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ASYMPTOTIC ESTIMATES OF THE CONVERGENCE OF CLASSICAL
SCHWARZ WAVEFORM RELAXATION DOMAIN DECOMPOSITION

METHODS FOR TWO-DIMENSIONAL STATIONARY QUANTUM WAVES

Xavier Antoine1,∗, Fengji Hou2 and Emmanuel Lorin3

Abstract. This paper is devoted to the analysis of convergence of Schwarz Waveform Relax-
ation (SWR) domain decomposition methods (DDM) for solving the stationary linear and nonlinear
Schrödinger equations by the imaginary-time method. Although SWR are extensively used for numeri-
cally solving high-dimensional quantum and classical wave equations, the analysis of convergence and of
the rate of convergence is still largely open for linear equations with variable coefficients and nonlinear
equations. The aim of this paper is to tackle this problem for both the linear and nonlinear Schrödinger
equations in the two-dimensional setting. By extending ideas and concepts presented earlier [X. Antoine
and E. Lorin, Numer. Math. 137 (2017) 923–958] and by using pseudodifferential calculus, we prove
the convergence and determine some approximate rates of convergence of the two-dimensional Clas-
sical SWR method for two subdomains with smooth boundary. Some numerical experiments are also
proposed to validate the analysis.
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1. Introduction

Let us consider the following initial value problem: find the complex-valued wavefunction u(x, t) solution to
the real-time cubic nonlinear Schrödinger equation on Rd, d > 1,{

i∂tu = −4u+ V (x)u+ ν|u|2u, x ∈ Rd, t > 0,

u(x, 0) = u0(x), x ∈ Rd,
(1.1)

with initial condition u0. The real-valued space-dependent smooth potential V is positive (respectively negative)
for attractive (respectively repulsive) interactions. The nonlinearity strength ν is a real-valued constant which
is positive (respectively negative) for a focusing (respectively defocusing) nonlinearity. If ν = 0, we will speak
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about the time-dependent Linear Schrödinger Equation (LSE). In the Physics literature, the first equation
of system (1.1) is also called the Gross-Pitaevskii Equation (GPE) [2, 11, 16], when considering Bose-Einstein
Condensates (BEC) (see e.g. [39,40]). The computation of stationary states, e.g. ground state and excited states,
is a major question in quantum physics, most particularly for BECs. Such a problem corresponds [9–11,16–19]
to computing a real number µ and a space dependent real function φ which satisfies the equation

µφ(x) = −4φ(x) + V (x)φ(x) + ν|φ(x)|2,x ∈ Rd, (1.2)

under the normalization constraint
||φ||2L2(Rd) :=

∫
Rd

|φ(x)|2dx = 1.

Equation (1.2) is obtained from (1.1), by considering solutions of the form u(x, t) = exp(−iµt)φ(x). If we define
the total energy of the system as

Eν(χ) :=
∫

Rd

|∇χ(x)|2 + V (x)|χ(x)|2 +
ν

2
|χ(x)|4dx, (1.3)

then a stationary state is such that
Eν(φ) := min

||χ||
L2(Rd)=1

Eν(χ).

Once it is obtained, the eigenvalue µ (also called chemical potential) can be computed through the eigenfunc-
tion φ by using the expression

µ := µν(φ) = Eν(φ) +
ν

2

∫
Rd

|φ(x)|4dx.

Existence and uniqueness results for the minimizers corresponding to a ground state (global minimizer) or excited
states (local minimizers) can be found in the literature [16]. More general versions of the GPE include rotational
terms, complex nonlinear (nonlocal) functions and coupled species of cold atomic gases [2, 11,15,16,41].

To numerically determine (µ, φ), a well-known method is the so-called imaginary time method [9–11,16–20,23]
which is also designated as a Normalized Gradient Flow (NGF) method in the Applied Mathematics literature.
It consists in solving (1.1) in imaginary-time, i.e. setting t→ it. This transformation leads to the formulation

∂tφ(x, t) = −∇φ∗Eν(φ)

= 4φ(x, t)− V (x)φ(x, t)− ν|φ|2φ(x, t), x ∈ Rd, tn < t < tn+1,

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

||φ(·, t−n+1)||L2(Rd)

,

φ(x, 0) = φ0(x), x ∈ Rd,with ||φ0||L2(Rd) = 1.

(1.4)

In the above system of equations, t0 := 0 < t1 < . . . < tn+1 < . . . are discrete times, φ0 is an initial data for the
time marching algorithm discretizing the projected gradient method and limt→t±n φ(x, t) = φ(x, t±n ). For n large
enough, the latter is an approximation to the solution to (1.2). It can be proven in the one-dimensional case [18]
that the energy is diminishing for positive V and ν = 0. Notice that the first equation in (1.4) is parabolic.

In this paper, we study the convergence of Schwarz Waveform Relaxation Domain Decomposition Methods
(DDM) for solving the stationary two-dimensional linear Schrödinger equation and Gross-Pitaevskii equation
using the imaginary-time method. Thanks to pseudodifferential calculus, we study the SWR-DDM for the
Schrödinger equation with variable potentials and with non-flat subdomain interfaces. This paper is the sequel
of [12], where the one-dimensional algorithm was analyzed in details. Domain decomposition methods are
particularly well-adapted for the parallel solution of linear systems that appear in finite difference and finite
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element methods. Among the various domain decomposition methods [24,28], we focus our attention here on the
Classical Schwarz Waveform Relaxation (CSWR) DDM [1,13,25–32,37]. Even if this method has received much
attention over the past years for many applications, to the best of the authors’ knowledge, the first application
to the Schrödinger equation can be found in [32]. The authors consider the real-time linear one-dimensional
Schrödinger equation with a constant potential. Well-posedness results are stated, and continuous and discrete
analysis of the algorithm are developed. Another recent paper for the Schrödinger equation is [14], where
the algorithms are analyzed for a one-dimensional time-dependent linear Schrödinger equation that includes
ionization and recombination by intense electric field. In [22], the authors study the numerical performance of
Schwarz waveform relaxation methods for the one-dimensional dynamical solution of the LSE with a general
potential, most particularly regarding their efficiency when a GPU implementation is considered. More recently
the same authors have numerically studied [21] the CSWR and OSWR algorithms for the two-dimensional
Schrödinger equation. The behavior of the method shows that it can lead to fast and robust algorithms for
complex linear problems. In [36], domain decomposition methods have been developed when using geometric
optics and frozen gaussian approximations for computing the solution to linear Schrödinger equations under
and beyond the semi-classical regime.

To conclude this overview, we recall the general principle of the Schwarz Waveform Relaxation algorithm,
applied to two two-dimensional subdomains. We first introduce two open sets Ω±ε , with boundary Γ±ε := ∂Ω±ε ,
such that R2 = Ω+

ε ∪ Ω−ε with overlapping region Ω+
ε ∩ Ω−ε , where ε is a non-negative parameter. We denote

by ψ± the solution to the LSE/GPE in Ω±ε . Solving the GPE by Schwarz waveform domain decomposition
(see [14] for instance) requires some transmission conditions at the subdomain interfaces. More specifically, for
any Schwarz iteration k > 1, the equation in Ω±ε reads, for a given T > 0

Pψ±,(k) = 0, on Ω±ε × (0, T ),

B±ψ±,(k) = B±ψ∓,(k−1), on Γ±ε × (0, T ),

ψ±,(k)(·, 0) = ψ0(·) on Ω±ε .

(1.5)

The notation ψ±,(k) stands for the solution ψ± in Ω±ε × (0, T ) at Schwarz iteration k > 0. Initially ψ±,(0) are
two given functions defined in Ω±ε , typically taken null if no further information is provided. The operator B±
characterizes the type of SWR algorithm. In the CSWR case, B± is simply the identity operator, B± = ∂n±+γId
(γ ∈ R∗+) for Robin SWR, and B± is a nonlocal Dirichlet-to-Neumann-like (DtN) pseudodifferential operator
for Optimal SWR. We refer to [14,32] for further reading.

The goal of this paper is to contribute to the understanding of the behavior of multi-dimensional Schwarz
waveform relaxation DDMs, in particular the effect of the interface curvature on the rate convergence. In
Section 2, we recall important pseudodifferential calculus definitions and results which will be useful for the
analysis of convergence of the two-dimensional SWR algorithm. Then, we derive in Section 3 some analytical
estimates of the convergence rate for the CSWR two-domains decomposition method for the linear Schrödinger
(with variable potential) and the Gross-Pitaevskii equations by using the NGF method (1.4) in 2-d. To this aim,
we propose an extension of the techniques developed in [12,25,32] to variable coefficient equations. In particular,
we make an intensive use of the theory of fractional pseudodifferential operators [33] and asymptotic symbolical
calculus (see e.g. [4–6, 8] for some applications). Section 4 is devoted to numerical experiments validating and
illustrating the analysis presented in this paper. Finally, we conclude in Section 5.

2. Background on pseudodifferential operator calculus

This section is devoted to the presentation of analytical and geometrical tools for constructing and analyzing
Schwarz waveform relaxation domain decomposition methods in 2-d. The use of pseudodifferential calculus, will
allow us, not only to analyze the SWR-DDM with non-flat interfaces, but will also be crucial to perform a
Nirenberg factorization of the Schrödinger equation with non-constant coefficients, at the subdomain interfaces.
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2.1. Local parameterization

Let Ω be a convex domain with smooth boundary Σ, and (positive) local curvature κ = κ(s), at curvilinear
abscissa s which is then positive. We do not detail here all the calculations and refer to [6] for more explanations.
For a point M of Σ with coordinates (x, y), we designate by τ the unitary tangential vector to Σ at M , and n
the outwardly directed unit normal vector. In the local coordinates system associated with M , a point M ′ in a
local neighborhood of M is connected to its coordinates r and s. In this paper, we assume that the boundary Σ
is mapped globally to a circle (see Fig. 1 for the admissible shapes). If not, then all the microlocal analysis below
can be extended in each local chart related to a covering of Γ . Nevertheless, providing some global estimates of
the convergence rates and convergence results should not in principle be possible since the estimates are only
valid locally to a chart. Now, since Ω is convex, the projection of the point M ′ onto the boundary Σ is unique,
giving hence its curvilinear abscissa s. The radial coordinates r is the distance from point M ′ to its projection
according to the outgoing unitary normal vector. Hence, Σ can be denoted by Σ0, if Σr designates the parallel
surface to Σ at distance r. Since Σ is convex, we can restrict ourselves to positive values of r, bounded from
above by a small parameter ε, and so r ∈ [0, ε]. Now, the Laplacian in local coordinates (r, s) writes down [6]

∆r = ∂2
r + κr∂r + h−1∂s(h−1∂s), (2.1)

with the scaling factor h: h = 1 + rκ and κr the curvature at M ′ on the parallel surface Σr: κr = h−1κ. For the
sake of conciseness, we denote by ũ the function u written in the local system

u(x, y, t) = ũ(r, s, t), (x, y) ∈ R2, (r, s) ∈ [0, ε]× [a, b], t > 0, (2.2)

and Vr the locally rewritten potential function

V (x, y, t) = Vr(r, s, t), (x, y) ∈ R2, (r, s) ∈ [0, ε]× [a, b], t > 0. (2.3)

The Schrödinger equation for system (3.1) then becomes

i∂tũ+ ∂2
r ũ+ κr∂rũ+ h−1∂s(h−1∂s)ũ+ Vrũ = 0, (r, s, t) ∈ [0, ε]× [a, b]×)0, T ], (2.4)

where r and s parameterize the domain Ω and t > 0. In the sequel, we identify u to ũ.

2.2. Pseudodifferential operators for the two-dimensional case and associated symbolic
calculus

The functions that we consider in this chapter depend on the local spatial coordinates r and s, and on time t. In
this framework, the two-dimensional pseudodifferential operator calculus is realized through the partial Fourier
transform (s, t) of a function f(r, s, t). We denote by ξ (respectively τ) the covariable of s (respectively t). We
have

F(t,s) (f(r, s, t)) (r, ξ, τ) =
1

4π2

∫
R

∫
R
f(r, s, t)e−itτe−isξdtds (2.5)

and we set F = F(t,s) in this section. A pseudodifferential operator P (r, s, t, ∂s, ∂t) with symbol p(r, s, t, ξ, τ) is
defined by

P (r, s, t, ∂s, ∂t)u(r, s, t) = F−1
(t,s)

(
p(r, s, t, ξ, τ)û(r, ξ, τ)

)
, (2.6)

that is
P (r, s, t, ∂s, ∂t)u(r, s, t) =

∫
R

∫
R
p(r, s, t, ξ, τ)û(r, ξ, τ)eitτeisξdτdξ, (2.7)

where û = Fu.
The inhomogeneous pseudodifferential operator calculus that we use in the paper was introduced in [33] and

applied e.g. in [3] to the construction of artificial boundary conditions. For the sake of conciseness, we only give
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the useful material needed here. Let m be a real number and O an open subset of R2. Then (see [38]), the
symbol class Sm(O × R+) denotes the linear space of C∞ functions a(r, s, t, ξ, τ) in O × R+ × R2 such that for
each K ⊆ O and for all integer indices k, αr, αs, ` and β, there exists a constant Ck,αr,αs,`,β(K) such that

|∂kt ∂αr
r ∂αs

s ∂`τ∂
β
ξ a(r, s, t, ξ, τ)| 6 Ck,αr,αs,`,β(K)(1 + τ2 + ξ4)m−β−2,

for all (r, s) ∈ K, t ∈ R+ and (ξ, τ) ∈ R2.
Let us set E = (1, 2). The smoothness of a pseudodifferential operator can be deduced from the homogeneity

of its symbol with respect to (ξ2, τ). Therefore, ξ2 and τ are considered as homogeneous [3, 33]. This leads to
the following definition.

Definition 2.1. A function f(r, s, t, ξ, τ) is said to be E-quasi homogeneous of order m if and only if for all
µ > 0 and for large (ξ2, τ) we have

f(r, s, t, µξ, µ2τ) = µm f(r, s, t, ξ, τ). (2.8)

The introduction of this last class of symbols is particularly well-adapted to studying heat-like and
Schrödinger-like equations. For example, the operator with symbol λ =

√
−τ − ξ2 is first-order E-quasi ho-

mogeneous (with respect to (ξ2, τ)).
From now on, a E-quasi homogeneous pseudodifferential operator of order m ∈ Z, denoted by A ∈ OPSmE ,

is defined as an operator with a total symbol a(r, s, t, ξ, τ) admitting an asymptotic expansion in E-quasi
homogeneous symbols

a(r, s, t, ξ, τ) ∼
+∞∑
j=0

am−j(r, s, t, ξ, τ), (2.9)

where the functions am−j , j ∈ N, are E-quasi homogeneous of degree m− j. The meaning of ∼ in (2.9) is

∀m̃ ∈ N, a−
m̃∑
j=0

pm−j ∈ Sm−(m̃+1)
E . (2.10)

A symbol a satisfying the property (2.9) is denoted by a ∈ SmE and the associated operators A = Op(a) by
A ∈ OPSmE . Finally, we introduce OPS−∞E as the intersection between all the classes OPSmE , m ∈ Z. For P and
Q two pseudodifferential operators with respective symbols p and q, and m ∈ Z, we set

P = Q mod OPSmE (2.11)

or equivalently
p = q mod SmE (2.12)

if the difference between the two symbols fulfills: p−q ∈ SmE . Finally, the composition formula for two operators
A and B with respective symbols σ(A) and σ(B) writes

σ(AB) =
+∞∑
|α|=0

(−i)|α|

α!
∂α(ξ,τ)σ(A) ∂α(t,s)σ(B). (2.13)

Furthermore, if σ(A) ∈ SmE and σ(B) ∈ SnE , then we have σ(AB) ∈ Sm+n
E . In (2.13), α is a multi-index

(α1, α2), and the classical notations for multi-indices is used. In particular, the length |α| is defined by: |α| =
α1 + α2. The factorial is defined by: α! = α1!α2!, and we introduce the derivative according to (ξ, τ): ∂α(ξ,τ)λ =
∂α1
ξ ∂α2

τ λ(r, s, t, ξ, τ). This class of operators allows to define an associated symbolic calculus [3, 33]. Finally, we
have: σ(∂s) = iξ and σ(∂2

s ) = −ξ2.
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Figure 1. Two examples of admissible decomposition.

3. Asymptotic estimates of the contraction factor for the SWR algorithm

This section is first devoted to the convergence of the Classical Schwarz Waveform Relaxation method applied
to the LSE in imaginary-time{

i∂tu+4u− V (x, y)u = 0, (x, y) ∈ R2, t > 0,

u(x, y, 0) = 0, (x, y) ∈ R2,
(3.1)

with u0 ∈ L2(R2). We now introduce (i) a fictitious domain Ω with smooth boundary Γ , and (ii) a change of
variables x(r, s), y(r, s) parametrizing Γ , where r and s are respectively the radial coordinate and the curvilinear
abscissa. We then rewrite (3.1) in generalized coordinates (r, s), that is i∂tu+ ∂2

ru+
1
r
∂ru+

1
r2
∂2
su− Vr(r, s)u = 0, (r, s) ∈ R+ × R+, t > 0,

u(r, s, 0) = u0

(
x(r, s), y(r, s)

)
, (r, s) ∈ R+ × R.

We denote by Pr the Schrödinger operator written in (r, s)-coordinates. Notice that the SWR method reads
the same as (1.5), by replacing P by Pr. This will also be explicitly stated in the following sections. Following
a similar approach as in the one-dimensional case [12], we will first factorize the Schrödinger operator in term
of outgoing and incoming wave operators at the subdomains interfaces. We limit the analysis to two domains
with smooth boundary, and defined as follows: 0 ∈ Ω+

ε and Ω−ε ∪ Ω+
ε = R2, and we assume that Γ+

ε := ∂Ω+
ε

and Γ−ε := ∂Ω−ε are parallel at distance ε > 0, as represented in Figure 1. The domain Ω+
ε can for instance be

chosen as a disc, D(0, R0 + ε/2), of radius R0 + ε/2 and center 0 ∈ R2, and Ω−ε as R2 −D(0, R0 − ε/2). This
assumption allows for a simplification of the SWR algorithm and its mathematical analysis. Let us denote by
κ±ε (s) the local curvature at Γ±ε . Notice that κ+

ε and κ−ε have opposite signs, and by construction κ+
ε > 0 and

κ−ε = −
(
1+εκ+

ε

)−1
κ+
ε < 0. As in [3], we introduce the scaling factor h±ε (r, s) = 1∓rκ±ε (s) and we denote by Γ±ε,r,

the parallel surface to Γ±ε at distance r ∈ [0, ε/2]. The curvature of Γ+
ε,r is given by κ+

ε,r(r, s) = (h+
ε (r, s))−1κ+

ε (s).
Similarly, κ−ε,r(r, s) = −(1 + (ε− 2r)κ+

ε,r)
−1κ+

ε,r(r, s) since the distance between Γ+
ε,r and Γ−ε,r is equal to ε− 2r.

Finally, we denote by sε the length of Γ+
ε , that is sε =

∫
Γ+

ε
ds, so that the curvilinear abscissa varies between 0

and sε. In the case of circular domains Ω±ε = D(0, R0± ε/2), the local curvature is s-independent and satisfies:
κ±ε,r = ±1/(R0±ε/2∓r) and sε = 2π(R0+ε/2). Due to the complexity of the notations, we propose the following
simplification. We first denote by κ0(s) the curvature at Γ+

ε=0, and by h0 the scaling factor h0(r, s) = 1+rκ0(s).
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We deduce from the above simplification, that

κ±ε (s) = ±h0

(
± ε/2, s

)−1
κ0(s), κ±ε,r(s) = ±h0

(
± (ε/2− r), s

)−1
κ0(s) (3.2)

and

h±ε (r, s) = h0

(
± (ε/2− r), s

)
= 1± (ε/2− r)κ0(s). (3.3)

We now present some important results about the factorization of operators, and symbolical expansions for
the Dirichlet-to-Neumann map applied to the Schrödinger operator in imaginary-time. These computations are
required to derive accurate asymptotic estimates of the CSWR contraction factor.

3.1. Nirenberg factorization and symbolic computation for the imaginary-time linear
Schrödinger operator

In (r, s, t) local coordinates at the subdomain interface, the Schrödinger operator formally reads in imaginary-
time

Pr := −∂t + ∂2
r + κ∂r + h−1∂s

(
h−1∂s

)
− Vr(r). (3.4)

In the definition of the operator Pr, the notations κ(r, s) and h(r, s) stand for κ±ε,r(s) and h±ε (r, s), respectively,
and have to be specified depending on the considered subdomain/framework. At the interfaces, the operator Pr
can be formally factorized as follows.

Proposition 3.1. The operators Pr satisfies the following Nirenberg-like factorization

Pr =
(
∂r + iΛ+

r (r, s, t, ∂s, ∂t)
)(
∂r + iΛ−r (r, s, t, ∂s, ∂t)

)
+R,

where R ∈ OPS−∞ is a smoothing operator. The operators Λ±r are pseudodifferential operators of order 1 (in
time). Furthermore, their total symbols λ±r := σ(Λ±r ) can be expanded in S1

S as

λ±r ∼
+∞∑
j=0

λ±r,1−j , (3.5)

where λ±r,1−j are symbols corresponding to operators of order 1− j. To simplify the notations, we omit here and
hereafter the index r in the latter symbols (i.e. λ±1−j stands for λ±r,1−j).

The explicit expression of the symbols λ±r,1−j will be a keystone for establishing the convergence rate of the SWR
method. We refer to [6] for the proof of this proposition in real time, and where a detailed construction of Λ±r is
iteratively established. In imaginary time, the proof is basically identical by replacing τ by iτ . Let us remark that
the definition of the operator Λ±r is subdomain-dependent through κ and h. Practically, the construction of Λ±r
is obtained through the computation of a finite number of elementary inhomogeneous symbols. For instance,
one gets the following proposition, deduced from [6].

Proposition 3.2. Let us fix the principal symbol to

λ+
1 = −

√
−iτ − h−2ξ2 − Vr. (3.6)

Then, the next symbol is given by

λ+
0 =−

i

2
κ+

i

4
(∂rh−2)ξ2

−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr

−
i

4
h−2(∂sh−2)ξ3√

−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr
3· (3.7)
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Any higher order elementary operators can also be constructed. In this formalism, one gets in each subdomain

λ−r = −λ+
r − iκ.

For a practical evaluation of the contraction factor, we have to evaluate the symbols at r = 0. Using the
simplified notations defined above, we identify h(0, s) on Γ±ε with h±ε (0, s) = 1 ± εκ0(s)/2 and κ(0, s) with
κ±ε (s) or equivalently ±h−1(0, s)κ0(s). Therefore, we deduce from (3.2) on Γ±ε,r, that we have at r = 0

κ(0, s) = ±
(
1± εκ0(s)/2

)−1
κ0(s).

Then, a direct computation shows that

h(0, s) = 1± εκ0(s)/2, ∂rh
−2(0, s) = ±

2κ0(s)(
1± εκ0(s)/2

)3,
∂sh
−2(0, s) = ∓

ε∂sκ0(s)(
1± εκ0(s)/2

)3· (3.8)

Let us note that, for ε = 0 (no overlap), we have κ(0, s) = ±κ0(s) on Γ±ε , h(0, s) = 1, ∂rh−2(0, s) = ±2κ0(s),
and ∂sh

−2(0, s) = 0.
We now introduce the set of large enough frequencies τ (τ ∈ R and |τ | � 1), and which is denoted R∞. In the

following, suprema of contraction factors of the SWR algorithm will be restricted to this set. The fact that we
consider |τ | large is a technical restriction coming from the use of Taylor’s expansions, which will later be useful
to derive simple expressions of the convergence rate of the SWR method. In fact, it is possible to partially relax
this restriction by using Padé’s approximants [6]. Notice however that, and as in the one-dimensional case, the
contraction factors analytically derived below are good approximations of the numerical ones, see Section 4 as
well [12].

The following symbols are defined from [6], and by replacing τ by iτ .

Proposition 3.3. At r = 0, for ε = 0 and for j > 1, the symbols λ+
1−j, denoted by λ̃+

1−j at Γ±0 , are given by

λ̃+
1 = −

√
−iτ − ξ2 − V0,

λ̃+
0 = ∓

i

2
κ0 ±

i

2
κ0ξ

2

−iτ − ξ2 − V0
,

λ̃+
−1 = −

1
8

κ2
0√

−iτ − ξ2 − V0

∓
1
2

∂sκ0ξ

−iτ − ξ2 − V0
−

3
4

κ2
0ξ

2√
−iτ − ξ2 − V0

3,

∓
1
2

∂sκ0ξ
3

(−iτ − ξ2 − V0)2
−

5
8

κ2
0ξ

4√
−iτ − ξ2 − V0

5·

(3.9)

Proof. Formulae (3.9) are obtained from [6] where we have replaced τ by iτ . �

From [6], we also have in the high frequency time regime.

Proposition 3.4. At r = 0, for ε = 0 and τ ∈ R∞, the symbols λ̃+
1−j are approximated up to a O(τ−2) by

(λ̃+
1−j)(−1) given at Γ±0 by (

λ̃+
1

)
(−1)

= e−iπ/4
√
−τ + e−iπ/4

(
ξ2

2
+
V0

2

)
1
√
−τ

,(
λ̃+

0

)
(−1)

= ∓
i

2
κ0 ±

1
2
κ0ξ

2

τ
,(

λ̃+
−1

)
(−1)

= −
e−iπ/4

8
κ2

0√
−τ
∓
i

2
∂sκ0ξ

τ
,(

λ̃+
−2

)
(−1)

= −
1
4
∂nV0

τ
∓

1
8
∂2
sκ0

τ
∓

1
8
κ3

0

τ
·

(3.10)
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However, these results become incorrect for ε > 0, that is when the subdomains overlap, and further com-
putations are necessary. In particular, an explicit evaluation of λ+

−1 and λ+
−2 is necessary. The following result

generalizes Proposition 3.4 to the case ε > 0.

Proposition 3.5. For τ ∈ R∞, the symbols λ̃+
1−j are approximated at Γ±ε , up to a O(τ−2), by(

λ̃+
1

)
(−1)

= e−iπ/4
√
−τ + e−iπ/4

(h−2ξ2

2
+
Vr

2

) 1
√
−τ

,(
λ̃+

0

)
(−1)

= −
i

2
κ+

1
2
κh−2ξ2

τ
,(

λ̃+
−1

)
(−1)

= −e−iπ/4
1
4
∂rκ√
−τ
− e−iπ/4

1
4
κ2

√
−τ
− i∂sκ

h−2ξ

2τ
,(

λ̃+
−2

)
(−1)

= −
1
4
∂nVr

τ
−

1
8
∂2
sκ

τ
−

1
8
κ3

τ
,

(3.11)

where κ, ∂rκ, ∂sκ, and ∂2
sκ are defined in (A.2)−(A.5). For r = 0, the symbols (3.11) read as follows(

λ̃+
1

)
(−1)

= e−iπ/4
√
−τ + e−iπ/4

((1± εκ0/2
)−2

ξ2

2
+
Vr

2

) 1
√
−τ

,(
λ̃+

0

)
(−1)

= ∓
i

2(1± εκ0/2)
κ0 ±

1
2(1± εκ0/2)2

κ0ξ
2

τ
,(

λ̃+
−1

)
(−1)

= −
e−iπ/4

8
κ2

0(
1± εκ0/2

)2√−τ ∓ i

2
∂sκ0ξ(

1± εκ0/2
)2
τ
,(

λ̃+
−2

)
(−1)

= ∓
1
4
∂rVr

τ
∓

1
8
∂2
sκ0

τ
∓

1
8

κ3
0

τ
(
1± εκ0/2

)3 ∓ 1
16
ε
(
κ0∂

2
sκ

2
0 − (∂sκ0)2

)
τ
(
1± εκ0/2

)3 ·

(3.12)

The proof which is rather technical is presented in Appendix.
We remark that, for ε = 0, the approximate symbols coincide with the ones given in Proposition (3.4), since

for ε = 0 and on Γ+
0 ,

κ(0, s) = κ0(s), ∂sκ(0, s) = ∂sκ0(s), ∂2
sκ(0, s) = ∂2

sκ0(s).

From these preliminary symbolic computations, it is possible to analyze the CSWR method as a fixed point
method and to accurately determine its contraction factor.

3.2. Asymptotic estimates of the contraction factor for the CSWR algorithm

Assuming that ψ∓,(0) are two given functions, the CSWR algorithm in cartesian coordinates, at iteration
k > 1 reads as follows 

Pψ±,(k) = 0, in Ω±ε × R∗+,

ψ±,(k)(·, 0) = ψ±0 , in Ω±ε ,

ψ±,(k) = ψ∓,(k−1), in Γ±ε × R∗+.

(3.13)

For convenience, the CSWR algorithm will be analyzed in the system of coordinates (r, s), that is denoting
φ(r, s, t) := ψ

(
x(r, s), y(r, s), t

)
and φ0(r, s) = ψ0(x(r, s), y(r, s)), we get:

Prφ
±,(k) = 0, in Ω±ε × R∗+,

φ±,(k)(·, 0) = φ±0 , in Ω±ε ,

φ±,(k)
(
± ε/2, s0, ·

)
= φ∓,(k−1)

(
± ε/2, s0, ·

)
in R∗+.

(3.14)
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We benefit from the fact that Γ+
ε and Γ−ε are parallel at distance ε to fix the curvilinear abscissa, s0 ∈ [0, sε] in

the transmission conditions at (±ε/2, s0). Working with the error equations, i.e. eC,±Pr
(initially null) corresponds

to φ± for CSWR, we have by linearity in Ω±εPre
C,±
Pr

= 0 in Ω±ε × R∗+,

eC,±Pr

(
± ε/2, s0, t

)
= h±(ε,s0)(t) at {±ε/2, s0} × R∗+,

(3.15)

where Pr is given by (3.4). We use the index Pr in eC,±Pr
to specify the operator to which the error is associated

to, and the exponent C stands for the CSWR algorithm. In the following, some other approximate errors are
also used when the potential Vr is variable. The time-dependent functions h±(ε,s0) are now assumed to be given.
To lighten the notations h±(ε,s0) also denotes the extension of h±(ε,s0) to all R, and which is null on R−. As
proposed in [12,25], we want to determine the contraction factor CCPr,ε

of GC2
Pr

(setting GC2
Pr

:= GCPr
◦GCPr

), where
the mapping GCPr

, with s0 ∈ [0, sε] and ε ∈ R∗+, is defined by

GCPr
: 〈h+

(ε,s0)
, h−(ε,s0)〉 7→

〈
eC,−Pr

(
ε/2, s0, ·

)
, eC,+Pr

(
− ε/2, s0, ·

)〉
. (3.16)

To prove that GC2
Pr

is a contraction, we can exactly solve (3.15) in (r, s, ξ, τ)-coordinates, only in very specific
configurations, such as constant Vr and in the one-dimensional configuration [12]. For Vr 6= 0 (in fact, for a non
constant potential Vr), we estimate the rate of convergence through approximations. Let us consider the general
case with a potential Vr. According to [25], for a fixed time T , GCPr

is defined in H3/4
0 (0, T ) = {φ ∈ H3/4(0, T ) :

φ(0, 0, 0) = 0}. Let us characterize the part of the error eC,+Pr
(respectively eC,−Pr

) which is a traveling wave in

the overlapping region related to Ω+
ε (respectively Ω−ε ) domain R2/Ω

+

ε (respectively R2/Ω
−
ε ). Therefore, we

consider the system, for ε > 0 and s0 ∈ [0, sε], (∂r + iΛ∓r )eC,±Λr
= 0, in Ω±ε ,

eC,±Λr
(·, ·, t) = h±(ε,s0)(t) at {±ε/2, s0} × R,

(3.17)

and eC,+Λr
(respectively eC,−Λr

) must be understood as the outgoing (respectively incoming) part of eC,+Pr
(respec-

tively eC,−Pr
) through the boundary. As a consequence, the computation of eC,±Λr

provides an approximation of
eC,±Pr

which is solution to Pre
C,±
Pr

= 0, and we approximate CCPr,ε
which is the contraction factor of GC2

Pr
by

CCΛr,ε
the contraction factor of GC2

Λr
, that is: CCPr,ε

≈ CCΛr,ε
. For Vr = 0, the solution to the first equation of

system (3.17) can be made explicit but only approximate through the Fourier transforms, Ft,s and Ft along the
(t, s) and t-directions (meaning at the symbol level). We define ê± = Fs,t(e±) and ĥ±(ε,s0) = F(t,s)(h±(ε,s0)). The
solution to system (3.17) is given in the (r, s, ξ, τ)-space by

êC,±Λr
(r, s, ξ, τ) = ĥ±(ε,s0)(τ) exp

(
i

∫ r

±ε/2
λ∓r (r′, s, ξ, τ)dr′

)
.

In addition, since we need to use the symbols for the imaginary-time equation, we obtain the correct symbols
for (3.4) through the symbols defined in [6] for the Schrödinger equation in real time, but with the following
modifications: t→ it and τ → iτ . If we define

GCΛr
: 〈h+

(ε,s0)
, h−(ε,s0)〉 7→

〈
eC,−Λr

(
ε/2, s0, ·

)
, eC,+Λr

(
− ε/2, s0, ·

)〉
, (3.18)
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then
Ft
(
GC2
Λr
〈h+

(ε,s0)
(τ), h−(ε,s0)(τ)〉

)
=
〈
F−1
ξ

(
exp

(
i

∫ ε/2

−ε/2

(
λ−(r′, s′ξ, τ)− λ+(r′, s, ξ, τ)

)
dr′
))
|s=s0

ĥ+
(ε,s0)

(τ),

F−1
ξ

(
exp

(
i

∫ ε/2

−ε/2

(
λ−(r′, s′, ξ, τ)− λ+(r′, s′, ξ, τ)

)
dr′
))
|s=s0

ĥ−(ε,s0)(τ)
〉

= F−1
ξ

(
exp

(∫ ε/2

−ε/2
κ(r′, s)− 2iλ+(r′, s, ξ, τ)dr′

))
|s=s0

〈ĥ+
(ε,s0)

(τ), ĥ−(ε,s0)(τ)〉.

(3.19)

We determine the contraction factor as a function of λ+
r :

Ft(eC,±Λr
)(r, s, τ) = ĥ±(ε,s0)(τ)F−1

ξ

(
exp

(
i

∫ r

±ε/2
λ±r (r′, s, ξ, τ)dr′

))
.

Then, we write that

Ft(eC,±Λr
)
(
∓ ε/2, s0, τ

)
= Ft(h±(ε,s0)(τ))F−1

ξ

(
exp

(
i

∫ ∓ε/2
±ε/2

λ±r (r′, s, ξ, τ)dr′
))
|s=s0

,

i.e.
Ft
〈
GC2
Λr

(h+
(ε/2,s0)

, h−(ε,s0))
〉
(τ)

=
〈
F−1
ξ

(
exp

(
−i
∫ ε/2

−ε/2

(
λ+
r (r′, s, ξ, τ)− λ−r (r′, s, ξ, τ)

)
dr′
))

|s=s0

Ft(h−(ε,s0))(τ),

F−1
ξ

(
exp

(
−i
∫ −ε/2
ε/2

(
λ+
r (r′, s, ξ, τ)− λ−r (r′, s, ξ, τ)

)
dr′
))

|s=s0

Ft(h+
(ε,s0)

)(τ)
〉
.

(3.20)

In addition, one gets

Ft
〈
GC2
Λr

(h+
(ε,s0)

, h−(ε,s0))
〉
(τ)

= F−1
ξ

(
exp

(
−i
∫ ε/2

−ε/2

(
λ+
r (r′, s, ξ, τ)− λ−r (r′, s, ξ, τ)

)
dr′
))

|s=s0
×
〈
Ft(h+

(ε,s0)
)(τ),Ft(h−(ε,s0))(τ)

〉
= F−1

ξ

(
exp

(∫ ε/2

−ε/2

(
κ(r′, s)− 2iλ+

r (r′, s, ξ, τ)
)
dr′
))
|s=s0

×
〈
Ft(h+

(ε,s0)
)(τ),Ft(h−(ε,s0))(τ)

〉
.

Let us now introduce

CCΛr,ε = sup
s0∈[0,sε]

sup
τ∈R

∣∣F−1
ξ (LCΛr,ε)|s=s0

∣∣,
where

LCΛr,ε(ξ, τ) = exp

(
−i
∫ ε/2

−ε/2

(
λ+
r (r′, s, ξ, τ)− λ−r (r′, s, ξ, τ)

)
dr′
)
.
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To evaluate this last term, we asymptotically expand λ±r . The motivation is to simplify the expression of LCΛr,ε
,

in particular getting ride of the inverse Fourier transforms in ξ, and to have explicit expressions to work with.
For τ ∈ R∞, and using the asymptotic expansion for LSE in imaginary-time, we deduce that, following for
instance [25] (and for a constant potential Vr), the contraction factors CCΛr,ε

of GC2
Λr

and CCPr,ε
of GC2

Pr
are such

that

CCPr,ε ≈ C
C
Λr,ε = sup

s0∈[0,sε]

sup
τ∈R

∣∣∣F−1
ξ

(
LCΛr,ε(s, ξ, τ)

)
|s=s0

∣∣∣,
where LCs,Λr,ε

(ξ, τ) can only be approximately computed, as detailed below. We can then expect a fast conver-
gence of the DDM at high frequency and/or for a large enough overlapping region of size ε. Note that the above
approach is valid at any frequency, although the convergence will be naturally much slower for low-frequency
waves. Without overlap (ε = 0), as in the one-dimensional case, the CSWR algorithm diverges. However to get
explicit contraction, factors additional approximations are necessary. More specifically, the computation of the
contraction factor CCΛr,ε

of the associated mapping GC2
Λr

requires the knowledge of the total symbols λ±r . Unlike
the one-dimensional case, even when Vr is constant, this is generally not possible on non-circular domains.
However, we have access to some asymptotic expansions {λ±1−j}

+∞
j=0 of λ±r . To get such an estimate, we first

expand λ±r asymptotically as the sum of inhomogeneous symbols, where, again for notation convenience, we
have omitted the index r in the RHS (λ±1−j stands for λ±r,1−j):

λ±r ∼
±∞∑
j=0

λ±1−j ,

and then we truncate up to the (p+ 1) first terms

λ±r ∼ λ±,pr =
p∑
j=0

λ±1−j

as proposed in [6]. This means that the approximate convergence rate is

CCPr,ε ≈ C
C
Λr,ε ≈ C

C,p
ε := sup

s0∈[0,sε]

sup
τ∈R

∣∣∣F−1
ξ

(
LC,pε (s, ξ, τ)

)
|s=s0

∣∣∣, (3.21)

with

LC,pε (s, ξ, τ) = exp

(
i

∫ ε/2

−ε/2

(
λ−,pr (r′, s, ξ, τ)− λ+,p

r (r′, s, ξ, τ)
)
dr′
)
. (3.22)

Let us recall now that if one chooses the principal symbol

λ±1 = ∓
√
−iτ + h−2ξ2 − Vr,

then one gets for p > 0:

λ−,pr = −λ+,p
r − iκ, (3.23)

implying that (3.22) becomes

LC,pε (s, ξ, τ) = exp

(∫ ε/2

−ε/2
κ(r′s)− 2iλ+,p

r (r′, s, ξ, τ)dr′
)
. (3.24)
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A third approximation step consists in developing each symbol λ±1−j , j = 0, . . . , p, according to the small
parameter 1/|τ |, which means in the high time-frequency regime. More precisely, for each symbol λ±1−j , we
consider its Taylor’s expansion (λ±1−j)1−p up to 1/|τ |(p−1)

λ±,pr ∼ λ̃±,pr =
p∑
j=0

(λ̃±1−j)(1−p). (3.25)

We then define

L̃C,pε (s, ξ, τ) = exp

(∫ ε/2

−ε/2
κ(r′, s)− 2iλ̃+,p

r (r′, s, ξ, τ)dr′
)

and the associated high-frequency asymptotic convergence rate C̃C,pε such that

CCPr,ε ≈ C
C
Λr,ε ≈ C̃

C,p
ε := sup

s0∈[0,sε]

sup
τ∈R∞

∣∣∣F−1
(
L̃C,pε (s, ξ, τ)

)
|s=s0

∣∣∣. (3.26)

Let us set

Lε,1−j(s, ξ, τ) = exp

(∫ ε/2

−ε/2
κ(r′, s)− 2iλ+

1−j(r
′, s, ξ, τ)dr′

)
,

L̃pε,1−j(s, ξ, τ) = exp

(∫ ε/2

−ε/2
κ(r′, s)− 2i(λ̃+

1−j)(1−p)(r
′, s, ξ, τ)dr′

)∣∣∣∣∣.
(3.27)

Then, we have

LC,pε =
p∏
j=0

Lε,1−j and L̃C,pε =
p∏
j=0

L̃pε,1−j . (3.28)

This means that the elementary contribution of each inhomogeneous symbol and its approximate Taylorized
symbol to the convergence rate can be studied separately, the global contribution being obtained by a simple
multiplication. Based on these remarks, we now state some estimates of the rate of convergence of the CSWR
algorithm for a general potential Vr. We can then prove the following result.

Theorem 3.6. Let Vr be a smooth spatial-dependent potential and let us assume that the symbols are defined
as in Proposition 3.2. An asymptotic estimate of the contraction factor of the mapping GC2

Pr
defined by (3.16),

for the CSWR algorithm (3.41), is given by

CCPr,ε ≈ C
C,2
ε = sup

s0∈[0,sε]

sup
τ∈R

∣∣∣F−1
ξ

(
LC,2ε (s, ξ, τ)

)
|s=s0

∣∣∣, (3.29)

where

LCε (s, ξ, τ) ≈ LC,2ε (s, ξ, τ) =
2∏
j=0

Lε,1−j(s, ξ, τ), (3.30)

and Lε,1−j are given by (3.37), for j = 0, 1, 2 and ε > 0. In addition for τ ∈ R∞, one also gets the following
approximation

CCPr,ε ≈ C̃
C,2
ε = sup

s0∈[0,sε]

sup
τ∈R∞

∣∣∣F−1
ξ

(
L̃C,2ε (s, ξ, τ)

)
|s=s0

∣∣∣ (3.31)

where

LCε (s, ξ, τ) ≈ L̃C,2ε (s, ξ, τ) =
2∏
j=0

L̃pε,1−j(s, ξ, τ), (3.32)
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where L̃2
ε,1−j are given by (3.38), for j = 0, 1, 2, 3. More specifically, we get

CCPr,ε = sup
s0∈[0,sε]

sup
τ∈R∞

{
|τ |1/4

1
√

2ε
exp

(
−
s20
8ε

√
2|τ |

)
× exp

(
−ε
√

2|τ |+ ε
κ2

0(s0)
2

1√
2|τ |

)
exp

(
−

1√
2|τ |

∫ ε/2

−ε/2
Vr(r′, s0)dr′

)}
.

(3.33)

In the case of polar symmetry (radial solution and circular interface), the approximate contraction factor is
given by

CCPr,ε
≈ supτ∈R∞

{
exp

(
−ε
√

2|τ |+ ε
κ2

0

2
1√
2|τ |

)
exp

(
−

1√
2|τ |

∫ ε/2
−ε/2 Vr(r

′)dr′
)}

, (3.34)

where κ0 is a constant, typically 1/R0, if R0 is the disc radius.

Notice that when the potential is positive, it confines the solution into the domain (standard situation for the
GPE), then the convergence rate is improved. Again, in the non-overlapping case, the iterative method diverges.
Remark that these contraction factors are consistent with the ones found in [12] in the one-dimensional case
(take κ0 = 0). Recall also that the approximate contraction factors are computed in a reduced frequency set R∞.
Despite this fact, we see in Section 4 and already noticed in [12] that they are in remarkable agreement with
the contraction factors obtained from the full numerical experiments.

Proof. We first have

êC,±Λr
(r, s, ξ, τ) = ĥ±(ε,s0)(τ) exp

(
− i
∫ r

±ε/2
λ∓r (r′, s, ξ, τ)dr′

)
.

This implies that

Ft
(
GCPr
◦ GCPr

〈h+
(ε,s0)

, h−(ε,s0)〉
)
≈ exp

(
i

∫ ε/2

−ε/2

(
λ−r (r′, s′, ξ, τ)− λ+

r (r′, s′, ξ, τ)
)
dr′
)
〈ĥ+

(ε,s0)
, ĥ−(ε,s0)〉.

By using Proposition 3.2 for the imaginary-time equation, one gets

λ+
1 (r, s, ξ, τ) = −

√
−iτ − h−2ξ2 − Vr,

λ+
0 (r, s, ξ, τ) = −

i

2
κ(r′, s) +

i

4
(∂rh−2)ξ2

−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr
−
i

4
h−2(∂sh−2)ξ3√

−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr
3

and λ−r = −λ+
r − iκ. Since κ ∈ S0

S , then we have: λ−0 = −λ+
0 − iκ, and λ−1−p = −λ+

1−p for p ∈ N−{1}. Therefore,
a direct computation leads, for p ∈ N− {1}, to

Lε,p(s, ξ, τ) = exp

(∫ ε/2

−ε/2

(
− 2iλ+

1−p(r
′, s, ξ, τ)

)
dr′
)

(3.35)

and

Lε,1(s, ξ, τ) = exp

(∫ ε/2

−ε/2

(
κ(r′, s)− 2iλ+

0 (r′, s, ξ, τ)
)
dr′
)
. (3.36)
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We note now that for r ∈ [−ε/2, 0] then κ(r, s) = −
(
1 + (r − ε/2)κ0(s)

)−1
κ0(s) and for r ∈ [0, ε/2], κ(r, s) =(

1 + (ε/2− r
)
κ0(s))−1κ0(s). Based on this remark, we can estimate

exp

(∫ ε/2

−ε/2
κ(r′, s)dr′

)

(which is 1 for a flat boundary since κ = 0). For a curved boundary, we obtain

exp

(∫ ε/2

−ε/2
κ(r′, s)dr′

)

= exp

(
−
∫ 0

−ε/2

(
1 + (r′ − ε/2)κ0(s)

)−1
κ0(s)dr′

)

× exp

(∫ ε/2

0

(
1 + (ε/2− r′)κ0(s)

)−1
κ0(s)dr′

)

= exp

(
−εκ2

0(s)
∫ ε/2

0

1(
1 + (ε/2− r′)κ0(s)

)(
1− (ε/2 + r′)κ0(s)

)) dr′.

For ε small enough, we have

exp

(
−εκ2

0(s)
∫ ε/2

0

1(
1 + (ε/2− r′)κ0(s)

)(
1− (ε/2 + r′)κ0(s)

)) dr′ ≈ exp

(
−

ε2κ2
0(s)

2
(
1− ε2κ2

0(s)/4
))

and we deduce that in that case

exp

(∫ ε/2

−ε/2
κ(r′, s)dr′

)
< 1.

However, interestingly this term does not have any impact on the SWR convergence, since one gets

κ− 2iλ+
0 =

1
2

(∂rh−2)ξ2

−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr
−

1
2

h−2(∂sh−2)ξ3√
−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr

2,

i.e. the κ-term disappears from κ−2iλ+
r . Now let us analyze the contribution of the symbols to the convergence

rate. According to (3.9), we have for instance

Lε,1(s, ξ, τ) = exp

(∫ ε/2

−ε/2
2i
√
−iτ − h−2ξ2 + V

))
dr′
)
,

Lε,0(s, ξ, τ) = exp

(
−

1
2

∫ ε/2

−ε/2

(∂rh−2)ξ2

−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr
dr′
)

× exp

(
−

1
2

∫ ε/2

−ε/2

h−2(∂sh−2)ξ3√
−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr

2dr′
)
·

(3.37)

Due to the complexity of the following coefficients, they are not fully reported. We however provide approxima-
tions that lead to precise estimates of their contributions in the SWR convergence. Formulae (3.37) are valid
at any frequency. For large frequencies, expressions of the contraction factor can be simplified by using (3.11)
in (3.35) and (3.36). In order to lighten the analysis while keeping the main feature of each of these terms,
we assume that ε is small (which is a reasonable assumption from the practical point of view) to first neglect
the O(ε3)-terms, then the O(ε2)-terms. For τ ∈ R∞ and ε � 1, this means that we consider (3.12) in (3.35)
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and (3.36). Notice that, for r ∈ [0, ε/2], we have: κ(r, s) =
(
1 + (ε/2 − r)κ0(s)

)−1
κ0(s) and, for r ∈ [−ε/2, 0],

κ(r, s) = −
(
1− (ε/2− r)κ0(s)

)−1
κ0(s). Some basic algebraic computations lead to

L̃2
ε,1(s, ξ, τ) ≈ exp

(
−2eiπ/4ε

[√
−τ +

(
1 + ε2κ2

0(s)/4
)
ξ2/2

(
1− ε2κ2

0(s)/4
)2])

× exp
(
− eiπ/4

∫ ε/2

−ε/2
Vr(r′, s0)dr′/

√
−τ
)

≈ exp
(
− eiπ/4ε

[
2
√
−τ + ξ2/

√
−τ
])

exp

(
−eiπ/4

∫ ε/2

−ε/2
Vr(r′, s0)dr′/

√
−τ

)
,

L̃2
ε,0(s, ξ, τ) ≈ exp

(
−iε2κ2

0(s)ξ2/
[
τ(1− ε2κ2

0(s)/4)2
])
≈ 1,

L̃2
ε,−1(s, ξ, τ) ≈ exp

(
2eiπ/4ε

[
κ2

0(s)(1 + ε2κ2
0(s)/4)/

(
8
√
−τ(1− ε2κ0(s)/4)2

)])
+

× exp
(
ε2
[(
− ξ∂sκ0(s) + (∂sκ2

0(s)− 2κ2
0(s))(1 + ε2κ2

0(s)/4)/4
)
/
(
2τ(1− ε2κ2

0(s)/4)2
)])

≈ exp
(
εeiπ/4κ2

0(s)/4
√
−τ
)
,

L̃2
ε,−2(s, ξ, τ) ≈ 1.

(3.38)

Then, one gets

LC,2ε =
2∏
j=0

Lε,1−j and L̃C,2ε =
2∏
j=0

L̃2
ε,1−j (3.39)

and

C̃C,2ε := sup
s0∈[0,sε]

sup
τ∈R∞

∣∣∣F−1
ξ

(
L̃C,2ε (s, ξ, τ)

)
|s=s0

∣∣∣. (3.40)

Now, we recall that κ is domain dependent (positive in Ω+
ε and negative in Ω−ε ). To be more explicit about the

convergence rate, we recall that for α ∈ C∗

F−1
ξ

(
exp

(
− αξ2

))
|s=s0

=
1
√

2α
exp

(
−
s20
4α

)
·

An explicit expression of the contraction factor can be provided by using (3.38) and estimating
F−1
ξ

(∏3
j=0 L̃

2
ε,1−j

)
|s=s0

. We set

αε(τ) = εeiπ/4
1
√
−τ

, βε(τ) = −2eiπ/4ε
[√
−τ −

κ2
0(s)

4
√
−τ

]
− eiπ/4

∫ ε/2
−ε/2 Vr(r

′, s0)dr′
√
−τ

and deduce that, for ε > 0,

F−1
ξ

 3∏
j=0

L̃2
ε,1−j


|s=s0

≈
1√

2αε(τ)
exp(βε(τ)) exp

(
−

s20
4αε(τ)

)

= (−τ)1/4
e−iπ/8
√

2ε
exp

(
−
s20e−iπ/4

4ε
√
−τ

)

× exp
(
−2eiπ/4ε

(√
−τ −

κ2
0(s0)

4
√
−τ
))

exp

−eiπ/4
∫ ε/2
−ε/2 Vr(r

′, s0)dr′
√
−τ

 ·
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From this last calculation, we can write that∣∣∣∣∣F−1
ξ

 3∏
j=0

L̃2
ε,1−j


|s=s0

∣∣∣∣∣ ≈ |τ |1/4 1
√

2ε
exp

(
−
s20
8ε

√
2|τ |

)

× exp

(
−ε
√

2|τ |+ ε
κ2

0(s0)
2

1√
2|τ |

)
exp

(
−

1√
2|τ |

∫ ε/2

−ε/2
Vr(r′, s0)dr′

)
.

We deduce the convergence of the CSWR-DDM for positive ε. Furthermore, the rate of convergence is
estimated by

CCPr,ε
≈ CC,2ε ≈ sups0∈[0,sε] supτ∈R∞

{
|τ |1/4

1
√

2ε
exp

(
−
s20
8ε

√
2|τ |

)
× exp

(
−ε
√

2|τ |+ ε
κ2

0(s0)
2

1√
2|τ |

)
exp

(
−

1√
2|τ |

∫ ε/2

−ε/2
Vr(r′, s0)dr′

)}
.

Finally, in polar symmetry, the term |τ |1/4
1
√

2ε
exp(−

s20
8ε

√
2|τ |) is not present in the contraction factor, as this

contribution actually comes from the inverse Fourier transform in ξ of the coefficient exp
(
− eiπ/4εξ2/

√
−τ
)

in
L̃2
ε,1 (3.38). �

Remark: Asymptotic estimates of the contraction factor for OSWR algorithm. Let us remark that a similar
analysis can be applied to more general SWR, such as the Optimal or quasi-Optimal Schwarz Waveform Re-
laxation (OSWR, qOSWR) method [32], where the transmission conditions are based on absorbing boundary
operators. More specifically, if we assume that φ±,(0)

(
∓ ε/2, s0, ·

)
and φ±0 are some given functions, then the

OSWR algorithm, at iteration k > 1, reads as follows
Prφ

±,(k) = 0, in Ω±ε × R∗+,

φ±,(k)(·, 0) = φ±0 , in Ω±ε ,

(∂r + iΛ±,pr )φ±,(k)
(
± ε/2, s0, ·

)
= (∂r + iΛ±,pr )φ∓,(k−1)

(
± ε/2, s0, ·

)
in R∗+.

(3.41)

The convergence analysis of two-dimensional OSWR for LSE and NLSE uses some similar tools and ideas as
above and will be presented in a forthcoming paper.

3.3. Well-posedness of the CSWR algorithm

We now study the well-posedness of the CSWR algorithm with smooth interface. This well-posedness result
is a consequence of the first trace theorem for parabolic problems [34].

∂tφ
± −4φ± + V (x, y)φ± = 0 in Ω±ε × (0, T )

φ±(·, 0) = φ0 in Ω±ε

φ±(·, ·) = g(·, ·) in Γ±ε × (0, T )

We recall that from [34], for φ0 ∈ H1(Ω), V ∈ C∞0 (Ω), and g ∈ H3/2,3/4(Γ × (0, T )) there exists a unique
solution φ ∈ H2,1(Ω × (0, T )), such that

∂tφ−4φ+ V (x, y)φ = 0 in Ω × (0, T )

φ(·, 0) = φ0 in Ω

φ(·, ·) = g(·, ·) in Γ × (0, T )

with the compatibility condition g(·, 0) = φ0(·), on Γ .
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From this result, we can easily construct a sequence of iterates φ±,(k). Let us first, show the existence of weak
solutions on each subdomain. We again assume that φ0 is in H1(Ω), and g±ε ∈ H3/2,3/4(Γ±ε × (0, T )). From
the above result, there exists a unique solution φ± ∈ H2,1(Ω × (0, T )) with g±ε (·, 0) = φ0 on Γ±ε . In order to
construct a sequence of iterates φ±,(k), it is necessary that on Γ±ε × (0, T ), φ± ∈ H3/2,3/4(Γ±ε × (0, T )). We then
need to show that for φ± ∈ H2,1(Ω±ε × (0, T )), its trace on Γ±ε is in the apropriate space. From the first trace
theorem in [34], φ±,(k−1) ∈ H2,1(Ω±ε ) then on Γ±ε , φ± belongs to H3/2,3/4(Γ±ε × (0, T )) which is exactly the
needed regularity. Hence a sequence of iterates can be constructed. We have then

Theorem 3.7. Assuming that φ0 ∈ H1(Ω), V is smooth, Γ±ε are smooth curves then, the CSWR iterates
(φ−,(k), φ+,(k)) defined in (1.5) with B± = Id, exist in

(
H2,1(Ω±ε × (0, T ))

)2.

3.4. Convergence of the CSWR algorithm

We can now state the convergence theorem for the overall NGF-SWR method. From the evaluation of the
contraction factor and by using a similar analysis as in [25], we can deduce an asymptotic convergence result
(Thm. 3.8) following the same strategy as Section 2.4 in [12]. At any Schwarz iteration k, we denote by T (k) the
convergence time of the NGF algorithm thanks to the stopping criterion: φ(·, t) = φ(·, T (k)), for any t > T (k).
In practice, we introduce a positive parameter δ and, at Schwarz iteration k, the imaginary-time iterations are
stopped when, for n > 0, one gets

‖φ±,(k)(·, t−n+1)− φ±,(k)(·, T (k))‖L∞(R2) 6 δ. (3.42)

To prove the result, we assume that the sequence of stopping times {T (k)}k (i) satisfies T (k) 6 T (k−1) (at least
for k large enough) and (ii) is convergent to T (kcvg) > 0. This last assumption is morally reasonable and is
confirmed numerically both in the one- (see [12]) and two-dimensional settings (see Sect. 4). It means that the
larger the iteration k, the faster the NGF algorithm to reach the stationary state. By extension of Theorem 5.8
in [25], we can directly adapt Theorem 2.7 in [12]:

Theorem 3.8. Let us assume that (i) Vr is a smooth and bounded radial dependent function, (ii) the sequence
{T (k)}k is decreasing and convergent to T (cvg) > 0, i.e. there exists k0 such that 0 < T (cvg) 6 T (k) 6 T (k−1) for
all k > k0, with limk→+∞ T (k) = T (cvg), and (iii) T (k0) is finite. Then, the following inequalities hold

‖eC,±Λr
‖L2(R+;H2(Ω±ε )) 6 C

C
Λr,ε‖h

±
ε ‖(H3/4(R+)

)2 (3.43)

and
‖((eC,+Λr

)2k+1, (eC,−Λr
)2k+1)‖H2,1(Ω+

ε ×(0,T (k0)))×H2,1(Ω−ε ×(0,T (k0)))

6 D
(
CCΛr,ε

)k∥∥(h+,0
ε , h−,0ε

)∥∥(
H3/4(0,T (k0))

)2 , (3.44)

where D is a constant, and starting from a null initial guess in Ω±ε . The positive real-valued constant CCΛr,ε
is

defined as the contraction factor of the mapping GC,p2Λr
.

The extension of the result for the LSE can also be stated for the GPE. More specifically, the result holds
for k large enough or for φ0 sufficiently close to an eigenfunction, denoted by φs. Indeed, in both cases, the
function φ(k) is close to an eigenstate and, as a consequence, the nonlinearity ν|φ(k)(·, t)|2 is expected to behave
almost like a fixed linear potential. In other words, from (3.30), we asymptotically expect that the contraction
factor for CSWR, denoted by CGP,C

ε , behaves for ε small enough as

CGP,C
ε ≈ C̃GP,C,2

ε (τ, s) :=

{
|τ |1/4

1
√

2ε
exp

(
−
s2

8ε

√
2|τ |

)
× exp

(
−ε
√

2|τ |+ ε
κ2

0(s)
4

1√
2|τ |

)

× exp

(
−

ε√
2|τ |

∫ ε/2

−ε/2
Vr(r′, s) + ν|φs(r′, s)|2dr′

)}
.
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3.5. Remark about the convergence of CSWR method in real time

The technique which is exposed in this paper, can in principle be extended to real time. In this goal, we first
have to define the E-quasi hyperbolic, elliptic and glancing zones [7], with E = (1, 2).

Definition 3.9. We define the E-quasi hyperbolic zone of the Schrödinger operator as the set H(s) of points
(s, t, ξ, τ) such that

H(s) = {(s, t, ξ, τ) : τ + ξ2 + V < 0}. (3.45)

Let us remark that the construction of the transmission conditions for the real-time dynamics is then real-
ized under the microlocal assumption that the points (s, t, ξ, τ) lie in H(s). This hypothesis characterizes the
propagative part of the wave. Two other regions can be also defined: the E-quasi elliptic zone E(s) given by

E(s) = {(s, t, ξ, τ) : τ + ξ2 + V > 0} (3.46)

which gives the evanescent (exponentially decaying) part of the wave and the E-quasi glancing zone which is the
complementary set G(s) of E(s)∪H(s). This last region is reduced to {0} if u is not tangentially incident to Σ. In
principle, we can then study the convergence of the SWR-DDM in real time, by replacing τ → −iτ and t→ −it
in the above symbols, and analyzing the corresponding contraction factors in the elliptic and hyperbolic zones.
According to [32], a finer approximation of the solution to (3.17) (in real time), could however be necessary to
get an accurate estimation of the contraction factor in the hyperbolic zone. Such an analysis is currently under
inverstigation, in the one-dimensional case for the linear Schrödinger equation with non-constant coefficients.

4. Numerical examples

This section is dedicated to some numerical experiments illustrating Theorems 3.6 and 3.8.

4.1. Numerical examples in the two-dimensional case with polar symmetry

We first consider a problem with polar symmetry, which allows for searching for a s-independent solution.
The Hamiltonian operator reads

Hrφ(r, t) =
(
−∂2

r −
1
r
∂r + V (r) + ν|φ(r, t)|2

)
φ(r, t),

where Vr is the radial-dependent potential, and ν > 0. Although simple, this test proposes an illustration of the
curvature effect on the CSWR convergence rate. More specifically, we expect to numerically validate (3.34). To
this end, we consider the following circular domains: Ω+

R0,ε
= D

(
0, R0 + ε/2

)
and Ω−R0,ε

= D(0, R1)−D
(
0, R0−

ε/2
)

with R1 > R0. Dirichlet transmission conditions are imposed at r = ±ε/2, and null Dirichlet boundary
conditions are set at r = R1. The data of the problem are as follows: we set R1 = 4/5, R0 = 2/5 and

V (r) = 100(r −R0)4, φ0(r) =
e−100(r−R0)

2

‖e−100(r−R0)2‖L2(D(0,R1))

·

This choice is motivated by the need to enhance the curvature-related effect of 1/R2
0 on the rate of convergence;

the smaller R0, the larger the curvature and the higher the effect on the convergence rate. In particular, we will
observe that the convergence rate of the SWR method is slowed down by a curvature effect. The algorithm which
is proposed below is a combination of (i) the NGF method for solving the stationary Schrödinger equation, and
(ii) a SWR method for solving by spatial domain decomposition the (nonlinear) heat equation involves in (i).
As a consequence two types of convergence have to be considered: convergence of the SWR methods and of the
NGF method. At each Schwarz iteration, we are solving “in parallel” a stationary LSE&GPE. A semi-implicit
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Euler (SIE) scheme is used to approximate the Schrödinger equation in polar coordinates with polar symmetry.
The CSWR algorithm reads, for n > 0,

(
I

∆t
− ∂2

r −
1
r
∂r + V (r) + ν|φ±,n,(k)|2

)
φ̃±,n+1,(k) =

φ±,n,(k)

∆t
, in Ω±R0,ε

,

φ̃
±,n+1,(k)
±ε/2 = φ̃

∓,n+1,(k−1)
±ε/2 ,

φ̃+,n+1,(k) = 0, at r = R1,

(4.1)

where φ̃±,n+1,(k)
±ε/2 denotes φ̃±,n+1,(k) at R0 ± ε/2. The upper index n+ 1 (resp. (k)) is the imaginary time (resp.

Schwarz Relaxation Waveform) iteration. The upper symbol ± refers to the subdomain Ω±. At each iteration
(n+ 1, k) the global reconstructed solution φ̃n+1,(k) needs to be normalized

φn+1,(k) :=
φ̃+,n+1,(k) + φ̃−,n+1,(k)

||φ̃+,n+1,(k) + φ̃−,n+1,(k)||L2(D(0,R1))

· (4.2)

At any Schwarz iteration, the NGF method tolerance is fixed to δ = 10−12, i.e.

||φn+1,(k) − φn,(k)||∞ 6 δ,

where ‖ψ‖∞ := supr∈D(0,R1) |ψ(r)|. When the convergence of the NGF method is reached at the kth Schwarz
iteration, then the stopping time is such that: T (k) := T cvg,(k) = ncvg,(k)∆t for a converged solution φcvg,(k)

reconstructed from the two subdomains solutions φ±,cvg,(k). Then the convergence criterion for the Schwarz
DDM is set to ∥∥ ‖φ+,cvg,(k)

|Γε
− φ−,cvg,(k)

|Γε
‖∞,Γε

∥∥
L2(0,T (kcvg))

6 δSc, (4.3)

with δSc = 10−14 (“Sc” for Schwarz). When the convergence of the whole iterative algorithm is obtained at
Schwarz iteration kcvg, then one gets the converged global solution φcvg := φcvg,(kcvg) in D(0, R1). In this
example the curvature on Γ±ε is given by 1/(R0 ± ε/2).

Linear equation. We first assume that ν = 0, i.e. we solve the time-independent linear Schrödinger
equation using the NGF method. Numerical data are as follows: ∆t = 0.1, ∆r = 8 × 10−3. The size of the
overlapping region is fixed to ε∆r = 8 × 10−2 = 10∆r. According to (3.34), the rate of convergence for the
CSWR method is expected to be approximately given by

LC∆r(τnum) ≈ exp

(
−ε∆r

[√
2|τnum| − V (R0)

1√
2|τnum|

+
1

4R2
0

1√
2|τnum|

])
. (4.4)

Let us remark that, for a null curvature κ0 → 0 (R0 → +∞), the equation degenerates into the one-dimensional
Schrödinger equation, and

LC∆r(τnum) ≈ exp

(
−ε∆r

[√
−2|τnum| − V (R0)

1√
−2|τnum|

])
· (4.5)

In Figure 2 (left), we report the NGF convergence time T (k) with respect to the Schwarz iterations for the
CSWR with polar symmetry. The total number of iterations to reach the convergence of the CSWR-DDM at
machine tolerance is equal to kcvg = 250. We observe the decay of the sequence {T (k)}k06k6kcvg , for k0 large
enough (k0 ≈ 200), which is in accordance with the decay assumption in Theorem 3.8. In the asymptotic regime,
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Figure 2. Two-dimensional problem with polar symmetry. Left: stopping times T (k) vs. CSWR
iteration k until convergence. Right: Comparison between the discrete versions of the estimated
theoretical convergence rates (4.4) and numerical ones computed by the CSWR algorithm.

the |τnum| belong to [1/T cvf, 1/1∆t] (according to our definition of the Fourier transform). The value of T (cvg)

can easily be evaluated numerically. In the numerical comparison, we then have chosen |τnum| = 1/∆t, in order
to evaluate the supremum at |τnum| of LC∆r. Figure 2 (right) compares the numerical convergence rate obtained
with the NGF-SIE algorithm and the theoretical convergence rates (4.4) but written at the discrete level, i.e.
we represent the L2-norm error in time in the overlapping region. The numerical slope is given by ≈ −0.3268,
when the theoretical one, according to (4.4) is ≈ −0.3298.

Notice that as expected the convergence rate is numerically slowed down by the coefficient ε∆r
√

2|τ |/4R2
0.

Nonlinear equation. In this case, ν 6= 0, and the numerical data are as follows: ∆t = 0.1, ∆r = 2.5× 10−3. The
overlapping region has a size fixed to ε∆r = 2.5× 10−2 = 10∆r. The rate of convergence for the CSWR method
is expected to be well approximated by

LC∆r(τnum) ≈ exp

(
−ε∆r

[√
2|τnum| −

(
V (R0) + ν|φs(R0)|2

) 1√
2|τnum|

+
1

4R2
0

1√
2|τnum|

])
· (4.6)

In Figure 3 (left), we report the NGF convergence time T (k) vs. the Schwarz iterations for the CSWR with
polar symmetry. The total number of iterations for the CSWR convergence at machine tolerance is kcvg ≈ 200.
We again observe the decay of the sequence {T (k)}06k6kcvg . This is conform with the decay assumption made
in Theorem 3.8. Figure 3 (right) reports the numerical convergence rate obtained with the NGF-SIE algorithm
and the theoretical convergence rates (4.6) but written at the discrete level, i.e. we represent the L2-norm error
in time in the overlap. The numerical slope is given by ≈ −0.2919, when the theoretical one is found to be
≈ −0.2903, according to (4.6).

4.2. Numerical examples in the two-dimensional case without polar symmetry

An exhaustive numerical illustration of the multi-dimensional theoretical results will be presented in a forth-
coming paper. We also refer to [35], where a SWR methodology and several multi-dimensional numerical ex-
periments are presented for solving the time-independent and time-dependent N -body Schrödinger equation,
as well as [21] where the SWR methods are studied for the LSE. We propose here some preliminary results
in non-symmetric two-dimensional setting. We compare the theoretical and experimental slopes of the residual
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Figure 3. Two-dimensional problem with polar symmetry. Left: stopping times T (k) vs. CSWR
iteration k until convergence. Right: Comparison between the discrete versions of the estimated
theoretical convergence rates (4.6) and numerical ones computed by the CSWR algorithm.

error of the CSWR algorithm for computing on two-domains the ground state to the following two-dimensional
nonlinear Schrödinger equation

iφt = −1
2
∆φ+ V (x, y)φ+ ν|φ|2φ,

where ∆ = ∂2
x + ∂2

y . We take ν = 200 and the potential is the harmonic oscillator potential plus a potential of
a stirrer corresponding to a far-blue detuned Gaussian laser beam [18]

V (x, y) =
1
2

(x2 + y2) + 4e−((x−1)2+y2) . (4.7)

In the numerical experiment, we take the initial guess in each Schwarz iteration as

φ0(x, y) =
1√
π

e−(x2+y2)/2 . (4.8)

The parameters of the equation and the initial guess are those of [18]. The equation is rewritten and discretized
in polar coordinates (r, θ), and the global domain is the disc ΩR1=6 = {(r, θ) ∈ (0, 6) × [0, 2π)}. A standard
semi-implicit Euler finite difference scheme [18] is again used to approximate the equation. The total number
of mesh points in the r-direction is 100 + 100− 4 = 196, and 60 points are used in the θ-direction. Hence, the
mesh step size in r-direction is ∆r = 6/(195 + 0.5) and in the θ-direction ∆θ = π/30. The coefficient 0.5 in
the denominator of ∆r is introduced to circumvent the singularity issue at the origin. The interior and exterior
domains Ω±R0,ε

have then 100 mesh points in the r-direction. The overlap region is a circular ring with 4 mesh
points in the r-direction. Both Ω+

R0,ε
and Ω−R0,ε

are then “cut” into 60 elementary segments in the θ-direction.
In the numerical test we take ∆t = 0.025, and set ε∆r = 4∆r = 0.12. We report in Figure 4 (top, left) the initial
guess (k = 0 and t = 0), as well as the NGF converged solution (top, right) for k = 1 (first Schwarz iteration).
The converged solution, k = k(cvg), is reported in Figure 4 (bottom, left) which is consistent with [18]. The
residual error (4.3) is plotted in Figure 4 (bottom, right) as a function of the Schwarz iteration k. In order to
compare the numerical and theoretical rates of convergence, we fix R0 as the radius of one of the “rings” in the
center, that is R0 = (100− 2)∆r = 2.99. The theoretical convergence rate is given by (3.32), i.e. at the discrete
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Figure 4. Two-dimensional problem without polar symmetry. (Top, left) Initial guess (k = 0,
t = 0), φ0. (Top, right) NGF converged solution for k = 1, φn

cvg,(1). (Bottom, left) Converged
reconstructed solution φcvg. (Bottom, right) Comparison between the discrete versions of the
estimated theoretical residual error (4.4), and numerical ones computed by the CSWR algorithm
in a 2-d non-symmetric configuration.

level

LC∆r(τnum) ≈ exp

(
−ε∆r

[√
2|τnum| − (V (R0) + ν|φs(R0)|2)

1√
2|τnum|

+
1

4R2
0

1√
2|τnum|

])
· (4.9)

The lowest values of V and |φs|2 on the overlapping ring are respectively V (R0) = 4.49 and |φs(R0)|2 = 0.017.
To sum it all up and by taking τnum = −1/∆t, we have log

(
LC∆r(τnum)

)
≈ −0.98, which is close to the estimated

numerical slope ≈ −1.03.

5. Concluding remarks

In this paper, we have analyzed an asymptotic convergence of the CSWR method for solving the time-
independent LSE/GPE by using the NGF method. Through approximations and by using techniques from
pseudodifferential calculus, we have derived some accurate convergence rates for the CSWR-DDM. Extending the
one-dimensional analysis from [12], we have exhibited in particular the effect of the curvature of the subdomain
boundary on the SWR convergence rates. Some preliminary two-dimensional simulations with and without
polar-symmetry have validated these analytical results. Let us remark that the approach provided in this paper
can also be applied to the LSE/GPE in real-time, by replacing τ (respectively t) by −iτ (respectively −it) in
all the derived formulae and skipping the normalization step. The latter would naturally require a finer analysis
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in the E-quasi elliptic, hyperbolic and glancing regions. We also notice that the technical tools and overall
strategy can be extended to other kinds of wave equations and to higher dimensional problems.

In a forthcoming paper, some exhaustive numerical simulations and analysis will be presented to (i) validate
the analysis developed here in more complex numerical configurations, and (ii) to provide stable and accurate
numerical LSE/GPE solvers that use SWR-DDM in the real- and imaginary-time settings.

Appendix A. Proof. of proposition 3.5

We first recall the fundamental symbolic equation.

i∂rλ
+ + iκλ+ +

+∞∑
|α|=0

(−i)|α|

α!
∂α(ξ,τ)λ

+∂α(t,r)λ
+ = −iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr. (A.1)

By identifying the zeroth-order symbols

i∂rλ
+
0 + iκλ+

0 + 2λ+
1 λ

+
−1 − i∂(ξ,τ)λ

+
0 ∂(t,s)λ

+
1 − i∂(ξ,τ)λ

+
1 ∂(t,s)λ

+
0 − ∂2

(ξ,τ)λ
+
1 ∂

2
(t,s)λ

+
1 /2 = −Vr,

one gets

λ+
−1 =

− Vr − i∂rλ+
0 − iκλ

+
0 + i∂(ξ,τ)λ

+
0 ∂(t,s)λ

+
1 + i∂(ξ,τ)λ

+
1 ∂(t,s)λ

+
0 + ∂2

(ξ,τ)λ
+
1 ∂

2
(t,s)λ

+
1 /2

2λ+
1

·

As in the case ε = 0, we intend to truncate the symbols expression at order −1 in τ . Then, from the expression of
λ+

0 , we will get an approximation of λ+
−1. Since 1/λ+

1 is of order −1/2 in τ , we have to determine the contribution
of order −1/2 appearing in the numerator of the above equation to estimate

(
λ+
−1

)
(−1)

(of order −1 in τ). In
this goal, we first determine from (3.7):

∂sλ
+
0 = −

i∂sκ

2
+
i

4
ξ2∂2

srh
−2
(
− iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr

)(
− iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr

)2
−
i

4

(
ξ∂sh

−2 + i∂s
(
h−1(∂sh−1)

))
ξ3∂rh

−2(
− iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr

)2
−
i

8
2ξ3∂s

(
h−2(∂sh−2)

)(
− iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr

)√
−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr

5

+
i

8
3h−2ξ4(∂sh−2)

(
i∂s
(
h−1(∂sh−1)

)
− ξ∂sh−2

)√
−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr

5

and

∂ξλ
+
0 =

i

4
2ξ(∂rh−2)(−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr)

(−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr)2

−
i

4
(∂rh−2)ξ2(−2h−2ξ + ih−1(∂sh−1))

(−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr)2

−
3i
4
h−2(∂sh−2)ξ2(−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr)√

−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr
5

+
3i
8
h−2ξ3(∂sh−2)

(
ih−1(∂sh−1)− 2h−2ξ

)√
−iτ − h−2ξ2 + ih−1(∂sh−1)ξ − Vr

5·
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Now for any j ∈ N∗, we have: ∂jtλ
+
1 = ∂jtλ

+
0 = 0. Moreover, some direct computations lead to

∂sλ
+
1 =

∂sh
−2ξ2 + ∂sVr

2
√
−iτ − h−2ξ2 − Vr

, ∂ξλ
+
1 =

h−2ξ√
−iτ − h−2ξ2 − Vr

·

We deduce that the following equalities hold

(
∂sλ

+
0

)
(0)

= −
i∂sκ

2
,

(
∂ξλ

+
0

)
(0)

= 0,
(
∂sλ

+
0

)
(−1/2)

= 0,
(
∂ξλ

+
0

)
(−1/2)

= 0.

In addition, we have

∂2
ξλ

+
1 =

h−2
(
− iτ − h−2ξ2 − Vr

)
+ h−4ξ2√

−iτ − h−2ξ2 − Vr
3

and

∂2
sλ

+
1 =

2(ξ2∂−2
s h−2 + ∂2

sVr)(−iτ − h−2ξ2 − Vr) + (ξ2∂sh−2)2

4
√
−iτ − h−2ξ2 − Vr

3 ·

Then, we conclude that:
(
∂2
ξλ

+
1 ∂

2
sλ

+
1

)
(0)

=
(
∂2
ξλ

+
1 ∂

2
sλ

+
1

)
(−1/2)

= 0. We deduce that for τ ∈ R∞

(
∂sλ

+
0 ∂ξλ

+
1

)
(−1/2)

= −i∂sκ
h−2ξ

2
√
−iτ

and we finally have for τ ∈ R∞(
λ̃+
−1

)
(−1)

= −e−π/4
∂rκ

4
√
−τ
− e−π/4

κ2

4
√
−τ
− i∂sκ

h−2ξ

2τ
·

In order to evaluate
(
λ+
−2

)
(−1)

, we again use the fundamental relation (A.1), equaling the symbols of order −1

λ+
−2 =

− i∂rλ+
−1 − iκλ

+
−1 + i∂(ξ,τ)λ

+
0 ∂(t,s)λ

+
0 + i∂(ξ,τ)λ

+
1 ∂(t,s)λ

+
−1 + ∂2

(ξ,τ)λ
+
1 ∂

2
(t,s)λ

+
0 /2

2
√
−iτ − h−2ξ2 − Vr

·

As order of 1/λ+
1 is of order −1/2 in τ , in order to determine

(
λ+
−2

)
−1

, we also need to estimate the order −1/2
contribution of the numerator in the expression above. We skip the details and directly get

(
∂rλ

+
1

)
(−1/2)

=
∂rh
−2ξ2 + ∂rVr

2
√
−iτ − h−2ξ2 − Vr

and, for τ ∈ R∞,

(
∂2
sλ

+
0 ∂

2
ξλ

+
1

)
(−1/2)

= −
i

2
√
−τ

∂2
sκ.

Following the same strategy as above, we obtain

(
λ̃+
−2

)
(−1)

= −
1
4
∂nVr

τ
−

1
8
∂2
sκ

τ
−

1
8
κ3

τ
·

This concludes the proof of the first part of the proposition.
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We then have to evaluate κ(0, s), ∂rκ(0, s), ∂sκ(0, s), ∂2
sκ(0, s). At Γ±ε,r we have

κ(r, s) = ±
(
1± (ε/2− r)κ0(s)

)−1
κ0(s), (A.2)

then, at Γ±ε : κ(0, s) = ±
(
1± ε/2κ0(s)

)−1
κ0(s). Next, we write that

∂rκ(r, s) =
κ2

0(s)
1± (ε/2− r)κ0(s)

(A.3)

which provides

∂rκ(0, s) =
κ2

0(s)
1± ε/2κ0(s)

·

Similarly, one gets

∂sκ(r, s) = ±
∂sκ0(s)(

1± (ε/2− r)κ0(s)
)2, (A.4)

leading to

∂sκ(0, s) = ±
∂sκ0(s)(

1± ε/2κ0(s)
)2·

Finally, some calculations show that

∂2
sκ(r, s) = ±

∂2
sκ0(s)± (ε/2− r)

(
κ0(s)∂2

sκ0(s)− (∂sκ0(s))2
)(

1± (ε/2− r)κ0(s)
)3 (A.5)

and

∂2
sκ(0, s) = ±

2∂2
sκ0(s)± ε

(
κ0(s)∂2

sκ0(s)− (∂sκ0(s))2
)

2
(
1± εκ0(s)/2

)3 ·

This concludes the proof.
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(Grenoble) 27 (1977) vii–viii, 79–123.

[34] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. II, Translated from the French
by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182. Springer-Verlag, New York-Heidelberg (1972).

https://arxiv.org/abs/1507.04011v1


1596 X. ANTOINE ET AL.

[35] E. Lorin, Schwarz waveform relaxation domain decomposition methodology for the N-body time-independent and time-
dependent Schrödinger equation. Submitted (2017).

[36] E. Lorin, X. Yang and X. Antoine, Frozen gaussian approximation based domain decomposition methods for the linear
Schrödinger equation beyond the semi-classical regime. J. Comput. Phys. 315 (2016) 221–237.

[37] B.C. Mandal, A time-dependent Dirichlet-Neumann method for the heat equation. Domain Decomposition Methods in Science
and Engineering XXI. Springer International Publishing (2014) 467–475.

[38] L. Nirenberg, Lectures on linear partial differential equations. Amer. Math. Soc., Providence, R.I. (1973).

[39] C.J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases. Cambridge University Press (2002).

[40] L.P. Pitaevskii and S. Stringari, Bose-Einstein condensation, vol. 116. Clarendon press (2003).

[41] R. Zeng and Y. Zhang, Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates. Comput. Phys.
Commun. 180 (2009) 854–860.


	Introduction
	Background on pseudodifferential operator calculus
	Local parameterization
	Pseudodifferential operator calculus for the 2D case

	Asymptotic estimates of the contraction factor for the SWR algorithm
	Nirenberg factorization and symbolic computation for the imaginary-time linear Schrödinger operator
	Asymptotic estimates of the contraction factor for the CSWR algorithm
	Well-posedness of the CSWR algorithm
	Convergence of the CSWR algorithm
	Remark about the convergence of CSWR method in real time

	Numerical examples
	Numerical examples in the two-dimensional case with polar symmetry
	Numerical examples in the two-dimensional case without polar symmetry

	Concluding remarks
	Appendix A. Proof. of proposition 3.5
	References

