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A NOTE ON SEMILINEAR FRACTIONAL ELLIPTIC EQUATION: ANALYSIS
AND DISCRETIZATION *
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Abstract. In this paper we study existence, regularity, and approximation of solution to a fractional
semilinear elliptic equation of order s € (0, 1). We identify minimal conditions on the nonlinear term and
the source which lead to existence of weak solutions and uniform L*°-bound on the solutions. Next we
realize the fractional Laplacian as a Dirichlet-to-Neumann map via the Caffarelli—Silvestre extension.
We introduce a first-degree tensor product finite elements space to approximate the truncated problem.
We derive a priori error estimates and conclude with an illustrative numerical example.
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1. INTRODUCTION

Let 2 ¢ RY be a bounded open set with boundary 942. In this paper we investigate the existence, regularity,
and finite element approximation of weak solutions of the following semilinear Dirichlet problem

(—Ap)’u+ f(z,u) =g in 0, (1)

u=0 on 9. '
Here, g is a given measurable function on 2, f : 2 xR — R is measurable and satisfies certain conditions (that
we shall specify later), 0 < s < 1 and (—Ap)?® denotes the fractional Dirichlet Laplace operator, that is, the
fractional s power of the realization in L?(£2) of the Laplace operator with zero Dirichlet boundary condition on
0{2. We notice that the boundary condition in (1.1) can be dropped since it is already included in the definition
of the operator (—Ap)*.
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Notice that (—Ap)® is a nonlocal operator and f is nonlinear with respect to u. This makes it challenging
to identify the minimum assumptions on (2, f and g in the study of the existence, uniqueness, regularity and
the numerical analysis of the system. The latter is the main objective of the present paper.

When f is linear in u, problems of type (1.1) have received a great deal of attention. See [5] for results in
RY and [1,6,7,23] for results in bounded domains. However, [5,6,23] only deal with the linear problems, on the
other hand [1,7] deal with a different class of semilinear problems and assumes (2 and f to be smooth. We refer
to [19] where a numerical scheme to approximate the linear problem was first established. To the best of our
knowledge our paper is the first work addressing the existence, regularity, and numerical approximation of (1.1)
with almost minimum conditions on {2, f and g.

We use Musielak-Orlicz spaces, endowed with Luxemburg norm, to deal with the nonlinearity. Using the
Browder—Minty theorem, we first show the existence and uniqueness of a weak solution. Additional integrability
condition on g brings the solution in L>°(2). For the latter result, we apply a well-known technique due to
Stampacchia. However, when {2 has a Lipschitz continuous boundary and f is locally Lipschitz continuous we
illustrate the regularity shift. For completeness we also derive the Hélder regularity of solution for §2 of class C*.

Numerical realization of nonlocal operators poses various challenges for instance, direct discretization of (1.1),
by using finite elements, requires access to eigenvalues and eigenvectors of (—Ap)® which is an intractable
problem in general domains. Instead we use the so-called Caffarelli—Silvestre extension to realize the fractional
power (—Ap)®. Such an approach is a more suitable choice for numerical methods, see [19] for the linear case.
The extension idea was introduced by Caffarelli and Silvestre in R [5] and its extensions to bounded domains
was given by Stinga-Torrea [23], see also [7]. Since our domain {2 is bounded so in fact we are using the Stinga-
Torrea extension. The extension says that fractional powers (—Ap)?® of the spatial operator —Ap can be realized
as an operator that maps a Dirichlet boundary condition to a Neumann boundary condition via an extension
problem on the semi-infinite cylinder C = {2 x (0, 00), that is, a Dirichlet-to-Neumann operator. See Section 3
for more details.

We derive a priori finite element error estimates for our numerical scheme. Our proof requires the solution
of a discrete linearized problem to be uniformly bounded in L*({2), which can be readily derived by using
the inverse estimates and under the assumption s > (N — 2)/2. As a result, when N > 3, we only have error
estimates in case s > (N — 2)/2. We notice that no restriction on s is needed when N < 2. In summary we are
only limited by the L>°(£2) regularity of the solution to a discrete linearized problem when N > 3.

Recently, fractional order PDEs have made a remarkable appearance in various scientific disciplines, and
have received a great deal of attention. The fractional semilinear problems of type (1.1) appears, for instance,
in turbulence [9,10]. When s = 1, (1.1) appears in superconductivity [24]. In view of the aforementioned
applications and other applications where the physics can be described using nonlinear PDEs, it is natural to
analyze a prototypical semilinear PDE given in (1.1).

The paper is organized as follows: In Section 2.1 we provide definitions of the fractional order Sobolev spaces
and the fractional Dirichlet Laplacian. These results are well known. Section 2.2 is devoted to essential properties
of Orlicz spaces. We also specify assumptions on f and state several embedding results which are due to Sobolev
embedding theorems. Our main results begin in Section 2.3, where we first show existence and uniqueness of
a weak solution u to the system (1.1) in Proposition 2.8 and later with additional integrability assumption on
g we obtain uniform L*>-bound on u in Theorem 2.9. When {2 is of class C! we derive the Holder regularity
of u in Corollary 2.12. In case {2 has a Lipschitz continuous boundary and f is locally Lipschitz continuous
we deduce regularity shift on « in Corollary 2.15. We state the extension problem in Section 3 and show the
existence and uniqueness of a solution U to the extension problem on C := {2 x (0, c0) in Lemma 3.1. We notice
that uw = U(-,0). In Section 4 we begin the numerical analysis of our problem. We first derive the energy norm
and the L?-norm a priori error estimates for an intermediate linear problem in Lemma 4.2. This is followed by
a uniform L°°-bound on the discrete solution to an intermediate linear problem in Lemma 4.3. We conclude
with the error estimates for our numerical scheme to solve (1.1) in Theorem 4.5 and a numerical example.
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2. ANALYSIS OF THE SEMILINEAR ELLIPTIC PROBLEM

Throughout this section without any mention, £2 C RY denotes an arbitrary bounded open set with bound-
ary 02. For each result, if a regularity of {2 is needed, then we shall specify and if no specification is given, then
we mean that the result holds without any regularity assumption on the open set.

2.1. The fractional Dirichlet Laplacian

Let D(£2) be the space of test functions on {2, that is, the space of infinitely continuously differentiable

——HY (2
functions with compact support in 2. We let Hg(£2) = D(£2) () where

HY () = {ueL2(Q): /Q|Vu|2dm<oo}

is the first order Sobolev space endowed with the norm

1
2
ull g2y = (/ lu|? dz +/ |Vu|? dx)
0 n

Let —Ap be the realization on L?(£2) of the Laplace operator with the Dirichlet boundary condition. That is,
—Ap is the positive and self-adjoint operator on L?({2) associated with the closed, bilinear symmetric form

Ap(u,v) = /QVu Vo dz, u,v € Hy(2),
in the sense that
D(Ap) ={ue W01’2(Q) : Jw e L3(N), Ap(u,v) = (w,v) 2y Vv € HY(D)},
{—ADU = w.
For instance if {2 has a smooth boundary, then D(Ap) = H?(2) N H}(§2), where
H*(2):={u€ H'(2),0,,ue H'(2), j=1,2,...,N}.

It is well-known that —Ap has a compact resolvent and it eigenvalues form a non-decreasing sequence 0 <
A< A < L0 < A, < .L.oof real numbers satisfying lim, .o A, = co. We denote by ¢, the orthonormal
eigenfunctions associated with A,,.

Next, for 0 < s < 1, we define the fractional order Sobolev space

HY () = {u € L2(0) - /Q ) % dzdy < oo} ,

and we endow it with the norm defined by

u 2 3
IIuIIHsm):(/ Iu\zdx+/ Qg(:l N(H)S dxdy) :

We also let

and
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Note that
1
_ |u(z) —u(y)[? ?
||U||Hg(r2) = (/Q 5 W dzdy (2.1)

defines a norm on H{(S2).
Since (2 is assumed to be bounded we have the following continuous embedding;:

L™ () if N > 2s,
H§(02) — S LP(2), p€[l,00) if N = 2s, (2.2)
COs=% () if N < 2s.

WenoticethatifNEZ,thenN22>2$f0revery0<s<1,0rifN:1andO<s<%,thenN:1>2$,
and thus the first embedding in (2.2) will be used. If N =1 and s = %, then we will use the second embedding.
Finally, if N =1 and % < s <1, then N =1 < 2s and hence, the last embedding will be used.

For any s > 0, we also introduce the following fractional order Sobolev space

o0
2 N 2 s, 2
n=1

where we recall that A, are the eigenvalues of —Ap with associated normalized eigenfunctions ¢,, and

H*(£2) := {u = tnpn € L(£2) : ||ul

n=1

Up = (U, on)r2(0) = /Qucpn dz.

It is well-known that

H§(£02) if 0<s< %,
H*(2) = { HE (0) it 5= % (2.3)
HE () if % <s<l.
It follows from (2.3) that the embedding (2.2) holds with Hj({2) replaced by H*((2).
Definition 2.1. The fractional Dirichlet Laplacian is defined on the space H*({2) by
(—=Ap)’u = i A U O, with Uy = / upy d.
n=1 §2
We notice that in this case we have
lullizs (2) = [I(=Ap) 2 ull L2(2)- (2.4)

Note that D(£2) — H*(§2) — L*(£2), so, the operator (—Ap)* is unbounded, densely defined and with bounded
inverse (—Ap)~* in L2(£2). The following integral representation of the operator (—Ap)* given in ([6], For-
mula (1.3)) (see also [1], p. 2 Formula (3)) will be useful. For a.e. z € {2,

(=4p)*u(z) = P.V. /Q [u(z) = u(y)] J(z,y) dy + K(z)u(z), (2.5)
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where, letting K (t, z,y) denote the heat kernel of the semigroup generated by the operator Ap on L?(£2),

o S OOKQ(taxay)
J(ac,y)—l_,(l_s)/o e dt

K(z) = ﬁ/ow (1—/9K9<t,w,y> dy) tld—f

where I denotes the usual Gamma function. We mention that it follows from the properties of the kernel Ky,
that J is symmetric and nonnegative; i.e. J(x,y) = J(z,y) > 0 for a.e. z,y € 2. In addition we have that
k(z) >0 for a.e. x € £2.

We also mention that the representation (2.5) for smooth domain has been previously obtained in [22] by
using some probabilistic argument.

For more details on these topics we refer the reader to [1,11,15,18,19] and their references.

and

2.2. Some results on Orlicz spaces

Here we give some important properties of Orlicz type spaces that will be used throughout the paper.

Assumption 2.2. For a function f : 2 x R — R we consider the following assumption:

f(x,-) is odd, strictly increasing for a.e. 1z € {2,
f(z,0) = for a.e. x € (2,
f(z,-) is continuous for a.e. x€ (2,
f(-,t) is measurable for all t e R,

limy o f(,t) = 00 for a.e. x € 2.

Since f(z,-) is strictly increasing for a.e. € (2, it has an inverse which we denote by f(w, -). Let F,ﬁ :
2 xR — [0,00) be defined for a.e. x € §2 by

[l _ [t
F(x,t) := Ot flz,7)dr and F(x,t):= Ot flx,7)dr

The functions F and F are complementary Musielak-Orlicz functions such that F(z,-) and F (z,-) are comple-
mentary N-functions for a.e. z € £2 (in the sense of [2], p. 229).

Assumption 2.3. Under the setting of Assumption 2.2, and for a.e. = € £2, let both F(z,-) and F(z,-) satisfy
the global (Aj)-condition, that is, there exist two constants ¢1,ca € (0,1] independent of x, such that for a.e.
x € 2 and for all t > 0,

ertf(z,t) < F(a,t) < tf(z,t) and cotf(z,t) < F(x,t) < tf(x,t). (2.6)

First we notice that since the functions f, fare odd and F, F are even functions, we have that if (2.6) holds,

then it also holds for all t € R. Second, Assumption 2.3 is equivalent to saying that the Musielak-Orlicz functions
F and F satisfy the (A9)-condition in the sense that there exist two constants C,Cy > 0 such that

F(z,2t) < C1F(x,t) and F(z,2t) < CyF(z,t), Vt € R and ae. z € £.
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This can be easily verified by following the argument given in the monograph ([2], p. 232). In that case, we let
Lp(92) = {u : 2 — R measurable : F(-,u(-)) € Ll(Q)}

be the Musielak-Orlicz space. The space Lz(£2) is defined similarly with F' replaced by F.

Remark 2.4. If Assumption 2.3 holds, then by ([12], Thms. 1 and 2) (see also [2], Thm. 8.19), Lz ({2) endowed
with the Luxemburg norm given by

[ullr,0 :=inf{k>0: /F(as,w) dx§1}7
1o} k

is a reflexive Banach space. The same result also holds for Lz(2). Moreover, we have the following improved
Holder inequality for Musielak-Orlicz spaces (see e.g. [2], Formula (8.11) p. 234):

’/ uv dx
2

In addition, by ([3], Cor. 5.10), we have that

< 2Hu\|p,g\|v||ﬁ’9, Vue€ Lp(2), ve Lp(02). (2.7)

Jo F(x,u) dz

lullpe—oe  |lullre

= 0. (2.8)

We have the following result.
Lemma 2.5. Let Assumption 2.3 hold. Then f(-,u(-)) € Lz(§2) for all u € Lp(£2).

Proof. Assume that Assumption 2.3 holds. It follows from the assumptions that there exists a constant C' > 0
such that for all £ € R and a.e. z € 2,

F(z, f(2,€)) < &f(2,€) < OF (x,6).
Hence,
/ F(z, f(z,u(z))) dz < C/ F(z,u(x)) de < oo
[0 Q
and the proof is finished. O
Definition 2.6. Let 0 < s < 1. Under Assumption 2.3 we can define the Banach space V by
V= V(2,F) = {u EH(2): F(u() € LI(Q)}

and we endow it with the norm defined by

lully = [|ullgs(2) + [JullFo

In this case V is a reflexive Banach space which is continuously embedded into H*(§2). In addition, it follows
from (2.2) that we have the following continuous embedding

YV H(02) — L* (), (2.9)

where we recall that

2N 1
2*:N—2$ if N>2>2s orif N=1 and 0<S<§'
If N=1and s = %, then 2* is any number in the interval [1,00). If N = 1 and % < s < 1, then we have the
continuous embedding

Vs HY () — C% 3 (). (2.10)
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2.3. Weak solutions of the semilinear problem

Now we can introduce our notion of weak solutions to the system (1.1).
We recall that we have set V := H*(§2) N Lr(£2). We shall denote by V* = (H*(£2) N Lr(§2))* the dual of the
reflexive Banach space V and by (-, ) their duality map.

Definition 2.7. A function u € V is said to be a weak solution of (1.1) if the identity

Flu,v) = /Q(—AD)%u(—AD)%U d:r—i—/gf(x,u)v dz = (g,v), (2.11)

holds for every v € V and the right hand side g € V*.
We have the following result of existence and uniqueness of weak solution.

Proposition 2.8 (Existence of weak solution). Let Assumption 2.3 hold. Then for every g € V*, the sys-
tem (1.1) has a unique weak solution u. In addition, if g € H™*(£2) := (H*(£2))*, then there exists a constant
C > 0 such that

[[ul

m:(2) < Cllglla-+(2)- (2.12)

Proof. Let u € V be fixed. First we notice that it follows from Lemma 2.5 that f(-,u(-)) € Lz(£2). Next, using
the classical Holder inequality and (2.7) we have that for all v € V,

1F 0] SI(=A0)2ull () (=Ab)Evla(e) + 21 0)l5 gl o
< (=20 Fullzza) + 21wl 7, 0) 0l (2.13)

Since F(u,-) is linear (in the second variable) we have shown that F(u,-) € V* for every u € V. Since f(x,-) is
strictly monotone, we have that every u,v € V, u # v,

F(u,u —v) — F(v,u—wv) > 0.

Hence, F is strictly monotone. It follows from the continuity of the norm function and the continuity of f(z,-)
that F is hemi-continuous. It follows also from the (Ag)-condition and (2.8) that

Jo [z, u)u dz

lullpe—ce  |lullro

b

and this implies that
F(u, u)

lim = 00.
Jully—oo ||y

Hence, F is coercive. We have shown that for every u € V there exists a unique Arp € V* such that
F(u,v) = (Ap(u),v) for every v € V. This defines an operator Ap : ¥V — V* which is hemi-continuous,
strictly monotone, coercive and bounded (the boundedness follows from (2.13)). Therefore Arp(V) = V* and
hence, by the Browder—Minty theorem, for every g € V*, there exists a unique u € V such that Ap(u) = v.
Now assume that g € H™*({2) < V*. Then taking v = u in (2.11), using the fact that f(z,u)u > 0 and noticing
that (g, u)v+ v = (g, u)u—s(0)m:(2) (recall that g € H™*(£2) and u € H*(§2)) we get that

[l ]12-]IS(Q) < g, w)| < llgllm—s () llulles ()
We have shown (2.12) and the proof is finished. O

The following theorem is the main result of this section.
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Theorem 2.9. Let Assumption 2.3 hold and that g € LP(§2) with

p > % if N >2s,
p>1 if N =2s, (2.14)
p=1 if N <2s.

Then every weak solution u of (1.1) belongs to L*°(§2). Moreover there is a constant C = C(N,s,p,2) > 0
such that
[ull () < CligllLr(0)- (2.15)

Remark 2.10. We mention that if NV =1 and % < s < 1, then it follows from (2.10) that the weak solution
of (1.1) is globally Hélder continuous on £2 and in this case there is nothing to prove. Thus we need to prove
the theorem only in the cases N > 2, or N =1and 0 < s < %

To prove the theorem we need the following lemma which is of analytic nature and will be useful in deriving
some a priori estimates of weak solutions of elliptic type equations (see e.g. [16], Lem. B.1).

Lemma 2.11. Let = = =Z(t) be a nonnegative, non-increasing function on a half line t > ko > 0 such that
there are positive constants ¢, and § (0 > 1) with

Z(h) < c(h—k)"Z(k)° for h >k > k.

Then
Eko+d) =0 with d*=cZ(ky)® 1220/~

Proof of Theorem 2.9. Invoking Assumption 2.3 and g € LP({2) with p satisfying (2.14), it follows from (2.9)
that g € V*. Hence, by Proposition 2.8, the system (1.1) has a unique weak solution u € V. We prove the result
in two steps.

Step 1. Let uw € V, k > 0 and set uy := (Ju| — k)T sgn(u). Using ([26], Lem. 2.7) we get that u, € V. We claim
that

F(uk, uk) < F(u, ug). (2.16)

Indeed, let Ay, := {z € 2: |u(z)| >k}, A} ={x € 2: u(x) >k} and A, = {z € 2: u(z) < —k} so that
A = A: U A, . Then

u—k in Az,
up=<u+k in A, (2.17)

Since f(z,-) is odd, monotone increasing and 0 < up =u —k < u on A:, we have that for a.e. x € A:,
flzyug)ur = flx,u—k)ur < f(x, w)ug. (2.18)
Similarly, since u < u 4k = ur, <0 on A, it follows that for a.e. x € A,
flzyup)ur = f(x,u+ k)ur < f(x, w)ug. (2.19)
Tt follows from (2.18) and (2.19) that for every k > 0,

/ fzyug)uy, do S/ Sz, u)ug de. (2.20)
Q 19,
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Next, we show that for every k > 0,

/(—AD)%uk(—AD)%uk dz < / (= Ap)iu(—Ap)buy da. (2.21)
2 2

We notice that it follows from the integral representation (2.5) that

[ - an) - an)ude =l = 5 [ [ lusle) = o)) doty + [ sl da.

Calculating and using (2.17) we get that for every k& > 0,

J, [ o) =Py sy = [ [ 06a) w0 s (0) — el ) @t
o
Il
o,

/ k()T () dady
\A J Ay

/ / lug ()2 T (z,y) dedy. (2.22)
Ay J o\ A,

Since u(z) — u(y) — 2k > 0 for a.e. (z,y) € A} x A; , we have that for a.e. (z,y) € Al x 4, ,

(u(@) —uly) = 2k)* < (u(z) — u(y))(u(z) - uly) - 2k)
= (u(@) — u(y))(us(z) — uk(y))- (2.23)

\u —u(y) — 2k*J(x,y) dedy

=
a>\a>\>>\

=+

y)(un(x) — ur(y))J (2, y) dedy

Eol

\u )+ 2k2J (z,y) dzdy

Since u(z) — u(y) + 2k < 0 for a.e (z,y) € A; x Af, it follows that for a.e (z,y) € 4, x A,
(u(z) —uly) +2k)* < (u(z) — u(y))(u(z) — uly) + 2k) (2.24)
= (u(z) = u(y))(uk(z) — ur(y)).
For a.e. (z,y) € (2\ Ag) x Ak, we have that (recall that ug(z) = 0),
(u(@) = u(y))(ur(z) — ur(y)) = —(u(z) —u(y))ur(y) = (u(y) — u(@))ur(y)- (2.25)

Using (2.25) we get the following estimates:

e Tor ae. (z,y) € (2\ Ay) x A} we have that (as k — u(x) > 0 and u(y) — k > 0)
(u() = u(y))(ur (@) — ur(y)) = (uly) =k +k —u(@))(uly) - k)
= (u(y) = k)* + (k — u(z))(u(y) — k)
> (u(y) — k)? = |ur(y)]*. (2.26)
e For a.e. (z,y) € (2\ Ax) x A, we have that (as k 4 u(x) > 0 and u( )+ k<0)
(u(@) — u(y))(ur(z) —ur(y)) = (u(y) +k — k —u(®))(uly) + k)
= (u(y) + k)? (k+u( N(uly) + k)
> (u(y) + k)* = |ur(y)|. (2.27)
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Combining (2.26) and (2.27) yields for a.e. (z,y) € (£2\ Ax) x Ag

(u(z) — u(y))(ur(z) — ur(y)) = Jur(y)|* (2.28)
Proceeding in the same manner, we also get that for a.e. (x,y) € Ay x (£2\ A) (recall that here uy(y) = 0),
(u(@) = u(y))(ur (@) —ur(y)) > ux()[*. (2.29)

Using (2.23), (2.24), (2.28), and (2.29) we get from (2.22) that for every k > 0 (recall that J(x,y) > 0 for a.e.
z,y € ),

| [ @) —w)Pay dedy < [ [ (o) - ul)) o) - wn@)ey) dody. (230)
2Jo 2Jo
As for (2.20) we have that for every k > 0 (recall that x(x) > 0 for a.e. z € {2),

/ r(2)|ug(z)|* dz §/ r(x)u(x)u,(z) de. (2.31)
o Q

Now the estimate (2.21) follows from (2.30) and (2.31) since according to (2.5) there holds

N\v

[ Caiu-antude = [ [ @)~ ul) ) - u ) e) dody

+ /Q k(x)u(z)ug(z) do.
It follows from (2.20) and (2.21) that for every k > 0,
Flug,ug) = /Q( Ap)Zup(—Ap)Zuy d:r—i—/ fz, up)ug do
< /Q(—AD)%u(—AD)%uk dac—l—/gf(m,u)uk dx

< F(u,ug),

and we have proved the claim (2.16).

Step 2. Let u € V be the unique weak solution of the system (1.1), & > 0 and let uj, be as above. Let py € [1, 0]

be such that % + 2% + p% = 1 where we recall that 2* = N2N2 25 = %, we have that

1> —1=> < 2% (2.32)
P o p T o ox T Tox T ow P '

Taking v = uy as a test function in (2.11) and using the classical Holder inequality we get that there exists a
constant C'= C(N, s,p) > 0 such that

F(u,uy) = /quk dz <||gllzr@)llukll L2 () lIx AL Lr1 (2), (2.33)

where XAk denotes the characteristic function of the set Aj. Using (2.16), (2.33), (2.9) and the fact that
fQ x,u)ur doz > 0, we get that there exist two constants C,C7 > 0 such that for every k > 0,

< Flug,ug) < F(u,ug)

Cllurl| 72+ (o) <

< Cillgllrcylull 2 (o) lIxay | ey ()
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and this implies that there exists a constant C' > 0 such that for every k > 0,

lukll L2 (2) < CllgllLr o) Ixax e (2)- (2.34)

Let h > k. Then Aj, C Ay and on Aj, we have that |ug| > h — k. Therefore, it follows from (2.34) that for every
h>k>0,

Ixanllz2s 2y < Ch— ) Mgl lIxax e ()- (2.35)

Let § := 127—: > 1 by (2.32). Then using the Holder inequality again we get that there exists a constant C' > 0
such that for every k > 0, we have

el < Clealia - (2:36)
Tt follows from (2.35) and (2.36) that there exists a constant C' > 0 such that for every h > k > 0,
Ixan gy < CCh = 8) gl oganIxas I .
It follows from Lemma 2.11 with Z(k) = [|x 4, || 2* () that there exists a constant C7 > 0 such that
XAkl L2r () =0 with K = CCi||g|Lr(0)-
We have shown the estimate (2.15) and the proof is finished. O

We have the following improved regularity of weak solutions to the system (1.1) in case {2 is of class C! or
if £2 is of class C17 for 0 < o < 1.

Corollary 2.12 (Regularity: £2 is of class C'* or of class C17). Let 2 C RN be a bounded open set and let p be
as in (2.14). Let Assumption 2.3 hold and that

f(,t) € LP(02), YteR, [t| <M for some constant M > 0. (2.37)

Then the following assertions hold.

(a) Let g € LP(82) and let 2 be of class C*. If% <s<landp< X+, orif0<s< % and p < oo, then the

2s5—1~
weak solution of (1.1) belongs to 00’23_%(5).
(b) Lets > % and g € LP(2) withp > 2= If 2 is of class C*7 for 0 < o := 23—%—1 <1, thenu € C*7(0).
Proof. Let Assumption 2.3 hold and that f satisfies (2.37). Let g € LP({2) with p as in part (a) or part (b).
Then by Theorem 2.9 the solution w € L*({2). Hence, by (2.37) we have that the function f(-,u(-)) € LP(£2).
Let then h := g — f(-,u(-)). Then h belongs to the same space as the function g and u is a weak solution of the
Dirichlet problem

(=Ap)’u=h in £

Now the regularity of u given in part (a) and part (b) follows from ([6], Thm. 1.5) (see also [15], Cor. 3.5 for
the case of smooth domains). O

For all the results presented so far, Assumption 2.3 is sufficient. However, to show higher regularity in
H25+7(£2) with 0 < 8 < 1 and for the discretization error estimates in the sequel, we need an assumption on
the local Lipschitz continuity of the nonlinearity in addition.
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Assumption 2.13. For all M > 0 there exists a constant Ly, > 0 such that f satisfies
|f(z,u1) = f(y, u2)| < Larlur —
for a.e. z,y € 2 and u; € R with |u;| < M, i=1,2.
The following result will be frequently used throughout the paper.

Lemma 2.14. Let 0 < 8 < 1 and assume that f satisfies Assumption 2.13. Then for every u € HP(£2)NL>(2),
we have that f(-,u(-)) € HP(£2).

Proof. We notice that if 3 = 0 then there is nothing to prove. Let then 0 < 3 < 1 and u € HA(£2)NL>(£2). Since
f(x,0) =0,u € L*(2), |u(z)| < M for a.e. x € 2, for some constant M > 0, we have that (by Assumption 2.13)

|f(z,u(2)| = |f(z,u(x)) — f(z,0)] < Lar|u(z)| for ae. x € (2. (2.38)
This implies that f(-,u(-)) € L?(£2). Assumption 2.13 also implies that
|f(z,u(z)) — flx,u(y))| < Lylu(z) —uly)| for ae. x,y € §2. (2.39)

We have the following three cases.
o If 5= %, then using (2.38) we obtain that

|f(, u(@))|® /
o dist(z,002) 8() dlst (z, 8() do < oc.

In addition using (2.39) we get that

|f (@, u(x)) — fy, uy))? Ju(@) —uy)?
// \x—y\N‘H dxdygL / |x—y\N+1 dady < oo.

Hence, f(-,u(-)) € Hz(£2).
e If 0 <3< 1, then it follows from (2.39) that

|f (@, u()) — fy, u(y))? lu(z) — u(y)|?
/ / ‘x _ ‘N+2ﬁ dedy < L?\/[ /Q 5 W dzxdy < oo, (2_40)
and this implies that f(-,u(-)) € Hﬁ( 2) = HP(£2) since f(z,0) = 0 and u = 0 on L.

e If 1 < 3 <1, then the estimate (2.40) also holds and this implies that f(-,u(-)) € H?(2). Since f(z,0) =0
for a.e. T € () we also get that f(-,u(-)) € H?(£2) by approximation if necessary.

The proof of the lemma is finished. O
We have the following elliptic regularity.

Corollary 2.15 (Regularity: 2 Lipschitz). Let 2 C RY be a bounded open set with Lipschitz continuous
boundary. Assume Assumptions 2.3 and 2.13 are fulfilled. In addition, let 0 < 3 < 1, g € H?(2) N LP(£2) with
p as in (2.14) and let u € H*() be the weak solution of (1.1). Then u € H2*+P(12).

Proof. In view of the assumption on f and g, it follows from Proposition 2.8 and Theorem 2.9 that the sys-
tem (1.1) has a unique weak solution u € H*(£2) N L>(£2). Since f(-,u(-)) € L*(£2) (by Lem. 2.14) we have that
9= f(u(-)) € L*(£2) then

Up = )\;S/ (9(x) — f(z,u))pp dz, neN. (2.41)
2
Using the H?® norm definition we arrive at
lulles (o) = llg = £ )l Z2(0),
i.e., u € H25(£2) N L>(£2) (see also [6], Sect. 2 pp. 772—773). We have two cases.



A NOTE ON SEMILINEAR FRACTIONAL ELLIPTIC EQUATION: ANALYSIS AND DISCRETIZATION 2061

e If 25 > 1, then u € H(R2) (recall that 0 < 3 < 1) and hence, f(-,u(:)) € H?(£2) by Lemma 2.14. We have
shown that g — f(-,u(-)) € H?(§2). Since g — f(-,u(-)) € H?(£2), using (2.41) and the definition of H*# we

obtain
oo [o'e) 2
lulfseney = 2 wnXat? =3 (Ans /Q(g(w) - f(w,U))sOn> A0 da
n=1 n=1

= ”g - f(vu)||]12-115(_())a

and we have shown that u € H?*74(£2) (see also e.g. [6], Sect. 2).

o If 25 < 1, then f(-,u(-)) € H?*(£2) (by Lem. 2.14) and this implies that g — f(-,u(-)) € H™™255}(02). As
above we then get that u € H?st™n{258} (). Repeating the same argument with 2s+min{2s, f} in place of
2s and so on, we can arrive that in fact g — f(-,u(-)) € H?(£2) and as above this implies that u € H25+7(2).

The proof is finished. 0
We conclude this section with the following example and remark.

Example 2.16. Let ¢ € [1,00) and let b: £2 — (0, 00) be a function in L>°(£2), that is, b(x) > 0 for a.e. x € (2.
Define the function f : 2 x R — R by f(x,t) = b(z)[t|2"!t. Tt is clear that f satisfies Assumption 2.2 and

the associated function F : 2 x R — [0,00) is given by F(x,t) = q_%lb(ac)wq*l. For a.e. € {2, the inverse

f(x,-) of f(z,-) is given by f(z,t) = (b(:r))_% |t\kth. Therefore, the complementary function F of F is given
~ 1 q+1
by F(z,t) = %5 (b()) "7 [t|"7 . Hence,

(2, t) = (q+ DF(2,t) and tf(z,t) = L2 B, 0),

and we have shown that Assumption 2.3 is also satisfied. Moreover, we have that f satisfies (2.37) in Corol-
lary 2.12. In particular, if b(x) = C for a.e. x € {2, for some constant C' > 0, then the function f also satisfies
Assumption 2.13.

Remark 2.17. We mention that every nonlinearity satisfying Assumptions 2.2 and 2.3 behaves as the one
given in the preceding example as t is large enough. Indeed, if f satisfies Assumption 2.2 and the associated
function F satisfies Assumption 2.3, then by ([21], Cor. 5, p. 26), F'(t) < Cy[t|*, t > to for some constant Cy > 0
and o > 1. In addition, its complementary function F' satisfies F/(t) > Cyt|?, ¢ > to > 0 for some Cy > 0 and
(> 1. Since we have assumed that both F' and F satisfy Assumption 2.3, then the claim follows.

3. THE EXTENDED PROBLEM IN THE SENSE OF CAFFARELLI AND SILVESTRE

In case that the nonlinearity f(z,t) is identically zero, it is well known that problem (1.1) can equivalently
be posed on a semi-infinite cylinder. This approach is originally due to Caffarelli and Silvestre [5] in the case
of the whole space RY. The Caffarelli—Silvestre ideas have been exploited by Stinga and Torrea [23] to define
the fractional Dirichlet Laplacian on bounded open sets (see also [4,7]). We mention that for the existence and
uniqueness of solutions to the problem on this semi-infinite cylinder it is sufficient to consider an open set with
a Lipschitz continuous boundary, (see [6], Thm. 2.5) for details. We operate under the same setup in the present
section. Since we will send the non-linearity in (1.1) to its right hand side, it is straightforward to introduce the
extended problem in the semi-linear case.

We begin by introducing the required notation. In the following, we denote by C the aforementioned semi-
infinite cylinder with base {2, i.e., C = £2 x (0,00), and its lateral boundary by 9,C := 912 x [0,0). For later
purposes, we also introduce for any 9 > 0 a truncation of the cylinder C by Cy := 2 x (0,9). Similar to the
lateral boundary 91.Cy, we set dLCy := 012 x [0,9]. Consequently, the semi-infinite cylinder and its truncated
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version are objects defined in RV, Throughout the remaining part of the paper, y denotes the extended
variable, such that a vector 2’ € RN*! admits the representation 2’ = (v1,...,2x,2n+1) = (T, 2n11) = (,9)
with z; eRfori=1,...,N+ 1,2 € RV and y € R.

Due to the degenerate/singular nature of the extended problem by Caffarelli and Silvestre, it will be necessary
to discuss the solvability of this problem in certain weighted Sobolev spaces with weight function y*, « € (—1,1)
(see [25], Sect. 2.1, [14,17], Thm. 1) for a more sophisticated discussion of such spaces. In this regard, let
D C RY x [0, 00) be an open set, such as C or C,, then we define the weighted space L2(y®, D) as the space of all
measurable functions defined on D with finite norm [|wl|p2(ye py := [[y*/?w||p2(p). Similarly, using a standard
multi-index notation, the space H*(y“, D) denotes the space of all measurable functions w on D whose weak
derivatives D%w exist for |§] = 1 and fulfill

1/2

lwllmr ey = | D ID°wll7zya < oo.
l5]<1

To study the extended problems we also need to introduce the space
H}(y*,C) = {w € H'(y*,C):w=0on 8LC}.

The space H 1(y~,Cy) is defined in an analogous manner. Formally, we need to indicate the trace of a function
on {2 by introducing the trace mapping on (2. However, we skip this notation since it will be clear whenever we
speak about traces.

Now, the extended problem reads as follows: Given g € V*, find U € Hi(ya,C) such that

/yaVU -V dady + ds/ flz,U)P dz = ds(g, P)y+y VP € H} (y*,C) (3.1)
c 17}

with @« = 1 — 2s and ds = 2¢ F(Fl(gs), where we recall that 0 < s < 1. That is, the function U € Hi(ya,C) is a

weak solution of the following problem

div(y*VU) =0 in C
(3.2)
Mg fat)=dg  on  @x{0},
o
where we have set
ou o o 0U(y)
87(3370) = ?}IH})Z/ Uy(z,y) = ;lg})y oy

We have the following result.

Lemma 3.1. Let Assumption 2.3 on f be fulfilled and g € V* with V := H*(£2) N Lp(§2) as defined at the
beginning of Section 2.3. Then there exists a unique weak solution U € Vp := {v € Hi(ya,(/’) V| axgoy € V}
of (3.1). Furthermore, there holds U(-,0) = u € V, where u represents the weak solution of (1.1) according
to (2.11).

Proof. We already know that if the solution U € Hi(ya,C) of (3.1) exists then U(-,0) = v € H?(§2). This
is a trivial consequence of the corresponding result for linear problems. Therefore, we just have to prove the
existence and uniqueness part. Let us set

E(U,D) ::/yaVU-Védxdy—I—ds/ fle,U)Pdx, U, P VL.
c Q
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Next, let U € Vp, be fixed. It is clear that £(U, -) is linear in the second variable. Proceeding exactly as in the proof
of Proposition 2.8, we get that £(U,-) € V;. In addition, we have that € is strictly monotone, hemi-continuous
and coercive. This finishes the proof. a

In contrast to the nonlocal fractional Dirichlet problem (1.1), the extended problem (3.1) (or equiva-
lently (3.2)) is localized such that a discretization by standard finite elements becomes feasible. However, a
direct discretization is still challenging due to the semi-infinite computational domain. As remedy, one can
employ the exponential decay of the solution ¢ in certain norms as y tends to infinity, see [19]. In this regard, a
truncation of the semi-infinite cylinder is reasonable. This leads to a problem posed on the truncated cylinder
Cy: Given g € V*, find

Z/ly S VL,y = {’U S ﬁi(ya,Cy) : 'U‘_QX{O} S V}

such that
y“VUy - VO dady + ds / fla,Uy)® dx = d(g, D)y y VP € Hi(y*,Co). (3.3)
Cy Q
In view of the discretization error estimates in the next section, we do not need to estimate the truncation
error for the semi-linear problems. Instead, we will use the corresponding results for linear problems.

4. DISCRETIZING THE PROBLEM AND PROOF OF ERROR ESTIMATES

The discretization of the linear problem is outlined in [19]. In fact, the theory there will build the basis for
the discussion of the semi-linear problems presented in the further course of this section. For the convenience
of the reader we will collect the main ingredients from the linear case before we turn towards the treatment of
the semi-linear problems. From here on, we assume that the underlying domain {2 is convex and polyhedral.
We notice that such a domain has a Lipschitz continuous boundary, see e.g. [§].

Due to the singular behavior of the solution towards the boundary 2, anistropically refined meshes are
preferable since these can be used to compensate the singular effects. In our context such meshes are defined as
follows: Let 7, = { K} be a conforming and quasi-uniform triangulation of {2, where K € R is an element that
is isoparametrically equivalent either to the unit cube or to the unit simplex in RY. We assume #.75 ~ M.
Thus, the element size h 7, fulfills h g, ~ M ~1. The collection of all these meshes is denoted by T ;. Furthermore,
let Zoo = {I} be a graded mesh of the interval [0, 9] in the sense that [0, 9] = U,iw:?)l[yk, Yr+1] with

k" 3 3
Yk (M) D/a ; ) ) 7>1—O[ 28>

Now, the triangulations 7 of the cylinder Cy are constructed as tensor product triangulations by means of I,
and Zy. The definitions of both imply #.7, ~ M~*1. Finally, the collection of all those anisotropic meshes
is denoted by T.

Now, we define the finite element spaces posed on the previously introduced meshes. For every 7, € T the
finite element spaces V(.7 ) are now defined by

V(Ty) = {qs €CCy): Blr e Py(K) & Py(I) VT = K x [ € Ty, Blo,c, = o}.

In case that K in the previous definition is a simplex then Py (K) = P1(K), the set of polynomials of degree at

most 1. If K is a cube then P;(K) equals Q1 (K), the set of polynomials of degree at most 1 in each variable.

Throughout the remainder of the paper, without any mention, 0 < s < 1, a =1 — 2s and dg = 2 Fl(}(g)s).

Using the just introduced notation, the finite element discretization of (3.3) is given by the function Uz, €
V() which solves the variational identity

/ YUz, - VP dady + d, / F@,Uz)® dz = dy(g, B)ye y VD € V(Ty). (4.1)
Cy 7]
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We have the following result.

Lemma 4.1. Let Assumption 2.3 on f be fulfilled and g € V*. Then there exists a unique solution Uz, € V(Ty)
of (4.1).

Proof. The Galerkin approximation of (3.3) is given by the unique element Uz, € V(7y) satisfying (4.1). This
uniqueness is a consequence of the H 1 (y*, Cy)-coercivity of the bilinearform in (4.1) and the monotonicity of f.

Indeed, let Uy and Us be two different solutions of (4.1). Then we infer that there exists a constant ¢ > 0 such
that

U = alliy e,y < € ( /C y VU — Up)|? dady + d /Q (Fla,U) = [ Us)) (U — Ue) dx) =0.

Hence, Uy = Us. The existence of such an element (a solution of (4.1)) can be proven by noticing firstly, that
V(9y) C Hi(y*,Cy), secondly that the nonlinearity f is monotone and finally proceeding as the proof of
Proposition 2.8 by using the Browder—Minty theorem. U

For the error analysis it will be useful to have the intermediate solution U 7, € V(Jy) which solves the
variational identity

/ yO‘VZ:l{%, V@ dedy = ds(g — f(-,u),P)p+ vy VP € V(Ty), (4.2)
Cy

where u denotes the weak solution of (1.1). Since U 7, represents the solution of a linear problem, corresponding
error estimates are directly applicable.

Lemma 4.2. Let Assumptions 2.3 and 2.13 on f be fulfilled and g € H'~*(£2) N LP(2) with p as in (2.14).
Moreover, let u be the solution of (1.1) and Uz, the solution of (4.2). Then there is a constant ¢ > 0 such that

lu — U, [y < el log(#.Ty)|* (#Ty) /N1

and
lu — G, ) < cllog(#.75) 2 (4. 75) ~(H+/ (V4D

provided that 9 ~ log(# Ty ).

Proof. This is a consequence of ([19], Thm. 5.4 and Rem. 5.5 and [20], Prop. 4.7) once we know that f(-,u) €
H'~%(£2). Since g € H=%(2) N LP(£2) with p as in (2.14), it follows from Corollary 2.15 that the unique weak
solution u belongs to H'*$(£2) — H'~*(£2) and hence f(-,u(-)) € H*~%(£2) according to Lemma 2.14. This
finishes the proof. O

For later purposes, we need to show that U/ 7, is uniformly bounded in L>°(f2), since we only assume a local
Lipschitz condition for the nonlinearity f.

Lemma 4.3. Let Assumptions 2.3 and 2.13 on f be fulfilled and g € H'~*(£2) N LP(£2) with p as in (2.14).
Furthermore, let s > (N — 2)/2. Then the solution Uz, of (4.2) is uniformly bounded in L>(S2).

Proof. We denote by Iz,u the (modified) Clement interpolant of u (see [13], Sect. 1.6 for the precise definition
of this interpolant), which is well defined for u € H?*({2). Next, let K, € 9, be the element where |u — I 7, ul
admits its supremum. By means of an inverse inequality (see [13], Lem. 1.138 for details), we deduce

[|w —Z:’%Hmc(o) = flu - a?yHL“(K*) < lu— IﬂnuHL“(K*) + [ 7qu — ZJ%HL@(K*)

N/2

< (Jlu= Izgullze e + by Pl = U 12 ) (4.3)

where hg, denotes the diameter of K. The first term in (4.3) is bounded due to Theorem 2.9. For the second one,
we notice that hx, ~ hz, ~ M~! and # 7, ~ M~N*L. Consequently, the assertion follows from Lemma 4.2. [
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Lemma 4.4. Let Assumptions 2.3 and 2.13 on f be fulfilled, g € H'~*(2) N LP(£2) with p as in (2.14) and
s > (N —2)/2. Furthermore, let u, Uz, and Uz, be the solutions of (1.1), (4.1) and (4.2), respectively. Then
there is a constant ¢ > 0 such that

HZ/[% —Z/?,%| Hs(g) S C”U —a%,||L2(Q)

Proof. Due to the I—ifi(ya,cy)—coercivity of the bilinear form in (4.1) and (4.2), and the monotonicity of f, we
obtain that there is a constant ¢ > 0 such that

ez, i, iy ey < || 9"V, ~Uz) - Vitds, ~Uz)
_d, / SUz,) = (- Uz,) Uz, —Us,)
+ds/n(f(wu) — [(Uz)) Uz, —Usz,)
<do [ (F60) = F(U ) U, U

Next, observe that both u and U 7, are uniformly bounded in L>°({2) according to Theorem 2.9 and Lemma 4.3.
Consequently, the Cauchy—Schwarz inequality and the Lipschitz-continuity of the nonlinearity yield

/Q(f(» w) = f(Uz)) Uz, —Usz,) < cllu—Ug, || 20 Uz, — Uz, || L2(2)- (4.4)
Finally, the assertion can be deduced by means of the foregoing inequalities and the trace theorem of ([7],

Prop. 2.1), i.e.,
Uz, —Usz, |

we(2) < Uz, —Uz, |1 (yo.cy)s
and the continuous embedding of H*(£2) in L?(§2) and the proof is finished. O

As a direct consequence of Lemmas 4.2 and 4.4, we obtain the main result of this section.

Theorem 4.5. Let Assumptions 2.3 and 2.13 on f be fulfilled, g € H'~*(£2)N LP(£2) with p as in (2.14) and let
5> (N —2)/2. Moreover, let u be the solution of (1.1) and Uz, the solution of (4.1). Then there is a constant
¢ > 0 such that

lu — Uz, |l (2) < | log(#Ty)|* (# To) ~H/ O F

and
lu—Ug, |20y < ¢ log(#,%,)‘25(#%,)*(1+5)/(N+1)

provided that & ~ log(# Ty ).

We finally illustrate the results of Theorem 4.5 by a numerical example. Let N = 2, 2 = (0,1)2. Under this
setting, the eigenvalues and eigenfunctions of —Ap are:

Moy =12 (K2 +1%),  ppi(21,22) = sin(krzy) sin(lrws) k1 € N.

Let the exact solution to (1.1) be
u = Ay 5 sin(2mz1) sin(27z2) (4.5)

and nolinearity f(-,u) = u® = |u|?u. Using (1.1) we immediately arrive at the expression for datum g.
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FIGURE 1. Rate of convergence on anisotropic meshes for N = 2 and s = 0.2,0.4,0.6 and
s = 0.8 is shown. U is the numerical solution to (4.1) obtained by using Newton’s method. On
the other hand, u is the exact solution given by (4.5). The blue line is the reference line. The
left panel shows the H*(£2)-error, in all cases we recover (#.Zy )~ /3. The right panel shows the
L2-error which decays as (#.7)~2/3.

We use Newton’s method to solve the nonlinear problem. The asymptotic relation |u — Uz, |lms(2) ~
(#%,)—1/3 is shown in Figure 1 (left) for different choices of s = 0.2,0.4,0.6, and s = 0.8. We observe a quasi-
optimal decay rate which confirms the H*-estimate in Theorem 4.5. We also present the L2-error estimates in
Figure 1 (right), which decays as (#.7y)~2/% which is better than our theoretical prediction in Theorem 4.5.
Notice that under the current literature status, theoretically, we cannot expect a better rate than Theorem 4.5,
as we have used the linear result from ([20], Prop. 4.7) to prove Lemma 4.2.
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