ∈ Rd. (4.15)

Similarly, the gradient ∇u2 is realizable in Rd with the continuous conductivity

σ2(x) =
h′(0)

h′(x1)
exp

(∫ −H(x1)

0

∆x′f
(
X ′(s, x′)

)
ds

)
for a.e. x ∈ Rd, (4.16)

where H is the primitive of 1/h′ in R such that H(0) = 0. Choosing λ = h′(0)/g′(0) > 0 by (4.13), we get the
flux continuity condition across the interface {x1 = 0}, i.e.

σ1(0, x′)
∂u1

∂x1
(0, x′) = σ2(0, x′)

∂u2

∂x1
(0, x′) = h′(0) for x′ ∈ Rd−1.



RECONSTRUCTION OF CONDUCTIVITIES 1193

Therefore, the gradient ∇u is realizable with the piecewise continuous conductivity

σ(x) =


h′(0)

g′(x1)
exp

(∫ −G(x1)

0

∆x′f
(
X ′(s, x′)

)
ds

)
if x ∈ (0,∞)× Rd−1

h′(0)

h′(x1)
exp

(∫ −H(x1)

0

∆x′f
(
X ′(s, x′)

)
ds

)
if x ∈ (−∞, 0)× Rd−1.

(4.17)
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