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CONSISTENT SEGREGATED STAGGERED SCHEMES WITH
EXPLICIT STEPS FOR THE ISENTROPIC AND FULL EULER

EQUATIONS

Raphaèle Herbin1,*, Jean-Claude Latché2 and Trung Tan Nguyen2

Abstract. In this paper, we build and analyze the stability and consistency of decoupled schemes,
involving only explicit steps, for the isentropic Euler equations and for the full Euler equations. These
schemes are based on staggered space discretizations, with an upwinding performed with respect to
the material velocity only. The pressure gradient is defined as the transpose of the natural velocity
divergence, and is thus centered. The velocity convection term is built in such a way that the solutions
satisfy a discrete kinetic energy balance, with a remainder term at the left-hand side which is shown to
be non-negative under a CFL condition. In the case of the full Euler equations, we solve the internal
energy balance, to avoid the space discretization of the total energy, whose expression involves cell-
centered and face-centered variables. However, since the residual terms in the kinetic energy balance
(probably) do not tend to zero with the time and space steps when computing shock solutions, we
compensate them by corrective terms in the internal energy equation, to make the scheme consistent
with the conservative form of the continuous problem. We then show, in one space dimension, that,
if the scheme converges, the limit is indeed an entropy weak solution of the system. In any case, the
discretization preserves by construction the convex of admissible states (positivity of the density and,
for Euler equations, of the internal energy), under a CFL condition. Finally, we present numerical
results which confort this theory.
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1. Introduction

The objective pursued in this work is to develop and study, both theoretically and numerically, a decoupled
scheme for the simulation of non viscous compressible flows, modeled either by the isentropic Euler equations or
by the full Euler equations for an ideal gas. More precisely, we intend to build a variant involving only explicit
time-steps (i.e. without any linear system solution) of implicit and semi-implicit schemes that were developed
and studied recently in the framework of the simulation of compressible flows at all speeds [14, 16]. In this latter
works, the implicit scheme is studied as a first step in the mathematical analysis of some pressure correction
schemes; these are obtained by extending some algorithms which are classical in the incompressible framework;
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they are based on (inf-sup stable) staggered discretizations. In our approach, the upwinding techniques which are
implemented for stability reasons are performed for each equation separately and with respect to the material
velocity only. This is in contradiction with the most common strategy adopted for hyperbolic systems, where
upwinding is built from the wave structure of the system (see e.g. [2, 7, 23] for surveys). However, it yields
algorithms which are used in practice (see e.g. the so-called AUSM family of schemes [19, 20]), because of their
generality (a closed-form solution of Riemann problems is not needed), their implementation simplicity and
their efficiency, thanks to an easy construction of the fluxes at the cell faces. Up to now, these schemes have
scarcely been studied from a theoretical point of view; one of our main concerns here will thus be to bring, as
far as possible, theoretical arguments supporting our numerical developments.

We first deal with the isentropic Euler equations:

∂tρ+ div(ρu) = 0, (1.1a)
∂t(ρu) + div(ρu⊗ u) + ∇p = 0, (1.1b)
ρ ≥ 0, p = ℘(ρ) = ργ , (1.1c)

where t stands for the time, ρ, u, and p are the density, velocity and pressure, respectively, and γ ≥ 1 is a
coefficient specific to the considered fluid. Note that, for γ = 2, this system is identical to the usual shallow
water (or Saint-Venant) equations in the case of no source term (no topography, no Coriolis force), up to a
multiplicative coefficient 1/2 at the right-hand side of the equation of state (and replacing the density ρ by the
fluid height h). Of course, this minor change in the equation of state does not bring any additional difficulty,
and, more generally, present results may probably be extended to the barotropic case, i.e. to general equations
of state of the form p = φ(ρ) with φ a strictly increasing function.

We then address the full Euler equations, which read:

∂tρ+ div(ρu) = 0, (1.2a)

∂t(ρu) + div(ρu⊗ u) + ∇p = 0, (1.2b)

∂t(ρE) + div(ρEu) + div(pu) = 0, (1.2c)

p = (γ − 1)ρe, E =
1
2
|u|2 + e, (1.2d)

where E and e are the total energy and internal energy, respectively. For this system, the coefficient γ is now
supposed to be strictly greater than 1. Problems (1.1) and (1.2) are posed over Ω× (0, T ), where Ω is an open
bounded connected subset of Rd, 1 ≤ d ≤ 3, and (0, T ) is a finite time interval. They are complemented by initial
conditions for ρ, e and u, denoted by ρ0 e0, and u0, respectively, with ρ0 > 0 and e0 > 0, and by a boundary
condition which we suppose to be u · n = 0 at any time and a.e. on ∂Ω, where n stands for the normal vector
to the boundary.

The organization and main results of this paper are as follows:

– The space discretization is given in Section 2.
– Section 3 is devoted to the isentropic Euler equations (i.e. system (1.1)). The proposed scheme is decoupled

in time (the mass and momentum equations are solved one after the other) and only involves explicit steps.
The scheme is based on a staggered mesh, and obtained by writing a finite volume discretization on the
primal cells for the mass balance equation and a finite volume scheme on the dual cells for the momentum
balance equation. Upwinding is performed with respect to the material velocity (by opposition to the speed
of the waves of the system), and the pressure gradient is defined as the transpose of the natural velocity
divergence, so is thus centered. We prove that the solutions of this scheme satisfy a discrete kinetic energy
balance (on dual cells) and an elastic potential balance (on primal cells). Then, in one space dimension,
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we show that the algorithm is consistent in the Lax–Wendroff sense: passing to the limit in the scheme,
we prove that, if a sequence of discrete solutions obtained with vanishing time and space steps converges
and is uniformly bounded in suitable norms, then its limit satisfies a weak formulation of the continuous
problem. Then, passing now to the limit in the discrete kinetic energy and elastic potential equations, we
show that the limit of such a converging sequence also satisfies the weak form of the entropy balance.

– Section 4 is devoted to the full Euler equations. The scheme is obtained by complementing the algorithm
developed for the isentropic case by an explicit finite volume discretization of the internal energy balance
equation on the primal mesh. This offers two main advantages: first, we avoid the space discretization
of the total energy, the expression of which involves cell-centered and face-centered variables; second,
the discretization ensures by construction the positivity of the internal energy, under a CFL condition.
However, since this scheme does not use the original (total) energy conservative equation, in order to
obtain correct weak solutions (in particular, with shocks satisfying the Rankine–Hugoniot conditions), we
need to introduce corrective terms in the internal energy balance. These corrective terms are found from
the discrete kinetic energy balance (already derived in the isentropic case), observing that this relation
contains residual terms which do not tend to zero (at least, under reasonable stability assumptions) and,
finally, compensating them in the discrete internal energy balance. With this correction, we are once again
able to prove, in 1D, the consistency of the scheme in the Lax–Wendroff sense; more precisely speaking,
passing to the limit separately in the discrete kinetic and internal energy balances (which are not posed
on the same mesh), we obtain that the limit of a convergent sequence of discrete solutions satisfies a weak
form of the total energy equation.

– Finally, we present some numerical tests for both the isentropic case and the full Euler case in Section 5.

In several theoretical developments, we are lead to use a derived form of a discrete finite volume convection
operator (for instance, typically, a convection operator for the kinetic energy, possibly with residual terms,
obtained from the finite volume discretization of the convection of the velocity components); the proofs of
various related discrete identities are given in Appendix A. Note that some of the results of the work which we
present here were announced in the proceedings [15], but without any proof.

2. Meshes and unknowns

In this section, we recall some staggered discretizations which were already used for implicit schemes for
compressible flows, see e.g. [16]; we focus here on the discretization of a multi-dimensional domain (i.e. d = 2
or d = 3); the extension to the one-dimensional case is straightforward (see Sects. 3.3 and 4.2).

Let M be a mesh of the domain Ω, supposed to be regular in the usual sense of the finite element literature
(e.g. [4]). The cells of the mesh are assumed to be:

– for a general domain Ω, either non-degenerate quadrilaterals (d = 2) or hexahedra (d = 3) or simplices;
in two space dimensions, both types of cells may possibly be combined in a same mesh;

– for a domain whose boundaries are hyperplanes normal to a coordinate axis, rectangles (d = 2) or rectan-
gular parallelepipeds (d = 3) (the faces of which, of course, are then also necessarily normal to a coordinate
axis).

By E and E(K) we denote the set of all (d − 1)-faces σ of the mesh and of the element K ∈ M, respectively.
The set of faces included in the boundary of Ω is denoted by Eext and the set of internal faces (i.e. E \ Eext)
is denoted by Eint; a face σ ∈ Eint separating the cells K and L is denoted by σ = K|L. The outward normal
vector to a face σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K| the measure of K and
by |σ| the (d− 1)-measure of the face σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E and E(i)

ext ⊂ Eext the subset of the
faces of E and Eext, respectively, which are perpendicular to the ith unit vector of the canonical basis of Rd.

The space discretization is staggered, using either the Marker-And Cell (MAC) scheme [11, 12], or the
degrees of freedom (i.e. the discrete unknowns) of nonconforming low-order finite element approximations,
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namely the Rannacher and Turek element (RT) [21] for quadrilateral or hexahedric meshes, or the lowest degree
Crouzeix–Raviart element (CR) [5] for simplicial meshes.

For all these space discretizations, the degrees of freedom for the pressure, the density and the internal energy
are associated to the cells of the mesh M, and are denoted by:{

pK , ρK , eK , K ∈M
}
.

Let us then turn to the degrees of freedom for the velocity (i.e. the discrete velocity unknowns).

– Rannacher–Turek or Crouzeix–Raviart discretizations: In this case, all the components of the velocity are
approximated on each face of the mesh, so the degrees of freedom for the velocity components are located
at their center. The set of degrees of freedom reads:

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.

– MAC discretization: Only the normal components of the velocities are approximated, and the degrees of
freedom for the ith component of the velocity are defined at the centre of the faces σ ∈ E(i), and the set
of discrete velocity unknowns is: {

uσ,i, σ ∈ E(i), 1 ≤ i ≤ d
}
.

We now introduce a dual mesh, which will be used for the finite volume approximation of the time derivative
and convection terms in the momentum balance equation.

– Rannacher–Turek or Crouzeix–Raviart discretizations: For the RT or CR discretizations, the dual mesh
is the same for all the velocity components. When K ∈ M is a simplex, a rectangle or a cuboid, for
σ ∈ E(K), we define DK,σ as the cone with basis σ and with vertex the mass center of K (see Fig. 1).
We thus obtain a partition of K in m sub-volumes, where m is the number of faces of the mesh, each
sub-volume having the same measure |DK,σ| = |K|/m. We extend this definition to general quadrangles
and hexahedra, with a (virtual) partition with sub-cells which are still of equal-volume, and with the same
connectivities. The volume DK,σ is referred to as the half-diamond cell associated to K and σ.
For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated to σ by Dσ = DK,σ ∪DL,σ; for an
external face σ ∈ Eext ∩ E(K), Dσ is just the same volume as DK,σ.

– MAC discretization: For the MAC scheme, the definition of the dual mesh depends on the component
of the velocity. For each component, the MAC dual mesh only differs from the RT or CR dual mesh by
the choice of the half-diamond cell, which, for K ∈M and σ ∈ E(K), is now the rectangle or rectangular
parallelepiped of basis σ and of measure |DK,σ| = |K|/2.

We denote by |Dσ| the measure of the dual cell Dσ, and by ε = Dσ|Dσ′ the face separating two diamond
cells Dσ and Dσ′ . The set of the faces of a dual cell Dσ is denoted by Ẽ(Dσ).

Finally, we need to deal with the impermeability (i.e. u · n = 0) boundary condition. As in [16] we suppose
throughout this paper that the boundary is a.e. normal to a coordinate axis which allows to simply set to zero
the corresponding velocity unknowns:

for i = 1, . . . , d, ∀σ ∈ E(i)
ext, uσ,i = 0. (2.1)

Therefore, there are no degrees of freedom for the velocity on the boundary for the MAC scheme, and there are
only d− 1 degrees of freedom on each boundary face for the CR and RT discretizations, which depend on the
orientation of the face. We again use the notations of [16] to be able to write a unique expression of the discrete
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Figure 1. Notations for control volumes and dual cells. Left: finite elements (the present
sketch illustrates the possibility, implemented in our software CALIF3S [3], of mixing simplicial
(Crouzeix–Raviart) and quadrangular (Rannacher–Turek) cells). Right: MAC discretization,
dual cell for the y-component of the velocity.

equations for both MAC and CR/RT schemes: we introduce the sets of faces E(i)
S associated to the degrees of

freedom of each component of the velocity (S stands for “scheme”):

E(i)
S =

∣∣∣∣∣ E(i) \ E(i)
ext for the MAC scheme,

E \ E(i)
ext for the CR or RT schemes.

For both schemes, we define Ẽ(i), for 1 ≤ i ≤ d, as the set of faces of the dual mesh associated to the ith
component of the velocity. For the RT or CR discretizations, the sets Ẽ(i) does not depend on the component
(i.e. of i), up to the elimination of some unknowns (and so some dual cells and, finally, some external faces) to
take the boundary conditions into account. For the MAC scheme, Ẽ(i) depends on i; note that each face of Ẽ(i)

is perpendicular to a unit vector of the canonical basis of Rd, but not necessarily to the ith one.

General domains can be addressed with the CR or RT discretizations by redefining, through linear combi-
nations, the degrees of freedom at the external faces, so as to introduce the normal velocity as a new degree of
freedom.

3. The isentropic Euler equations

We address in this section the numerical solution of the isentropic Euler equations (i.e. System (1.1)). The
presentation is organized as follows. We first describe the proposed scheme (Sect. 3.1). Then, we study its
stability properties in Section 3.2 (precisely speaking, we show that the solutions satisfy a discrete kinetic
energy and an elastic potential balance). Finally, consistency properties of the scheme, in 1D, are studied in
Section 3.3.

3.1. The scheme

Let us consider a discretization 0 = t0 < t1 < · · · < tN = T of the time interval (0, T ), which we suppose
uniform for the sake of simplicity, and let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the (constant) time step. We
consider a decoupled-in-time scheme, which reads in its fully discrete form, for 0 ≤ n ≤ N − 1:

∀K ∈M,
|K|
δt

(ρn+1
K − ρnK) +

∑
σ∈E(K)

FnK,σ = 0, (3.1a)
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∀K ∈M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ , (3.1b)

for 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

∀K ∈M,
|Dσ|
δt

(ρn+1
Dσ

un+1
σ,i − ρ

n
Dσ
unσ,i) +

∑
ε∈Ẽ(Dσ)

Fnσ,εu
n
ε,i + |Dσ| (∇p)n+1

σ,i = 0, (3.1c)

where the terms introduced for each discrete equation are defined herafter.
Equation (3.1a) is obtained by the discretization of the mass balance equation (1.1a) over the primal mesh,

and FnK,σ stands for the mass flux across σ outward K, which, because of the impermeability condition, vanishes
on external faces and is given on the internal faces by:

∀σ = K|L ∈ Eint, FnK,σ = |σ| ρnσ unK,σ. (3.2)

In this relation, unK,σ is an approximation of the normal velocity to the face σ outward K, defined by:

unK,σ =

∣∣∣∣∣∣
unσ,i e(i) · nK,σ for σ ∈ E(i) in the MAC case,

unσ · nK,σ in the CR and RT cases,
(3.3)

where e(i) denotes the ith vector of the orthonormal basis of Rd. The density at the face σ = K|L is approximated
by the upwind technique:

ρnσ =

∣∣∣∣∣ρ
n
K if unK,σ ≥ 0,

ρnL otherwise.
(3.4)

We now turn to the discrete momentum balance (3.1c), which is obtained by discretizing the momentum
balance equation (1.1b) on the dual cells associated to the faces of the mesh. The first task is to define the
values ρn+1

Dσ
and ρnDσ

, which approximate the density over the dual cell Dσ at time tn+1 and tn, respectively, and
the discrete mass flux through the dual face ε outward Dσ, denoted by Fnσ,ε; the guideline for their construction
is that we want a finite volume discretization of the mass balance equation over the diamond cells, of the form

∀σ ∈ E , |Dσ|
δt

(ρn+1
Dσ
− ρnDσ

) +
∑

ε∈Ẽ(Dσ)

Fnσ,ε = 0, (3.5)

to hold in order to be able to derive a discrete kinetic energy balance (see Sect. 3.2 below). The density on the
dual cells is given by the following weighted average:

for σ = K|L ∈ Eint, for k = n and k = n+ 1, |Dσ| ρkDσ
= |DK,σ| ρkK + |DL,σ| ρkL. (3.6)

For the MAC scheme, the flux through a dual face which is located on two primal faces is the mean value
of the sum of fluxes on the two primal faces, and the flux through a dual face located between two primal
faces is again the mean value of the sum of fluxes on the two primal faces [13]. In the case of the CR and RT
schemes, for a dual face ε included in the primal cell K, this flux is computed as a linear combination (with
constant coefficients, i.e. independent of the cell) of the mass fluxes through the faces of K, i.e. the quantities
(FnK,σ)σ∈E(K) appearing in the discrete mass balance (3.1a). We refer to [1, 6] for a detailed construction of this
approximation. Let us remark that a dual face lying on the boundary is then either also a primal face or the
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union of the half-part of two primal faces, and, in both cases, the flux across this face is zero. Therefore, the
values unε,i are only needed at the internal dual faces, and are upwinded:

for ε = Dσ|Dσ′ , unε,i =

∣∣∣∣∣u
n
σ,i if Fnσ,ε ≥ 0,

unσ′,i otherwise.
(3.7)

The last term (∇p)n+1
σ,i stands for the ith component of the discrete pressure gradient at the face σ. The

gradient operator is built as the transpose of the discrete operator for the divergence of the velocity, the
discretization of which is based on the primal mesh. Let us denote the divergence of un+1 over K ∈ M by
(divu)n+1

K ; its natural approximation reads:

for K ∈M, (divu)n+1
K =

1
|K|

∑
σ∈E(K)

|σ| un+1
K,σ . (3.8)

Consequently, we choose the components of the pressure gradient as:

for σ = K|L ∈ Eint, (∇p)n+1
σ,i =

|σ|
|Dσ|

(pn+1
L − pn+1

K ) nK,σ · e(i), (3.9)

in order that the following duality relation (with respect to the L2 inner product) be satisfied:

∑
K∈M

|K| pn+1
K (divu)n+1

K +
d∑
i=1

∑
σ∈E(i)S

|Dσ| un+1
σ,i (∇p)n+1

σ,i = 0. (3.10)

Note that, because of the impermeability boundary conditions, the discrete gradient is not defined at the external
faces.

Finally, the initial approximations for ρ and u are given by the average of the initial conditions ρ0 and u0

on the primal and dual cells, respectively:

∀K ∈M, ρ0
K =

1
|K|

∫
K

ρ0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E(i)
S , u0

σ,i =
1
|Dσ|

∫
Dσ

(u0(x))i dx. (3.11)

The following positivity result is a classical consequence of the upwind choice in the mass balance equation.

Lemma 3.1 (Positivity of the density). Let ρ0 be given by (3.11). For a ∈ R, let us define a+ = max(a, 0).
Then, since ρ0 is assumed to be a positive function, ρ0 > 0 and, under the CFL condition:

δt ≤ |K|∑
σ∈E(K)

|σ| (unK,σ)+
, ∀K ∈M and for 0 ≤ n ≤ N − 1, (3.12)

the solution to the scheme satisfies ρn > 0, for 1 ≤ n ≤ N .
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3.2. Discrete kinetic energy and elastic potential balances

We begin by deriving a discrete kinetic energy balance equation, as was already done in [16] in the implicit
and fractional time step cases. Let us denote by Ek the kinetic energy Ek = 1

2 |u|
2. Let us recall that, taking the

inner product of (1.1b) by u yields, after formal compositions of partial derivatives and using the mass balance
(1.1a):

∂t(ρEk) + div
(
ρEku

)
+ ∇p · u = 0. (3.13)

This relation is referred to as the kinetic energy balance, and we recover its discrete analogue from the scheme
by some equivalent discrete computations.

Lemma 3.2 (Discrete kinetic energy balance). A solution to the system (3.1) satisfies the following equality,
for 1 ≤ i ≤ d, σ ∈ E(i)

S and 0 ≤ n ≤ N − 1:

1
2
|Dσ|
δt

[
ρn+1
Dσ

(un+1
σ,i )2 − ρnDσ

(unσ,i)
2
]

+
1
2

∑
ε∈Ẽ(Dσ)

Fnσ,ε (unε,i)
2 + |Dσ| (∇p)n+1

σ,i un+1
σ,i = −Rn+1

σ,i , (3.14)

with

Rn+1
σ,i =

1
2
|Dσ|
δt

ρn+1
Dσ

(un+1
σ,i − u

n
σ,i)

2 +
1
2

∑
ε=Dσ|Dσ′∈Ẽ(Dσ)

(Fnσ,ε)
−(unσ′,i − unσ,i)2

−
∑

ε=Dσ|Dσ′∈Ẽ(Dσ)

(Fnσ,ε)
−(unσ′,i − unσ,i) (un+1

σ,i − u
n
σ,i), (3.15)

where, for a ∈ R, a− ≥ 0 is defined by a− = −min(a, 0). This remainder term is non-negative under the following
CFL condition:

∀σ ∈ E(i)
S , δt ≤

|Dσ| ρn+1
Dσ∑

ε∈Ẽ(Dσ)

(Fnσ,ε)
−
. (3.16)

Proof. The proof of this lemma is simply obtained by multiplying the (ith component of the) momentum balance
equation (3.1c) associated to the face σ by the unknown un+1

σ,i , and invoking Lemma A.2.

We now derive a balance equation (with remainder terms) for the so-called elastic potential. This quantity
is the function P, from (0,+∞) to R, defined as a primitive of s 7→ ℘(s)/s2; as in [16], we also introduce H,
defined by H(s) = sP(s), ∀s ∈ (0,+∞). For the specific equation of state ℘ used here, we obtain:

H(s) = sP(s) =


sγ

γ − 1
if γ > 1,

s ln(s) if γ = 1.
(3.17)

As soon as ℘ is an increasing function, which is true here, H is convex. In addition, it may easily be checked that
ρH′(ρ)−H(ρ) = ℘(ρ). Therefore, by a formal computation detailed in [16, Appendix A], multiplying (1.1a) by
H′(ρ) yields:

∂t
(
H(ρ)

)
+ div

(
H(ρ) u

)
+ p div(u) = 0. (3.18)
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The solution to the scheme (3.1) satisfies a discrete version of this relation, which we now state.

Lemma 3.3 (Discrete potential balance). Let H be defined by (3.17). A solution to the system (3.1) satisfies
the following equality, for K ∈M and 0 ≤ n ≤ N − 1:

|K|
δt

[
H(ρn+1

K )−H(ρnK)
]

+
∑

σ∈E(K)

|σ| H(ρnσ) unK,σ + |K| pnK(divun)K = −Rn+1
K . (3.19)

In this relation, the remainder term is defined by:

Rn+1
K =

1
2
|K|
δt
H′′(ρnK,1) (ρn+1

K − ρnK)2 +
1
2

∑
σ=K|L∈E(K)

|σ| (unK,σ)− H′′(ρnσ) (ρnK − ρnL)2

+
∑

σ∈E(K)

|σ|unK,σ H′′(ρnK,2) ρnσ (ρn+1
K − ρnK), (3.20)

with ρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, and ρnσ ∈ |[ρnK , ρnσ]| for all σ ∈ E(K), where, for a, b ∈ R, we denote by |[a, b]| the
interval {θa+ (1− θ)b, θ ∈ [0, 1]}.

Proof. The proof of this lemma is obtained by multiplying the discrete mass balance equation (3.1a) byH′(ρn+1
K )

and invoking Lemma A.1.

Summing (3.13) and (3.18), we get: ∂tη+ div
(
(η+ p) u

)
= 0, where η = ρEk +H(ρ). In fact this computation

can only be done for regular functions; for irregular functions, one gets the following entropy inequality (see e.g.
[7, Introduction, Section 3.2]):

∂tη + div
(
(η + p) u

)
≤ 0. (3.21)

The quantity η is an entropy of the system, and an entropy solution to (1.1) is thus required to satisfy:∫ T

0

∫
Ω

[
−η∂tϕ− (η + p) u ·∇ϕ

]
dx dt−

∫
Ω

η0 ϕ(x, 0) dx ≤ 0, ∀ϕ ∈ C∞c
(
Ω× [0, T )

)
, ϕ ≥ 0, (3.22)

with η0 = 1
2ρ0|u0|2 +H(ρ0). Then, since the normal velocity is prescribed to zero at the boundary, integrating

(3.21) over Ω yields:

d

dt

∫
Ω

[1
2
ρ |u|2 +H(ρ)

]
dx ≤ 0. (3.23)

Since ρ ≥ 0 by Lemma 3.1 and the function s 7→ H(s) is bounded by below and increasing at least for s large
enough, inequality (3.23) provides an estimate on the solution. In In Propositions 3.3 and 3.13 from [16], we
gave a discrete equivalent of this latter estimate for implicit and semi-implicit schemes. Unfortunately, we are
not able to do so for the explicit scheme since the remainder term Rn+1

K defined by (3.20) is not always positive;
therefore we are not able to prove a discrete counterpart of the total entropy estimate (3.23), which would yield
a stability estimate for the present explicit scheme. However, under a condition for a time step which is only
slightly more restrictive than a CFL-condition, and under some stability assumptions for the solutions to the
scheme, we are able to show, in one space dimension, that the possible non-positive part of this remainder term
tends to zero in L1(Ω× (0, T )) with the space and time steps; this allows to conclude, still in the 1D case, that
a convergent sequence of solutions satisfies the entropy inequality (3.22): this is the result stated in Lemma 3.6
below.
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3.3. Passing to the limit in the scheme

The objective of this section is to show, in the one dimensional case, that if a sequence of solutions is controlled
in suitable norms and converges to a limit, this latter necessarily satisfies a (part of the) weak formulation of
the continuous problem.

As in Sections 3.1.3 and 3.3.2 from [16], the 1D version of the scheme which is studied in this section may
be obtained from scheme (3.1) by taking the MAC variant of the scheme, using only one horizontal stripe of
grid cells, supposing that the vertical component of the velocity (the degrees of freedom of which are located on
the top and bottom boundaries) vanishes, and that the measure of the vertical faces is equal to 1. For the sake
of readability, however, we completely rewrite this 1D scheme, and, to this purpose, we first introduce some
adaptations of the notations to the one dimensional case. For any face σ ∈ E , let xσ be its abscissa. For K ∈M,
we denote by hK its length (so hK = |K|); when we write K = [σσ′], this means that either K = (xσ, xσ′) or
K = (xσ′ , xσ); if we need to specify the order, i.e. K = (xσ, xσ′) with xσ < xσ′ , then we write K = [

−→
σσ′]. For an

interface σ = K|L between two cells K and L, we define hσ = (hK + hL)/2, so, by definition of the dual mesh,
hσ = |Dσ|. If we need to specify the order of the cells K and L, say K is left of L, then we write σ =

−−→
K|L. With

these notations, the explicit scheme (3.1) may be written as follows in the one dimensional setting:

∀K ∈M, ρ0
K =

1
|K|

∫
K

ρ0(x) dx,

∀σ ∈ Eint, u0
σ =

1
|Dσ|

∫
Dσ

u0(x) dx, (3.24a)

∀K = [
−→
σσ′] ∈M,

|K|
δt

(ρn+1
K − ρnK) + Fnσ′ − Fnσ = 0, (3.24b)

∀K ∈M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ , (3.24c)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + FnLu
n
L − FnKunK + pn+1

L − pn+1
K = 0. (3.24d)

The mass flux in the discrete mass balance equation is given, for σ ∈ Eint, by Fnσ = ρnσu
n
σ, where the upwind

approximation for the density at the face, ρnσ, is defined by (3.4). In the momentum balance equation, the
density associated to the dual cell Dσ, with σ = K|L, reads

for k = n and k = n+ 1, ρkDσ
=

1
2 |Dσ|

(|K| ρkK + |L| ρkL), (3.25)

and the application of the procedure described in Section 3.1 yields, for the mass fluxes at the dual face located
at the center of the mesh K = [

−→
σσ′]:

FnK =
1
2

(Fnσ + Fnσ′). (3.26)

The approximation of the velocity at this face is upwind: unK = unσ if FnK ≥ 0 and unK = unσ′ otherwise.

Let a sequence of discretizations (M(m), δt(m))m∈N be given. We define the size h(m) of the mesh M(m) by
h(m) = supK∈M(m) hK . Let ρ(m), p(m) and u(m) be the solution given by the scheme (3.24) with the mesh
M(m) and the time step δt(m). To the discrete unknowns, we associate piecewise constant functions on time
intervals and on primal or dual meshes, so the density ρ(m), the pressure p(m) and the velocity u(m) are defined



CONSISTENT EXPLICIT STAGGERED SCHEMES FOR THE EULER EQUATIONS 903

almost everywhere on Ω× (0, T ) by:

ρ(m)(x, t) =
N−1∑
n=0

∑
K∈M

(ρ(m))nK XK(x)X[n,n+1)(t),

p(m)(x, t) =
N−1∑
n=0

∑
K∈M

(p(m))nK XK(x)X[n,n+1)(t),

u(m)(x, t) =
N−1∑
n=0

∑
σ∈E

(u(m))nσ XDσ (x)X[n,n+1)(t), (3.27)

where XK , XDσ and X[n,n+1) stand for the characteristic function of the intervals K, Dσ and [tn, tn+1),
respectively.

For discrete functions q and v defined on the primal and dual mesh, respectively, we define a discrete
L1((0, T ); BV(Ω)) norm by:

‖q‖T ,x,BV =
N∑
n=0

δt
∑

σ=K|L∈Eint

|qnL − qnK |, ‖v‖T ,x,BV =
N∑
n=0

δt
∑

ε=Dσ|Dσ′∈Ẽint

|vnσ′ − vnσ |,

and a discrete L1(Ω; BV((0, T ))) norm by:

‖q‖T ,t,BV =
∑
K∈M

|K|
N−1∑
n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑
σ∈E
|Dσ|

N−1∑
n=0

|vn+1
σ − vnσ |.

For the consistency result that we are seeking (Thm. 3.5 below), it is assumed that a sequence of discrete
solutions

(
ρ(m), p(m), u(m)

)
m∈N satisfies ρ(m) > 0 and p(m) > 0, ∀m ∈ N (which may be a consequence of the

fact that the CFL stability condition (3.12) is satisfied), and is uniformly bounded in L∞((0, T )× Ω)3, i.e.:

0 < (ρ(m))nK ≤ C, 0 < (p(m))nK ≤ C, for K ∈M(m), 0 ≤ n ≤ N (m), m ∈ N, (3.28)

and

|(u(m))nσ| ≤ C, ∀σ ∈ E(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (3.29)

where C is a positive real number. By definition of the initial conditions of the scheme, these inequalities imply
that the functions ρ0 and u0 belong to L∞(Ω). We also assume that a sequence of discrete solutions satisfies
the following uniform bounds in the discrete BV-norms:

‖ρ(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N. (3.30)

We are not able to prove the estimates (3.28)–(3.30) for the solutions of the scheme; however, such inequalities
are satisfied by the “interpolates” (for instance, by taking the cell average) of the solution to a Riemann problem,
and are observed in computations (of course, as far as possible, i.e. in a limited number of cases and with a
limited sequence of meshes and time steps).
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A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞c
(
Ω× [0, T )

)
:

−
∫ T

0

∫
Ω

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dxdt−

∫
Ω

ρ0(x)ϕ(x, 0) dx = 0, (3.31a)

−
∫ T

0

∫
Ω

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dx dt−

∫
Ω

ρ0(x)u0(x)ϕ(x, 0) dx = 0, (3.31b)

p = ργ . (3.31c)

Even though these relations do not take into account the boundary conditions, they allow to derive the Rankine–
Hugoniot conditions; hence, if they are shown to be satisfied by the limit of a sequence of solutions to the scheme,
this implies, loosely speaking, that the scheme computes correct shocks. This is the result stated in Theorem 3.5.
In order to prove this theorem, the following definitions of interpolates of regular test functions on the primal
and dual mesh are useful.

Definition 3.4 (Interpolates on one-dimensional meshes). Let Ω be an open bounded interval of R, let ϕ ∈
C∞c (Ω× [0, T )), and let M be a mesh over Ω. The interpolate ϕM of ϕ on the primal mesh M is defined by:

ϕM =
N−1∑
n=0

∑
K∈M

ϕnK XK X[tn,tn+1),

where, for 0 ≤ n ≤ N and K ∈M, ϕnK = ϕ(xK , tn), with xK the mass center of K. The time and space discrete
derivatives of the discrete function ϕM are defined by:

ðtϕM =
N−1∑
n=0

∑
K∈M

ϕn+1
K − ϕnK

δt
XK X[tn,tn+1) and ðxϕM =

N−1∑
n=0

∑
σ=
−−→
K|L∈Eint

ϕnL − ϕnK
hσ

XDσ X[tn,tn+1).

Let ϕE be an interpolate of ϕ on the dual mesh, defined by:

ϕE =
N−1∑
n=0

∑
σ∈E

ϕnσ XDσ X[tn,tn+1),

where, for 0 ≤ n ≤ N and σ ∈ E , ϕnσ = ϕ(xσ, tn), with xσ the abscissa of the interface σ. We also define the
time and space discrete derivatives of this discrete function by:

ðtϕE =
N−1∑
n=0

∑
σ∈E

ϕn+1
σ − ϕnσ
δt

XDσ X[tn,tn+1) and ðxϕE =
N−1∑
n=0

∑
K=[
−−→
σσ′]∈M

ϕnσ′ − ϕnσ
hK

XK X[tn,tn+1).

Finally, let ðxϕM,E be defined by:

ðxϕM,E =
N−1∑
n=0

∑
K=[
−−→
σσ′]∈M

ϕn+1
K − ϕn+1

σ

hK/2
XDK,σ X[tn,tn+1) +

ϕn+1
σ′ − ϕ

n+1
K

hK/2
XDK,σ′ X[tn,tn+1).
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Theorem 3.5 (Consistency of the one-dimensional scheme). Let Ω be an open bounded interval of R. We
suppose that the initial data satisfies ρ0 ∈ L∞(Ω) and u0 ∈ L∞(Ω). Let (M(m), δt(m))m∈N be a sequence of
discretizations such that both the time step δt(m) and the size h(m) of the mesh M(m) tend to zero as m→ +∞,
and let (ρ(m), p(m), u(m))m∈N be the corresponding sequence of solutions. We suppose that this sequence satisfies
the estimates (3.28)–(3.30) and converges in Lr(Ω× (0, T ))3, for 1 ≤ r <∞, to (ρ̄, p̄, ū) ∈ L∞(Ω× (0, T ))3.

Then the limit (ρ̄, p̄, ū) satisfies the system (3.31).

Proof. It is clear that, with the assumed convergence for the sequence of solutions, the limit satisfies the equation
of state. The proof of this theorem is thus obtained by passing to the limit in the scheme for the mass balance
equation first, and then for the momentum balance equation.

Mass balance equation: Let ϕ ∈ C∞c (Ω× [0, T )). Let m ∈ N, M(m) and δt(m) be given. Dropping for short the
superscript (m), let ϕM be the interpolate of ϕ on the primal mesh and let ðtϕM and ðxϕM be its time and space
discrete derivatives in the sense of Definition 3.4. Thanks to the regularity of ϕ, these functions, respectively,
converge in Lr(Ω× (0, T )), for r ≥ 1 (including r = +∞), to ϕ, ∂tϕ and ∂xϕ, respectively. In addition, ϕM(·, 0)
(which, for K ∈ M and x ∈ K, is equal to ϕ0

K = ϕ(x, 0)) converges to ϕ(·, 0) in Lr(Ω) for r ≥ 1. Since the
support of ϕ is compact in Ω× [0, T ), for m large enough, the interpolate of ϕ vanishes at the boundary cells
and at the last time step(s); this is always assumed in the sequel.

Let us multiply the first equation (3.24b) of the scheme by δt ϕn+1
K , and sum the result for 0 ≤ n ≤ N − 1

and K ∈M, to obtain T
(m)
1 + T

(m)
2 = 0 with

T
(m)
1 =

N−1∑
n=0

∑
K∈M

|K|(ρn+1
K − ρnK)ϕn+1

K , T
(m)
2 =

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

(Fnσ′ − Fnσ )ϕn+1
K .

Reordering the sums in T
(m)
1 yields:

T
(m)
1 = −

N−1∑
n=0

δt
∑
K∈M

|K| ρnK
ϕn+1
K − ϕnK

δt
−
∑
K∈M

|K| ρ0
K ϕ

0
K ,

so

T
(m)
1 = −

∫ T

0

∫
Ω

ρ(m)ðtϕM dx dt−
∫

Ω

(ρ(m))0(x) ϕM(x, 0) dx.

The boundedness of ρ0 and the definition (3.24a) of the initial conditions for the scheme ensures that the sequence
((ρ(m))0)m∈N converges to ρ0 in Lr(Ω) for r ≥ 1. Since, by assumption, the sequence of discrete solutions and
of the interpolate time derivatives converge in Lr

(
Ω× (0, T )

)
for r ≥ 1, we obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫
Ω

ρ̄ ∂tϕdx dt−
∫

Ω

ρ0(x)ϕ(x, 0) dx.

Using the expression of the mass flux Fnσ and reordering the sums in T
(m)
2 , we get, remarking that |Dσ| = hσ:

T
(m)
2 = −

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈E

|Dσ| ρnσunσ
ϕn+1
L − ϕn+1

K

hσ
.
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Since |Dσ| = (|K| + |L|)/2 and ρnσ is the upwind approximation of ρn at the face σ, we can rewrite T (m)
2 =

T (m)
2 +R(m)

2 with

T (m)
2 = −

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈E

(
|K|
2
ρnK +

|L|
2
ρnL

)
unσ

ϕn+1
L − ϕn+1

K

hσ
,

R(m)
2 = −

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈E

(ρnK − ρnL)
[
|K|
2

(unσ)− +
|L|
2

(unσ)+

]
ϕn+1
L − ϕn+1

K

hσ
,

where, for a ∈ R, a+ = max(a, 0) and a− = −min(a, 0) (so a = a+ − a−). We have, for the term T (m)
2 :

T (m)
2 = −

∫ T

0

∫
Ω

ρ(m)u(m)ðxϕM dx dt,

and therefore

lim
m→+∞

T (m)
2 = −

∫ T

0

∫
Ω

ρ̄ ū ∂xϕdxdt.

The remainder term R(m)
2 is bounded as follows, with Cϕ = ‖∂xϕ‖L∞(Ω×(0,T )):

|R(m)
2 | ≤ Cϕ

N−1∑
n=0

δt
∑

σ=K|L∈E

|ρnK − ρnL| |Dσ| |unσ| ≤ Cϕ ‖u(m)‖L∞(Ω×(0,T )) ‖ρ
(m)‖T ,x,BV h(m),

and therefore tends to zero when m tends to +∞, by the assumed boundedness of the sequence of solutions.

Momentum balance equation: Let ϕE , ðtϕE and ðxϕE be the interpolate of ϕ on the dual mesh and its discrete
time and space derivatives, in the sense of Definition 3.4, which converge in Lr(Ω× (0, T )), for r ≥ 1, to ϕ, ∂tϕ
and ∂xϕ, respectively. Let us multiply equation (3.24d) by δt ϕn+1

σ , and sum the result for 0 ≤ n ≤ N − 1 and
σ ∈ Eint. We obtain T

(m)
1 + T

(m)
2 + T

(m)
3 = 0 with

T
(m)
1 =

N−1∑
n=0

∑
σ∈Eint

|Dσ| (ρn+1
Dσ

un+1
σ − ρnDσ

unσ)ϕn+1
σ ,

T
(m)
2 =

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

[
FnL u

n
L − FnK unK

]
ϕn+1
σ ,

T
(m)
3 =

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K )ϕn+1
σ .

Reordering the sums, we get for T (m)
1 :

T
(m)
1 = −

N−1∑
n=0

δt
∑
σ∈Eint

|Dσ| ρnDσ
unσ

ϕn+1
σ − ϕnσ
δt

−
∑
σ∈Eint

|Dσ| ρ0
Dσ
u0
σ ϕ

0
σ.
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Thanks to the definition of the quantity ρDσ
(namely the fact that |Dσ| ρnDσ

= (|K| ρnK + |L| ρnL)/2), we have:

T
(m)
1 = −

∫ T

0

∫
Ω

ρ(m) u(m) ðtϕE dxdt−
∫

Ω

(ρ(m))0(x) (u(m))0(x) ϕE(x, 0) dx.

By the same arguments as for the mass balance equation, we therefore obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫
Ω

ρ̄ ū ∂tϕdx dt−
∫

Ω

ρ0(x)u0(x)ϕ(x, 0) dx.

Let us now turn to T (m)
2 . Reordering the sums and using the definition of the mass fluxes at the dual faces, we

get:

T
(m)
2 = −

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

FnK u
n
K (ϕn+1

σ′ − ϕ
n+1
σ ) = −1

2

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

(ρnσu
n
σ + ρnσ′u

n
σ′)u

n
K (ϕn+1

σ′ − ϕ
n+1
σ ).

Using the relation

∫ T

0

∫
Ω

ρ(m) (u(m))2 ðxϕE dxdt =
1
2

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

ρnK
[
(unσ)2 + (unσ′)

2
]

(ϕn+1
σ′ − ϕ

n+1
σ ),

we can rewrite the term T
(m)
2 as

T
(m)
2 = −

∫ T

0

∫
Ω

ρ(m) u(m)2
ðxϕE dx dt+R(m)

2 ,

where

R(m)
2 = −1

2

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

[
(ρnσu

n
σ + ρnσ′u

n
σ′)u

n
K − ρnK

(
(unσ)2 + (unσ′)

2
)]

(ϕn+1
σ′ − ϕ

n+1
σ ).

Let us split this latter expression as R(m)
2 = R(m)

21 +R(m)
22 , with:

R(m)
21 = −1

2

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

unσ (ρnσu
n
K − ρnKunσ) (ϕn+1

σ′ − ϕ
n+1
σ ),

R(m)
22 = −1

2

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

unσ′ (ρnσ′u
n
K − ρnKunσ′) (ϕn+1

σ′ − ϕ
n+1
σ ).

Applying the identity 2(ab− cd) = (a− c)(b+ d) + (a+ c)(b− d), ∀(a, b, c, d) ∈ R4, to the term ρnσu
n
K − ρnKunσ

and using the fact that the quantities ρnσ − ρnK and unσ − unK are either zero or differences of the density at two
neighbouring cells and of the velocity at two neighbouring faces, respectively, we obtain for R(m)

21 :

|R(m)
21 | ≤ Cϕ

[
‖u(m)‖

2

L∞(Ω×(0,T )) ‖ρ
(m)‖T ,x,BV + ‖u(m)‖L∞(Ω×(0,T )) ‖u

(m)‖T ,x,BV ‖ρ(m)‖L∞(Ω×(0,T ))

]
h(m),
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where the real number Cϕ only depends on ϕ. Since the same estimate holds for R(m)
22 , the remainder term

R(m)
2 tends to zero when m tends to +∞ and:

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫
Ω

ρ̄ ū2 ∂xϕdxdt.

Let us finally study T (m)
3 . Reordering the sums, we obtain T

(m)
3 = T (m)

3 +R(m)
3 with:

T (m)
3 = −

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

pnK (ϕn+1
σ′ − ϕ

n+1
σ ),

R(m)
3 = −

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

(pn+1
K − pnK) (ϕn+1

σ′ − ϕ
n+1
σ ).

The remainder term reads:

R(m)
3 =

N−1∑
n=1

δt
∑

K=[
−−→
σσ′]∈M

pnK
[
(ϕn+1
σ′ − ϕ

n+1
σ )− (ϕnσ′ − ϕnσ)

]
+ δt

∑
K=[
−−→
σσ′]∈M

p0
K (ϕ1

σ′ − ϕ1
σ),

and thus

|R(m)
3 | ≤ Cϕ (δt(m) + h(m)) ‖p‖L∞(Ω×(0,T )),

where the real number Cϕ only depends on (the first and second derivatives of) ϕ. Thus R(m)
3 tends to zero

when m tends to +∞ and, since

T (m)
3 = −

∫ T

0

∫
Ω

p(m) ðxϕM dx dt,

we obtain that

lim
m→+∞

T
(m)
3 =

∫ T

0

∫
Ω

p̄ ∂xϕdxdt.

Conclusion: Gathering the limits of all the terms of the mass and momentum balance equations concludes the
proof.

We now turn to the entropy balance (3.22). To this purpose, we need to introduce the following additional
condition for a sequence of discretizations:

lim
m→+∞

δt(m)

minK∈M(m) hK
= 0. (3.32)

Note that this condition is more restrictive than a standard CFL condition. It allows to bound the remainder
term in the discrete elastic potential balance as stated in the following lemma.



CONSISTENT EXPLICIT STAGGERED SCHEMES FOR THE EULER EQUATIONS 909

Lemma 3.6. Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequence of discretizations
such that the time step δt(m) tends to zero as m → +∞, and let (ρ(m), p(m), u(m))m∈N be the corresponding
sequence of solutions. We suppose that this sequence satisfies the estimates (3.28) and (3.29). In addition, we
assume that (ρ(m))m∈N satisfies the following uniform BV estimate:

‖ρ(m)‖T ,t,BV ≤ C, ∀m ∈ N, (3.33)

and, for γ < 2 only, is uniformly bounded by below, i.e. that there exists c > 0 such that:

c ≤ (ρ(m))nK , ∀K ∈M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N. (3.34)

Let us suppose that the condition (3.32) holds. Let R(m) be defined by:

R(m) =
N−1∑
n=0

δt
∑
K∈M

(Rn+1
K )−,

with Rn+1
K given by (3.20). Then

lim
m→+∞

R(m) = 0.

Proof. For K = [
−→
σσ′] ∈M, with σ =

−−−→
M |K and σ′ =

−−→
K|L, we write Rn+1

K = (T1)n+1
K + (T2)n+1

K + (T3)n+1
K , with:

(T1)n+1
K =

1
2
|K|
δt
H′′(ρnK,1) (ρn+1

K − ρnK)2,

(T2)n+1
K =

1
2

[
(unσ′)

− H′′(ρnσ′) (ρnK − ρnL)2 + (−unσ)− H′′(ρnσ) (ρnK − ρnM )2
]
,

(T3)n+1
K =

[
ρnσ′ u

n
σ′ − ρnσ unσ

]
H′′(ρnK,2) (ρn+1

K − ρnK),

where ρnK,1, ρ
n
K,2 ∈ |[ρn+1

K , ρnK ]|, ρnσ′ ∈ |[ρnK , ρnL]| and ρnσ ∈ |[ρnK , ρnM ]|. The first two terms are non-negative, and
thus (Rn+1

K )− ≤ |(T3)n+1
K |. Since both ρ, u and, for γ < 2, 1/ρ are supposed to be bounded, we have:

N−1∑
n=0

δt
∑
K∈M

|(T3)n+1
K | ≤ C δt(m)

minK∈M hK
‖ρ(m)‖T ,t,BV,

which yields the conclusion by the assumption (3.32).

Theorem 3.7 (Entropy consistency of the one dimensional scheme). Let the assumptions of Theorem 3.5 hold.
Let us suppose in addition that the considered sequence of discretizations satisfies (3.32), and that (ρ(m))m∈N
satisfies the BV estimate (3.33) and, for γ < 2, the uniform control (3.34) of 1/ρ(m). Then the limit (ρ̄, p̄, ū)
satisfies the entropy condition (3.22).

Proof. Let ϕ ∈ C∞c
(
Ω × [0, T )

)
, ϕ ≥ 0. As in the previous proofs, we suppose that the space and times steps

are small enough for ϕ to vanish at the boundary cells and at the last time step. With the notations for the
interpolate of ϕ given in Definition 3.4, we multiply the kinetic balance equations (3.14) and (3.15) by ϕn+1

σ ,
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and the elastic potential balance (3.19) and (3.20) by ϕn+1
K , sum over the edges and cells, respectively, and over

the time steps, to obtain the discrete version of (3.22):

T
(m)
1 + T

(m)
2 + T

(m)
3 + T̃

(m)
1 + T̃

(m)
2 + T̃

(m)
3 = −R(m) − R̃(m), (3.35)

where

T
(m)
1 =

N−1∑
n=0

∑
K∈M

|K|
[
H(ρn+1

K )−H(ρnK)
]
ϕn+1
K ,

T
(m)
2 =

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

[
H(ρnσ′)u

n
σ′ −H(ρnσ)unσ

]
ϕn+1
K ,

T
(m)
3 =

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

[
pnK(unσ′ − unσ)

]
ϕn+1
K ,

T̃
(m)
1 =

1
2

N−1∑
n=0

∑
σ∈Eint

|Dσ|
[
ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)2
]
ϕn+1
σ ,

T̃
(m)
2 =

1
2

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

[
FnL (unL)2 − FnK (unK)2

]
ϕn+1
σ ,

T̃
(m)
3 =

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K )un+1
σ ϕn+1

σ ,

R(m) =
N−1∑
n=0

δt
∑
K∈M

Rn+1
K ϕn+1

K , R̃(m) =
N−1∑
n=0

δt
∑
σ∈Eint

Rn+1
σ ϕn+1

σ ,

and the quantities Rn+1
K and Rn+1

σ are given by (the one-dimensional version of) equations (3.20) and (3.15),
respectively.

The fact that

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫
Ω

H(ρ̄) ∂tϕdx dt−
∫

Ω

H(ρ0)(x) ϕ(x, 0) dx,

is proven by the same technique as in the passage to the limit in the term T
(m)
1 of the discrete mass balance

equation in the proof of Theorem 3.5, thanks to the fact that, with the assumed convergence of the sequence
(ρ(m))m∈N, the sequence (H(ρ(m)))m∈N converge to H(ρ̄) in Lr(Ω × (0, T )), for r ≥ 1. For T (m)

2 , we have,
reordering the sums:

T
(m)
2 = −

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

H(ρnσ)unσ (ϕn+1
L − ϕn+1

K ).
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Let us write T (m)
2 = T (m)

2 +R(m)
2 , with

T (m)
2 = −

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

(
|DK,σ| H(ρnK) + |DL,σ| H(ρnL)

)
unσ

ϕn+1
L − ϕn+1

K

hσ
.

We have

T (m)
2 = −

∫ T

0

∫
Ω

H(ρ(m)) u(m) ðxϕM dx dt,

so

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫
Ω

H(ρ̄) ū ∂xϕdx dt.

The remainder term R(m)
2 reads:

R(m)
2 = −

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

[
|Dσ| H(ρnσ)− |DK,σ| H(ρnK)− |DL,σ| H(ρnL)

]
unσ

ϕn+1
L − ϕn+1

K

hσ
.

This term satisfies:

|R(m)
2 | ≤

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

|H(ρnK)−H(ρnL)| unσ |ϕn+1
L − ϕn+1

K |,

and so

|R(m)
2 | ≤ Cϕ h(m) ‖u(m)‖L∞(Ω×(0,T )) ‖ρ

(m)‖T ,x,BV,

provided that a uniform (with respect to the faces, the time steps and the meshes) Lipschitz condition holds
for |H(ρnK)−H(ρnL)| which, in view of the expression of H, requires that the sequence (ρ(m))m∈N be bounded
by below away from zero when γ = 1.

The other terms at the left-hand side of (3.35) are similar to the samely-named terms in the proof of
consistency of the scheme for the full Euler equations, and their treatment is detailed in the proof of Theorem 4.2
below. Finally, the remainder term R(m) is non-negative under the CFL condition (3.16), while the positive
part of R̃(m) tends to zero in L1(Ω × (0, T )) under the assumption (3.32) by Lemma 3.6. The proof is thus
complete.

Remark 3.8 (On BV-stability assumptions). The proof of Theorem 3.5 shows that the scheme is consistent
under a BV-stability assumption much weaker than (3.30), namely:

lim
m→+∞

h(m)
[
‖ρ(m)‖T ,x,BV + ‖u(m)‖T ,x,BV

]
= 0.
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The situation is completely different when proving that the limit of convergent sequences is an entropy solution
(i.e. when proving Thm. 3.7); indeed, in the preliminary Lemma 3.6, we need:

lim
m→+∞

δt(m)

minK∈M(m) hK
‖ρ(m)‖T ,t,BV = 0.

4. The full Euler equations

We build in this section a scheme for the solution of the full Euler equations (1.2). Let us recall that the
(conservative) energy equation in this system is the total energy balance, which reads:

∂t(ρE) + div(ρE u) + div(pu) = 0.

If we subtract to this relation the kinetic energy balance (see Sect. 3.2)

∂t(ρEk) + div
(
ρEk u

)
+ ∇p · u = 0,

we obtain the so-called internal energy balance equation:

∂t(ρe) + div(ρeu) + p divu = 0. (4.1)

Since,

– thanks to the mass balance equation, the first two terms in the left-hand side of (4.1) may be recast as a
transport operator: ∂t(ρe) + div(ρeu) = ρ [∂te+ u ·∇e];

– and, from the equation of state, the pressure vanishes when e = 0,

this equation implies, if e ≥ 0 at t = 0 and with suitable boundary conditions, that e remains non-negative at
all times. As mentioned in the introduction, solving this latter equation instead of the total energy balance is
appealing, to preserve by construction of the scheme this positivity property. In addition, it avoids to introduce
a space discretization for the total energy which, for a staggered discretization, combines cell-centered (the
internal energy and the density) and face-centered (the velocity) variables. However, a raw discretization of
a non-conservative equation derived (formally, i.e. supposing unrealistic regularity properties of the solution)
from a conservative system may be non-consistent (and numerical experiments show that, for the problem
at hand, the so-derived scheme is unable to capture shock solutions). We circumvent here this problem by
correcting the internal energy balance discretization, following a strategy already implemented in [16] for pressure
correction schemes: the remainder terms obtained in the kinetic energy balance (term defined by Eq. (3.15)) are
compensated in the internal energy one, in order to make the scheme consistent with the total energy balance,
in a sense which will be clarified in Section 4.2 below.

The paper is organized as follows. We first introduce the scheme in Section 4.1, and the above-mentionned
corrective terms in the discrete internal energy balance are given; their expression is justified in Section 4.2
by proving a Lax–Wendroff consistency property for the algorithm in one space dimension (if a sequence of
discrete solution converges in suitable norms, the limit necessarily satisfies a weak formulation of the continuous
problem). The fact that the scheme keeps the internal energy positive under a CFL condition is demonstrated in
Section 4.1; since ρ is positive thanks to the upwind discretization of the mass balance (Thm. 3.1), the proposed
algorithm thus preserves the convex of admissible states.

4.1. The scheme

Let us consider a partition 0 = t0 < t1 < · · · < tN = T of the time interval (0, T ), which we suppose uniform
for the sake of simplicity, and let δt = tn+1− tn for n = 0, 1, . . . , N − 1 be the (constant) time step. We consider
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a decoupled-in-time scheme, which reads in its fully discrete form, for 0 ≤ n ≤ N − 1:

∀K ∈M,
|K|
δt

(ρn+1
K − ρnK) +

∑
σ∈E(K)

FnK,σ = 0, (4.2a)

∀K ∈M,
|K|
δt

(ρn+1
K en+1

K − ρnKenK) +
∑

σ∈E(K)

FnK,σe
n
σ + |K| pnK (divu)nK = SnK , (4.2b)

∀K ∈M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (4.2c)

for 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

∀K ∈M,
|Dσ|
δt

(ρn+1
Dσ

un+1
σ,i − ρ

n
Dσ
unσ,i) +

∑
ε∈Ẽ(Dσ)

Fnσ,εu
n
ε,i + |Dσ| (∇p)n+1

σ,i = 0. (4.2d)

The discrete mass balance and momentum balance equations (4.2a) and (4.2d) have already been derived in
the previous section. Equation (4.2b) is an approximation of the internal energy balance (4.1) over the primal
cell K. The positivity of the convection operator is ensured if we use an upwinding technique for this term [18]:

for σ = K|L ∈ Eint, enσ =

∣∣∣∣∣e
n
K if FnK,σ ≥ 0,

enL otherwise.

The discrete divergence of the velocity, (divu)nK , is defined by (3.8). The right-hand side, SnK , is derived below,
using consistency arguments; at the first time step, it is simply set to zero:

∀K ∈M, S0
K = 0.

The initial approximations for ρ, e and u are given by the average of the initial conditions ρ0 and e0 on the
primal cells and of u0 on the dual cells:

∀K ∈M, ρ0
K =

1
|K|

∫
K

ρ0(x) dx, and e0
K =

1
|K|

∫
K

e0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E(i)
S , u0

σ,i =
1
|Dσ|

∫
Dσ

(u0(x))i dx. (4.3)

Let us now detail how we choose the corrective term SK in the internal energy balance, with the aim to
recover a consistent discretization of the total energy balance. We wish to build these corrective terms so as
to compensate the remainder terms in the kinetic energy balance (3.13), which we suspect not to tend to
zero (for instance, the piecewise constant function associated to these terms for a shock solution – precisely
speaking, to the terms obtained by applying (3.15) to the interpolate of a discontinuous function, on a sequence
of discretizations with vanishing time and space steps – does not tend to zero in L1). The first idea to do this
could be just to sum the (discrete) kinetic energy balance with the internal energy balance: it would indeed be
possible for a collocated discretization. But here, we face the fact that the kinetic energy balance is associated
to the dual mesh, while the internal energy balance is discretized on the primal mesh. The way to circumvent
this difficulty is to remark that we do not really need a discrete total energy balance; in fact, we only need to
recover (a weak form of) this equation when the mesh and time steps tend to zero. To this purpose, we choose
the quantities (Sn+1

K ) in such a way as to somewhat compensate the terms (Rn+1
σ,i ) given by (3.15). For K ∈M,
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we obtain Sn+1
K =

∑d
i=1 S

n+1
K,i with:

Sn+1
K,i =

1
2
ρn+1
K

∑
σ∈E(K)∩E(i)S

|DK,σ|
δt

(
un+1
σ,i − u

n
σ,i

)2 +
∑

ε∈Ẽ(i)S , ε∩K̄ 6=∅

αK,ε R
n+1
ε,i , (4.4)

where Rn+1
ε,i is defined as follows. Let σUε and σDε be the two primal faces such that ε = DσDε

|DσUε
and that

FnσDε ,ε
≤ 0, which means that DσDε

is the dual cell located downstream ε. Then:

Rn+1
ε,i =

|FnσDε ,ε|
2

(unσDε ,i − u
n
σUε ,i

)2 + FnσDε ,ε
(
un+1
σDε ,i
− unσDε ,i

)
(unσUε ,i − u

n
σDε ,i

).

The coefficient αK,ε allows to distribute the remainder term Rn+1
ε,i over the neighbouring primal cells. If the

face ε is included in K, αK,ε = 1, which means that Rn+1
ε,i is totally affected to K; this is the only situation

to consider for the RT and CR discretizations. For the MAC scheme, some dual faces also are included in the
primal cells (and for these faces, αK,ε is still set to 1), but some lie on the boundary of the primal cells. In such
a case, let us denote by ND

ε the set of the two primal control volumes separated by σDε . The coefficient αK,ε is
then given by:

αK,ε =


|K|∑

L∈NDε
|L| if K ∈ ND

ε ,

0 otherwise.
(4.5)

For a uniform grid, this formula yields αK,ε = 1/2 if K ∈ ND
ε .

The expression of the correction terms Sn+1
K ,K ∈ M is justified by the passage to the limit in the scheme

(for a one-dimensional problem) performed in the next section. We note however here that:

∑
K∈M

Sn+1
K −

d∑
i=1

∑
σ∈E(i)S

Rn+1
σ,i = 0. (4.6)

Indeed, the first part of Sn+1
K,i , thanks to the expression (3.6) of the density at the face ρn+1

Dσ
, results from

dispatching the first part of the residual over the two adjacent cells:

1
2
|Dσ|
δt

ρn+1
Dσ

(
un+1
σ,i − u

n
σ,i

)2 =
1
2
|DK,σ|
δt

ρn+1
K

(
un+1
σ,i − u

n
σ,i

)2︸ ︷︷ ︸
affected to K

+
1
2
|DL,σ|
δt

ρn+1
L

(
un+1
σ,i − u

n
σ,i

)2︸ ︷︷ ︸
affected to L

.

The same argument holds for the terms associated to the dual faces, which explains, in particular, the definition
of the coefficients αK,ε. The scheme thus conserves the integral of the total energy over the computational
domain. In the scheme itself, we shall use the term SnK rather than Sn+1

K , because we want an explicit scheme,
but this does not hinder the consistency of the scheme, as shown in the proof of Theorem 4.2.

The definition (4.4) of (Sn+1
K )K∈M allows to prove that, under a CFL condition, the scheme preserves the

positivity of e.
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Lemma 4.1. Let us suppose that, for 0 ≤ n ≤ N − 1, for all K ∈M and σ ∈ E(K), we have:

δt ≤ min

 |K|
γ
∑

σ∈E(K)

|σ| (unK,σ)+
,

|DK,σ| ρn+1
K∑

ε∈Ẽ(Dσ), ε∩K̄ 6=∅

αK,ε (Fnσ,ε)
−

 . (4.7)

Then the internal energy (en)1≤n≤N given by the scheme (4.2) is positive.

Proof. Let n such that 0 ≤ n ≤ N be given, and let us assume that enK ≥ 0 and SnK ≥ 0 for all K ∈M. Since, by
assumption, γ > 1, the CFL condition (4.7) implies that the CFL condition (3.12) is satisfied, and by Lemma 3.1
we thus have ρnK > 0 and ρn+1

K > 0, for all K ∈ M. In the internal energy equation (4.2b), let us express the
pressure thanks to the equation of state (4.2c) to obtain:

|K|
δt
ρn+1
K en+1

K =

 |K|
δt
ρnK −

∑
σ∈E(K)

(FnK,σ)+ − (γ − 1) ρnK
∑

σ∈E(K)

|σ| (unK,σ)+

 enK

+
∑

σ∈E(K)

(FnK,σ)−enL + (γ − 1) ρnK e
n
K

∑
σ∈E(K)

|σ| (unK,σ)− + SnK . (4.8)

Using the fact that, when unK,σ ≥ 0, the upwind density at the face is ρnK , we have:

(FnK,σ)+ + (γ − 1) |σ| ρnK (unK,σ)+ = γ |σ| ρnK (unK,σ)+,

and hence relation (4.8) reads:

|K|
δt
ρn+1
K en+1

K =

 |K|
δt
− γ

∑
σ∈E(K)

|σ| (unK,σ)+

 ρnK e
n
K

+
∑

σ∈E(K)

(FnK,σ)−enL + (γ − 1) ρnK e
n
K

∑
σ∈E(K)

|σ| (unK,σ)− + SnK .

Then we get en+1
K > 0 under the following CFL condition:

δt ≤ |K|
γ
∑
σ∈E(K) |σ|(unK,σ)+

.

Let us now derive a condition for the non-negativity of the source term. To this purpose, for K ∈ M, let us
recall the definition (4.4) of Sn+1

K,i :

Sn+1
K,i =

1
2
ρn+1
K

∑
σ∈E(K)∩E(i)S

|DK,σ|
δt

(
un+1
σ,i − u

n
σ,i

)2
+

∑
ε∈Ẽ(i)S , ε∩K̄ 6=∅,
ε=Dσ|Dσ′ , F

n
σ,ε≤0

αK,ε

[ |Fnσ,ε|
2

(unσ,i − unσ′,i)2 + Fnσ,ε
(
un+1
σ,i − u

n
σ,i

)
(unσ′,i − unσ,i)

]
.
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In the indexes of the last sum, the purpose of the second line is to define the notations used in the sum: the
diamond cells separated by ε are denoted by Dσ and Dσ′ , and Dσ is the cell downstream ε. We also recall that
the coefficient αK,ε is different from zero only if σ is a face of K (and, of course, σ ∈ E(i)

S , so, if αK,ε 6= 0, σ
appears in the first sum of the expression). Applying Young’s inequality to the last term of Sn+1

K,i , denoted by
(Sn+1
K,i )3, we obtain

(Sn+1
K,i )3 ≥ −

∑
ε∈Ẽ(i)S , ε∩K̄ 6=∅,
ε=Dσ|Dσ′ , F

n
σ,ε≤0

αK,ε
|Fnσ,ε|

2
(
un+1
σ,i − u

n
σ,i

)2 − ∑
ε∈Ẽ(i)S , ε∩K̄ 6=∅,
ε=Dσ|Dσ′ , F

n
σ,ε≤0

αK,ε
|Fnσ,ε|

2
(unσ′,i − unσ,i)2.

Gathering all terms of Sn+1
K,i yields:

Sn+1
K,i ≥

∑
σ∈E(K)

1
2
(
un+1
σ,i − u

n
σ,i

)2  |DK,σ|
δt

ρn+1
K −

∑
ε∈Ẽ(Dσ), ε∩K̄ 6=∅

αK,ε (Fnσ,ε)
−

 ,
thus Sn+1

K,i is non-negative under the CFL condition:

δt ≤
|DK,σ| ρn+1

K∑
ε∈Ẽ(Dσ), ε∩K̄ 6=∅

αK,ε (Fnσ,ε)
−
, ∀σ ∈ E(K),

which concludes the proof.

4.2. Passing to the limit in the scheme

As in the isentropic case, we are now going to show in the one dimensional case that if a sequence of solutions
is controlled in suitable norms and converges to a limit, this latter necessarily satisfies a (part of the) weak
formulation of the continuous problem. We again write a 1D version of the scheme and use the same notations
as in Section 3.3. The explicit scheme (4.2) may be written as follows in the one dimensional setting:

∀K ∈M, ρ0
K =

1
|K|

∫
K

ρ0(x) dx, e0
K =

1
|K|

∫
K

e0(x) dx,

∀σ ∈ Eint, u0
σ =

1
|Dσ|

∫
Dσ

u0(x) dx, (4.9a)

∀K = [
−→
σσ′] ∈M,

|K|
δt

(ρn+1
K − ρnK) + Fnσ′ − Fnσ = 0, (4.9b)

∀K = [
−→
σσ′] ∈M,

|K|
δt

(ρn+1
K en+1

K − ρnKenK) + Fnσ′e
n
σ′ − Fnσ enσ + pnK(unσ′ − unσ) = SnK , (4.9c)

∀K ∈M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (4.9d)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + FnLu
n
L − FnKunK + pn+1

L − pn+1
K = 0, (4.9e)
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where the corrective term SnK reads, for 1 ≤ n ≤ N and ∀K = [σ′ → σ]:

SnK =
|K|
4 δt

ρnK
[
(unσ − un−1

σ )2 + (unσ′ − un−1
σ′ )2

]
+
|Fn−1
K |
2

(un−1
σ − un−1

σ′ )2

− |Fn−1
K |(unσ − un−1

σ ) (un−1
σ′ − u

n−1
σ ), (4.10)

where the notation K = [σ′ → σ] means that the flow goes from σ′ to σ (i.e. if FnK ≥ 0, K = [
−→
σ′σ] and, if

FnK ≤ 0, K = [
−→
σσ′]). At the first time step, we set S0

K = 0, ∀K ∈M.

We again consider a sequence of discretizations (M(m), δt(m))m∈N with h(m) = supK∈M(m) hK . Let ρ(m),
p(m), e(m) and u(m) be the solution given by the scheme (4.9) with the mesh M(m) and the time step δt(m).
As in the isentropic case, to the discrete unknowns, we associate piecewise constant functions on time intervals
and on primal or dual meshes, so the density ρ(m), the pressure p(m), the internal energy e(m) and the velocity
u(m) are defined almost everywhere on Ω× (0, T ) by (3.27) and

e(m)(x, t) =
N−1∑
n=0

∑
K∈M

(e(m))nK XK(x)X[n,n+1)(t). (4.11)

For the consistency result that we are seeking (Thm. 4.2 below), we have to assume that a sequence of
discrete solutions (ρ(m), p(m), e(m), u(m))m∈N satisfies ρ(m) > 0, p(m) > 0 and e(m) > 0, ∀m ∈ N (which may
be a consequence of the fact that the CFL stability condition (3.12) is satisfied), and is uniformly bounded in
L∞(Ω× (0, T ))4, i.e. for m ∈ N and 0 ≤ n ≤ N (m):

0 < (ρ(m))nK ≤ C, 0 < (p(m))nK ≤ C, 0 < (e(m))nK ≤ C, ∀K ∈M(m), (4.12)

and

|(u(m))nσ| ≤ C, ∀σ ∈ E(m), (4.13)

where C is a positive real number. Note that, by definition of the initial conditions of the scheme, these
inequalities imply that the functions ρ0, e0 and u0 belong to L∞(Ω). We also have to assume that a sequence
of discrete solutions satisfies the following uniform bounds with respect to the discrete BV-norms:

‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N, (4.14)

and

‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (4.15)

Again, we are not able to prove such estimates for the solutions of the scheme; however, such inequalities are
satisfied by the “interpolates” (for instance, by taking the cell average) of the solution to a Riemann problem,
and are observed in computations (of course, as far as possible, i.e. with a limited sequence of meshes and time
steps).

A weak solution to the continuous problem satisfies, for any ϕ ∈ C∞c
(
Ω× [0, T )

)
:

−
∫ T

0

∫
Ω

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dxdt−

∫
Ω

ρ0(x)ϕ(x, 0) dx = 0, (4.16a)
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−
∫ T

0

∫
Ω

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dx dt−

∫
Ω

ρ0(x)u0(x)ϕ(x, 0) dx = 0, (4.16b)

−
∫ T

0

∫
Ω

[
ρE ∂tϕ+ (ρE + p)u ∂xϕ

]
dx dt−

∫
Ω

ρ0(x)E0(x)ϕ(x, 0) dx = 0, (4.16c)

p = (γ − 1)ρ e, E =
1
2
u2 + e, E0 =

1
2
u2

0 + e0. (4.16d)

As in the isentropic case, these relations are not sufficient to define a weak solution to the problem, since they
do not imply anything about the boundary conditions, but allow to derive the Rankine–Hugoniot conditions. We
show hereafter that they are satisfied by the limit of a sequence of solutions to the discrete problem (Thm. 4.2).
This result thus proves that the introduction of corrective terms in the internal energy balance indeed yields a
consistent scheme; conversely, without these terms, we may anticipate that the algorithm will compute uncorrect
shocks (i.e. shocks where the jumps of the unknowns and of the fluxes are not linked to the shock speed by the
Rankine–Hugoniot conditions); this is confirmed by numerical experiments.

Theorem 4.2 (Consistency of the one-dimensional explicit scheme). Let Ω be an open bounded interval of
R. We suppose that the initial data satisfies ρ0 ∈ L∞(Ω), p0 ∈ BV(Ω), e0 ∈ L∞(Ω) and u0 ∈ L∞(Ω). Let
(M(m), δt(m))m∈N be a sequence of discretizations such that both the time step δt(m) and the size h(m) of
the mesh M(m) tend to zero as m → ∞, and let (ρ(m), p(m), e(m), u(m))m∈N be the corresponding sequence of
solutions. We suppose that this sequence satisfies the estimates (4.12)–(4.15) and converges in Lr(Ω× (0, T ))4,
for 1 ≤ r <∞, to (ρ̄, p̄, ē, ū) ∈ L∞(Ω× (0, T ))4.

Then the limit (ρ̄, p̄, ē, ū) satisfies the system (4.16).

Proof. As in the isentropic case, it is clear that with the assumed convergence for the sequence of solutions,
the limit satisfies the equation of state. The fact that the limit satisfies the weak mass balance equation (4.16a)
and the weak momentum balance equation (4.16b) was shown in the previous section. There only remains to
prove that (4.16c) holds, by passing to the limit in the scheme, in the internal and the kinetic energy balance
equations.

Let ϕ ∈ C∞c (Ω× [0, T )). Let m ∈ N,M(m) and δt(m) be given. Dropping for short the superscript (m), let ϕM
be the interpolate of ϕ on the primal mesh and let ðtϕM and ðxϕM be its time and space discrete derivatives in
the sense of Definition 3.4. Thanks to the regularity of ϕ, these functions, respectively, converge in Lr(Ω× (0, T )),
for r ≥ 1 (including r = +∞), to ϕ, ∂tϕ and ∂xϕ, respectively. In addition, ϕM(·, 0) (which, for K ∈ M and
x ∈ K, is equal to ϕ0

K = ϕ(xK , 0)) converges to ϕ(·, 0) in Lr(Ω) for r ≥ 1. We also define ϕE , ðtϕE and ðxϕE ,
as, respectively, the interpolate of ϕ on the dual mesh and its discrete time and space derivatives, still in the
sense of Definition 3.4; once again thanks to the regularity of ϕ, these functions converge in Lr(Ω× (0, T )), for
r ≥ 1, to ϕ, ∂tϕ and ∂xϕ, respectively. As for the primal mesh interpolate, the dual mesh interpolate ϕE(·, 0)
(which, for σ ∈ E and x ∈ Dσ, is equal to ϕ0

σ = ϕ(xσ, 0)) converges to ϕ(·, 0) in Lr(Ω) for r ≥ 1.

Since the support of ϕ is compact in Ω × [0, T ), for m large enough, the interpolates of ϕ vanish on the
boundary cells and at the last time step(s); hereafter, we assume that we are in this case.

On one hand, let us multiply the one dimensional discrete internal energy balance equation (4.9c) by δt ϕn+1
K ,

and sum the result for 0 ≤ n ≤ N − 1 and K ∈ M. On the other hand, let us multiply the one-dimensional
version of the discrete kinetic energy balance (3.14) by δt ϕn+1

σ , and sum the result for 0 ≤ n ≤ N − 1 and
σ ∈ Eint. Finally, adding the two obtained relations, we get:

T
(m)
1 + T

(m)
2 + T

(m)
3 + T̃

(m)
1 + T̃

(m)
2 + T̃

(m)
3 = S(m) − R̃(m), (4.17)
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where

T
(m)
1 =

N−1∑
n=0

δt
∑
K∈M

|K|
δt

[
ρn+1
K en+1

K − ρnK enK
]
ϕn+1
K ,

T
(m)
2 =

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

[
ρnσ′ e

n
σ′ u

n
σ′ − ρnσ enσ unσ

]
ϕn+1
K ,

T
(m)
3 =

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

pnK (unσ′ − unσ) ϕn+1
K ,

T̃
(m)
1 =

1
2

N−1∑
n=0

δt
∑
σ∈Eint

|Dσ|
δt

[
ρn+1
Dσ

(un+1
σ )2 − ρnDσ

(unσ)2
]
ϕn+1
σ ,

T̃
(m)
2 =

1
2

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

[
FnL (unL)2 − FnK (unK)2

]
ϕn+1
σ ,

T̃
(m)
3 =

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

(pn+1
L − pn+1

K )un+1
σ ϕn+1

σ ,

S(m) =
N−1∑
n=0

δt
∑
K∈M

SnK ϕn+1
K , R̃(m) =

N−1∑
n=0

δt
∑
σ∈Eint

Rn+1
σ ϕn+1

σ ,

and the quantities SnK and Rn+1
σ are given by equation (4.10) and (the 1D version of) equation (3.15),

respectively.

Reordering the sums in T
(m)
1 yields:

T
(m)
1 = −

N−1∑
n=0

δt
∑
K∈M

|K| ρnK enK
ϕn+1
K − ϕnK

δt
−
∑
K∈M

|K| ρ0
K e

0
K ϕ0

K ,

so that

T
(m)
1 = −

∫ T

0

∫
Ω

ρ(m) e(m) ðtϕM dxdt−
∫

Ω

(ρ(m))0(x) (e(m))0(x) ϕM(x, 0) dx.

The boundedness of ρ0, e0 and the definition (4.9a) of the initial conditions for the scheme ensures that the
sequences ((ρ(m))0)m∈N and ((e(m))0)m∈N converge to ρ0 and e0 respectively in Lr(Ω) for r ≥ 1. Since, by
assumption, the sequence of discrete solutions and of the interpolate time derivatives converge in Lr

(
Ω× (0, T )

)
for r ≥ 1, we thus obtain:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫
Ω

ρ̄ ē ∂tϕdxdt−
∫

Ω

ρ0(x) e0(x) ϕ(x, 0) dx.
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Reordering the sums in T
(m)
2 , we get:

T
(m)
2 = −

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈E

ρnσ e
n
σ u

n
σ (ϕn+1

L − ϕn+1
K ).

Using the fact that hσ = |Dσ|, this relation reads:

T
(m)
2 = −

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈E

|Dσ| ρnσ enσ unσ
ϕn+1
L − ϕn+1

K

hσ
,

thus T (m)
2 = T (m)

2 +R(m)
2 with:

T (m)
2 = −

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈E

[
|DK,σ| ρnK enK + |DL,σ| ρnL enL

]
unσ

ϕn+1
L − ϕn+1

K

hσ
,

R(m)
2 = −

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈E

[
|Dσ| ρnσ enσ − |DK,σ| ρnK enK − |DL,σ| ρnL enL

]
unσ

ϕn+1
L − ϕn+1

K

hσ
.

The first expression reads:

T (m)
2 = −

∫ T

0

∫
Ω

ρ(m) e(m) u(m) ðxϕM dxdt,

and thus, thanks to the convergence assumptions:

lim
m→+∞

T (m)
2 = −

∫ T

0

∫
Ω

ρ̄ ē ū ∂xϕdxdt.

Let us choose σ in such a way that ρnσ = ρnK and enσ = enK (in other words, we choose to call K the upwind cell
to σ instead of the left cell, which we denote by σ = K → L). We thus get, with Cϕ = ‖∂xϕ‖L∞(Ω×(0,T )):

|R(m)
2 | ≤ Cϕ

N−1∑
n=0

δt
∑

σ=K→L∈E
|DL,σ|

∣∣∣ρnK enK − ρnL enL∣∣∣ |unσ|.
Applying the identity 2 (ab − cd) = (a − c)(b + d) + (a + c)(b − d), which holds for any {a, b, c, d} ⊂ R, to the
quantity ρnK e

n
K − ρnL enL, we obtain:

|R(m)
2 | ≤ Cϕ h(m) ‖u(m)‖L∞(Ω×(0,T ))

[
‖ρ(m)‖T ,x,BV ‖e(m)‖L∞(Ω×(0,T )) + ‖ρ(m)‖L∞(Ω×(0,T )) ‖e

(m)‖T ,x,BV

]
,

and thus |R(m)
2 | tends to zero when m tends to +∞.
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For the term T̃
(m)
1 , the definition (3.6) of ρDσ

and a reordering in the summation yield:

T̃
(m)
1 =− 1

2

N−1∑
n=0

δt
∑

σ=K|L∈E

[
|DK,σ| ρnK + |DL,σ| ρnL

]
(unσ)2 ϕn+1

K − ϕnK
δt

− 1
2

∑
σ=K|L∈E

[
|DK,σ| ρ0

K + |DL,σ| ρ0
L

]
(u0
σ)2 ϕ0

K ,

so that, by similar arguments as for the term T
(m)
1 , we get:

lim
m→+∞

T̃
(m)
1 = −

∫ T

0

∫
Ω

1
2
ρ̄ ū2 ∂tϕdx dt−

∫
Ω

1
2
ρ0(x) u0(x)2 ϕ(x, 0) dx.

Let us now turn to the term T̃
(m)
2 . Reordering the sums, we get:

T̃
(m)
2 = −1

2

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

FnK (unK)2 (ϕn+1
σ′ − ϕ

n+1
σ ),

and, by definition of the mass flux at the dual edges:

T̃
(m)
2 = −1

4

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

(ρnσu
n
σ + ρnσ′u

n
σ′) (unK)2 (ϕn+1

σ′ − ϕ
n+1
σ ),

where we recall that unK is equal to either unσ or unσ′ , depending on the sign of FnK . Let us write T̃
(m)
2 =

T̃ (m)
2 + R̃(m)

2 , with:

T̃ (m)
2 = −1

4

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

ρnK
[
(unσ)3 + (unσ′)

3
]

(ϕn+1
σ′ − ϕ

n+1
σ ).

We have

T̃ (m)
2 = −

∫ T

0

∫
Ω

1
2
ρ(m) (u(m))3 ðxϕE dx dt,

and hence

lim
m→+∞

T̃ (m)
2 = −

∫ T

0

∫
Ω

1
2
ρ̄ ū3 ∂xϕdxdt.

The remainder term reads:

R̃(m)
2 = −1

4

N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

[
(ρnσu

n
σ + ρnσ′u

n
σ′) (unK)2 − ρnK

(
(unσ)3 + (unσ′)

3
)]

(ϕn+1
σ′ − ϕ

n+1
σ ).
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Using the notation K = σ → σ′ in the above summation in order to have unK = unσ, we obtain, with ε = ±1:

R̃(m)
2 = −ε

4

N−1∑
n=0

δt
∑

K=σ→σ′∈M

[
(ρnσu

n
σ + ρnσ′u

n
σ′) (unσ)2 − ρnK

(
(unσ)3 + (unσ′)

3
)]

(ϕn+1
σ′ − ϕ

n+1
σ ).

For 0 ≤ n ≤ N − 1 and K ∈M, we have:

(ρnσu
n
σ + ρnσ′u

n
σ′) (unσ)2 − ρnK

(
(unσ)3 + (unσ′)

3
)

= (ρnσ − ρnK) (unσ)3 + (ρnσ′ − ρnK)unσ′ (u
n
σ)2 + ρnK u

n
σ′ (u

n
σ + unσ′) (unσ − unσ′),

Since, in this expression, ρnσ and ρnσ′ are the density either in K or in a neighbouring cell of K, we get:

|R̃(m)
2 | ≤ Cϕ h(m)

[
‖u(m)‖

3

L∞(Ω×(0,T )) ‖ρ‖T ,x,BV + ‖ρ(m)‖L∞(Ω×(0,T )) ‖u
(m)‖

2

L∞(Ω×(0,T )) ‖u
(m)‖T ,x,BV

]
,

where the real number Cϕ only depends on ϕ. Hence |R̃(m)
2 | tends to zero when m tends to +∞.

We now turn to T (m)
3 and T̃

(m)
3 . By a change in the notation of the time exponents, using the fact that ϕσ

vanishes at the last time step(s), we get:

T̃
(m)
3 =

N−1∑
n=1

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK)unσ ϕ
n
σ = T̃ (m)

3 + R̃(m)
3 ,

with

T̃ (m)
3 =

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK)unσ ϕ
n+1
σ ,

R̃(m)
3 = −δt

∑
σ=
−−→
K|L∈Eint

(p0
L − p0

K)u0
σ ϕ

0
σ +

N−1∑
n=0

δt
∑

σ=
−−→
K|L∈Eint

(pnL − pnK)unσ (ϕnσ − ϕn+1
σ ).

We have, thanks to the regularity of ϕ:

|R̃(m)
3 | ≤ Cϕ δt(m)

[
‖(u(m))0‖L∞(Ω) ‖(p

(m))0‖BV(Ω) + ‖u(m)‖L∞(Ω×(0,T )) ‖p
(m)‖T ,x,BV

]
.

Therefore, invoking the regularity of the initial conditions, this term tends to zero when m tends to +∞. We
now have for the other terms, reordering the summations:

T
(m)
3 + T̃ (m)

3 =−
N−1∑
n=0

δt
∑

K=[
−−→
σσ′]∈M

pnK u
n
σ (ϕn+1

K − ϕn+1
σ ) + pnK u

n
σ′ (ϕ

n+1
σ′ − ϕ

n+1
K )

=−
∫ T

0

∫
Ω

p(m) u(m) ðxϕM,E dx dt.
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Since ðxϕM,E converges to ∂xϕ in Lr(Ω× (0, T )) for any r ≥ 1, we get:

lim
m→+∞

(T (m)
3 + T̃ (m)

3 ) = −
∫ T

0

∫
Ω

p̄ ū ∂xϕdxdt.

It now remains to check that limm→+∞(S(m) − R̃(m)) = 0. Let us write this quantity as S(m) − R̃(m) =
R(m)

1 +R(m)
2 where, using that,∀K ∈M, S0

K = 0:

R(m)
1 =

N−1∑
n=0

δt
[ ∑
K∈M

Sn+1
K ϕn+1

K −
∑
σ∈E

Rn+1
σ ϕn+1

σ

]
,

R(m)
2 =

N−1∑
n=1

δt
∑
K∈M

SnK (ϕn+1
K − ϕnK).

First, we prove that limm→+∞R(m)
1 = 0. Gathering and reordering the sums, we obtain R(m)

1 = R(m)
1,1 +R(m)

1,2 +

R(m)
1,3 with

R(m)
1,1 =

1
2

N−1∑
n=0

δt
∑

σ=K|L∈E

[
|DK,σ|
δt

ρn+1
K (un+1

σ − unσ)2(ϕn+1
K − ϕn+1

σ )

+
|DL,σ|
δt

ρn+1
L (un+1

σ − unσ)2(ϕn+1
L − ϕn+1

σ )
]
,

R(m)
1,2 =

1
2

N−1∑
n=0

δt
∑

K=[σ′→σ]∈M

|FnK | (unσ − unσ′)2 (ϕn+1
K − ϕn+1

σ ),

R(m)
1,3 =

N−1∑
n=0

δt
∑

K=[σ′→σ]∈M

|FnK | (unσ′ − unσ) (un+1
σ − unσ) (ϕn+1

K − ϕn+1
σ ).

We thus obtain

|R(m)
1,1 | ≤ h(m) Cϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u

(m)‖L∞(Ω×(0,T )) ‖u
(m)‖T ,t,BV,

and

|R(m)
1,2 |+ |R

(m)
1,3 | ≤ h(m) Cϕ ‖ρ(m)‖L∞(Ω×(0,T )) ‖u

(m)‖
2

L∞(Ω×(0,T )) ‖u
(m)‖T ,x,BV,

so all these terms tend to zero. The fact that |R(m)
2 | behaves as δt(m) may be proven by similar arguments.

Gathering the limits of all terms concludes the proof.

Remark 4.3 (On BV-stability assumptions). The proof of theorems 3.5 and 4.2 shows that the scheme is
consistent under a BV-stability assumption that is much weaker than (4.14) and (4.15), namely:

lim
m→+∞

(h(m) + δt(m))
[
‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV + ‖u(m)‖T ,t,BV

]
= 0.
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Remark 4.4 (Convergence to the entropy weak solution). An entropy function for the incompressible Euler
equations with the perfect gas EOS may be defined as:∣∣∣∣∣∣

η : R∗+ × R∗+ → R
(ρ, e) 7→ η(ρ, e) =

1
ρ

(φ(ρ) + ρψ(e)) ,

where for s > 0, φ(s) = s ln(s) and ψ(s) =
1

1− γ
ln(s). Under the assumptions of Theorem 4.2, assuming the

additional time BV estimates on the approximate densities and internal energies:

‖ρ(m)‖T ,t,BV ≤ C, ‖e(m)‖T ,t,BV ≤ C, ∀m ∈ N,

and provided that the following stronger CFL condition holds:

lim
m→+∞

δt(m)

min
K∈M(m)

hK
= 0,

it can be shown that the limit of approximate solutions (up to a subsequence) is an entropy weak solution, in
the sense that it also satisfies a weak entropy inequality, which reads

∀ϕ ∈ C∞c
(
Ω× [0, T ),R+

)
, −

∫ T

0

∫
Ω

[
ρ η(ρ, e) ∂tϕ+ ρ u η(ρ, e) ∂xϕ

]
dxdt−

∫
Ω

η(ρ0(x), e0(x))ϕ(x, 0) dx ≤ 0.

The proof of this result may be found in Chapter 4 from [22] (see also [17]), where the general multi-dimensional
case and higher order schemes are also studied.

5. Numerical results

5.1. The isentropic Euler equations

We assess in this section the behaviour of the scheme on various test cases. For all these tests, we chose
p = ρ2 for the equation of state, so the solved system turns out to be the so-called shallow water equations,
and we solve Riemann problems, i.e. 1D problems the initial conditions of which consist in two constant states
separated by a discontinuity.

5.1.1. A first Riemann problem

In this first test, the chosen left and right states are given by:

Left state:
[
ρL = 1
uL = 5

]
; Right state:

[
ρR = 10
uR = 7.5

]
.

The computational domain is Ω = (0, 1) and the final time is T = 0.025. The (known) analytical solution of this
problem consists, from the left to the right, in a shock wave and a rarefaction wave, both traveling to the right,
separated by constant states.

Results: The density and velocity obtained at t = 0.025 = T are shown in Figures 2 and 3, respectively; these
results have been obtained with h = 0.001 and δt = h/12 (the maximum velocity and sound speed computed from
the analytical solution being umax = 7.5 and cmax ' 4.5, respectively). In addition, we performed a convergence
study, successively dividing by two the space and time steps (so keeping the CFL number constant). The
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Figure 2. Shallow water eq., first Riemann problem – h = 0.001, δt = h/12 – density at
t = 0.025.

Figure 3. Shallow water eq., first Riemann problem – h = 0.001, δt = h/12 – velocity at
t = 0.025.

difference between the computed and analytical solution at t = 0.025, measured in discrete L1(Ω) norm, are
reported in the following table:

Space step h0 = 1/250 h0/2 h0/4 h0/8 h0/16
‖ρ− ρ̄‖L1(Ω) 0.0449 0.0256 0.0135 0.00775 0.00429
‖u− ū‖L1(Ω) 0.0411 0.0233 0.0119 0.00696 0.00384

We observe an approximatively first-order convergence rate.
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Figure 4. Shallow water eq., first Riemann problem modified to obtain a nearly vanishing
velocity at the intermediate state – viscosity = 0 – h = 0.001, δt = h/12 – density at t = 0.025.

Figure 5. Shallow water eq., first Riemann problem modified to obtain a nearly vanishing
velocity at the intermediate state – viscosity = 0 – h = 0.001, δt = h/12 – velocity at t = 0.025.

A problem with a vanishing velocity in the intermediate state: To complete the study, we perform a computation
of a Riemann problem obtained from the former one by subtracting a constant real number to the left and right
velocity, in such a way that the velocity on the intermediate state approximatively vanishes.

In this case, we observe spurious oscillations on the solution (see Figs. 4 and 5), probably due to the fact
that the numerical diffusion in the scheme vanishes. However, adding an artificial viscosity term in the discrete
momentum balance equation, with a viscosity equal to 0.5ρh (so equal to the upwind viscosity which would be
associated to a velocity equal to 1) completely cures the problem (see Figs. 6 and 7). This observation strongly
supports the idea to build a higher order scheme using an a posteriori fitted viscosity technique, as in the
so-called entropy viscosity method [9, 10]; this work is underway.
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Figure 6. Shallow water eq., first Riemann problem modified to obtain a nearly vanishing
velocity at the intermediate state – viscosity = 0.5ρh – h = 0.001, δt = h/12 – density at
t = 0.025.

Figure 7. Shallow water eq., first Riemann problem modified to obtain a nearly vanishing
velocity at the intermediate state – viscosity = 0.5ρh – h = 0.001, δt = h/12 – velocity at
t = 0.025.

When we subtract once again a constant to the velocity at both left and right state, and so the veloc-
ity at the intermediate becomes negative, we recover a wiggle-free solution without adding any viscosity
(Figs. 8 and 9).

In this case, we observe spurious oscillations on the solution, probably due to the fact that the numerical
diffusion in the scheme vanishes. However, adding an artificial viscosity term in the discrete momentum balance
equation, with a constant viscosity equal to 0.5ρh (so equal to the upwind viscosity which would be associated
to a velocity equal to 1) completely cures the problem. This observation strongly supports the idea to build a
higher order scheme using an a posteriori fitted viscosity technique, as in the so-called entropy viscosity method
[9, 10]; this work is underway.
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Figure 8. Shallow water eq., first Riemann problem modified to obtain a negative velocity at
the intermediate state – h = 0.001, δt = h/12 – density at t = 0.025.

Figure 9. Shallow water eq., first Riemann problem modified to obtain a negative velocity at
the intermediate state – h = 0.001, δt = h/12 – velocity at t = 0.025.

On a naive scheme: We also test the “naive” explicit scheme obtained by evaluating all the terms, except of
course the time-derivative one, at time tn. In the one dimensional setting and with the same notations as in
Section 3.3, this scheme thus reads:

∀K = [
−→
σσ′] ∈M,

|K|
δt

(ρn+1
K − ρnK) + Fnσ′ − Fnσ = 0, (5.1a)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + FnLu
n
L − FnKunK + pnL − pnK = 0, (5.1b)

∀K ∈M, pn+1
K = ℘(ρn+1

K ) = (ρn+1
K )γ . (5.1c)
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Figure 10. Shallow water eq., first Riemann problem – ρ u p scheme – h = 0.001, δt = h/12
– density at t = 0.025.

Figure 11. Shallow water eq., first Riemann problem – ρ u p scheme – h = 0.001, δt = h/12
– velocity at t = 0.025.

Hereafter and on the figure captions, this scheme is referred to as the “ρ u p scheme” (since the pressure
is updated after the computation of the velocity rather than after the computation of the density).

The computed density and velocity at time T = 0.025 are plotted in Figures 10 and 11, respectively. From
these results, it appears clearly that the ρ u p scheme generates discontinuities in the rarefaction wave,
and further experiments show that this phenomenon is not cured by a decrease of the time and space steps;
this seems to be connected to the fact that, for this variant, we cannot prove that the limits of converging
sequences satisfy the entropy condition (in fact, they probably do not). When trying to do so, in our proof
and from a purely technical point of view, the trouble comes from the fact that the pressure gradient term
which appears in the kinetic energy balance reads un+1∇pn and it seems difficult to make the counterpart (i.e.
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Figure 12. Shallow water eq., Riemann problem with vacuum at the right state – h =
0.001, δt = h/8 – density at t = 0.05.

pndiv(un+1)) appear, with the corresponding time levels, in the elastic potential balance, starting from a mass
balance with a convection term written with un; hence a dicretization of the momentum balance equation with
an updated pressure gradient term ∇pn+1, and thus the inversion of steps in the algorithm, to get the actual
scheme proposed in this paper.

5.1.2. Problems involving vacuum zones in the flow

The objective of the two tests presented in this section is to check that the time step does not have to be
drastically reduced in the presence of vacuum. Both are Riemann problems, posed on Ω = (0, 1).

We first begin with a case where the vacuum is initially present, at the right initial state:

Left state:
[
ρL = 1
uL = 1

]
; Right state:

[
ρR = 0
uR = 0

]
.

In the computer code, ρR is fixed as ρR = 10−20, to prevent divisions by zero due to imprudent programming.
The results obtained at t = 0.05 are plotted in Figures 12 (density) and 13 (velocity); they have been obtained
with h = 0.001 and a constant time step equal to δt = h/8, which seems to be near to the stability limit (the
maximum velocity and sound speed computed from the analytical solution being given by umax ' 3.8 and
cmax ' 1.4, respectively). We observe that the accuracy of the velocity computation is rather poor near to
the vacuum front; we however check in Figure 14 that the scheme converges to the right solution. Moreover,
Figure 15 shows that the quantity ρ u (which is, in this case, the quantity of physical interest) is in fact obtained
with a reasonable accuracy with the coarsest meshes of this study.

We now turn to a case where the chosen left and right states are given by:

Left state:
[
ρL = 1
uL = −8

]
; Right state:

[
ρR = 1
uR = 8

]
.

In this case, the solution consists in an intermediate state corresponding to vacuum connected to the left and
right initial states by rarefaction waves. The computed density and velocity at t = 0.03, with h = 0.001 and
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Figure 13. Shallow water eq., Riemann problem with vacuum at the right state – h =
0.001, δt = h/8 – velocity at t = 0.05.

Figure 14. Shallow water eq., Riemann problem with vacuum at the right state – h = h0 =
0.001 to h = h0/16, δt = h/8 – velocity at t = 0.05.

δt = h/12 (while, in the analytical solution, umax = 8 and cmax ' 1.4), are plotted in Figures 16 and 17,
respectively. Once again, the behaviour of the scheme is satisfactory.

5.2. The full Euler equations

5.2.1. Riemann problems

We first assess in this section the behaviour of the scheme on a Riemann problem referred to as Test 3 in
Chapter 4 from [23], which is stiff enough to evidence consistency and stability properties of the scheme. The
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Figure 15. Shallow water eq., Riemann problem with vacuum at the right state – h = h0 =
0.001 to h = h0/16, δt = h/8 – mass flow rate at t = 0.05.

Figure 16. Shallow water eq., Riemann problem with vacuum appearance – h = 0.001, δt =
h/12 – density at t = 0.03.

left and right states are given by:

Left state:

 ρL = 1
uL = 0

pL = 1000

 ; Right state:

 ρR = 1
uR = 0

pR = 0.001

 .
The computational domain is Ω = (0, 1) and the final time is T = 0.012. The (known) analytical solution of
this type of problem consists in two genuinely nonlinear waves (i.e. rarefaction or shock waves) separated by a
contact discontinuity. For the initial data chosen in this section, the left wave is a rarefaction wave, traveling to
the left, and the right wave is a shock wave, traveling to the right.
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Figure 17. Shallow water eq., Riemann problem with vacuum appearance – h = 0.001, δt =
h/12 – mass flow rate at t = 0.03.

Figure 18. Euler equations, Riemann problem 3 of Chapter 4 from [23] – h = 0.001 and
δt = h/100 – density at t = 0.012.

The density, pressure, internal energy and velocity obtained at t = 0.012 = T with h = 0.001 and δt = h/100
(as the maximal celerity of waves is close to 60) are shown in Figures 18–21, respectively. We observe that
the scheme is rather diffusive especially for contact discontinuities for which the beneficial compressive effect
of the shocks does not apply. More accurate variants may certainly be derived, using for instance MUSCL-like
techniques; this work is underway. We also observe that the scheme keeps the velocity and pressure constant

through the contact discontinuity; this may be checked directly from the expression of the discrete balance
equations (precisely speaking, one may prove that, if pn and un are constant, so are pn+1 and un+1).
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Figure 19. Euler equations, Riemann problem 3 of Chapter 4 from [23] – h = 0.001 and
δt = h/100 – pressure at t = 0.012.

Figure 20. Euler equations, Riemann problem 3 of Chapter 4 from [23] – h = 0.001 and
δt = h/100 – internal energy at t = 0.012.

In addition, we perform a convergence study, successively dividing by two the space and time steps (so
keeping the CFL number constant). The differences between the computed and analytical solution at t = 0.025,
measured in discrete L1(Ω) norm, are reported in the following table.

Space step h0 = 0.001 h0/2 h0/4 h0/8 h0/16
‖ρ− ρ̄‖L1(Ω) 0.0651 0.0455 0.0310 0.0217 0.0153
‖p− p̄‖L1(Ω) 1.87 1.05 0.530 0.284 0.164
‖u− ū‖L1(Ω) 0.0967 0.0536 0.0258 0.0134 0.00795
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Figure 21. Euler equations, Riemann problem 3 of Chapter 4 from [23] – h = 0.001 and
δt = h/100 – velocity at t = 0.012.

Figure 22. Euler equations, Riemann problem 3 of Chapter 4 from [23] – scheme without
corrective terms – h = 0.001 and δt = h/100 – density at t = 0.012.

We measure a convergence rate which is slightly lower to 1 for the variables which are constant through the
contact discontinuity (i.e. p and u), and equal to 1/2 for ρ.

Finally, we test the behaviour of the scheme obtained when setting to zero the corrective terms in the internal
energy balance. The density obtained with h = 0.001 and δt = h/100 is reported in Figure 22. From this result
and from further numerical experiments with more and more refined meshes, it seems that the scheme converge,
but to a limit which is not a weak solution to the Euler system: indeed, the Rankine–Hugoniot condition applied
to the total energy balance, with the states obtained numerically, yields a right shock velocity slightly greater
than the analytical solution one, while the same shock velocity obtained numerically is clearly lower.
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Importance of the order of the equations in the decoupling: We also test the “naive” explicit scheme obtained
by evaluating all the terms, except in time-derivative one, at time tn. In the one dimensional setting and with
the same notations as in Section 4.2, this scheme thus reads:

∀K = [
−→
σσ′] ∈M,

|K|
δt

(ρn+1
K − ρnK) + Fnσ′ − Fnσ = 0, (5.2a)

∀σ =
−−→
K|L ∈ Eint,

|Dσ|
δt

(ρn+1
Dσ

un+1
σ − ρnDσ

unσ) + FnLu
n
L − FnKunK + pnL − pnK = 0, (5.2b)

∀K = [
−→
σσ′] ∈M,

|K|
δt

(ρn+1
K en+1

K − ρnKenK) + Fnσ′e
n
σ′ − Fnσ enσ + pnK(un+1

σ′ − u
n+1
σ ) = Sn+1

K , (5.2c)

∀K ∈M, pn+1
K = (γ − 1) ρn+1

K en+1
K . (5.2d)

Hereafter and on the figure captions, this scheme is referred to by the ρ u e p scheme (according to the
order of update of the unknowns). Note that we are able, for this scheme also, to prove a consistency result
similar to Theorem 4.2.

The computed pressure at time T = 0.012 is plotted in Figure 23. From this result, it appears clearly that,
as in the isentropic case, the ρ u e p scheme generates discontinuities in the rarefaction wave, and further
experiments show that this phenomenon is not cured by a reduction of the time and space step.

5.2.2. A two-dimensional problem

We now turn to a two-dimensional problem, consisting in the interaction of a shock wave with an obstacle.
The initial data is (ρ,u, p) = (ρL,uL, pL) (resp. (ρ,u, p) = (ρR,uR, pR)) for x1 ≤ 0.7 (resp. x1 > 0.7), with:ρLuL

pL

 =

 8
8.25 (1, 0)t

116.5

 ,
ρRuR
pR

 =

 1.4
(0, 0)t

1

 , (5.3)

Without any obstacle, this initial condition would yield a pure shock wave travelling to the left at the speed
v = 10; since the speed of sound in the right state is c = 1, this wave is often referred to in the literature as a
“Mach= 10 shock wave”. The obstacle is the square (1, 3)× (−1, 1). Thanks to the symmetry with respect to
the axis x2 = 0, the chosen computational domain is Ω = (−1, 6)× (0, 4). The final time is t = 0.5 (so that in
the absence of an obstacle, the shock line would be defined by x1 = 5.7 at the final time).

We present two computations. The first one is a uniform 1400× 800 grid from which the cells corresponding
to the interior of the obstacle have been removed, leading to a total number of cells close to 106; the time step is
equal to 10−4. For the second one, the mesh is built from a 10 000× 5700 grid, for a total number of cells close to
53 106, and a time step equal to 10−5. In both cases, the MAC scheme is used for the space discretization, and
the numerical viscosity is set to ρ h. Both computations are performed in parallel (the CALIF3S software uses
PETSc primitives), with a multi-domain technique: the domain is split into subdomains (using the open-access
software METIS), and each subdomain is treated by a processor. The second computation involves 120 Intel
Xeon X5660 2.8 GHz processors on an InfiniBand Linux cluster, for about 190 h of restitution time (for 50 000
time steps, so that each time step takes about 13.7 s; note that the software is designed for general meshes,
and thus is by construction not optimized for structured grid). We observe here the beneficial effects of the
simplicity of the convective flux construction; indeed, solving a Riemann problem at each interface would lead
to a much more CPU time-consuming algorithm.



CONSISTENT EXPLICIT STAGGERED SCHEMES FOR THE EULER EQUATIONS 937

Figure 23. Euler equations, Riemann problem 3 of Chapter 4 from [23] – ρ u e p scheme
– h = 0.001 and δt = h/100 – pressure at t = 0.012.

Figure 24. Euler equations, shock-square interaction – density at t = 0.5 – results obtained
with 1 × 106 (top) and 53 × 106 cells (bottom). For this last computation, only a part of the
subdomains (about one half of the 120 subdomains) are drawn.
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Figure 25. Euler equations, shock-square interaction – density at t = 0.5 – results obtained
with 53× 106 cells, in the area where shock-to-shock interaction occurs, behind the obstacle.

Figure 26. Euler equations, shock-disk interaction – density at t = 0.2 (top) and t = 0.4
(bottom).

The obtained density at t = 0.5 is shown in Figure 24. One observes a strong reflection upstream the obsta-
cle; behind this reflection, a shock-to-shock interaction occurs, which does not seem to generate an irregular
reflection. As expected, the second computation shows much more details, especially in the wake of the obstacle.
A closer view of this zone is provided in Figure 25.

Finally, we also test the algorithm on unstructured meshings, using the RT discretization. The initial condition
is the same, the obstacle is now a disk centered on (2, 0)t and of radius equal to 1, Ω = (0, 5)× (0, 3.3) and the
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final time is t = 0.4. The number of primal cells is close to 11× 106 (so each velocity component is approximated
on about 22× 106 dual cells), and the time step is 5× 10−6. The numerical viscosity is set to 2ρh. The density
fields obtained at time t = 0.2 and t = 0.4 are shown in Figure 26.

Finally, note that other 2D and 3D experiments have been conducted and may be found in the more numerical
paper [8].

6. Conclusion

In this paper we presented a decoupled scheme based on staggered meshes for the isentropic and full Euler
equations. This algorithm uses a very simple first-order upwinding strategy which consists, equation by equa-
tion, to implement an upwind discretization with respect to the material velocity of the convection term.
The pressure gradient is defined as the transpose of the natural velocity divergence, and is thus centered.
In the case of the full Euler equations, the scheme solves the internal energy balance instead of the total
energy balance, to ensure the positivity of the internal energy by the above-mentionned upwinding technique;
because of the staggered nature of the scheme, the total energy balance is only recovered at the limit of
vanishing time and space steps, thanks to the addition of corrective source terms in the discrete internal
energy balance. Under CFL-like conditions which based on the material velocity only (by opposition to the
celerity of waves which constrains classical hyperbolic schemes), this scheme preserves the positivity of the
density, the pressure and, for Euler equations, of the internal energy (in other words, the scheme preserves
the convex set of admissible states). Finally, the scheme has been shown to be consistent for 1D problems,
in the sense that, if a sequence of numerical solutions obtained with more and more refined meshes (and,
accordingly, smaller and smaller time steps) converges, then the limit is a weak solution to the continuous
problem.

These theoretical results may be extended in two directions: first, in the full Euler case, the limits of convergent
sequences may be shown to be entropy solutions; second, the scheme may be shown to be consistent in the
multi-dimensional case. This is the object of a paper that will soon be submitted [17]. Another point of further
investigation concerns the design of a discretization scheme that would be able to cope with non-conforming
locally refined meshes. This work is now being undertaken.

Numerical studies show that the proposed algorithm is stable, even if the largest time step before blow-
up is smaller than suggested by the above-mentioned CFL conditions. This behaviour was to be expected,
since these CFL conditions only involve the velocity (and not the celerity of the acoustic waves): indeed, were
they the only limitation, we would obtain an explicit scheme stable up to the incompressible limit. How-
ever, the mechanisms leading to the blow-up of the scheme (or, conversely, the way to fix the time step to
ensure stability) remain to be clarified, even if one may anticipate from qualitative arguments (the scheme
should allow a “transport of the information” at the same speed as the continuous problem) that the time
step should be small enough to avoid that the waves cross more than one cell per time step. In addition,
still as expected, the scheme is rather diffusive, especially at contact discontinuities; MUSCL-like extensions
have recently been developed [22] to cure this problem, combined with a strategy similar to the so-called
entropy-viscosity technique [9, 10] to damp spurious oscillations which are sometimes observed when the velocity
is small.

Since the proposed scheme uses very simple numerical fluxes, it is well suited to large multi-dimensional
parallel computing applications, and such studies are now starting at IRSN. Still for the same reasons (and, in
particular, because the construction of the discretization does not require the solution of the Riemann problem),
it seems that the presented approach offers natural extensions to more complex problems, such as reacting flows;
this is under development at IRSN, for applications to explosion hazards.
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Appendix A. Some results concerning explicit finite volume
convection operators

The convection operator appearing in the mass balance equation reads, in the continuous problem, ρ →
C(ρ) = ∂tρ+ div(ρu), where u stands for a given velocity field, which is not assumed to satisfy any divergence
constraint. We recall Appendix A from [16] that if ψ is a regular function from (0,+∞) to R; then:

ψ′(ρ) C(ρ) = ∂t
(
ψ(ρ)

)
+ div

(
ψ(ρ)u

)
+
(
ρψ′(ρ)− ψ(ρ)

)
divu. (A.1)

This computation is of course completely formal and only valid for regular functions ρ and u. The following
lemma states a discrete analogue to (A.1) for the decoupled scheme studied in this paper (see [16, Appendix A]
for an implicit scheme).

Lemma A.1. Let P be a polygonal (resp. polyhedral) bounded set of R2 (resp. R3), and let E(P ) be the set of
its edges (resp. faces). Let ψ be a twice continuously differentiable function defined over (0,+∞). Let ρ∗P > 0,
ρP > 0, δt > 0; consider three families (ρ∗η)η∈E(P ) ⊂ R+ \ {0}, (V ∗η )η∈E(P ) ⊂ R and (F ∗η )η∈E(P ) ⊂ R such that

∀η ∈ E(P ), F ∗η = ρ∗η V
∗
η .

Let RP,δt be defined by:

RP,δt =

 |P |
δt

(ρP − ρ∗P ) +
∑

η∈E(P )

F ∗η

 ψ′(ρP )

− |P |
δt

[ψ(ρP )− ψ(ρ∗P )] +
∑

η∈E(P )

ψ(ρ∗η)V ∗η + [ρ∗Pψ
′(ρ∗P )− ψ(ρ∗P )]

∑
η∈E(P )

V ∗η .

Then this quantity may be expressed as follows:

RP,δt =
1
2
|P |
δt

(ρP − ρ∗P )2 ψ′′(ρ(1)
P )− 1

2

∑
η∈E(P )

V ∗η (ρ∗P − ρ∗η)2 ψ′′(ρ∗η) +
∑

η∈E(P )

V ∗η ρ
∗
η (ρP − ρ∗P )ψ′′(ρ(2)

P ),

where ρ(1)
P , ρ

(2)
P ∈ |[ρP , ρ∗P ]| and ∀η ∈ E(P ), ρ∗η ∈ |[ρ∗P , ρ∗η]|. We recall that, for a, b ∈ R, we denote by |[a, b]| the

interval |[a, b]| = {θa+ (1− θ)b, θ ∈ [0, 1]}.

Proof. By the definition of F ∗η , we have:

 |P |
δt

(ρP − ρ∗P ) +
∑

η∈E(P )

F ∗η

 ψ′(ρP ) =
|P |
δt

(ρP − ρ∗P )ψ′(ρP )

+
∑

η∈E(P )

ρ∗ηV
∗
η ψ
′(ρ∗P ) +

∑
η∈E(P )

ρ∗ηV
∗
η

[
ψ′(ρP )− ψ′(ρ∗P )

]
. (A.2)

By Taylor expansions of ψ, there exist two real numbers ρ(1)
P and ρ(2)

P ∈ |[ρ∗P , ρP ]| and a family of real numbers
(ρ∗η)η∈E(P ) satisfying, ∀η ∈ E(P ), ρ∗η ∈ |[ρ∗P , ρ∗η]|, and such that:
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(ρP − ρ∗P )ψ′(ρP ) = ψ(ρP )− ψ(ρ∗P ) +
1
2

(ρP − ρ∗P )2 ψ′′(ρ(1)
P ),

ρ∗ηψ
′(ρ∗P ) = ψ(ρ∗η) + [ρ∗Pψ

′(ρ∗P )− ψ(ρ∗P )]− 1
2

(ρ∗η − ρ∗P )2 ψ′′(ρ∗η),

ψ′(ρP )− ψ′(ρ∗P ) = (ρP − ρ∗P )ψ′′(ρ(2)
P ).

Substituting in (A.2) yields the result we are seeking.

We now turn to the convection operator appearing in the momentum balance equation, which reads, in the
continuous setting, z → Cρ(z) = ∂t(ρz) + div(ρzu), where ρ (resp. u) stands for a given scalar (resp. vector)
field; we wish to obtain some property of Cρ under the assumption that ρ and u satisfy the mass balance
equation, i.e. ∂tρ+ div(ρu) = 0. Formally, using twice the mass balance yields:

ψ′(z) Cρ(z) = ψ′(z)
[
∂t(ρ z) + div(ρ z u)

]
= ψ′(z)ρ

[
∂tz + u ·∇z

]
= ρ
[
∂tψ(z) + u ·∇ψ(z)

]
= ∂t

(
ρψ(z)

)
+ div

(
ρψ(z) u

)
.

Taking for z a component of the velocity field, this relation is the central argument used to derive the kinetic
energy balance. The following lemma states a discrete counterpart of this identity, for a finite volume first-order
explicit convection operator.

Lemma A.2. Let P be a polygonal (resp. polyhedral) bounded set of R2 (resp. R3) and let E(P ) be the set of
its edges (resp. faces). Let ρ∗P > 0, ρP > 0, δt > 0, and (F ∗η )η∈E(P ) ⊂ R be such that

|P |
δt

(ρP − ρ∗P ) +
∑

η∈E(P )

F ∗η = 0. (A.3)

Let ψ be a twice continuously differentiable function defined over (0,+∞). For u∗P ∈ R, uP ∈ R and (u∗η)η∈E(P ) ⊂
R let us define:

RP,δt =

 |P |
δt

(
ρP uP − ρ∗P u∗P

)
+

∑
η∈E(P )

F ∗η u∗η

 ψ′(uP )−

 |P |
δt

[
ρP ψ(uP )− ρ∗P ψ(u∗P )

]
+

∑
η∈E(P )

F ∗η ψ(u∗η)

 .
Then

– The remainder term RP,δt reads:

RP,δt =
1
2
|P |
δt

ρP (uP − u∗P )2ψ′′(u(1)
P )− 1

2

∑
η∈E(P )

F ∗η (u∗η − u∗P )2ψ′′(u∗η)

+
∑

η∈E(P )

F ∗η (u∗η − u∗P ) (uP − u∗P ) ψ′′(u(2)
P ), (A.4)

with u(1)
P , u

(2)
P ∈ |[uP , u∗P ]|, and ∀η ∈ E(P ), u∗η ∈ |[u∗P , u∗η]|.
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– If we suppose that the function ψ is convex and that u∗η = u∗P as soon as F ∗η ≥ 0, then RP,δt is non-negative
under the CFL condition:

δt ≤
|P | ρP ψ′′P∑

η∈E(P )(F ∗η )− (ψ
′′
P )2/ψ′′

η

, (A.5)

where ψ′′
P

= min
s∈|[uP ,u∗P ]|

ψ′′(s), ψ
′′
P = max

s∈|[uP ,u∗P ]|
ψ′′(s) and ψ′′

η
= min
s∈|[u∗P ,u∗η ]|

ψ′′(s).

For ψ(s) = s2/2 (and therefore ψ′′(s) = 1, ∀s ∈ (0,+∞)), this CFL condition simply reads:

δt ≤ |P | ρP∑
η∈E(P )(F ∗η )−

. (A.6)

Proof. Let TP be defined by:

TP =

 |P |
δt

(
ρP uP − ρ∗P u∗P

)
+

∑
η∈E(P )

F ∗η u
∗
η

 ψ′(uP ).

Using equation (A.3) multiplied by u∗P , we obtain:

TP =

 |P |
δt

ρP
(
uP − u∗P

)
+

∑
η∈E(P )

F ∗η (u∗η − u∗P )

 ψ′(uP ).

We now define the remainder terms rP and (r∗η)η∈E(P ) by:

rP = (uP − u∗P ) ψ′(uP )−
[
ψ(uP )− ψ(u∗P )

]
, r∗η = (u∗P − u∗η) ψ′(u∗P )−

[
ψ(u∗P )− ψ(u∗η)

]
.

With these notations, we get:

TP =
|P |
δt

ρP
[
ψ(uP )− ψ(u∗P )

]
+

∑
η∈E(P )

F ∗η
[
ψ(u∗η)− ψ(u∗P )

]
+
|P |
δt

ρP rP −
∑

η∈E(P )

F ∗η r
∗
η +

∑
η∈E(P )

F ∗η (u∗η − u∗P )
(
ψ′(uP )− ψ′(u∗P )

)
.

Using once again equation (A.3), this time multiplied by ψ(u∗P ), we obtain:

TP =
|P |
δt

[
ρPψ(uP )− ρ∗Pψ(u∗P )

]
+

∑
η∈E(P )

F ∗ηψ(u∗η)

+
|P |
δt

ρP rP −
∑

η∈E(P )

F ∗η r
∗
η +

∑
η∈E(P )

F ∗η (u∗η − u∗P )
(
ψ′(uP )− ψ′(u∗P )

)
.
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The expression (A.4) of the remainder term RP,δt follow by remarking that, by a Taylor expansion, there exist
u

(1)
P , u

(2)
P ∈ |[uP , u∗P ]|, and ∀η ∈ E(P ), u∗η ∈ |[u∗P , u∗η]| such that:

rP =
1
2
ψ′′(u(1)

P ) (uP − u∗P )2, r∗η =
1
2
ψ′′(u∗η) (u∗η − u∗p)2

and

ψ′(uP )− ψ′(u∗P ) = ψ′′(u(2)
P ) (uP − u∗P ).

If ψ is convex, rP is non-negative. If, in addition, u∗P − u∗η vanishes ∀η ∈ E(P ) when F ∗η is non-negative, −r∗η is
non-negative. By Young’s inequality, the last term in RP,δt may be bounded as follows:∣∣∣ ∑

η∈E(P )

(F ∗η )− (u∗η − u∗P ) (uP − u∗P ) ψ′′(u(2)
P )
∣∣∣

≤
ψ′′(u(2)

P )2

2

 ∑
η∈E(P )

(F ∗η )−
1

ψ′′(u∗η)

 (uP − u∗P )2 +
1
2

∑
η∈E(P )

(F ∗η )− (u∗η − u∗P )2 ψ′′(u∗η),

so this term may be absorbed in the first two ones under the CFL condition (A.5).
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Appliquées et Industrielles. ESAIM: Proc. 35 (2011) 122–150.
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[22] N. Therme, Schémas numériques pour la simulation de l’explosion. Ph.D. Thesis, Aix Marseille Univ., Marseille (2015).
[23] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics – A Practical Introduction, 3rd edn. Springer, Berlin

Heidelberg (2009).


	Consistent segregated staggered schemes with explicit steps for the isentropic and full Euler equations
	1 Introduction
	2 Meshes and unknowns
	3 The isentropic Euler equations
	3.1 The scheme
	3.2 Discrete kinetic energy and elastic potential balances
	3.3 Passing to the limit in the scheme

	4 The full Euler equations
	4.1 The scheme
	4.2 Passing to the limit in the scheme

	5 Numerical results
	5.1 The isentropic Euler equations
	5.1.1 A first Riemann problem
	5.1.2 Problems involving vacuum zones in the flow

	5.2 The full Euler equations
	5.2.1 Riemann problems
	5.2.2 A two-dimensional problem


	6 Conclusion
	Appendix A Some results concerning explicit finite volume convection operators

	References

