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EXPONENTIAL STABILITY AND NUMERICAL TREATMENT FOR

PIEZOELECTRIC BEAMS WITH MAGNETIC EFFECT I

Anderson J.A. Ramos1,2,*, Cledson S.L. Gonçalves2

and Silvério S. Corrêa Neto2

Abstract. In this paper, we consider a one-dimensional dissipative system of piezoelectric beams with
magnetic effect, inspired by the model studied by Morris and Özer (Proc. of 52nd IEEE Conference on
Decision & Control (2013) 3014–3019). Our main interest is to analyze the issues relating to exponential
stability of the total energy of the continuous problem and reproduce a numerical counterpart in a
totally discrete domain, which preserves the important decay property of the numerical energy.
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1. Introduction

Piezoelectric materials have the ability to convert mechanical energy into electric and vice versa [16]. Because
of this special ability, these materials have been widely used as sensors and actuators in the area of structures
and intelligent systems [3, 4]. As actuators, these materials are electrically controllable positions elements in
which guarantee offsets with a resolution of approximately 1 nm [31]. These characteristics, along with the fact
they have fast response, high rigidity, without clearance and without friction, make the piezoelectric actuators
an essential component in ultra precision machines, active vibration control and also are used in microelec-
tromechanical systems [3, 31]. However, actuators, in addition to transform mechanical energy into electric one,
it also turns a small portion of which into magnetic energy [12]. For being a relatively small effect, models that
often describe, for example, piezoelectric beams, ignore such magnetic effects because the magnetic energy has
a relatively small effect on the overall dynamics. However, this magnetic contribution may limit the system
performance. For example, it can cause oscillations in the output, which in turn, can lead to system instability
in a closed loop [16, 31]. In this way, models based on electrostatic or near-static theories, completely ignore the
magnetic energy stored/produced in the process. These models are known to be exactly observable and have
exponential stability in energy space. The Figure 1 illustrates a piezoelectric beam model.

In the last three years, researches on piezoelectric beams systems have received much attention in the spe-
cialized literature, especially considering the presence of the magnetic effect. Some of the main results for the
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Figure 1. Piezoelectric beam model.

one-dimensional evolution equation model were introduced by Morris and Özer in [12], where authors used a
variational approach to construct a coupled model of piezoelectric beams with magnetic effect. The Lagrangian
due to the model is

L =

∫ T

0

[
K − (P + E) +B +W

]
dt, (1.1)

where K,P,E and B denote kinetic, potential, magnetic and electric energies, respectively and W represents
the work done by external forces. In addition, to a beam of length L and thickness h, we assume that

P + E =
h

2

∫ L

0

(
α|vx|2 − 2γβvxpx + β|px|2

)
dx, B =

µh

2

∫ L

0

|pt|2dx, (1.2)

K =
ρh

2

∫ L

0

|vt|2dx and W = −
∫ L

0

pxV (t)dx. (1.3)

A simple application of the Hamilton principle for admissible displacement variations {v, p} of L the zero
shows that

δL = −h
∫ L

0

(
ρvtt − αvxx + γβpxx

)
δv dx− h

∫ L

0

(
µptt − βpxx + γβvxx

)
δpdx

−h
(
αvx − γβpx

)
δv

∣∣∣∣L
0

+ h

(
γβvx − βpx −

V (t)

h

)
δp

∣∣∣∣∣
L

0

. (1.4)

Therefore, the piezoelectric beams system with magnetic effect is given by

ρvtt − αvxx + γβpxx = 0, (1.5)

µptt − βpxx + γβvxx = 0, (1.6)

with the boundary conditions

v(0, t) = p(0, t) = αvx(L, t)− γβpx(L, t) = 0, (1.7)

βpx(L, t)− γβvx(L, t) = −V (t)

h
, (1.8)
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and initial conditions

v(x, 0) = v0(x), vt(x, 0) = v1(x), p(x, 0) = p0(x), pt(x, 0) = p1(x), (1.9)

where ρ, α, γ, µ, β and V denote the mass density per unit volume, elastic rigidity, piezoelectric coefficient,
magnetic permeability, water resistance coefficient of the beam and the prescribed voltage on electrodes of
beam respectively, and in addition, the relationship is considered

α = α1 + γ2β. (1.10)

Here the functions v and p are used to denote the transverse displacement of the beam and the total load of
the electric displacement along the transverse direction at each point x respectively.

In [13], Morris and Özer proved that the magnetic effect, despite being relatively small, has a strong
interference in stabilizing and controlling the equation system below,

ρvtt − αvxx + γβpxx = 0, (x, t) ∈ (0, L)× IR+, (1.11)

µptt − βpxx + γβvxx = 0, (x, t) ∈ (0, L)× IR+, (1.12)

v(0, t) = p(0, t) = αvx(L, t)− γβpx(L, t) = 0, t ∈ IR+, (1.13)

βpx(L, t)− γβvx(L, t) +
pt(L, t)

h
= 0, t ∈ IR+, (1.14)

despite being strongly stable, it is not exponentially stable for almost all system parameters, unlike the classical
model, consisting of a single wave equation studied in [9, 26], where the magnetic effect is despised and so
the decay is exponential. In [14], the same author also proves an exact observability inequality, in an energy
space less regular, and in addition, he proves an estimate of a polynomial decay. In paper [15], the author also
shows a three-layer smart piezoelectric laminate totally dynamic, adopting the Rao-Nakra thin compliant layer
assumptions [21] to model a sandwich-like structure, keeping all magnetic effects of piezoelectric layers. Other
problems related to piezoelectric systems can be found in the following references [5, 10, 19, 22, 24, 27, 28, 30].

In [29], Wang and Guo studied a one-dimensional porous-elastic system. They proved that the system is
exponentially stable using the spectral method, and furthermore, they showed that the system’s generalized
self-functions form a Riesz basis for energy space. Despite the similarity to the problem (1.11)–(1.14), we
emphasize that the physical phenomenon and the parameters involved in the model are totally different.

The main objective of this work is to investigate the exponential decay of total energy and some numerical
aspects associated with the dissipative system of piezoelectric beams with magnetic effect given by

ρvtt − αvxx + γβpxx + δvt = 0, in (0, L)× (0, T ) (1.15)

µptt − βpxx + γβvxx = 0, in (0, L)× (0, T ) (1.16)

v(0, t) = αvx(L, t)− γβpx(L, t) = 0, 0 ≤ t ≤ T (1.17)

p(0, t) = px(L, t)− γvx(L, t) = 0, 0 ≤ t ≤ T (1.18)

v(x, 0) = v0(x), vt(x, 0) = v1(x), p(x, 0) = p0(x), pt(x, 0) = p1(x), 0 ≤ x ≤ L, (1.19)

where ρ, α, γ, µ, β, δ are positive constants with α = α1 + γ2β. The main difference between the
system (1.15)–(1.19) and the system (1.11)–(1.14) is in the insertion of the dissipative term δvt in the mechanical
equation and in the use of the boundary condition γvx(L, t)− px(L, t) = 0, for all t ≥ 0.

A approach used to prove the exponential decay of the system, consists in the use of multiplicative techniques
combined with the energy method.
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The total energy of the system of equations (1.15)–(1.19) is given by

E(t) :=
ρ

2

∫ L

0

|vt|2dx+
µ

2

∫ L

0

|pt|2dx+
α1

2

∫ L

0

|vx|2dx+
β

2

∫ L

0

|γvx − px|2dx, ∀ t ≥ 0, (1.20)

and it satisfies the following of dissipation law

d

dt
E(t) = −δ

∫ L

0

|vt|2dx, ∀ t ≥ 0. (1.21)

This shows that

E(t) ≤ E(0), ∀ t ≥ 0. (1.22)

In fact, the procedure used to obtain this result is quite simple and will be described in detail in the following
section. Note that it only needs to multiply the equations (1.15) and (1.16) by vt and pt respectively, we promote
an integration by parts using the boundary conditions (1.17)–(1.18) and add the two resulting equations to
establish the proof.

On the other hand, in the case of numerical methods, more precisely, the Finite Differences Method (FDM)
applied to piezoelectric systems, a work like this is very rare (see [11]). Up to now, we have not had any
knowledge about any work in the literature that analyzes the system by the FDM (1.11)–(1.14) and much less
the system (1.15)–(1.19). Therefore, our contribution to the numerical study of the piezoelectric beams system
with magnetic effect is new.

Therefore, our main goals in this paper are:

(i) Prove that the dissipation produced by damping δvt is strong enough to stabilize exponentially the system
solution (1.15)–(1.19) for whatever the physical parameters of the model;

(ii) Discretize the system of piezoelectric beams (1.15)–(1.19) and make a detailed analysis of the behavior of
the numerical energy to ensure its property numeric decay;

(iii) Demonstrate by means of numerical simulations the results set out in items (i) and (ii).

1.1. Outline of the paper

To achieve our goals, this paper takes the following route: in Section 2, we prove the exponential decay
using energy method. In Section 3, we introduced the finite difference numerical method, where we built the
numerical energy and prove its decay. In Section 4, we prove our results through numerical simulations. We
finish in Section 5, making a brief comment about our future investigations.

2. The exponential stability

In this section, we have established and proved the result of exponential stability for energy (1.15)–(1.19) by
using a quite elementary method known as Energy Method, introduced in [18]. To achieve the purpose of this
section, we need some auxiliary lemmas, but let us first look at the following proposition which gives us the
rate of change of the total energy of the system.

Proposition 2.1. Let (v, p) the system solution (1.15)–(1.19), this way, the total energy given by

E(t) :=
ρ

2

∫ L

0

|vt|2dx+
µ

2

∫ L

0

|pt|2dx+
α1

2

∫ L

0

|vx|2dx+
β

2

∫ L

0

|γvx − px|2dx, ∀ t ≥ 0, (2.1)
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satisfies the following rate of change

d

dt
E(t) = −δ

∫ L

0

|vt|2dx, ∀ t ≥ 0. (2.2)

Proof. Multiplying the equation (1.15) by vt, integrating by parts in the interval (0, L) and using the boundary
conditions (1.17) and (1.18) we obtained

d

dt

ρ

2

∫ L

0

|vt|2 dx+
d

dt

α1

2

∫ L

0

|vx|2 dx+ γβ

∫ L

0

(γvx − px)vxt dx+ δ

∫ L

0

|vt|2dx = 0. (2.3)

In an analogous way, multiplying the equation (1.16) by pt we assume that

d

dt

µ

2

∫ L

0

|pt|2 dx− β
∫ L

0

(γvx − px)pxt dx = 0. (2.4)

Adding the two equations above, we have

d

dt

(
ρ

2

∫ L

0

|vt|2dx+
µ

2

∫ L

0

|pt|2dx+
α1

2

∫ L

0

|vx|2dx+
β

2

∫ L

0

|γvx − px|2dx

)
= −δ

∫ L

0

|vt|2dx

for all t ≥ 0, and therefore, the proof is complete.

Next, we enunciate and prove the auxiliary lemmas necessary to prove the exponential decay of the total
energy.

Lemma 2.2. Let (v, p) the system solution (1.15)–(1.19). So, the functional

F(t) := ρ

∫ L

0

vtv dx+ γµ

∫ L

0

ptv dx+
δ

2

∫ L

0

|v|2 dx (2.5)

satisfies the estimate

d

dt
F(t) ≤ Cε

∫ L

0

|vt|2 dx+
γµ

4ε

∫ L

0

|pt|2 dx− α1

∫ L

0

|vx|2 dx, ∀ t ≥ 0, (2.6)

with ε and Cε = ρ+ εγµ positive constants.

Proof. Multiplying the equation (1.15) by v, integrating by parts into (0, L) and using the boundary conditions
(1.17)–(1.18) we have

ρ

∫ L

0

vttv dx+ α1

∫ L

0

|vx|2 dx− γβ
∫ L

0

(γv − p)xxv dx+ δ

∫ L

0

vtv dx = 0. (2.7)

Using the identity vttv = d
dtvtv − |vt|

2 and the equation (1.16) from where do we have β(γv − p)xx = −µptt, it
turns out that

d

dt

(
ρ

∫ L

0

vtv dx

)
− ρ

∫ L

0

|vt|2 dx+ α1

∫ L

0

|vx|2 dx+ γµ

∫ L

0

pttv dx+
δ

2

d

dt

∫ L

0

|v|2 dx = 0. (2.8)
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Next, we use the identity pttv = d
dtptv − ptvt to write

d

dt

(
ρ

∫ L

0

vtv dx+ γµ

∫ L

0

ptv dx+
δ

2

∫ L

0

|v|2 dx

)
− ρ

∫ L

0

|vt|2 dx− γµ
∫ L

0

ptvt dx+ α1

∫ L

0

|vx|2 dx = 0. (2.9)

Using the inequality of Young xy ≤ x2/4ε+ εy2 with x, y ∈ IR and ε > 0 we obtain

d

dt

(
ρ

∫ L

0

vtv dx+ γµ

∫ L

0

ptv dx+
δ

2

∫ L

0

|v|2 dx

)
≤ Cε

∫ L

0

|vt|2 dx+
γµ

4ε

∫ L

0

|pt|2 dx− α1

∫ L

0

|vx|2 dx, (2.10)

with Cε = ρ+ εγµ. This concludes the proof.

Lemma 2.3. Let (v, p) the system solution (1.15)–(1.19). So, the functional

G(t) := ρ

∫ L

0

vt(γv − p) dx+ γµ

∫ L

0

pt(γv − p) dx+
γδ

2

∫ L

0

|v|2dx− δ
∫ L

0

vpdx (2.11)

satisfies the estimate

d

dt
G(t) ≤ C1

∫ L

0

|vt|2dx− γµ

2

∫ L

0

|pt|2dx+ Cη4

∫ L

0

|vx|2dx+ α1η4

∫ L

0

|γvx − px|2dx, ∀ t ≥ 0, (2.12)

with η4, C1 = ργ + 3ρ2/2γµ+ 3γ3µ/2 and Cη4 = α1/4η4 + 3δ2cp/2γµ positive constants.

Proof. Multiplying the equation (1.15) by (γv − p), integrating by parts into (0, L) and using the boundary
conditions (1.17)–(1.18) we have

ρ

∫ L

0

vtt(γv − p) dx+ α1

∫ L

0

vx(γv − p)x dx− γβ
∫ L

0

(γv − p)xx(γv − p) dx+ δ

∫ L

0

vt(γv − p) dx = 0. (2.13)

Using the equation (1.16), we assume that β(γv − p)xx = −µptt. Therefore,

ρ

∫ L

0

vtt(γv − p) dx+ α1

∫ L

0

vx(γv − p)x dx+ γµ

∫ L

0

ptt(γv − p) dx+ δ

∫ L

0

vt(γv − p) dx = 0. (2.14)

Next, we use the identities vtt(γv− p) = d
dtvt(γv− p)− vt(γv− p)t and ptt(γv− p) = d

dtpt(γv− p)− pt(γv− p)t
to write

d

dt

(
ρ

∫ L

0

vt(γv − p) dx+ γµ

∫ L

0

pt(γv − p) dx+
γδ

2

∫ L

0

|v|2dx

)
+ α1

∫ L

0

vx(γv − p)x dx

−ργ
∫ L

0

|vt|2 dx+ ρ

∫ L

0

vtpt dx− γ2µ

∫ L

0

vtpt dx+ γµ

∫ L

0

|pt|2dx− δ
∫ L

0

vtp dx = 0. (2.15)
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In view of the identity vtp = d
dtvp− vpt, it follows that

d

dt

(
ρ

∫ L

0

vt(γv − p) dx+ γµ

∫ L

0

pt(γv − p) dx+
γδ

2

∫ L

0

|v|2dx− δ
∫ L

0

vpdx

)
+ α1

∫ L

0

vx(γv − p)x dx

−ργ
∫ L

0

|vt|2 dx+ γµ

∫ L

0

|pt|2dx+ ρ

∫ L

0

vtpt dx− γ2µ

∫ L

0

vtpt dx+ δ

∫ L

0

vpt dx = 0. (2.16)

Using the inequalities of Poincaré and Young xy ≤ x2/4ηi + ηiy
2 with x, y ∈ IR and ηi > 0 to i = 1, 2, 3, 4 we

have

d

dt

(
ρ

∫ L

0

vt(γv − p) dx+ γµ

∫ L

0

pt(γv − p) dx+
γδ

2

∫ L

0

|v|2dx− δ
∫ L

0

vpdx

)
=(

ργ +
ρ

4η1
+
γ2µ

4η2

)∫ L

0

|vt|2dx−
(
γµ− ρη1 − γ2µη2 − δη3

)∫ L

0

|pt|2dx (2.17)

+

(
α1

4η4
+
δcp
4η3

)∫ L

0

|vx|2dx+ α1η4

∫ L

0

|γvx − px|2dx, (2.18)

where cp is the Poincaré constant. Choosing the constants appropriately η1, η2 and η3 we have

d

dt

(
ρ

∫ L

0

vt(γv − p) dx+ γµ

∫ L

0

pt(γv − p) dx+
γδ

2

∫ L

0

|v|2dx− δ
∫ L

0

vpdx

)
≤

C1

∫ L

0

|vt|2dx− γµ

2

∫ L

0

|pt|2dx+ Cη4

∫ L

0

|vx|2dx+ α1η4

∫ L

0

|γvx − px|2dx, (2.19)

with η4, C1 = ργ + 3ρ2

2γµ + 3γ3µ
2 and Cη4 = α1

4η4
+

3δ2cp
2γµ positive constants. So we concluded the proof.

Lemma 2.4. Let (v, p) the system solution (1.15)–(1.19). So, the functional

H(t) := ρ

∫ L

0

vtv dx− δ

2

∫ L

0

|v|2 dx+ µ

∫ L

0

ptpdx (2.20)

satisfies the identity

d

dt
H(t) = ρ

∫ L

0

|vt|2dx+ µ

∫ L

0

|pt|2dx− α1

∫ L

0

|vx|2dx− β
∫ L

0

|γvx − px|2 dx, ∀ t ≥ 0. (2.21)

Proof. Multiplying the equation (1.15) by v, integrating by parts into (0, L) and using the boundary conditions
(1.17)–(1.18) we have

d

dt

(
ρ

∫ L

0

vtv dx− δ

2

∫ L

0

|v|2 dx

)
= ρ

∫ L

0

|vt|2dx− α1

∫ L

0

|vx|2dx− γβ
∫ L

0

(γvx − px)vx dx. (2.22)

Similarly, we get to the equation (1.16)

d

dt

(
µ

∫ L

0

ptp dx

)
= µ

∫ L

0

|pt|2dx+ β

∫ L

0

(γvx − px)px dx. (2.23)
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Adding the equations (2.22) and (2.23) we get the expected result,

d

dt

(
ρ

∫ L

0

vtv dx− δ

2

∫ L

0

|v|2 dx+ µ

∫ L

0

ptpdx

)
= ρ

∫ L

0

|vt|2dx+ µ

∫ L

0

|pt|2dx− α1

∫ L

0

|vx|2dx

−β
∫ L

0

|γvx − px|2 dx. (2.24)

Now, we are in a position to prove the main result of this section that is the exponential decay of the system
(1.15)–(1.19) and for that we define the functional Lyapunov (see [7, 20])

L(t) := N1E(t) +N2F(t) +N3G(t) +N4H(t), (2.25)

where Ni for i = 1, 2, 3, 4 are positive constants defined later, E is the total energy of the system and the
functional F , G and H are given in Lemmas 2.2–2.4, respectively.

Theorem 2.5. For all solution (v, p) of the system (1.15)–(1.19), there are constants M > 0 and ω > 0
independent of the initial conditions, such that

E(t) ≤ME(0)e−ωt, ∀ t ≥ 0. (2.26)

Proof. Followed by Lemmas 2.2–2.4 and the law of dissipation (2.2) that

d

dt
L(t) ≤ −N1δ

∫ L

0

|vt|2dx+N2Cε

∫ L

0

|vt|2 dx+N2
γµ

4ε

∫ L

0

|pt|2 dx−N2α1

∫ L

0

|vx|2 dx

+N3C1

∫ L

0

|vt|2dx−N3
γµ

2

∫ L

0

|pt|2dx+N3Cη4

∫ L

0

|vx|2dx+N3η4α1

∫ L

0

|γvx − px|2dx

+N4ρ

∫ L

0

|vt|2dx+N4µ

∫ L

0

|pt|2dx−N4α1

∫ L

0

|vx|2dx−N4β

∫ L

0

|γvx − px|2 dx,

or equivalently,

d

dt
L(t) ≤ −

(
N1δ −N2Cε −N3C1 −N4ρ

)∫ L

0

|vt|2dx−
(
N3

γµ

2
−N2

γµ

4ε
−N4µ

)∫ L

0

|pt|2dx

−
(
N2α1 +N4α1 −N3Cη4

)∫ L

0

|vx|2dx−
(
N4β −N3η4α1

)∫ L

0

|γvx − px|2dx,

with η4 > 0, Cε = ρ+ εγµ, C1 = ργ + 3ρ2

2γµ + 3γ3µ
2 and Cη4 = α1

4η4
+

3δ2cp
2γµ . Choosing the constants appropriately

ε =
N2

2
and η4 =

β

α1N3
, (2.27)
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we get CN2
= ρ+N2γµ

/
2 and CN3

= α2
1N3

/
4β + 3δ2cp

/
2γµ and consequently

d

dt
L(t) ≤ −

(
N1δ −N2CN2 −N3C1

ρ
−N4

)
ρ

∫ L

0

|vt|2dx−

(
(N3 − 1)γ

2
−N4

)
µ

∫ L

0

|pt|2dx

−

(
N2 +N4 −

N3CN3

α1

)
α1

∫ L

0

|vx|2dx−
(
N4 − 1

)
β

∫ L

0

|γvx − px|2dx. (2.28)

Here, we choose N4 > 1, followed by N3 > 1 + 2N4

/
γ and N2 > N3CN3

/
α1. Once N2, N3 and N4 are fixed,

we choose N1 sufficiently large, i.e., N1 >
(
N2CN2

+N3C1 +N4ρ
)/

δ. This way, we ensured that

ξ1 :=
N1δ −N2CN2 −N3C1

ρ
−N4 > 0, ξ2 :=

(N3 − 1)γ

2
−N4 > 0

and

ξ3 := N2 +N4 −
N3CN3

α1
> 0, ξ4 := N4 − 1 > 0.

Thus, we can conclude that there is a constant N0 := 2 min
1≤i≤4

{ξi} > 0 such that

d

dt
L(t) ≤ −N0E(t), ∀ t ≥ 0. (2.29)

As L(t) is equivalent to the energy (check out Appendix A), there are constants M > 0 and ω > 0 such as

E(t) ≤ME(0)e−ωt, ∀ t ≥ 0. (2.30)

3. Numerical approach

In this section, we apply the explicit integration method to the dissipative system of piezoelectric beams with
magnetic effects (1.15)–(1.19), where we can prove the result of the decay of the numerical energy in a way
analogous to the continuous.

3.1. Fully-discrete scheme in finite differences and properties

For our purposes, considering J,N ∈ IN, we define ∆x =
L

J + 1
, ∆t =

T

N + 1
and we introduced the point-

network

0 = x0 < x1 = ∆x < · · · < xj = j∆x < · · · < xJ < xJ+1 = (J + 1)∆x = L, (3.1)

0 = t0 < t1 = ∆t < · · · < tn = n∆t < · · · < tN < tN+1 = (N + 1)∆t = T, (3.2)

for all j = 0, 1, 2, . . . , J + 1 and n = 0, 1, 2, . . . , N + 1.
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Keeping in mind the system of equations (1.15)–(1.19), the problem is to obtain (vnj , p
n
j ) such that

ρ∂t∂tv
n
j − α∂x∂xvnj + γβ∂x∂xp

n
j + δ

(
∂t + ∂t

2

)
vnj = 0, (3.3)

µ∂t∂tp
n
j − β∂x∂xpnj + γβ∂x∂xv

n
j = 0, (3.4)

for all j = 1, 2, . . . , J and n = 1, 2, . . . , N , where we assume the following numerical operators in finite differences

∂t∂tv
n
j :=

vn+1
j − 2vnj + vn−1

j

∆t2
, ∂x∂xv

n
j :=

vnj+1 − 2vnj + vnj−1

∆x2
,

(
∂t + ∂t

2

)
vnj :=

vn+1
j − vn−1

j

2∆t
,

with similar expressions for ∂t∂tp
n
j and ∂x∂xp

n
j .

Here, we denote by vnj and pnj the numerical solution for the solutions v and p in points (xj , tn) of the network.
The initial conditions are

v0
j = v0j ,

v1
j − v

−1
j

2∆t
= v1j , p0

j = p0j ,
p1
j − p

−1
j

2∆t
= p1j , j = 0, 1, . . . , J + 1, (3.5)

followed by the boundary conditions

vn0 = α
(
vnJ+1 − vnJ

)
− γβ

(
pnJ+1 − pnJ

)
= 0, ∀n = 0, 1, . . . , N + 1, (3.6)

pn0 =
(
pnJ+1 − pnJ

)
− γ
(
vnJ+1 − vnJ

)
= 0, ∀n = 0, 1, . . . , N + 1. (3.7)

The numerical energy associated with the numerical scheme (3.3)–(3.7) is given by

En := ρ
∆x

2

J∑
j=0

(
vn+1
j − vnj

∆t

)2

+ µ
∆x

2

J∑
j=0

(
pn+1
j − pnj

∆t

)2

+ α1
∆x

2

J∑
j=0

(
vn+1
j+1 − v

n+1
j

∆x

vnj+1 − vnj
∆x

)

+β
∆x

2

J∑
j=0

(
γ
vn+1
j+1 − v

n+1
j

∆x
−
pn+1
j+1 − p

n+1
j

∆x

)(
γ
vnj+1 − vnj

∆x
−
pnj+1 − pnj

∆x

)
, ∀n = 0, 1, . . . , N. (3.8)

Remark 3.1. The construction of numerical energy (3.8) is based on the work of Strauss and Vazquez (see [25],
Sect. 2) it should be noted that the main differences between the functional (3.8) and (1.20) are the numerical
approximations

α1
∆x

2

J∑
j=0

(
vn+1
j+1 − v

n+1
j

∆x

vnj+1 − vnj
∆x

)
≈ α1

2

∫ L

0

|vx|2dx,

β
∆x

2

J∑
j=0

(
γ
vn+1
j+1 − v

n+1
j

∆x
−
pn+1
j+1 − p

n+1
j

∆x

)(
γ
vnj+1 − vnj

∆x
−
pnj+1 − pnj

∆x

)
≈ β

2

∫ L

0

|γvx − px|2dx,

that are not positive definite quantities and, therefore, the numerical energy is not a positive functional defined.
Let’s check out the following theorem, which deals with the construction of energy and its rate of change.
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Theorem 3.2. Let (vnj , p
n
j ) the solution of the finite difference numerical method (3.3)–(3.7). So, for all

∆t, ∆x ∈ (0, 1), the rate of change of the numerical energy

En := ρ
∆x

2

J∑
j=0

(
vn+1
j − vnj

∆t

)2

+ µ
∆x

2

J∑
j=0

(
pn+1
j − pnj

∆t

)2

+ α1
∆x

2

J∑
j=0

(
vn+1
j+1 − v

n+1
j

∆x

vnj+1 − vnj
∆x

)

+β
∆x

2

J∑
j=0

(
γ
vn+1
j+1 − v

n+1
j

∆x
−
pn+1
j+1 − p

n+1
j

∆x

)(
γ
vnj+1 − vnj

∆x
−
pnj+1 − pnj

∆x

)
, (3.9)

at the instant of time tn is given by

En − En−1

∆t
= −δ∆x

J∑
j=0

∣∣∣∣∣
(
∂t + ∂t

2

)
vnj

∣∣∣∣∣
2

, ∀n = 1, 2, . . . , N (3.10)

and, therefore, satisfies

En ≤ E0, ∀n = 1, 2, . . . , N. (3.11)

Proof. Multiply the equation (3.3) by ∆x
(
∂t+∂t

2

)
vnj and added to j ∈ {1, 2, . . . , J}. So we get

ρ∆x

J∑
j=1

(∂t∂tv
n
j )

(
∂t + ∂t

2

)
vnj − α∆x

J∑
j=1

(∂x∂xv
n
j )

(
∂t + ∂t

2

)
vnj + γβ∆x

J∑
j=1

(∂x∂xp
n
j )

(
∂t + ∂t

2

)
vnj

+δ∆x

J∑
j=1

∣∣∣∣∣
(
∂t + ∂t

2

)
vnj

∣∣∣∣∣
2

= 0. (3.12)

Some simplifications in the sum of equation (3.12), in view of the boundary condition vn0 = 0 for all n =
0, 1, . . . , N + 1, show us that

ρ∆x

J∑
j=1

(∂t∂tv
n
j )

(
∂t + ∂t

2
vnj

)
=

ρ∆x

2∆t3

J∑
j=1

[
(vn+1
j − vnj )(vn+1

j − vnj + vnj − vn−1
j )

−(vnj − vn−1
j )(vn+1

j − vnj + vnj − vn−1
j )

]
=

ρ∆x

2∆t3

J∑
j=0

[
(vn+1
j − vnj )2 − (vnj − vn−1

j )2

+ ρ(vn+1
j − vnj )(vnj − vn−1

j )− ρ(vnj − vn−1
j )(vn+1

j − vnj )︸ ︷︷ ︸
=0

]
.

So, we assume that

ρ∆x

J∑
j=1

(∂t∂tv
n
j )

(
∂t + ∂t

2
vnj

)
=
ρ∆x

2∆t

J∑
j=0

(
vn+1
j − vnj

∆t

)2

− ρ∆x

2∆t

J∑
j=0

(
vnj − v

n−1
j

∆t

)2

. (3.13)
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After several simplifications, we conclude that

−α∆x

J∑
j=1

(∂x∂xv
n
j )

(
∂t + ∂t

2
vnj

)
=
α∆x

∆x

J∑
j=0

(
vnj+1 − vnj

∆x

vn+1
j+1 − v

n−1
j+1

2∆t
−
vnj+1 − vnj

∆x

vn+1
j − vn−1

j

2∆t

)
,

+(B1)n, (3.14)

where the boundary terms (B1)n are given by

(B1)n =
α∆x

∆x

(
vn1 − vn0

∆x

vn+1
0 − vn−1

0

2∆t
−
vnJ+1 − vnJ

∆x

vn+1
J+1 − v

n−1
J+1

2∆t

)
.

Analogously, we also write

γβ∆x

J∑
j=1

(∂x∂xp
n
j )

(
∂t + ∂t

2
vnj

)
=
γβ∆x

2∆t

J∑
j=0

(
pnj+1 − pnj

∆x

vn−1
j+1 − v

n−1
j

∆x
−
pnj+1 − pnj

∆x

vn+1
j+1 − v

n+1
j

∆x

)
,

+(B2)n, (3.15)

where the boundary terms (B2)n are given by

(B2)n =
γβ∆x

∆x

(
pnJ+1 − pnJ

∆x

vn+1
J+1 − v

n−1
J+1

2∆t
− pn1 − pn0

∆x

vn+1
0 − vn−1

0

2∆t

)
.

On the other hand, using the boundary condition vn0 = 0 for all n = 0, 1, . . . , N + 1, it’s easy to see that

δ∆x

J∑
j=1

∣∣∣∣∣
(
∂t + ∂t

2

)
vnj

∣∣∣∣∣
2

= δ∆x

J∑
j=0

∣∣∣∣∣
(
∂t + ∂t

2

)
vnj

∣∣∣∣∣
2

. (3.16)

Combining the equations (3.12), (3.13), (3.14), (3.15), (3.16) and keeping in mind that α = α1 + γ2β we get

ρ∆x

2∆t

J∑
j=0

(
vn+1
j − vnj

∆t

)2

+
α1∆x

2∆t

J∑
j=0

(
vn+1
j+1 − v

n+1
j

∆x

vnj+1 − vnj
∆x

)

+
β∆x

2∆t

J∑
j=0

(
γ
vn+1
j+1 − v

n+1
j

∆x

)(
γ
vnj+1 − vnj

∆x
−
pnj+1 − pnj

∆x

)

−ρ∆x

2∆t

J∑
j=0

(
vnj − v

n−1
j

∆t

)2

− α1∆x

2∆t

J∑
j=0

(
vnj+1 − vnj

∆x

vn−1
j+1 − v

n−1
j

∆x

)

−β∆x

2∆t

J∑
j=0

(
γ
vn−1
j+1 − v

n−1
j

∆x

)(
γ
vnj+1 − vnj

∆x
−
pnj+1 − pnj

∆x

)
+ δ∆x

J∑
j=0

∣∣∣∣∣
(
∂t + ∂t

2

)
vnj

∣∣∣∣∣
2

+
α∆x

∆x

(
vn+1

0 − vn−1
0

2∆t

vn1 − vn0
∆x

)
+
vn+1
J+1 − v

n−1
J+1

2∆t∆x
∆x

(
γβ

pnJ+1 − pnJ
∆x

− α
vnJ+1 − vnJ

∆x

)
−γβ∆x

∆x

(
vn+1

0 − vn−1
0

2∆t

pn1 − pn0
∆x

)
= 0. (3.17)
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Analogously, we have for the equation (3.4)

µ∆x

2∆t

J∑
j=0

(
pn+1
j − pnj

∆t

)2

+
β∆x

2∆t

J∑
j=0

pn+1
j+1 − p

n+1
j

∆x

(
pnj+1 − pnj

∆x
− γ

vnj+1 − vnj
∆x

)

−µ∆x

2∆t

J∑
j=0

(
pnj − p

n−1
j

∆t

)2

− β∆x

2∆t

J∑
j=0

pn−1
j+1 − p

n−1
j

∆x

(
pnj+1 − pnj

∆x
− γ

vnj+1 − vnj
∆x

)

+
β∆x

∆x

pn+1
0 − pn−1

0

2∆t

(
pn1 − pn0

∆x
− γ v

n
1 − vn0
∆x

)
−β∆x

∆x

pn+1
J+1 − p

n−1
J+1

2∆t

(
pnJ+1 − pnJ

∆x
− γ

vnJ+1 − vnJ
∆x

)
= 0. (3.18)

Adding the equations (3.17) and (3.18) we have

ρ∆x

2∆t

J∑
j=0

(
vn+1
j − vnj

∆t

)2

+
µ∆x

2∆t

J∑
j=0

(
pn+1
j − pnj

∆t

)2

+
α1∆x

2∆t

J∑
j=0

(
vn+1
j+1 − v

n+1
j

∆x

vnj+1 − vnj
∆x

)

+
β∆x

2∆t

J∑
j=0

(
γ
vn+1
j+1 − v

n+1
j

∆x
−
pn+1
j+1 − p

n+1
j

∆x

)(
γ
vnj+1 − vnj

∆x
−
pnj+1 − pnj

∆x

)

−ρ∆x

2∆t

J∑
j=0

(
vnj − vn−1

j

∆t

)2

− µ∆x

2∆t

J∑
j=0

(
pnj − pn−1

j

∆t

)2

− α1∆x

2∆t

J∑
j=0

(
vnj+1 − vnj

∆x

vn−1
j+1 − v

n−1
j

∆x

)

−β∆x

2∆t

J∑
j=0

(
γ
vnj+1 − vnj

∆x
−
pnj+1 − pnj

∆x

)(
γ
vn−1
j+1 − v

n−1
j

∆x
−
pn−1
j+1 − p

n−1
j

∆x

)

+δ∆x

J∑
j=0

∣∣∣∣∣(∂t + ∂t
2

)
vnj

∣∣∣∣∣
2

+
vn+1
0 − vn−1

0

2∆t∆x
∆x

(
α
vn1 − vn0

∆x
− γβ p

n
1 − pn0
∆x

)

+
vn+1
J+1 − v

n−1
J+1

2∆t∆x
∆x

(
γβ

pnJ+1 − pnJ
∆x

− α
vnJ+1 − vnJ

∆x

)
+
pn+1
0 − pn−1

0

2∆t∆x
∆x

(
β
pn1 − pn0

∆x
− γβ v

n
1 − vn0
∆x

)
−
pn+1
J+1 − p

n−1
J+1

2∆t∆x
∆x

(
β
pnJ+1 − pnJ

∆x
− γβ

vnJ+1 − vnJ
∆x

)
= 0. (3.19)

Once the energy En is defined in (3.8), use the boundary conditions (3.6)–(3.7) in order to achieve

En − En−1

∆t
= −δ∆x

J∑
j=0

∣∣∣∣∣
(
∂t + ∂t

2

)
vnj

∣∣∣∣∣
2

, ∀n = 1, 2, . . . , N (3.20)

and, consequently,

En ≤ E0, ∀n = 1, 2, . . . , N.

Corollary 3.3 (Conservation of energy). Let (vnj , p
n
j ) the solution of the finite difference numerical method

(3.3)–(3.7) with δ = 0. So, for all ∆t,∆x ∈ (0, 1), worth

En = E0, ∀n = 1, 2, . . . , N. (3.21)
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Remark 3.4. Numerical explicit time integration schemes such as those adopted in (3.3)–(3.7) are conditionally
stable and, therefore, depend on a relationship between the mesh parameters ∆t and ∆x, known as a condition
of Courant-Friedrichs-Lewy (CFL) [17, 23], given by

∆t ≤ ∆x

ηc
, (3.22)

where c := max
{√

α/ρ,
√
β/µ

}
is the maximum speed of the domain and η is a positive empirically cho-

sen constant. Thus, this relationship works as a sufficient condition for guaranteeing the stability of the
system (3.3)–(3.7). To be more precise about the stability criterion and to find a necessary and sufficient
condition, we must make a more in-depth analysis based on Wright’s work [8].

4. Numerical simulations

In this section, we present the results of numerical simulations of the finite difference methods (3.3)–(3.7)
and of numerical energy En given in (3.8), as regards the solution and exponential decay. It is important to
note that at this point, we are not interested in analyzing the issues of convergence of the numerical solution
for the exact solution, because our intention here is just to illustrate with examples the numerical analytical
results proven in the previous sections.

The main issue in the case of a finite-dimensional model is to determine the appropriate parameters to ensure
the properties mentioned earlier and that the relationship (3.22) is fundamental.

For the numerical example, we consider L = 3, ρ = 7.6 · 103, µ = 1.2 · 10−6, γ = 3 · 10−4, β = 1.9 · 10−5 and
δ = 1.8 · 104. In the initial conditions adopted

v0j = sin

(
(2n+ 1)πxj

2L

)
, p0j = 3 sin

(
(2n+ 1)πxj

2L

)
, v1j = p1j = 0, with n ∈ ZZ, j = 0, 1, . . . , J + 1.

(4.1)
The graphics are given in Figure 2.
Using Matlab, we apply numerical methods (3.3)–(3.7) and (3.8) to plot the solution and the approximate

numerical energy of the (1.15)–(1.19) in two distinct cases which will be described below. For this purpose, we
choose J = 300, T = 3 and N = 2390. Below are the results.

4.1. Case without damping and internal damping in the mechanical equation

Here, we consider the numerical scheme (3.3)–(3.7) in two very different physical situations. In the first case,
we consider a situation without damping, attributing the value δ = 0 in internal dissipation δvt in (3.3) and in
the second case, we consider the model with the internal dissipation introduced by the term δvt with δ > 0.

4.1.1. Without internal damping

The following results show the conservative behavior of the numerical solution (vnj , p
n
j ) over time tn and the

constant behavior of the numerical energy En in relation to the conservation law (see Cor. 3.3).

Comments I: In Figure 3, we have an overview of the evolution of the numerical solution over time. On
the other hand, Figure 4 shows the numerical energy graph, which ensures a measure of precision of the explicit
method to reproduce the conservative character of the solutions of the dynamic numerical model of piezoelectric
beams with magnetic effect.
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Figure 2. Graphics of initial conditions v0j , p0j , v1j , p1j respectively.

Figure 3. Longitudinal displacement v of the beam axis (left side) and the total electric
displacement load p (right side).

4.1.2. With internal damping

The following results show the dissipative behavior of the numerical solution (vnj , p
n
j ) over time tn and the

monotonous behavior decreasing to zero, of the numerical energy En in relation to the dissipation law (see Thm.
3.2).

Comments II: The graph of Figure 5, shows the dissipative behavior of the numerical solution in the
presence of an internal damping introduced in the mechanical equation. In a similar way to the conservative
case, we perceive Figure 6, that the numerical energy is capable of reproducing the dissipative configuration of
the solution of the numerical model.
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Figure 4. Numerical energy of the conservative system: case δ = 0.

Figure 5. Longitudinal displacement v of the beam axis (left side) and the total electric
displacement load p (right side).

Figure 6. Numerical energy of the dissipative system: case δ > 0.



EXPONENTIAL STABILITY AND NUMERICAL TREATMENT 271

The main objective of these simulations about the numerical solution and the decay of the numerical energy,
is to empirically prove that the explicit numerical scheme of finite differences is robust enough to reproduce the
properties present in the continuous, provided that due restriction is observed (3.22) between mesh parameters
∆t and ∆x.

5. Final comment and future research

Here, we show a dissipative system of piezoelectric beams with magnetic effect and we prove the exponential
decay of the total energy at the level of the continuous. Thus, we discretized the equations of the system and
analyzed the behavior of the numerical energy, where we perceive that the functional energy is not positive
definite, different from what happens in the continuous; however, we show that this does not prevent it from
being decreasing with n→∞.

Other issues will be discussed in the future. We highlight some of them.

– Lack of numerical observability. In a recent paper, Almeida Jr. et al. [1], proved the lack of numerical
observability for a semi-discretized finite difference system applied to coupled-wave equations using mul-
tiplicative techniques adapted for the semi-discrete domain, combined with Fourier series developments.
An open problem would be to analyze the lack of numerical observability for the conservative system of
piezoelectric beams semi-discretized by finite differences, following the steps of these authors.

– Polynomial stabilization. Analyzing Theorem 3.2, more precisely the equation (3.19) we can consider
some numerical boundary conditions. Among them, we highlight those that frequently occur in practice.

Boundary conditions: Type I

vn0 = pn0 = 0, ∀n = 0, 1, . . . , N + 1, (5.1)

α

(
vnJ+1 − vnJ

∆x

)
− γβ

(
pnJ+1 − pnJ

∆x

)
= 0, ∀n = 0, 1, . . . , N + 1, (5.2)(

pnJ+1 − pnJ
∆x

)
− γ
(
vnJ+1 − vnJ

∆x

)
= 0, ∀n = 0, 1, . . . , N + 1. (5.3)

Boundary conditions: Type II

vn0 = pn0 = 0, ∀n = 1, 2, . . . , N, (5.4)

α

(
vnJ+1 − vnJ

∆x

)
− γβ

(
pnJ+1 − pnJ

∆x

)
= 0, ∀n = 1, 2, . . . , N, (5.5)

β

(
pnJ+1 − pnJ

∆x

)
− γβ

(
vnJ+1 − vnJ

∆x

)
+

1

h

(
pn+1
J+1 − p

n−1
J+1

2∆t

)
= 0, ∀n = 1, 2, . . . , N. (5.6)

Note that the numerical boundary conditions (5.4)–(5.6) correspond to the analogous continuous (1.11)–(1.14)
studied in [13]. Thus, the discretization of the system (1.11)–(1.14) can be obtained from our numerical
scheme (3.3)–(3.4) assuming δ = 0, together with the boundary conditions (5.4)–(5.6).
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Another problem that we want to study in the future is the polynomial semi-discrete energy decay

E∆x(t) :=
∆x

2

J∑
j=0

[
ρ

3
|v′j(t)|2 +

µ

3
|p′j(t)|2 +

ρ

6

∣∣v′j+1(t) + v′j(t)
∣∣2 +

µ

6

∣∣p′j+1(t) + p′j(t)
∣∣2

+α1

∣∣∣∣vj+1(t)− vj(t)
∆x

∣∣∣∣2 + β

∣∣∣∣γ vj+1(t)− vj(t)
∆x

− pj+1(t)− pj(t)
∆x

∣∣∣∣2
]
, ∀t ≥ 0 (5.7)

associated to the semi-discretized problem by the finite element method

ρΘ
(
v′j(t)

)
− αvj+1(t)− 2vj(t) + vj−1(t)

∆x2
+ γβ

pj+1(t)− 2pj(t) + pj−1(t)

∆x2
= 0, (5.8)

µΘ
(
p′j(t)

)
− β pj+1(t)− 2pj(t) + pj−1(t)

∆x2
+ γβ

vj+1(t)− 2vj(t) + vj−1(t)

∆x2
= 0, (5.9)

v0(t) = α

(
vJ+1(t)− vJ(t)

∆x

)
− γβ

(
pJ+1(t)− pJ(t)

∆x

)
= 0, (5.10)

p0(t) = β

(
pJ+1(t)− pJ(t)

∆x

)
− γβ

(
vJ+1(t)− vJ(t)

∆x

)
+
p′J+1(t)

h
= 0, (5.11)

for all j = 1, 2, . . . , J and t ≥ 0, where Θ(·) is an operator given by

Θ
(
v′j(t)

)
:=

2

3
v′j(t) +

1

6

(
v′j+1(t) + v′j−1(t)

)
, ∀ j = 1, 2, . . . , J and t ≥ 0, (5.12)

with an analogous expression for Θ
(
p′j(t)

)
. Here, the main question is whether the polynomial decay of the

system is uniform with respect to the mesh parameter ∆x for sufficiently regular initial data. We remind
you that the (5.8)–(5.11) is obtained by an approximation of Galerkin of the continuous system (1.11)–(1.14),
constructed using finite elements. See, for example, the paper by Infante and Zuazua (see [6], Sect. 3.1), where
the authors studied an analogous semi-discretization in finite elements for the problem of lack of observability of
the one-dimensional wave equation. Still speaking of polynomial stabilization, we find in the work of Banks et al.
[2], some important notes about the polynomial decay for different numerical methods, among them, the authors
highlight that the finite element method is one of the most suitable for studying the polynomial decay rate.

To conclude, we emphasize that the explicit numerical scheme, applied to piezoelectric beam systems with
magnetic effect we analyzed, had never been studied before, therefore, this work constitutes the first contribution
to the numerical study of this system.

Appendix A. Equivalence between the total energy and the
Lyanupov functional

In this section, we have established the equivalence between the functional result of Lyapunov and the total
energy of the system of piezoelectric beams (1.15)–(1.19). But we precisely prove the following result.

Lemma A.1. For N1 > 0 big enough, there are positive constants k1 and k2 such that of the functional

L(t) := N1E(t) +N2F(t) +N3G(t) +N4H(t), (A.1)

satisfies

k1E(t) ≤ L(t) ≤ k2E(t), ∀ t ≥ 0. (A.2)
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Proof. In fact, considering the functional L(t) defined above, it follows that

|L(t)−N1E(t)| ≤ N2ρ

∫ L

0

|vtv|dx+N2γµ

∫ L

0

|ptv|dx+
N2δ

2

∫ L

0

|v|2dx

+N3ρ

∫ L

0

|vt(γv − p)|dx+N3γµ

∫ L

0

|pt(γv − p)|dx

+N3
γδ

2

∫ L

0

|v|2dx+N3δ

∫ L

0

|vp|dx+N4ρ

∫ L

0

|vtv|dx

+
N4δ

2

∫ L

0

|v|2dx+N4µ

∫ L

0

|ptp|dx. (A.3)

By applying Young and Poincaré’s inequalities, we conclude that there is a constant c > 0 such that

|L(t)−N1E(t)| ≤ cE(t), ∀ t ≥ 0. (A.4)

Consequently,

(N1 − c)E(t) ≤ L(t) ≤ (N1 + c)E(t), ∀ t ≥ 0. (A.5)

Choosing N1 sufficiently large, that is, N1 := max
{
c,
(
N2CN2 +N3C1 +N4ρ

)/
δ
}

, (see Eq. (2.28)) we get the

proof.
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