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UNIFIED FORMULATION AND ANALYSIS OF MIXED AND PRIMAL
DISCONTINUOUS SKELETAL METHODS ON POLYTOPAL MESHES ˚, ˚˚
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Abstract. We propose in this work a unified formulation of mixed and primal discretization methods
on polyhedral meshes hinging on globally coupled degrees of freedom that are discontinuous polynomials
on the mesh skeleton. To emphasize this feature, these methods are referred to here as discontinuous
skeletal. As a starting point, we define two families of discretizations corresponding, respectively, to
mixed and primal formulations of discontinuous skeletal methods. Each family is uniquely identified
by prescribing three polynomial degrees defining the degrees of freedom, and a stabilization bilinear
form which has to satisfy two properties of simple verification: stability and polynomial consistency.
Several examples of methods available in the recent literature are shown to belong to either one of
those families. We then prove new equivalence results that build a bridge between the two families of
methods. Precisely, we show that for any mixed method there exists a corresponding equivalent primal
method, and the converse is true provided that the gradients are approximated in suitable spaces.
A unified convergence analysis is carried out delivering optimal error estimates in both energy- and
L2-norms.
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1. Introduction

Over the last few years, discretization methods that support general polytopal meshes have received a great
amount of attention. Such methods are often formulated in terms of two sets of degrees of freedom (DOFs)
located inside mesh elements and on the mesh skeleton, respectively. The former can often be eliminated
(possibly after hybridization) by static condensation, whereas the latter are responsible for the transmission
of information among elements, and are therefore globally coupled. To emphasize the role of the second set
of DOFs, these methods are referred to here as “skeletal”. Skeletal methods can be classified according to the
continuity property of skeletal DOFs on the mesh skeleton. We focus here on “discontinuous skeletal” methods,
where skeletal DOFs are single-valued polynomials over faces fully discontinuous at the face boundaries. Since
this terminology is not classical in the sense of standard finite elements, we explicitly point out that here
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single-valued means that interface values match from one element to the adjacent one. Discontinuous, on the
other hand, refers to the fact that skeletal DOFs are discontinuous at vertices in 2d and edges in 3d.

Let Ω Ă Rd, d ě 1, denote an open, bounded, connected polytopal set, and let f P L2pΩq. To avoid
unnecessary complications, we consider the following pure diffusion model problem: Find u : Ω Ñ R such that

´�u “ f in Ω,

u “ 0 on BΩ.
(1.1)

We introduce a unified formulation of discontinuous skeletal discretizations of problem (1.1) which encompasses
a large number of schemes from the literature. As a starting point, we define two families of discretizations
corresponding, respectively, to mixed and primal discontinuous skeletal methods. Each family is uniquely iden-
tified by prescribing three polynomial degrees defining element-based and skeletal DOFs, and a stabilization
bilinear form which has to satisfy two properties of simple verification: stability expressed in terms of a uniform
norm equivalence, and polynomial consistency. Several examples of methods available in the recent literature
are shown to belong to either one of those families. We then prove new equivalence results, collected in The-
orems 6.4, 6.5, and 7.2 below, which build a bridge between the two families of methods. Precisely, we show
that for any mixed method there exists a corresponding equivalent primal method, and the converse is true
provided that the gradients are approximated in suitable spaces. A unified convergence analysis is also carried
out delivering optimal error estimates in both energy- and L2-norms; cf. Theorems 8.2 and 8.4 below.

A fundamental and motivating example is presented in Section 3: it refers to the well-known equivalence
between the lowest-order Raviart–Thomas element [52] and the nonconforming Crouzeix–Raviart element [30]
on triangular meshes. In some sense, the framework presented in this paper extends, with suitable modifications,
this equivalence to recent methods supporting general polytopal meshes.

Polytopal methods were first investigated in the context of lowest-order discretizations starting from different
points of view. In the context of finite volume schemes, several families of polyhedral methods have been
developed as an effort to weaken the conditions on the mesh required for the consistency of classical five-point
schemes. The resulting methods are expressed in terms of local balances, and an explicit expression for the
numerical fluxes is usually available. Discontinuous skeletal methods in this context include the Mixed and
Hybrid Finite Volume schemes of [42, 47]. Continuous skeletal methods have also been considered, e.g., in [48].

Relevant features of the continuous problem different from local conservation have inspired other approaches.
Mimetic Finite Difference methods are derived by using discrete integration by parts formulas to define the
counterparts of differential operators and L2-products; cf. [15] for an introduction. Discontinuous skeletal meth-
ods in this context include, in particular, the mixed Mimetic Finite Difference scheme of [21]. An example of
continuous skeletal method is provided, on the other hand, by the nodal scheme of [18]. In the Discrete Geomet-
ric Approach [29], the formal links with the continuous operators are expressed in terms of Tonti diagrams [53].
We also cite in this context the Compatible Discrete Operator framework of [17]. To different extents, all of
the previous methods can be linked to the seminal ideas of Whitney on geometric integration. Other methods
that deserve to be cited here are the cell centered Galerkin methods of [31, 32], which can be regarded as dis-
continuous Galerkin methods with only one unknown per element where consistency is achieved by the use of
cleverly-tailored reconstructions.

The close relation among the Mixed [42] and Hybrid [47] Finite Volume schemes and mixed Mimetic Finite
Difference methods [21] has been investigated in [43], where equivalence at the algebraic level is demonstrated
for generalized versions of such schemes; cf. also ([54], Sect. 7) for further insight into the link with submesh-
based polyhedral implementations of classical mixed finite elements. The results of [43] are recovered here as a
special case. A unifying point of view for the convergence analysis has been recently proposed in [44] under the
name of Gradient Schemes. Finally, the methods discussed above can often be regarded as lowest-order versions
of more recent polytopal technologies such as, e.g., Virtual Elements and Hybrid High-Order methods.

A natural development of polytopal methods was to increase the approximation order. It has been known for
quite some time that high-order polyhedral discretizations can be obtained by fully nonconforming approaches
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such as the discontinuous Galerkin method. An exposition of the basic analysis tools in this framework can be
found in [36]; cf. also [33,34] for polynomial approximation results on polyhedral elements based on the Dupont-
Scott theory [2, 10, 22, 46] for further developments. Particularly interesting among discontinuous Galerkin
methods is the hybridizable version introduced in [23, 28], which constitutes a first example of high-order
discontinuous skeletal method.

Very recent works have shown other possible approaches to the design of high-order polytopal discretiza-
tions combining element-based and skeletal unknowns. A first example of arbitrary-order discontinuous skeletal
methods are primal [35, 39] and mixed [38] Hybrid High-Order methods. Hybrid High-Order methods were
originally introduced in [37] in the context of linear elasticity and later extended to more general linear and
nonlinear problems (see [41] for an up-to-date introduction including a list of references). The main idea consists
in reconstructing high-order differential operators based on suitably selected DOFs and discrete integration by
parts formulas. These reconstructions are then used to formulate the local contributions to the discrete problem
including a cleverly tailored stabilization that penalizes high-order face-based residuals. A study of the rela-
tions among primal Hybrid High-Order methods, Hybridizable Discontinuous Galerkin (HDG) methods, and
High-Order Mimetic Finite Differences [50] can be found in [25], where the corresponding numerical fluxes in
the spirit of HDG methods are identified. The hybridization of the original mixed Hybrid High-Order method
was studied in [1] (these results are recovered as a special case in this work). We also cite here [40], where the
above ideas are illustrated for variable diffusion problems with more general boundary conditions.

Another framework including both continuous and discontinuous skeletal methods is provided by Virtual El-
ements [11,12]. Virtual Elements can be described as finite elements where the expressions of the basis functions
are not available at each point, but suitable projections thereof can be computed using the selected DOFs. Such
computable projections are then used to approximate bilinear forms, which also include a stabilization term
that penalizes differences between the DOFs and the computable projection. We are particularly interested here
in mixed [13,14,20] and nonconforming [8] Virtual Elements, both of which are discontinuous skeletal methods.

Very recently, other discontinuous skeletal discretizations supporting various polytopal shapes have been
introduced, whose relation with the present framework will deserve further investigation in the future. We
mention here, in particular, the M -decompositions studied in two dimensions in [26] and in three dimensions
in [27]. M -decompositions provide a means to recover within HDG methods the superconvergence properties
of classical mixed methods including, e.g., the Raviart–Thomas and Brezzi–Douglas–Marini [19] methods on
simplicial meshes; see also [5, 6] concerning quadrilateral meshes.

The rest of this paper is organized as follows. In Section 2 we formulate the assumptions on the mesh and
introduce the corresponding notation. In Section 3 we recall the classical equivalence of lowest-order Raviart–
Thomas and nonconforming finite element methods. In Sections 4 and 5 we introduce the families of mixed and
primal discontinuous skeletal methods under study, and provide several examples of lowest-order and high-order
methods that fall in each category. In Section 6 we show how to obtain, starting from a discontinuous skeletal
method in mixed formulation, an equivalent primal method. Conversely, in Section 7, we show how to derive
an equivalent mixed formulation starting from a discontinuous skeletal method in primal formulation. Section 8
contains a unified convergence analysis yielding optimal error estimates in the energy- and L2-norms.

2. Mesh and notation

Let H Ă R
`
˚ denote a countable set of meshsizes having 0 as its unique accumulation point. We consider

refined mesh sequences pThqhPH where, for all h P H, Th “ tT u is a finite collection of nonempty disjoint open
polytopal elements such that Ω “

Ť
T PTh

T and h “ maxT PTh
hT (hT stands for the diameter of T ). For X Ă R

d,
we denote by |X |N the N -dimensional Hausdorff measure of X and, for all T P Th, we let xT :“ |T |´1

d

ş
T x

denote the barycenter of T .
A hyperplanar closed connected subset F of Ω is called a face if |F |d´1 ą 0 and (i) either there exist distinct

T1, T2 P Th such that F “ BT1 X BT2 (and F is an interface) or (ii) there exists T P Th such that F “ BT X BΩ
(and F is a boundary face). The set of interfaces is denoted by F i, the set of boundary faces by Fb, and we
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let Fh :“ F i Y Fb. The set of faces partitions the mesh skeleton in the sense that distinct faces have disjoint
interiors and that

Ť
T PTh

BT “
Ť

F PFh
F . For all F P Fh, we denote by xF :“ |F |´1

d´1

ş
F x the barycenter of F .

For all T P Th, the sets FT :“ tF P Fh | F Ă BT u and F i
T :“ FT X F i collect, respectively, the faces and

interfaces lying on the boundary of T and, for all F P FT , we denote by nTF the normal to F pointing out
of T . Symmetrically, for all F P Fh, TF :“ tT P Th | F Ă BT u is the set containing the one or two elements
sharing F .

We assume that pThqhPH is regular in the sense of ([36], Chapt. 1), i.e., for all h P H, Th admits a matching
simplicial submesh Th and there exists a real number � ą 0 (the mesh regularity parameter) independent of h
such that the following conditions hold: (i) For all h P H and any simplex S P Th of diameter hS and inradius
rS , �hS ď rS ; (ii) for all h P H, all T P Th, and all S P Th such that S Ă T , �hT ď hS . We refer to ([36], Chap. 1
and [33,34]) for a set of geometric and functional analytic results valid on regular meshes.

Let X be a mesh element or face. For an integer l ě 0, we denote by PlpXq the space spanned by the restriction
to X of d-variate polynomials of total degree at most l. We also conventionally set P´1pXq :“ t0 P Ru. We
denote by p¨, ¨qX and }¨}X the usual inner product and norm of L2pXq. The index is dropped when X “ Ω. The
L2-projector πl

X : L1pXq Ñ PlpXq is defined such that, for all v P L1pXq,

pπl
Xv ´ v, wqX “ 0 @w P P

lpXq. (2.1)

Let now a mesh element T P Th be fixed. For any integer l ě ´1 we set

G
l
T :“ ∇P

l`1pT q, G
l

T :“
�
τ P P

lpT qd | pτ ,∇wqT “ 0 @w P P
l`1pT q

(
, (2.2)

and denote by πl
G,T : L1pT qd Ñ G

l
T and πl

G,T
: L1pT qd Ñ G

l

T the L2-orthogonal projectors on G
l
T and G

l

T ,

respectively. Notice that (2.2) with l “ ´1 gives G
´1
T “ ∇P0pT q “ t0 P Rdu. Clearly, we have the direct

decomposition
P

lpT qd “ G
l
T ‘ G

l

T . (2.3)

For further use, at the global level we also define the space of broken polynomials

P
lpThq :“

�
vh P L2pΩq | vT :“ vh|T P P

lpT q @T P Th

(
.

Throughout the paper, to avoid naming constants, we abridge as a À b the inequality a ď Cb with real
number C ą 0 independent of h. We will also write a « b to mean a À b À a.

3. A motivating example

In order to put the following discussion into perspective, we start by recalling an important motivating
example, i.e., the well-known equivalence between lowest-order Raviart–Thomas element and nonconforming
Crouzeix–Raviart element on triangular meshes.

The Raviart–Thomas element [52] is widely used for the approximation of problems involving Hpdiv; Ωq
when Th is a matching triangular mesh. A popular implementation of the Raviart–Thomas scheme makes use
of a hybridization procedure, introducing a Lagrange multiplier in order to enforce the continuity of the normal
component of vectors from one element to the other. As a starting point, problem (1.1) is written in mixed form
as follows: Find the flux σ P Hpdiv; Ωq and the potential u P L2pΩq such that

pσ, τ q ` pdiv τ , uq “ 0 @τ P Hpdiv; Ωq,
´pdiv σ, vq “ pf, vq @v P L2pΩq.

Taking the Raviart–Thomas finite element space [52]

RT
0pThq :“

�
τ P Hpdiv; Ωq | τ |T P RT

0pT q :“ P
0pT qd ` xP

0pT q @T P Th

(
(3.1)
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for the flux and the space of piecewise constants P0pThq Ă L2pΩq for the potential, its discretization reads: Find
σh P RT

0pThq and uh P P0pThq such that

pσh, τhq ` pdiv τh, uhq “ 0 @τ h P RT
0pThq,

´pdiv σh, vhq “ pf, vhq @vh P P
0pThq.

(3.2)

The hybridized version of (3.2) consists in introducing the space Λh of piecewise constants on the internal portion
of the mesh skeleton, and in solving the following problem which involves the discontinuous Raviart–Thomas
space RT

0,dpThq: Find σh P RT
0,dpThq, uh P P0pThq, and λh P Λh such that

pσh, τhq ` pdiv τ h, uhq `
ÿ

T PTh

ÿ
F PF i

T

pτ h¨nTF , λhqF “ 0 @τh P RT
0,dpThq,

´pdiv σh, vhq “ pf, vhq @vh P P
0pThq,ÿ

T PTh

ÿ
F PF i

T

pσh¨nTF , μhqF “ 0 @μh P Λh.

(3.3)

The usual way of solving problem (3.3) is to invert the (block-diagonal) mass matrix corresponding to the
variables in RT

0,dpThq and to consider a statically condensed linear system of the form

AΛ “ F

where A is symmetric and positive definite.
Let now NCpThq be the nonconforming Crouzeix–Raviart space of [30] on the same mesh Th; i.e., the space of

piecewise affine functions which are continuous on the midnodes of the interelement edges. Denoting by NC0pThq
the subspace of NCpThq with DOFs lying on BΩ set to zero, the approximation of problem (1.1) reads: Find
uh P NC0pThq such that

p∇huh,∇hvhq “ pf, vhq @vh P NC0pThq, (3.4)

where ∇h denotes the broken gradient operator on Th. The matrix form of (3.4) is

BU “ G

with B symmetric and positive definite. It is now well understood that the matrices A and B are identical, as
well as the corresponding right hand sides F and G. This important equivalence is a consequence of the results
of [7, 51], [4, 24], and has been reported in this form in [54].

A natural question is whether results of this type can be obtained for higher order schemes on general polytopal
meshes. The results that we are going to present aim at describing a unified setting where the equivalence of
primal, mixed, and hybrid formulation can be proved. For a discussion of lowest-order Raviart–Thomas and
Crouzeix–Raviart elements in the framework introduced in the following sections, we refer to Examples 4.6
and 5.7, respectively.

4. A family of mixed discontinuous skeletal methods

In this section we introduce a family of mixed discontinuous skeletal methods and provide a few examples of
members of this family.

4.1. Local spaces

For a given integer k ě 0 corresponding to the skeletal polynomial degree, we let l and m be two integers
such that

maxp0, k ´ 1q ď l ď k ` 1, m P t0, ku. (4.1)
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Let a mesh element T P Th be given. We define the following space of flux degrees of freedom (DOFs):

Σk,l,m
T :“ pGl´1

T ‘ G
m

T q ˆ

˜ ą
F PFT

P
kpF q

¸
. (4.2)

For a generic element τT of Σk,l,m
T we use the notation τT “ pτ T , pτTF qF PFT q with τ T “ τ G,T ` τ

G,T . For a
fixed Lebesgue index s ą 2, we let Σ`pT q :“ tτ P LspT qd | div τ P L2pT qu and define the local flux reduction
map Ik,l,m

Σ,T : Σ`pT q Ñ Σk,l,m
T such that, for all τ P Σ`pT q,

Ik,l,m
Σ,T τ :“

´
πl´1

G,T τ ` πm
G,T

τ ,
`
πk

F pτ ¨nTF q
˘
F PFT

¯
. (4.3)

The additional regularity in Σ`pT q is classically needed for the face reductions to be well-defined (see, e.g., [16],
Sect. 2.5.1) for a detailed discussion of this point. The space Σk,l,m

T is equipped with the L2pT qd-like norm }¨}Σ,T

such that, for all τT P Σk,l,m
T ,

}τT }2
Σ,T :“ }τT }2

T `
ÿ

F PFT

hF }τTF }2
F

“ }τG,T }2
T ` }τ

G,T }2
T `

ÿ
F PFT

hF }τTF }2
F ,

(4.4)

where to pass to the second line we have used the orthogonal decomposition (2.3). Finally, we define the following
space of local potential DOFs:

U l
T :“ P

lpT q. (4.5)

4.2. Local reconstruction operators

The family of mixed discretizations of problem (1.1) relies on operator reconstructions defined at the element
level. Let T P Th. The discrete divergence Dl

T : Σk,l,m
T Ñ U l

T is such that, for all τ T P Σk,l,m
T ,

pDl
T τT , qqT “ ´pτT ,∇qqT `

ÿ
F PFT

pτTF , qqF @q P U l
T . (4.6)

The right-hand side of (4.6) resembles an integration by parts formula where the role of the vector function
represented by τ T in volumetric and boundary integrals is played by the element-based and face-based DOFs,
respectively.

The local reconstruction Pk
T : Σk,l,m

T Ñ G
k
T of the irrotational component of the flux is such that, for

all τT P Σk,l,m
T ,

pPk
T τT ,∇wqT “ ´pDl

T τT , wqT `
ÿ

F PFT

pτTF , wqF @w P P
k`1pT q, (4.7)

where again the right-hand side is designed to resemble an integration by parts formula where the continuous
divergence operator is replaced by Dl

T , while the role of the normal trace of the vector function represented by
τ T is played by boundary DOFs.

Remark 4.1. The definitions of Dl
T and Pk

T are independent of the flux DOFs τ
G,T P G

m

T .

Finally, we define the full vector field reconstruction Sk
T : Σk,l,m

T Ñ PkpT qd such that, for all τT P Σk,l,m
T ,

Sk
T τT :“ Pk

T τT ` τ
G,T . (4.8)
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The following properties hold:

Dl
T Ik,l,m

Σ,T τ “ πl
T pdiv τ q @τ P Σ`pT q, (4.9)

Pk
T Ik,l,m

Σ,T τ “ τ @τ P G
k
T . (4.10)

Defining the space

S
k,m
T :“

#
G

k
T if m “ 0,

PkpT qd if m “ k,
(4.11)

it follows from (4.10) together with the orthogonal decomposition (2.3) and the definitions (4.3) of the reduction
map Ik,l,m

Σ,T and (4.8) of Sk
T that

Sk
T Ik,l,m

Σ,T τ “ τ @τ P S
k,m
T , (4.12)

which expresses the polynomial consistency of Sk
T .

4.3. Local bilinear form

Let T P Th. We approximate the L2pT qd-product of fluxes by means of the bilinear form mT : Σk,l,m
T ˆ

Σk,l,m
T Ñ R such that

mT pσT , τ T q :“
´
Sk

T σT ,Sk
T τ T

¯
T

` sΣ,T pσT , τ T q (4.13a)

“
´
Pk

T σT ,Pk
T τT

¯
T

`
´
σ

G,T , τ
G,T

¯
T

` sΣ,T pσT , τ T q, (4.13b)

where the right-hand side of (4.13a) is composed of a consistency and a stabilization term.

Assumption 4.2 (Bilinear form sΣ,T ). The symmetric, positive semi-definite bilinear form sΣ,T : Σk,l,m
T ˆ

Σk,l,m
T Ñ R satisfies the following properties:

(S1) Stability. It holds, for all τT P Σk,l,m
T , with norm }¨}Σ,T defined by (4.4),

}τT }2
m,T :“ mT pτT , τ T q « }τT }2

Σ,T ;

(S2) Polynomial consistency. For all χ P S
k,m
T , with local flux reduction map Ik,l,m

Σ,T defined by (4.3),

sΣ,T

´
Ik,l,m

Σ,T χ, τT

¯
“ 0 @τ T P Σk,l,m

T .

4.4. Global spaces and mixed problem

We define the following global discrete spaces for the flux:

qΣk,l,m

h :“
ą
T PTh

Σk,l,m
T , Σk,l,m

h :“

#
τ h P qΣk,l,m

h

ˇ̌̌̌
ˇ ÿ

T PTF

τTF “ 0 @F P F i

+
. (4.14)

The restriction of a DOF vector τh P qΣk,l,m

h to a mesh element T P Th is denoted by τT P Σk,l,m
T , and we equipqΣk,l,m

h (hence also Σk,l,m
h ) with the L2pΩqd-like norm (cf. (4.4) for the definition of }¨}Σ,T )

}τh}2
Σ,h :“

ÿ
T PTh

}τT }2
Σ,T . (4.15)
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Table 1. Examples of methods originally introduced in mixed formulation.

Reference Name k l m sΣ ,T

[52] RT
0 Finite Element 0 0 0 Equation (4.23)

[21] Mimetic Finite Difference 0 0 0 Equation (4.20)
[43] Mixed Finite Volume
[29] Discrete Geometric Approach 0 0 0 Equation (4.27)
[38] Mixed High-Order ě 0 k 0 Equation (4.28)
[20] Mixed Virtual Element ě 1 k ´ 1 0 Equation (4.29)
[14] Mixed Virtual Element ě 0 k k Equation (4.30)

The global space for the potential is spanned by broken polynomials of total degree l:

U l
h :“ P

lpThq. (4.16)

The global L2pΩqd-like product on qΣk,l,m

h is defined by element-by-element assembly by setting, for all σh, τh PqΣk,l,m

h ,
mhpσh, τhq :“

ÿ
T PTh

mT pσT , τ T q. (4.17)

We also need the global divergence operator Dl
h : qΣk,l,m

h Ñ U l
h such that, for all τ h P qΣk,l,m

h ,

pDl
hτhq|T “ Dl

T τT @T P Th.

We consider the following

Problem 4.3 (Mixed problem). Find pσh, uhq P Σk,l,m
h ˆ U l

h such that,

mhpσh, τhq ` puh, Dl
hτ hq “ 0 @τ h P Σk,l,m

h , (4.18a)

´pDl
hσh, vhq “ pf, vhq @vh P U l

h. (4.18b)

Using standard arguments relying on the coercivity of mh (a consequence of (S1)) and the existence of a Fortin
interpolator (cf. (4.9)), one can prove that problem (4.18) is well-posed; cf., e.g., [16].

Remark 4.4 (Hybridization and static condensation). Various possibilities are available to make the actual
implementation of the method (4.18) more efficient. A first option consists in implementing the equivalent
primal reformulation (6.14) described in detail below; cf. also Remark 5.4. Another option, in the spirit of [3],
consists in locally eliminating element-based flux DOFs and element-based potential DOFs of degree ě 1 by
locally solving small mixed problems. The resulting global problem is expressed in terms of the skeletal flux
DOFs plus one potential DOF per element.

4.5. Examples

We provide in this section a few examples of discontinuous skeletal methods originally introduced in a mixed
formulation which can be traced back to (4.18). Each method is uniquely defined by prescribing the three
polynomial degrees k, l, and m (in accordance with (4.1)) and the expression of the local stabilization bilinear
form sΣ,T for a generic mesh element T P Th. A synopsis is provided in Table 1.

Example 4.5 (The Mimetic Finite Difference method of [21] and the Mixed Finite Volume method of [43]).
The Mimetic Finite Difference method of [21] and the Mixed Finite Volume method of ([43], Sect. 2.3) (which
is a variation of the one originally introduced in [42]) correspond to the choice k “ l “ m “ 0. We present them
together since an equivalence result was already proved in [43]. The equivalence therein also includes the Hybrid
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Finite Volume method of [47] (see also Exp. 5.5 below), suggesting the acronym HMM (Hybrid–Mixed–Mimetic)
used in subsequent papers from the same authors. In the lowest-order case, explicit expressions can be found
for both D0

T and S0
T “ P0

T : For all τT P Σ0,0,0
T ,

D0
T τT “

1
|T |d

ÿ
F PFT

|F |d´1τTF , S0
T τT “ P0

T τT “
1

|T |d

ÿ
F PFT

|F |d´1τTF pxF ´ xT q. (4.19)

Following [42,43], xT can be replaced by a more general point xT in the above formula: this requires to modify the
definition (4.3) of the local reduction map Ik,l,m

Σ,T to preserve polynomial consistency for S0
T , as recently explained

in [45]. The stabilization is parametrized by a symmetric, positive definite matrix BT “ pBT
FF 1 qF,F 1PFT :

sΣ,T pσT , τT q “
ÿ

F PFT

ÿ
F 1PFT

pS0
T σT ¨nTF ´ σTF qBT

FF 1 pS0
T τT ¨nTF 1 ´ τTF 1 q. (4.20)

In order to have the uniform norm equivalence (S1), the matrix BT should have an appropriate scaling as
detailed in ([43], Eqs. (4.2)–(4.4)) (the latter conditions are essentially equivalent to (S1)). Straightforward
choices are, e.g., BT “ |T |dId or BT “ diag phF |F |d´1qF PFT

. It is worth noting that the original Mixed Finite
Volume method of [42] does not enter the present framework as the corresponding stabilization bilinear form
sΣ,T pσT , τ T q “

ř
F PFT

hT |F |d´1σTF τTF violates (S2) (it is, however, weakly consistent).

Example 4.6 (The lowest-order Raviart–Thomas element). We assume that T is an element from a matching
simplicial mesh Th, and we consider the local lowest order Raviart–Thomas space RT

0pT q defined by (3.1).
Clearly, the vector space Σ0,0,0

T contains the standard DOFs for RT
0pT q defined by the flux reduction map I0,0,0

Σ,T

as the average values of the normal components on each face. It can be checked that RT
0pT q “ span

`
ϕT

F

˘
F PFT

with

ϕT
F pxq :“

|F |d´1

d|T |d
px ´ P F q @x P T, (4.21)

where P F denotes the vertex opposite to the face F (this formula generalizes [9], Eq. (4.3) to any d ě 1). For all
F P FT , the basis function ϕT

F satisfies pϕT
F ¨nTF q|F ” 1 and pϕT

F ¨nTF 1 q|F 1 ” 0 for all F 1 P FT ztF u. Moreover,
inserting ˘xT inside the parentheses in (4.21), and using the fact that pxT ´ P F q “ dpxF ´ xT q, we arrive at
the following equivalent expression for ϕT

F :

ϕT
F pxq “

|F |d´1

|T |d
pxF ´ xT q `

|F |d´1

d|T |d
px ´ xT q @x P T.

Let now tT P RT
0pT q and τ T “ pτTF qF PFT

:“ I0,0,0
Σ,T tT , so that tT “

ř
F PFT

ϕT
F τTF . Straightforward computa-

tions show that
div tT “ D0

T τ T , π0
T tT “ S0

T τT “ P0
T τT ,

with explicit expressions for D0
T and S0

T “ P0
T given by (4.19). Hence, we can rewrite the L2-product of two

functions sT , tT P RT
0pT q with DOFs σT :“ I0,0,0

Σ,T sT and τT :“ I0,0,0
Σ,T tT as

psT , tT qT “ pπ0
T sT , π0

T tT qT ` psT ´ π0
T sT , tT ´ π0

T tT qT “ pS0
T σT ,S0

T τT qT ` sΣ,T pσT , τ T q, (4.22)

where, observing that pϕT
F ´ π0

T ϕT
F qpxq “ |F |d´1

d|T |d px ´ xT q,

sΣ,T pσT , τT q :“
ÿ

F PFT

ÿ
F 1PFT

σTF BT
FF 1τTF 1 , BT

FF 1 :“
|F |d´1|F 1|d´1

d2|T |2d

ż
T

}x ´ xT }2
2. (4.23)

From (4.22) it is clear that sΣ,T satisfies both (S1) and (S2).
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Example 4.7 (The Discrete Geometric Approach of [29]). Assume T star-shaped with respect to xT . The
Discrete Geometric Approach of [29] is a lowest-order method corresponding to k “ l “ m “ 0 based on a
stable piecewise constant flux reconstruction obtained by setting, for all τT P Σ0,0,0

T ,

Sdga
T τ T :“

ÿ
GPFT

|G|d´1τTGϕT
G. (4.24)

In (4.24), for all G P FT , the restriction of the basis function ϕT
G to any pyramid PTF of apex xT and base F P FT

satisfies, denoting by hTF the altitude of PTF (i.e., the distance of xT from the hyperplane containing F ),

pϕT
Gq|PT F

”
pxG ´ xT q

|T |d
`
ˆ

pxF ´ xT q b nTF

|T |dhTF
´

δFG

|G|d´1hTG
Id

˙
pxT ´ xGq, (4.25)

where δFG “ 1 if F “ G, 0 otherwise. In the previous definition, xT can be replaced by a point xT in T
with respect to which T is star-shaped (as in Exp. 4.5, this requires to modify the definition (4.3) of the local
reduction map Ik,l,m

Σ,T to preserve polynomial consistency). We stress that the function ϕT
G defined by (4.25) is

piecewise constant on the pyramidal partition tPTF uF PFT of the element T . The local bilinear form mT is then
defined by setting, for all σT , τT P Σ0,0,0

T ,

mT pσT , τ T q :“
´
Sdga

T σT ,Sdga
T τT

¯
T

. (4.26)

Plugging (4.25) into (4.24), and using the second formula in (4.19), we can identify in the expression of Sdga
T

two L2pT qd-orthogonal contributions observing that, for all τ T P Σ0,0,0
T and all F P FT , it holds

pSdga
T τT q|PT F

” pS0
T τT q|PT F

` h´1
TF pS0

T τT ¨nTF ´ τTF qpxT ´ xF q,

where the first term in the right-hand side represents the consistent part of the flux, while the second acts as a
stabilization. Hence, a straightforward computation shows that the bilinear form mT defined by (4.26) can be
recast in the form (4.13a) with stabilization bilinear form

sΣ,T pσT , τT q “
ÿ

F PFT

}xT ´ xF }2
2

dhTF
pS0

T σT ¨nTF ´ σTF ,S0
T τT ¨nTF ´ τTF qF . (4.27)

Note that this expression can be recovered from (4.20) taking BT “ diagp }xT ´xF }22|F |d´1
dhT F

qF PFT .

Example 4.8 (The Mixed High-Order method of [38]). The Mixed High-Order method of [38] corresponds to
the choice l “ k and m “ 0, for which Sk

T “ Pk
T holds. The stabilization term is defined by penalizing face-based

residuals in a least-square fashion:

sΣ,T pσT , τT q “
ÿ

F PFT

hF pSk
T σT ¨nTF ´ σTF ,Sk

T τT ¨nTF ´ τTF qF . (4.28)

When k “ 0, this stabilization bilinear form coincides with (4.20) with BT “ diagphF |F |d´1qF PFT .

Example 4.9 (The Virtual Element method of [20]). Let d “ 2. We consider the Mixed Virtual Element method
of [20] when the diffusion tensor (denoted by K in the reference) is the 2 ˆ 2 identity matrix I2. In this case,
while the DOFs for the flux in ([20], Eq. (3.8)) do not coincide with the ones in (4.2), the resulting method ([20],
Eq. (6.1)) can be recast in the form (4.18). For a given integer k ě 1, the underlying finite-dimensional local
virtual space is

Svem,1pT q :“ ttT P Hpdiv; T q X Hprot; T q |
div tT P P

k´1pT q, rot tT P P
k´1pT q, and tT |F ¨nTF P P

kpF q for all F P FT u,
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where rot tT :“ B1tT,2 ´ B2tT,1. Let tT P Svem,1pT q, and observe that rot tT does not contribute to defining
div tT (see [20], Eq. (3.15)) nor the projection on G

k
T given by ([20], Eq. (5.5)). As a result, due to the presence

of the stabilization term in ([20], Eq. (5.6)), the first line in ([20], Eq. (6.1)) actually enforces a zero-rot condition
on the discrete solution. Hence, we can equivalently reformulate the method in terms of the zero-rot subspace

Svem,1prot0; T q :“
�
tT P Svem,1pT q | rot tT “ 0

(
.

This was essentially already observed at the end of ([20], Rem. 6.3). This equivalent reformulation corresponds
to the mixed form (4.18) with polynomial degrees l “ k ´ 1, and m “ 0, and stabilization bilinear form sΣ,T

defined as described hereafter. We preliminarily observe that the reduction map Ik,k´1,0
Σ,T (cf. (4.3)) defines an iso-

morphism from Svem,1prot0; T q to Σk,k´1,0
T . Assume that the scaled monomial basis ([20], Eqs. (3.6)–(3.7)) has

been fixed for Σk,k´1,0
T , and denote by Svem,1

Σ,T the bilinear form on Svem,1prot0; T qˆSvem,1prot0; T q represented
by the identity matrix in this basis. The stabilization bilinear form is then given by

sΣ,T pσT , τT q :“ Svem,1
Σ,T

´
Pk

T σT ´ sT ,Pk
T τT ´ tT

¯
T

, (4.29)

where sT and tT are the unique functions of Svem,1prot0; T q such that σT “ Ik,k´1,0
Σ,T sT and τT “ Ik,k´1,0

Σ,T tT .
This stabilization amounts to penalising in a least-square sense the high-order differences πk´2

G,T pPk
T τ T ´ τ G,T q

and pPk
T τT ¨nTF ´ τTF q, F P FT .

Example 4.10 (The Virtual Element method of [14]).
A different Virtual Element method in dimension d “ 2 was presented in [14] in the context of more general

elliptic problems featuring variable diffusion as well as advective and reactive terms. In the pure diffusion case
considered here (which, in the original notation from the reference, corresponds to κ “ I2, b “ 0, and γ “ 0),
the method is obtained by choosing l “ m “ k with k ě 0. The underlying virtual space is, this time,

Svem,2pT q :“ ttT P Hpdiv; T q X Hprot; T q |
div tT P P

kpT q, rot tT P P
k´1pT q, and ptT ¨nTF q|F P P

kpF q for all F P FT u.

The local flux reduction map Ik,k,k
Σ,T defines an isomorphism from Svem,2 to Σk,k,k

T , which contains the DOFs
defined by ([14], Eqs. (16)–(18)). The stabilization bilinear form is defined in a similar manner as in the previous
example: Given a bilinear form Svem,2

Σ,T on Svem,2pT q ˆ Svem,2pT q with the same scaling as the L2pT qd-inner
product of fluxes, we set

sΣ,T pσT , τT q :“ Svem,2
Σ,T

´
Sk

T σT ´ sT ,Sk
T τ T ´ tT

¯
T

, (4.30)

where sT and tT are the unique functions of Svem,2pT q such that σT “ Ik,k,k
Σ,T sT and τT “ Ik,k,k

Σ,T tT .
This stabilization essentially corresponds to penalising in a least-square sense the high-order differences
πk´1

G,T pPk
T τT ´ τ G,T q and pSk

T τT ¨nTF ´ τTF q, F P FT . For further developments on Hpdiv; Ωq- and
Hpcurl; Ωq-conforming Virtual Elements we refer to [13].

5. A family of primal discontinuous skeletal methods

We introduce in this section a family of primal discontinuous skeletal methods and provide a few examples
of members of this family.
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5.1. Local space

Let a mesh element T P Th and three polynomial degrees k, l, and m as in (4.1) be fixed. We define the
following local space for the potential:

Uk,l
T :“ U l

T ˆ

˜ ą
F PFT

P
kpF q

¸
,

where, recalling (4.5), U l
T “ PlpT q. The local potential reduction map Ik,l

U,T : H1pT q Ñ Uk,l
T is such that, for all

v P H1pT q,
Ik,l

U,T v :“
`
πl

T v, pπk
F vqF PFT

˘
. (5.1)

We define on Uk,l
T the H1pT q-like seminorm }¨}U,T such that, for all vT P Uk,l

T ,

}vT }2
U,T :“ }∇vT }2

T `
ÿ

F PFT

h´1
F }vF ´ vT }2

F , (5.2)

and observe that, by virtue of a local Poincaré inequality, the map }¨}U,T defines a norm on the quotient space

Uk,l
T,˚ :“ Uk,l

T {Ik,l
U,T P

0pT q, (5.3)

where two elements of Uk,l
T belong to the same equivalence class if their difference is the interpolate of a constant

function over T . Clearly, dimpUk,l
T,˚q “ dimpUk,l

T q ´ 1.

5.2. Local gradient reconstruction

Let T P Th. The family of primal methods hinges on the local gradient reconstruction operator Gk
T : Uk,l

T Ñ
S

k,m
T (cf. (4.11)) defined such that, for all vT P Uk,l

T ,´
Gk

T vT , τ
¯

T
“ ´pvT , div τ qT `

ÿ
F PFT

pvF , τ ¨nTF qF @τ P S
k,m
T , (5.4)

where the right-hand side is devised so as to resemble an integration by parts formula where the role of the
function represented by vT inside volumetric and boundary terms is played by element- and face-based DOFs,
respectively.

Remark 5.1 (Polynomial degree m). The polynomial degree m does not appear in the definition (5.1) of the
local space of potential DOFs. Its role is to determine the codomain of the discrete gradient operator Gk

T which,
recalling (4.11), is either G

k
T (if m “ 0) or PkpT qd (if m “ k).

Adapting the arguments of ([39], Lem. 3) (cf., in particular, Eq. (17) therein), it can be checked that the
following commuting property holds: For all v P H1pT q,

Gk
T Ik,l

U,T v “ πk,m
S,T ∇v, (5.5)

where πk,m
S,T denotes the L2-orthogonal projector on S

k,m
T and the potential reduction map Ik,l

U,T is defined
by (5.1).
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5.3. Local bilinear form

We define, for all T P Th, the local bilinear form aT : Uk,l
T ˆ Uk,l

T Ñ R as follows:

aT puT , vT q :“
´
Gk

T uT ,Gk
T vT

¯
T

` sU,T puT , vT q , (5.6)

where, as for the bilinear form mT defined by (4.13a), the right-hand side is composed of a consistency and a
stabilization term.

Assumption 5.2 (Bilinear form sU,T ). The symmetric, positive semi-definite bilinear form sU,T : Uk,l
T ˆUk,l

T Ñ
R satisfies the following properties:

(S11) Stability. It holds, for all vT P Uk,l
T , with seminorm }¨}U,T defined by (5.2),

}vT }2
a,T :“ aT pvT , vT q « }vT }2

U,T .

(S21) Polynomial consistency. For all w P Pk`1pT q, with local potential reduction map Ik,l
U,T defined by (5.1),

sU,T pIk,l
U,T w, vT q “ 0 @vT P Uk,l

T .

5.4. Global space and primal problem

We define the following global spaces of potential DOFs with single-valued interface unknowns:

Uk,l
h :“ U l

h ˆ

˜ ą
F PFh

P
kpF q

¸
, Uk,l

h,0 :“
!
vh P Uk,l

h | vF “ 0 @F P Fb
)

, (5.7)

where the subspace Uk,l
h,0 embeds the homogeneous Dirichlet boundary condition. For a generic DOF vector

vh P Uk,l
h we use the notation vh “ ppvT qT PTh

, pvF qF PFh
q, and we denote by vT P Uk,l

T its restriction to T .
We also denote by vh P U l

h the piecewise polynomial function obtained from element-based DOFs such that
vh|T “ vT for all T P Th. On Uk,l

h , we define the global H1pΩq-like seminorm }¨}U,h such that, for all vh P Uk,l
h ,

}vh}2
U,h :“

ÿ
T PTh

}vT }2
U,T , (5.8)

with }¨}U,T given by (5.2). Following a reasoning analogous to that of ([37], Prop. 5), it can be easily checked that
the map }¨}U,h defines a norm on Uk,l

h,0. We will also need the global potential reduction map Ik,l
U,h : H1pΩq Ñ Uk,l

h

such that, for all v P H1pΩq,
Ik,l

U,hv “
´`

πl
T v

˘
T PTh

, pπk
F vqF PFh

¯
.

Clearly, the restriction of Ik,l
U,h to a mesh element T P Th coincides with the local potential reduction map defined

by (5.1). Also, Ik,l
U,h maps elements of H1

0 pΩq to elements of Uk,l
h,0. Finally, we define the global bilinear form

ah : Uk,l
h ˆ Uk,l

h Ñ R by element-by-element assembly by setting

ahpuh, vhq :“
ÿ

T PTh

aT puT , vT q.

We consider the following

Problem 5.3 (Primal problem). Find uh P Uk,l
h,0 such that

ahpuh, vhq “ pf, vhq @vh P Uk,l
h,0. (5.9)

Remark 5.4 (Static condensation). In the actual implementation of the method (5.9), element-based DOFs
can be locally eliminated by static condensation. The procedure is essentially analogous to the one described,
e.g., in ([25], Sect. 2.4), to which we refer for further details.
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Table 2. Examples of methods originally introduced in primal formulation. * The High-Order
Mimetic method enters the present framework only for k ě 1.

Reference Name k l m sU,T

[47] Hybrid Finite Volume 0 0 0 Equation (5.10)
[43] Hybrid Finite Volume 0 0 0 Equation (5.12)
[49] Hybridizable Discontinuous Galerkin ě 0 k ` 1 k Equation (5.17)
[25] Hybridizable Discontinuous Galerkin ě 0 Equation (4.1) k Equation (5.14)
[39] Hybrid High-Order ě 0 k 0 Equation (5.14)
[25] Hybrid High-Order ě 0 Equation (4.1) 0 Equation (5.14)

[8,50] High-Order Mimetic ě 0* k ´ 1 0 Equation (5.18)

5.5. Examples

We collect in this section a few examples of discontinuous skeletal methods originally introduced in a primal
formulation which can be traced back to (5.9). Each method is uniquely defined by prescribing the three
polynomial degrees k, l, and m (in accordance with (4.1)) and the expression of the local stabilization bilinear
form sU,T for a generic mesh element T P Th. A synopsis is provided in Table 2.

Example 5.5 (The Hybrid Finite Volume method of [47] and its generalization of [43]). The Hybrid Finite
Volume method of ([47], Sect. 2.1) corresponds to k “ l “ m “ 0. In this case, an explicit expression for the
gradient operator G0

T defined by (5.4) is available: For all vT P U0,0
T ,

G0
T vT “

1
|T |d

ÿ
F PFT

|F |d´1vF nTF .

For every element T P Th, the stabilization bilinear form is such that

sU,T puT , vT q “
ÿ

F PFT

|F |d´1
η

hTF
δ0
TF uT δ0

TF vT , (5.10)

where η ą 0 is a user-dependent stabilization parameter, hTF is as in Example 4.7, and the face-based residual
operator δ0

TF : U0,0
T Ñ P0pF q is such that

δ0
TF vT :“ vT ` G0

T vT ¨pxF ´ xT q ´ vF . (5.11)

In the previous definition, xT can be replaced by a point xT which may or may not belong to T (more general
choices have indeed been considered in [42, 43]) In this case, the definition (5.1) of the local reduction map has
to be modified in order to ensure that condition (S21) is verified. In ([43], Sect. 2.2), the following generalization
of (5.10) is proposed: For a given positive definite matrix BT “ pBT

FF 1 qF,F 1PFT ,

sU,T puT , vT q “
ÿ

F PFT

ÿ
F 1PFT

δ0
TF uT BT

FF 1δ0
TF 1vT . (5.12)

In order to have the uniform norm equivalence (S11), the matrix BT should have an appropriate scaling as de-
tailed in ([43], Eqs. (4.2)–(4.4)). Straightforward choices are, e.g., BT “ hd´2

T Id or BT “ diag
`
h´1

F |F |d´1

˘
F PFT

(see also the following example concerning the latter choice).

Example 5.6 (The Hybrid High-Order method of [39] and the variants of [25]). The original Hybrid High-
Order method of [39] corresponds to the choice l “ k and m “ 0. In [25], variants corresponding to l “ k ´ 1
(when k ě 1) and l “ k ` 1 have also been proposed. Let an element T P Th be fixed, and define the potential
reconstruction operator pk`1

T : Uk,l
T Ñ Pk`1pT q such that, for all vT P Uk,l

T ,

∇pk`1
T vT “ Gk

T vT and ppk`1
T vT ´ vT , 1qT “ 0. (5.13)
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Notice that the first condition makes sense since, having supposed m “ 0, Gk
T vT P G

k
T . The stabilization bilinear

form is defined as follows:
sU,T puT , vT q “

ÿ
F PFT

h´1
F

`
δk
TF uT , δk

TF vT

˘
F

, (5.14)

where, for all F P FT , the face-based residual operator δk
TF : Uk,l

T Ñ PkpF q is such that, for all vT P Uk,l
T ,

δk
TF vT “ πk

F

`
pk`1

T vT ´ vF ´ πl
T

`
pk`1

T vT ´ vT

˘˘
. (5.15)

As already observed in ([39], Sect. 2.5), in the lowest-order case k “ 0 the face-based residuals defined
by (5.11) and (5.15) coincide, and the stabilization (5.14) can be recovered from (5.12) selecting BT “
diagph´1

F |F |d´1qF PFT (the only difference with respect to (5.10) is the change of local scaling hTF Ð hF ).

Example 5.7 (The Crouzeix–Raviart finite element). We study the solution of problem (5.9) using the Hybrid
High-Order method of Example 5.6 with k “ l “ m “ 0 but with right-hand side modified as follows:

pf, vhq Ð pf, p1
hvhq, (5.16)

where pp1
hvhq|T “ p1

T vT for all T P Th, and the local potential reconstruction p1
T : U0,0

T Ñ P1pT q is defined
according to (5.13) but with average value on T set to 1

d`1

ř
F PFT

vF . With this choice, for all vh P U0,0
h it holds

that π0
F p1

T vT “ p1
T vT pxF q “ vF for all T P Th and all F P FT . As a result, p1

hvh P NC0pThq, the Crouzeix–
Raviart space defined in Section 3. Moreover, it can easily be checked that the DOFs collected in U0,0

h,0 coincide
with the standard ones for NC0pThq, so that NC0pThq “ spantp1

hvh | vh P U0,0
h,0u. Using these facts, for all T P Th

and all F P FT the face-based residual operator (5.15) with k “ l “ 0 becomes

δ0
TF vT “ ´π0

T pp1
T vT ´ vT q “ vT ´ p1

T vT pxT q .

Denote now by uh P U0,0
h,0 the solution of problem (5.9) with right-hand side modified as in (5.16). Observing

that element-based DOFs do not contribute to the consistency term in (5.6) nor to the right-hand side (5.16),
we infer that the stabilization term is actually enforcing the condition uT “ p1

T uT pxT q for all T P Th. As a
result, p1

huh coincides with the Crouzeix–Raviart solution (3.4).

Example 5.8 (The Hybridizable Discontinuous Galerkin method of [49] and the variants of [25]). The Hy-
bridizable Discontinuous Galerkin originally proposed in ([49], Rem. 1.2.4) corresponds to the case l “ k ` 1,
m “ k, and stabilization

sU,T puT , vT q “
ÿ

F PFT

h´1
F

`
πk

F puT ´ uF q, πk
F pvT ´ vF q

˘
F

. (5.17)

As pointed out in ([25], Rem. 2), this stabilization coincides with (5.14) when l “ k ` 1. Motivated by this
observation, variants corresponding to the choices l “ k ´ 1 (when k ě 1) and l “ k and m “ k are proposed
therein. It is worth noticing here that the original Hybridizable Discontinuous Galerkin method of [23, 28]
does not fit in the present framework since the corresponding stabilization bilinear form is only polynomially
consistent up to degree k, i.e., it does not satisfy (S21). Correspondingly, the orders of convergence are reduced
(cf. [25], Tab. 1 for further details).

Example 5.9 (The High-Order Mimetic method of [8, 50]). The High-Order Mimetic method of [50] (subse-
quently referred to as Nonconforming Virtual Element method in [8]) provides a high-order generalization of
the concepts underlying Mimetic Difference Methods (cf., e.g., [15]). Its lowest-order version, corresponding to
the case k “ 0 and l “ ´1, violates (4.1), and therefore does not enter our unified framework. For k ě 1, on the
other hand, it corresponds to the choices l “ k ´ 1 and m “ 0. To write the corresponding bilinear form, define
the finite-dimensional local virtual space

UkpT q :“
�
vT P H1pT q | �vT P P

k´1pT q and p∇vT q|F ¨nTF P P
kpF q for all F P FT

(
.
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Clearly, Pk`1pT q Ă UkpT q, and it can be proved that Ik,k´1
U,T defines an isomorphism from UkpT q to Uk,k´1

T (this
is essentially a consequence of ([8], Lem. 3.1) after observing that the DOFs in Uk,k´1

T are equivalent to those
defined by Eqs. (3.5)–(3.6) therein). Denote by Shom

T : UkpT q ˆ UkpT q Ñ R a bilinear form whose representation
in the canonical basis of UkpT q is spectrally equivalent to the unit matrix. The stabilization bilinear form is
obtained by setting, for all uT , vT P Uk,l

T ,

sU,T puT , vT q :“ hd´2
T Shom

T ppk`1
T uT ´ uT , pk`1

T vT ´ vT q, (5.18)

where uT and vT are the unique functions in UkpT q such that uT “ Ik,k´1
U,T uT and vT “ Ik,k´1

U,T vT , while the
operator pk`1

T is defined by (5.13). The stabilization (5.18) essentially corresponds to penalizing in a least-square
sense the high-order differences πl

T ppk`1
T vT ´ vT q and πk

F ppk`1
T vT ´ vF q, F P FT , with scaling factor chosen so

that the uniform equivalence in (S11) holds.

6. From mixed to primal methods

In this section we obtain from (4.18) an equivalent primal problem by hybridization. The primal hybrid
problem is then shown to belong to the family (5.9) of primal discontinuous skeletal methods.

6.1. Mixed hybrid formulation of mixed methods

We define the bilinear form bh : qΣk,l,m

h ˆ Uk,l
h Ñ R (with spaces qΣk,l,m

h and Uk,l
h defined by (4.14) and (5.7),

respectively) such that, for all pτ h, vhq P qΣk,l,m

h ˆ Uk,l
h ,

bhpτ h, vhq :“
ÿ

T PTh

bT pτT , vT q, bT pτT , vT q :“ pDl
T τ T , vT qT ´

ÿ
F PFT

pτTF , vF qF . (6.1)

For further use, we note that it holds for all T P Th, all τT P Σk,l,m
T , and all vT P Uk,l

T ,

bT pτT , vT q “ ´pτG,T ,∇vT qT `
ÿ

F PFT

pτTF , vT ´ vF qF , (6.2)

as can be easily checked replacing Dl
T by its definition (4.6) and accounting for Remark 4.1. Hence, using

the Cauchy–Schwarz inequality and recalling the definitions (4.4) and (5.2) of }¨}Σ,T and }¨}U,T , we infer the
following boundedness result for bT :

|bT pτ T , vT q| ď }τT }Σ,T }vT }U,T . (6.3)

Consider the following

Problem 6.1 (Mixed hybrid problem). Find pσh, uhq P qΣk,l,m

h ˆ Uk,l
h,0 such that,

@T P Th, mT pσT , τT q ` bT pτ T , uT q “ 0 @τT P Σk,l,m
T , (6.4a)

´bh pσh, vhq “ pf, vhq @vh P Uk,l
h,0, (6.4b)

where we remind the reader that the local bilinear form mT that approximates the L2pT qd-product of fluxes is
defined by (4.13a).

Compared to the mixed problem (4.18), the single-valuedness of interface flux unknowns is enforced here by
Lagrange multipliers (corresponding to the skeletal DOFs in Uk,l

h,0) instead of being embedded in the discrete
space. Equation (6.4a) defines a set of local constitutive relations connecting flux to potential DOFs inside each
mesh element. Equation (6.4b), on the other hand, expresses local balances and a global transmission condition.
In what follows, we will eliminate flux unknowns by locally inverting (6.4a), ending up with a problem in the
hybrid potential unknowns only.



UNIFIED FORMULATION OF DISCONTINUOUS SKELETAL METHODS 17

6.2. Mixed-to-primal potential-to-flux operator

For all T P Th, we define the local mixed-to-primal potential-to-flux operator ςk,l,m
T : Uk,l

T Ñ Σk,l,m
T such

that, for all vT P Uk,l
T ,

mT pςk,l,m
T vT , τT q “ ´bT pτ T , vT q @τ T P Σk,l,m

T . (6.5)

Recalling the reformulation (6.2) of bT , (6.5) equivalently rewrites

mT pςk,l,m
T vT , τ T q “ p∇vT , τG,T qT `

ÿ
F PFT

pvF ´ vT , τTF qF @τT P Σk,l,m
T . (6.6)

We next state some useful properties for the potential-to-flux operator.

Lemma 6.2 (Properties of the mixed-to-primal potential-to-flux operator). Let a mesh element T P Th be given
and let sΣ,T be a bilinear form satisfying Assumption 4.2. Then, the corresponding potential-to-flux operator
ςk,l,m

T given by (6.5) is well defined and has the following properties:

(1) Stability and continuity. For all vT P Uk,l
T , it holds

}ςk,l,m
T vT }Σ,T « }vT }U,T , (6.7)

with norms }¨}Σ,T and }¨}U,T defined by (4.4) and (5.2), respectively.
(2) Commuting property. For all w P Pk`1pT q, we have

ςk,l,m
T Ik,l

U,T w “ Ik,l,m
Σ,T ∇w. (6.8)

(3) Link with the discrete gradient operator. It holds, with operators Gk
T and Sk

T defined by (5.4) and (4.8),
respectively, that

Gk
T :“ Sk

T ˝ ςk,l,m
T . (6.9)

Proof. Problem (6.5) is well-posed owing to assumption (S1) expressing the coercivity of mT . As a result, ςk,l,m
T

is well defined.

(1) Stability and continuity. Using (S1) followed by the definition (6.5) of ςk,l,m
T and the boundedness (6.3) of

bT , we infer, for all vT P Uk,l
T ,

}ςk,l,m
T vT }2

Σ,T À }ςk,l,m
T vT }2

m,T “ ´bT pςk,l,m
T vT , vT q ď }ςk,l,m

T vT }Σ,T }vT }U,T .

To prove the converse inequality, let τT P Σk,l,m
T in (6.6) be such that τ T “ ∇vT and τTF “ h´1

F pvF ´ vT q
for all F P FT , and observe that

}vT }2
U,T “ mT

´
ςk,l,m

T vT , τ T

¯
À }ςk,l,m

T vT }Σ,T }τT }Σ,T “ }ςk,l,m
T vT }Σ,T }vT }U,T ,

where we have used the Cauchy–Schwarz inequality together with (S1) to bound mT , and the definitions (4.4)
of }¨}Σ,T and (5.8) of }¨}U,T to infer }τT }Σ,T “ }vT }U,T and conclude.

(2) Commuting property. Let w P Pk`1pT q. Using the definition (6.5) of ςk,l,m
T with vT “ Ik,l

U,T w and recall-
ing (6.1), we infer, for all τ T P Σk,l,m

T ,

mT pςk,l,m
T Ik,l

U,T w, τ T q “ ´pπl
T w, Dl

T τT qT `
ÿ

F PFT

pπk
F w, τTF qF

“ ´pw, Dl
T τT qT `

ÿ
F PFT

pw, τTF qF “ p∇w,Pk
T τ T qT ,

(6.10)
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where we have used the definitions (2.1) of πl
T and πk

F to pass to the second line and the definition (4.7)
of Pk

T to conclude. On the other hand, using the definition (4.13a) of mT followed by the polynomial
consistency (4.12) of Sk

T together with (S2), for all τT P Σk,l,m
T we have that

mT pIk,l,m
Σ,T ∇w, τ T q “ pSk

T Ik,l,m
Σ,T ∇w,Sk

T τ T qT ` sΣ,T pIk,l,m
Σ,T ∇w, τ T q

“ p∇w,Sk
T τ T qT “ p∇w,Pk

T τT qT ,
(6.11)

where the last equality follows from the definition (4.8) of Sk
T together with the orthogonal decomposi-

tion (2.3). Subtracting (6.11) from (6.10), we infer, for all τT P Σk,l,m
T ,

mT pςk,l,m
T Ik,l

U,T w ´ Ik,l,m
Σ,T ∇w, τ T q “ 0,

from which (6.8) follows since mT is coercive on Σk,l,m
T owing to (S1).

(3) Link with the discrete gradient operator. Let vT P Uk,l
T , τ P S

k,m
T , and set τT :“ Ik,l,m

Σ,T τ . Recalling the
definition (4.13a) of mT , and using the polynomial consistency (4.12) of Sk

T together with (S2), it is readily
inferred that

mT pςk,l,m
T vT , τT q “

´
pSk

T ˝ ςk,l,m
T qvT , τ

¯
T

. (6.12)

On the other hand, recalling the definitions (4.3) of Ik,l,m
Σ,T and (6.1) of bT , we get

bT pτ T , vT q “ pvT , Dl
T τ T qT ´

ÿ
F PFT

pvF , τTF qF

“ pvT , πl
T pdiv τ qqT ´

ÿ
F PFT

pvF , πk
F pτ ¨nTF qqF

“ pvT , div τ qT ´
ÿ

F PFT

pvF , τ ¨nTF qF “ ´pGk
T vh, τ qT ,

(6.13)

where we have used the commuting property (4.9) of Dl
T in the second line and the definition (2.1) of πl

T and
πk

F and (5.4) of Gk
T in the third. To conclude, plug (6.12) and (6.13) into the definition (6.5) of ςk,l,m

T . �

6.3. Equivalent primal formulations of mixed methods

We start by showing a link among problems (4.18), (6.4), and the following

Problem 6.3 (Primal hybrid problem). Find pσh, uhq P qΣk,l,m

h ˆ Uk,l
h,0 such that

σT “ ςk,l,m
T uT @T P Th, (6.14a)

with potential-to-flux operator ςk,l,m
T defined by (6.5) and uh solution of

ahpuh, vhq “ pf, vhq @vh P Uk,l
h,0, (6.14b)

where the bilinear form ah on Uk,l
h ˆ Uk,l

h is such that

ahpuh, vhq :“
ÿ

T PTh

aT puT , vT q, aT puT , vT q :“ mT

´
ςk,l,m

T uT , ςk,l,m
T vT

¯
. (6.15)

The well-posedness of (6.14b) is an immediate consequence of point (1) in Theorem 6.5 below.
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Theorem 6.4 (Link among the mixed, mixed hybrid and primal hybrid problems). For all T P Th, let sΣ,T

satisfy Assumption 4.2. Let pσh, uhq P qΣk,l,m

h ˆ Uk,l
h,0, and let uh P U l

h be such that uh|T “ uT for all T P Th.
Then, the following statements are equivalent:

(i) pσh, uhq solves the mixed hybrid problem (6.4);
(ii) σh P Σk,l,m

h and pσh, uhq solves the mixed problem (4.18);
(iii) pσh, uhq solves the primal hybrid problem (6.14).

Proof. The equivalence (i) ðñ (ii) classically follows from the theory of Lagrange multipliers. Let us prove
the equivalence (i) ðñ (iii). We show that if pσh, uhq solves the mixed hybrid problem (6.4), then it solves the
primal hybrid problem (6.14). Equation (6.14a) immediately follows from (6.4a) recalling the definition (6.5) of
the potential-to-flux operator. As a consequence, it holds for all T P Th and all vT P Uk,l

T ,

´bT pσT , vT q “ ´bT

´
ςk,l,m

T uT , vT

¯
“ mT

´
ςk,l,m

T uT , ςk,l,m
T vT

¯
“ aT puT , vT q ,

where we have used the definition (6.5) of the potential-to-flux operator together with the symmetry of mT in the
second equality and the definition (6.15) of the bilinear form aT to conclude. This implies that (6.4b) is equivalent
to (6.14b). By similar arguments, we can prove that if pσh, uhq solves the primal hybrid problem (6.14), then it
solves the mixed hybrid problem (6.4), thus concluding the proof. �

We close this section with our main result, i.e., the existence of a primal method belonging to the family (5.9)
whose solution coincides with that of the mixed method (4.18) for given stabilization bilinear forms satisfying
Assumption 4.2. In the light of Theorem 6.4, it suffices to state the equivalence with respect to the corresponding
mixed hybrid formulation (6.4).

Theorem 6.5 (Link with the family of primal discontinuous skeletal methods). For all T P Th, let sΣ,T satisfy
Assumption 4.2 and set with ςk,l,m

T defined by (6.5):

sU,T puT , vT q :“ sΣ,T

´
ςk,l,m

T uT , ςk,l,m
T vT

¯
. (6.16)

Then,

(1) Properties of sU,T . The stabilization bilinear forms sU,T , T P Th, satisfy Assumption 5.2;
(2) Link with primal methods. uh P Uk,l

h,0 solves the primal problem (5.9) with stabilization as in (6.16) if and

only if pσh, uhq P qΣk,l,m

h ˆ Uk,l
h,0 with σh such that σT “ ςk,l,m

T uT for all T P Th solves the mixed hybrid
problem (6.4).

Proof.

(1) Properties of sU,T . Let T P Th. The bilinear form sU,T is clearly symmetric and positive semi-definite. It
then suffices to prove conditions (S11) and (S21). To prove (S11) observe that, for all vT P Uk,l

T , we have

}vT }a,T “ }ςk,l,m
T vT }m,T « }ςk,l,m

T vT }Σ,T « }vT }U,T ,

where we have used the definition (6.15) of aT , (S1), and the stability and continuity (6.7) of ςk,l,m
T . Let us

prove (S21). Letting w P Pk`1pT q, for all vT P Uk,l
T we have

sU,T

´
Ik,l

U,T w, vT

¯
“ sΣ,T

´
ςk,l,m

T Ik,l
U,T w, ςk,l,m

T vT

¯
“ sΣ,T

´
Ik,l,m

Σ,T ∇w, ςk,l,m
T vT

¯
“ 0,

where we have used the definition (6.16) of sU,T , the commuting property (6.8), and (S2).
(2) Link with primal methods. Compare the primal hybrid formulation (6.14) with the primal formulation (5.9)

and recall the equivalence with the mixed hybrid formulation (6.4) stated in Theorem 6.4. �
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7. From primal to mixed methods

In this section we show that the primal discontinuous skeletal methods of Section 5 with m “ 0 can be recast
into the mixed formulation introduced in Section 4. This closes the circle and shows a precise equivalence relation
between the family (4.18) of mixed discontinuous skeletal methods and the family (5.9) of primal discontinuous
skeletal methods.

7.1. Primal-to-mixed potential-to-flux operator

We assume from this point on that, for a given integer k ě 0, l is as in (4.1), and

m “ 0.

The crucial ingredient is the primal-to-mixed potential-to-flux operator ςk,l
T : Uk,l

T Ñ Σk,l,0
T such that, for all

wT P Uk,l
T , ςk,l

T wT solves
´bT pςk,l

T wT , vT q “ aT pwT , vT q @vT P Uk,l
T . (7.1)

The use of a similar notation as for the mixed-to-primal potential-to-flux operator defined by (6.5) is motivated
by the fact that these two operators share the same properties (compare Lemmas 6.2 and 7.1) and play very
much the same role.

Lemma 7.1 (Properties of the primal-to-mixed potential-to-flux operator). Let a mesh element T P Th be given
and let sU,T be a bilinear form satisfying Assumption 5.2. Then, the corresponding potential-to-flux operator ςk,l

T

given by (7.1) is well defined and has the following properties:

(1) Stability and continuity. For all vT P Uk,l
T , it holds with norms }¨}Σ,T and }¨}U,T defined by (4.4) and (5.2),

respectively,
}ςk,l

T vT }Σ,T « }vT }U,T . (7.2)

(2) Commuting property. For all w P P
k`1pT q, we have

ςk,l
T Ik,l

U,T w “ Ik,l,0
Σ,T ∇w. (7.3)

(3) Link with the discrete gradient operator. It holds, with operators Gk
T , Pk

T , and Sk
T defined by (5.4), (4.7),

and (4.8), respectively, that
Gk

T “ Pk
T ˝ ςk,l

T “ Sk
T ˝ ςk,l

T . (7.4)

Additionally, ςk,l
T defines an isomorphism from Uk,l

T,˚ (cf. (5.3)) to Σk,l,0
T .

Proof. Let T P Th. To show that ςk,l
T is well defined we prove the following inf-sup condition: For all τT P Σk,l,0

T ,

}τT }Σ,T ď S :“ sup
vT PUk,l

T,˚zt0U,T u

bT pτ T , vT q
}vT }U,T

¨ (7.5)

Let vτ ,T P Uk,l
T be such that ∇vτ ,T “ τT and vτ ,F ´ vτ ,T “ hF τTF (vτ ,T is defined up to an element of

Ik,l
U,T P0pT q, coeherently with the fact that we write Uk,l

T,˚ in the supremum). It can be checked that }vτ ,T }U,T “
}τT }Σ,T and it holds, recalling the reformulation (6.2) of the bilinear form bT ,

}τT }2
Σ,T “ ´bT pτ T , vτ ,T q ď S}vτ ,T }U,T “ S}τT }Σ,T ,

which proves (7.5). To prove the well-posedness of problem (7.1) it only remains to observe that, for all vT P
Ik,l

U,T P0pT q, equation (7.1) becomes the trivial identity 0 “ 0, which can be intepreted as a compatibility
condition. Finally, the fact that ςk,l

T defines an isomorphism from Uk,l
T,˚ to Σk,l,0

T follows observing that ςk,l
T is

injective as a result of (7.5) and dimpUk,l
T,˚q “ dimpΣk,l,0

T q.
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(1) Stability and continuity. Combining the inf-sup condition (7.5) with the definition (7.1) of ςk,l
T , and using

the Cauchy–Schwarz inequality followed by (S1’), we get for all vT P Uk,l
T that

}ςk,l
T vT }Σ,T ď sup

wT PUk,l
T,˚zt0U,T u

bT pςk,l
T vT , wT q

}wT }U,T
“ sup

wT PUk,l
T,˚zt0U,T u

aT pvT , wT q
}wT }U,T

À }vT }U,T .

On the other hand, (S1’) followed by the definition (7.1) of ςk,l
T and the boundedness (6.3) of the bilinear

form bT yields
}vT }2

U,T À aT pvT , vT q “ ´bT pςk,l
T vT , vT q ď }ςk,l

T vT }Σ,T }vT }U,T ,

which concludes the proof of (7.2).
(2) Commuting property. Let w P Pk`1pT q. For all vT P Uk,l

T it holds

´bT

´
ςk,l

T Ik,l
U,T w, vT

¯
“ aT

´
Ik,l

U,T w, vT

¯
“ p∇w,Gk

T vT qT “ ´bT

´
Ik,l,0

Σ,T ∇w, vT

¯
,

where we have used the definition (7.1) of ςk,l
T in the first equality, the definition (5.6) of aT together with

(S21) in the second equality, and concluded recalling the definitions (5.4) of Gk
T , (4.3) of Ik,l,0

Σ,T , and (6.1) of
bT . As a consequence,

bT

´
Ik,l,0

Σ,T ∇w ´ ςk,l
T Ik,l

U,T w, vT

¯
“ 0 @vT P Uk,l

T ,

which, accounting for the inf-sup condition (7.5), implies (7.3).
(3) Link with the discrete gradient operator. Let vT P Uk,l

T and w P Pk`1pT q. Recalling the definitions (6.1) of
bT and (5.1) of Ik,l

U,T , we infer that

´bT pςk,l
T vT , Ik,l

U,T wq “ ´pDl
T ςk,l

T vT , πl
T wqT `

ÿ
F PFT

ppςk,l
T vT qTF , πk

F wqF

“ ´pDl
T ςk,l

T vT , wqT `
ÿ

F PFT

ppςk,l
T vT qTF , wqF “ ppPk

T ˝ ςk,l
T qvT ,∇wqT ,

where we have used the definition (2.1) of πl
T and πk

F to pass to the second line and the definition (4.7) of
Pk

T to conclude. On the other hand, by the definition (5.6) of aT together with the polynomial consistency
of Gk

T (a consequence of (5.5)) and (S21), we have

aT

´
vT , Ik,l

U,T w
¯

“ pGk
T vT ,∇wqT .

Substituting the above relations into the definition (7.1) of ςk,l
T we infer that Gk

T vT “ Pk
T ˝ςk,l

T . Additionally,
since we have supposed m “ 0, we also have Sk

T “ Pk
T , thus concluding the proof. �

7.2. Equivalent mixed formulation of primal methods

We close this section by showing the existence of a mixed method belonging to the family (4.18) whose
solution coincides with that of the primal problem (5.9). In the light of Theorem 6.4, we state the equivalence
result in terms of the corresponding mixed hybrid formulation (6.4).

Theorem 7.2 (Link with the family of mixed discontinuous skeletal methods). For all T P Th, let sU,T satisfy
Assumption 5.2 and set, for all σT , τ T P Σk,l,0

T ,

sΣ,T pσT , τT q :“ sU,T

´
pςk,l

T q´1σT , pςk,l
T q´1τT

¯
, (7.6)

where it is understood that pςk,l
T q´1τT and pςk,l

T q´1σT are defined up to an element of Ik,l
U,T P0pT q. Then,
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(1) Properties of sΣ,T . The stabilization bilinear forms sΣ,T , T P Th satisfy Assumption 4.2;

(2) Link with mixed methods. pσh, uhq P qΣk,l,0

h ˆ Uk,l
h,0 solves the mixed hybrid problem (6.4) with stabilization

as in (7.6) if and only if uh solves the primal problem (5.9) and, for all T P Th, σT “ ςk,l
T uT with ςk,l

T

defined by (7.1).

Proof.

(1) Properties of sΣ,T . Let T P Th. The bilinear form sΣ,T is clearly symmetric and positive semi-definite. It
then suffices to prove conditions (S1) and (S2). Let us start by (S1). Recalling the definition (4.13a) of the
bilinear form mT , property (7.4) for the potential-to-flux operator ςk,l

T defined by (7.1), and (7.6), we infer
for all wT , vT P Uk,l

T that
mT pςk,l

T wT , ςk,l
T vT q “ aT pwT , vT q. (7.7)

Let now τT P Σk,l,0
T be such that τT “ ςk,l

T vT with vT P Uk,l
T (the existence of such vT , defined up to an

element of Ik,l
U,T P

0pT q, follows from Lemma 7.1). We have that

}τT }Σ,T « }vT }U,T « }vT }a,T “ }τT }m,T ,

where the first norm equivalence follows from (7.2), the second from (S21), and the last one from (7.7).
Property (S1) follows.
Let us now prove (S2). Let χ P G

k
T be such that χ “ ∇w with w P Pk`1pT q. For all vT P Uk,l

T it holds,

sΣ,T pIk,l,0
Σ,T χ, ςk,l

T vT q “ sU,T ppςk,l
T q´1Ik,l,0

Σ,T χ, vT q “ sU,T pIk,l
U,T w, vT q “ 0,

where we have used the definition (7.6) of sΣ,T , the commuting property (7.3), and concluded using (S21).

(2) Link with mixed methods. We let pσh, uhq P qΣk,l,0

h ˆ Uk,l
h,0 solve the mixed hybrid problem (6.4) with sΣ,T

given by (7.6), and we show that uh solves (5.9) and σT “ ςk,l
T uT for all T P Th. Making τ T “ ςk,l

T vT with
vT P Uk,l

T in (6.4a), it is inferred

0 “ mT pσT , ςk,l
T vT q ` bT pςk,l

T vT , uT q “ mT pσT ´ ςk,l
T uT , ςk,l

T vT q.

Since Σk,l,0
T “ ςk,l

T Uk,l
T as a result of Lemma 7.1 and vT is arbitrary in Uk,l

T , this means that

σT “ ςk,l
T uT @T P Th.

Plugging this relation into (6.4b), and recalling the definition (7.1) of ςk,l
T , we infer that it holds for all

vh P Uk,l
h,0,

pf, vhq “ ´
ÿ

T PTh

bT pσT , vT q “ ´
ÿ

T PTh

bT pςk,l
T uT , vT q “ ahpuh, vhq,

which shows that uh solves the primal problem (5.9). Following a similar reasoning one can prove that, if uh

solves (5.9), then pσh, uhq with σT “ ςk,l
T uT for all T P Th solves (6.4). �

8. Analysis

In this section we carry out a unified convergence analysis encompassing both mixed and primal discontinuous
skeletal methods. Recalling Theorems 6.4, 6.5, and 7.2, we focus on the mixed hybrid problem (6.4). Let

three integers k ě 0 and l, m as in (4.1) be fixed, set Xk,l,m
h :“ qΣk,l,m

h ˆ Uk,l
h,0, and define the bilinear form

Ah : Xk,l,m
h ˆ Xk,l,m

h Ñ R such that

Ahppσh, uhq, pτ h, vhqq :“ mhpσh, τhq ` bhpτ h, uhq ´ bhpσh, vhq.



UNIFIED FORMULATION OF DISCONTINUOUS SKELETAL METHODS 23

Problem (6.4) admits the following equivalent reformulation: Find pσh, uhq P qΣk,l,m

h ˆ Uk,l
h,0 such that

Ahppσh, uhq, pτ h, vhqq “ pf, vhq @pτh, vhq P qΣk,l,m

h ˆ Uk,l
h,0. (8.1)

8.1. Stability and well-posedness

We equip the space Xk,l,m
h with the norm }¨}X,h such that, for all pτh, vhq P Xk,l,m

h ,

}pτh, vhq}2
X,h :“ }τh}2

Σ,h ` }vh}2
U,h,

with norms }¨}Σ,h on qΣk,l,m

h and }¨}U,h on Uk,l
h defined by (4.15) and (5.8), respectively.

Lemma 8.1 (Well-posedness). For all pχ
h
, whq P Xk,l,m

h it holds

}pχ
h
, whq}X,h À sup

pτ h,vhqPXk,l,m
h zt0X,hu

Ahppχ
h
, whq, pτ h, vhqq

}pτh, vhq}X,h
¨ (8.2)

Consequently, problem (8.1) is well-posed.

Proof. We start by proving the following inf-sup condition for bh: For all vh P Uk,l
h,0,

}vh}U,h À sup
τhP|Σk,l,m

h zt0Σ,hu

bhpτh, vhq
}τh}Σ,h

¨ (8.3)

Fix an element vh P Uk,l
h,0, and let τ v,h P qΣk,l,m

h be such that, for all T P Th, τ v,T “ ∇vT and τv,TF “
h´1

F pvF ´ vT q for all F P FT . Denoting by S the supremum in (8.3), from (6.2) it is inferred that

}vh}2
U,h “ bhpτ v,h, vhq ď S}τ v,h}Σ,h,

and (8.3) readily follows observing that, by the definitions (4.4) and (5.2) of the local norms, }τ v,T }Σ,T “
}vT }U,T . The inf-sup condition (8.2) on Ah and the well-posedness of problem (6.4) are then classical conse-
quences of the }¨}Σ,h-coercivity of mh (itself a consequence of (S1)) and the inf-sup condition (8.3) on bh; cf.,
e.g., [16]. �

8.2. Energy error estimate

We estimate the error defined as the difference between the solution of the mixed hybrid problem (6.4) and

the projection ppσh, puhq P qΣk,l,m

h ˆ Uk,l
h,0 of the exact solution defined as follows:

pσh :“ Ik,l,m
Σ,h ∇hquh @T P Th, puh :“ Ik,l

U,hu,

where quh P Pk`1pThq is such that, for all T P Th, quT :“ quh|T is the local elliptic projection of u satisfying

∇quT “ πk
G,T∇u and pquT ´ u, 1qT “ 0, (8.4)

while Ik,l,m
Σ,h is the global flux reduction map on qΣk,l,m

h whose restriction to every mesh elements T P Th coincides
with Ik,l,m

Σ,T defined by (4.3). Optimal approximation properties for quh on regular mesh sequences are proved
in ([39], Lem. 3) and, in a more general framework, in [34].
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Theorem 8.2 (Energy error estimate). Let u P H1
0 pΩq be the weak solution of problem (1.1), and assume the

additional regularity u P Hk`2pΩq. Then, it holds

}pσh ´ pσh, uh ´ puhq}X,h À hk`1}u}Hk`2pΩq. (8.5)

Proof. The following error equation descends from (8.1): For all pτh, vhq P qΣk,l,m

h ˆ Uk,l
h,0,

Ahppσh ´ pσh, uh ´ puhq, pτh, vhqq “ Ehpτh, vhq,

with conformity error

Ehpτ h, vhq :“ pf, vhq ` bhppσh, vhq ´ mhppσh, τ hq ´ bhpτh, puhq. (8.6)

Recalling the inf-sup condition (8.2), we then have that

}pσh ´ pσh, uh ´ puhq}X,h À sup
pτh,vhqPXk,l,m

h zt0X,hu

Ehpτ h, vhq
}pτh, vhq}X,h

¨ (8.7)

To conclude, it suffices to bound Ehpτ h, vhq. Denote by T1, . . . , T4 the addends in the right-hand side of (8.6).
Recalling that f “ ´�u a.e. in Ω, integrating by parts element-by-element, and using the fact that the normal
component of ∇u is continuous across all interfaces F P F i and that vF vanishes on boundary faces F P Fb, we
have that

T1 “
ÿ

T PTh

˜
p∇u,∇vT q `

ÿ
F PFT

p∇u¨nTF , vF ´ vT qF

¸
.

Using the commuting property (4.9) of Dl
T to infer Dl

T pσT “ �quT , and integrating by parts element-by-element,
we have that

T2 “ ´
ÿ

T PTh

˜
p∇u,∇vT qT `

ÿ
F PFT

p∇quT ¨nTF , vF ´ vT qF

¸
,

where we have used the definition (8.4) of quT to write ∇u instead of ∇quT in the first term. Summing the above
equations, passing to the absolute value, and using the Cauchy–Schwarz inequality yields

|T1 ` T2| ď

˜ ÿ
F PFT

hF }∇pu ´ quT q}2
F

¸ 1
2

ˆ

˜ ÿ
F PFT

h´1
F }vF ´ vT }2

F

¸ 1
2

À hk`1}u}Hk`2pΩq}vh}U,h, (8.8)

where we have used the optimal approximation properties of quT to conclude.
Recalling the definition (4.13b) of mT , using the polynomial consistency (4.10) of Pk

T together with (S2), and
expanding Pk

T τT according to its definition (4.7) (with w “ quT ), it is inferred that

T3 “ ´
ÿ

T PTh

p∇quT ,Pk
T τT qT “

ÿ
T PTh

˜
pquT , Dl

T τT qT ´
ÿ

F PFT

pquT , τTF qF

¸
.

Recalling (6.1) together with the definitions (5.1) of Ik,l
U,T and (2.1) of πl

T and πk
F , we get that

T4 “
ÿ

T PTh

˜
´pu, Dl

T τT qT `
ÿ

F PFT

pu, τTF qF

¸
.
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Summing the above equations, passing to the absolute value, and using the Cauchy–Schwarz inequality, we then
obtain

|T3 ` T4| ď

« ÿ
T PTh

˜
h´2

T }u ´ quT }2
T `

ÿ
F PFT

h´1
F }u ´ quT }2

F

¸ff 1
2

ˆ

« ÿ
T PTh

˜
h2

T }Dl
T τT }2

T `
ÿ

F PFT

hF }τTF }2
F

¸ff 1
2

À hk`1}u}Hk`2pΩq}τT }Σ,T ,

(8.9)

where we have used the optimal approximation properties of quT and the inverse inequality }Dl
T τT }T À

h´1
T }τT }Σ,T to pass to the second line. Combining (8.8) with (8.9), we infer the bound

|Ehpτ h, vhq| À hk`1}u}Hk`2pΩq}pτh, vhq}X,h,

which, plugged into (8.7), yields the desired result. �

8.3. L2-error estimate

In this section we prove a sharp L2-error estimate on the potential under the following usual elliptic regularity
assumption: For all g P L2pΩq, the unique solution z P H1

0 pΩq of the problem

p∇z,∇vq “ pg, vq @v P H1
0 pΩq, (8.10)

satisfies
}z}H2pΩq ď CΩ}g}L2pΩq, (8.11)

with real number CΩ ą 0 only depending on Ω. In the proof we will need the following consistency property
for the bilinear form bh.

Proposition 8.3 (Consistency of bh). For all χ P Hpdiv; Ωq such that χ|T P Σ`pT q for all T P Th, it holds

bh

´
Ik,l,m

Σ,h χ, vh

¯
“ pdiv χ, vhq @vh P Uk,l

h,0. (8.12)

Proof. Recall the expression (6.1) of bh and use commuting property (4.9) for Dl
T together with the fact that

χ has continuous normal components across interfaces F P F i and vF “ 0 on all F P Fb. �

Theorem 8.4 (L2-error estimate). Let the assumptions of Theorem 8.2 hold true, and further assume pk, lq ‰
p1, 0q, elliptic regularity, f P Hk`δpΩq with δ “ 1 if k “ l “ 0, δ “ 0 otherwise. Then, it holds

}puh ´ uh} À hk`2}u}Hk`2pΩq ` hk`2}f}Hk`δpΩq.

Remark 8.5 (The case pk, lq “ p1, 0q). If pk, lq “ p1, 0q, the term T1 in the proof below limits the convergence
order to h2. We refer to ([50], Sect. 2.7) for a modification of the right-hand side that aims at avoiding this
shortcoming.

Proof. Let z solve (8.10) with g “ uh ´ puh and set, for the sake of brevity,

pχ
h

:“ Ik,l,m
Σ,h ∇z, pzh :“ Ik,l

U,hz.

Then, we have
}puh ´ uh}2 “ pu ´ uh,�zq “ ´pf, zq ´ bhppχ

h
, uhq, (8.13)

where for the first addend we have integrated by parts and used the fact that p∇u,∇zq “ pf, zq, while for the
second addend we have used the consistency property (8.12) of bh with χ “ ∇z and vh “ uh. Using (6.4a)
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we get, denoting by ςk,l,m
h the global mixed-to-primal potential-to-flux operator whose restriction to every mesh

element T P Th coincides with ςk,l,m
T defined by (6.5),

´bhppχ
h
, uhq “ mh

´pχ
h
, σh

¯
“ mh

´pχ
h

´ ςk,l,m
h pzh, σh

¯
` ahppzh, uhq

“ mh

´pχ
h

´ ςk,l,m
h pzh, σh ´ pσh

¯
` mh

´pχ
h

´ ςk,l,m
h pzh, pσh

¯
` pf, pzhq,

(8.14)

where we have inserted ˘ςk,l,m
h pzh and used the fact that σh “ ςk,l,m

h uh together with the definition (6.15) of
the primal hybrid bilinear form ah to pass to the second line, and we have inserted ˘pσh and used (6.14b) (with
vh “ pzh) to conclude. Plugging (8.14) into (8.13), and observing that pf, pzhq “ pπl

hf, zq with πl
h denoting the

L2-orthogonal projector on U l
h (cf. (4.16)), we arrive at

}puh ´ uh}2 “ pπl
hf ´ f, z ´ πl

hzq ` mh

´pχ
h

´ ςk,l,m
h pzh, σh ´ pσh

¯
` mh

´pχ
h

´ ςk,l,m
h pzh, pσh

¯
. (8.15)

Denote by T1, T2, T3 the terms in the right-hand side of (8.15). For T1, if k “ l “ 0, we have

|T1| ď }πl
hf ´ f}}z ´ πl

hz} À h2}f}H1pΩq}z}H1pΩq, (8.16)

while, in all the other cases,

|T1| ď }πl
hf ´ f}}z ´ πl

hz} À hk`2}f}HkpΩq}z}H2pΩq. (8.17)

For T2, the Cauchy–Schwarz inequality followed by (S1) and the energy error estimate (8.5) yields

|T2| À }pχ
h

´ ςk,l,m
h pzh}Σ,h}σh ´ pσh}Σ,h À hk`2}z}H2pΩq}u}Hk`2pΩq. (8.18)

To estimate the quantity }pχ
h

´ ςk,l,m
h pzh}Σ,h in (8.18), let qzh P P

k`1pThq be the broken elliptic projection such
that qzT :“ qzh|T is defined as in (8.4) with u replaced by z, observe that Ik,l,m

Σ,h ∇hqzh “ ςk,l,m
h Ik,l

U,hqzh by (6.8),
and use (6.7) to infer

}pχ
h

´ ςk,l,m
h pzh}Σ,h ď }Ik,l,m

Σ,h p∇z ´ ∇hqzhq}Σ,h ` }ςk,l,m
h Ik,l

U,hpz ´ qzhq}Σ,h

À }Ik,l,m
Σ,T p∇z ´ ∇hqzhq}Σ,h ` }Ik,l

U,hpz ´ qzhq}U,h À h}z}H2pΩq,

where the conclusion follows from the stability of the L2-projector and the optimal approximation properties
of qzh.

For T3, recalling the definitions (4.17) of mh, (4.13a) of mT , and (S2), we have

T3 “
ÿ

T PTh

´
Sk

T ppχ
T

´ ςk,l,m
T pzT q,Sk

T pσT

¯
T

“
ÿ

T PTh

´
Pk

T pχT
´ ∇qzT ,∇quT

¯
T

“
ÿ

T PTh

˜
p∇pz ´ qzT q,∇quT qT `

ÿ
F PFT

pπk
F p∇z¨nTF q ´ ∇z¨nTF , quT qF

¸
“

ÿ
T PTh

ÿ
F PFT

pπk
F p∇z¨nTF q ´ ∇z¨nTF , quT ´ uqF ,

where we have used the definition (4.8) of Sk
T together with the orthogonal decomposition (2.3) and the fact

that pSk
T ˝ ςk,l,m

T qpzT “ Gk
TpzT “ ∇qzT (cf. (6.9) and (5.5)) to pass to the second line, the definition (4.7) of Pk

T
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(with τT “ pχ
T

and w “ quT ) together with the fact that Dl
T pχ

T
“ �z and an integration by parts to pass to

the third line, and concluded in the fourth line using the fact that qzT is a local elliptic projection to cancel the
first term together with the fact that the quantity pπk

F p∇z¨nTF q ´ ∇z¨nTF q is single-valued on every interface
F P F i and u “ 0 on all F P Fb to insert u into the second term. Using the Cauchy–Schwarz inequality and the
optimal approximation properties of πk

F and quT , we conclude

|T3| À hk`2}u}Hk`2pΩq}z}H2pΩq. (8.19)

Using (8.16)–(8.19) to estimate the right-hand side of (8.15) followed by the elliptic regularity (8.11) to bound
}z}H2pΩq À }puh ´ uh}, the desired result follows. �
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[47] R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general noncon-
forming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043.

[48] R. Eymard, C. Guichard and R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN 46
(2012) 265–290.

[49] C. Lehrenfeld, Hybrid Discontinuous Galerkin methods for solving incompressible flow problems. Ph.D. thesis, Rheinisch-
Westfälischen Technischen Hochschule Aachen (2010).

[50] K. Lipnikov and G. Manzini, A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation.
J. Comput. Phys. 272 (2014) 360–385.

[51] L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart–Thomas mixed method.
SIAM J. Numer. Anal. 22 (1985) 493–496.

[52] P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems. In Mathematical Aspects of
the Finite Element Method, edited by I. Galligani and E. Magenes. Springer, New York (1977).

[53] E. Tonti, On the formal structure of physical theories. Istituto di Matematica del Politecnico di Milano (1975).
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