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A SECOND ORDER TIME-STEPPING SCHEME FOR PARABOLIC INTERFACE
PROBLEMS WITH MOVING INTERFACES

Stefan Frei
1

and Thomas Richter
2

Abstract. We present a second order time-stepping scheme for parabolic problems on moving domains
and interfaces. The diffusion coefficient is discontinuous and jumps across an interior interface. This
causes the solution to have discontinuous derivatives in space and time. Without special treatment
of the interface, both spatial and temporal discretization will be sub-optimal. For such problems, we
develop a time-stepping method, based on a cG(1) Eulerian space-time Galerkin approach. We show
−both analytically and numerically− second order convergence in time. Key to gaining the optimal
order of convergence is the use of space-time test- and trial-functions, that are aligned with the moving
interface. Possible applications are multiphase flow or fluid-structure interaction problems.

Mathematics Subject Classification. 65M60, 65M12.

Received March 23, 2016. Revised June 29, 2016. Accepted November 12, 2016.

1. Introduction

Interface problems, where the solution has discontinuities or discontinuous derivatives along an interface
through the domain appear as typical part of various applications. Viscous multiphase-problems, where two
fluids with different physical parameters (like viscosity or density) are coupled at a common interface, have a
continuous velocity on the complete domain. Across the interface, however, the velocity is not differentiable,
neither in space nor in time. Fluid-structure interactions show a similar behaviour: the kinematic coupling
condition calls for a continuous transition of the fluid to the solid velocity, this coupling, however, is not
differentiable. A simple example for such an interface problem is the following parabolic model problem. Let

Q := {(t, Ω(t)), t ∈ I := [0, T ]} ⊂ �d+1,

be a convex space-time domain, that is split into two sub-domains Q = Q1 ∪ G ∪Q2 by an interface G ⊂ �d,
where Ω(t) = Ω1(t) ∪ Γ (t) ∪Ω2(t):

Qi := {(t, Ωi(t)), t ∈ I := [0, T ]} ⊂ �d+1, G := {(t, Γ (t)), t ∈ I := [0, T ]}.
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Figure 1. Space-time domain. Both the interface Γ (t) and the outer boundary ∂Ω(t) might
move in time.

(cf. Fig. 1). Given u0 ∈ L2(Ω(0)), we define the model problem by

∂tui − div (κi∇ui) = fi in Qi, i = 1, 2,
u1 = u2, n · κ1∇u1 = n · κ2∇u2 on Γ (t),

u(·, 0) = u0 on Ω(0),
u(·, t) = 0 on ∂Ω(t),

(1.1)

where the diffusion coefficient κ : Q → � takes two values κ1, κ2 ∈ � in the sub-domains Q1, Q2. On smooth
domains Q = Q1 ∪ G ∪ Q2, given sufficient regularity of the right hand side f , an initial data u0 that satis-
fies the compatibility conditions −κΔu0 − f ∈ H1

0 (Ω(0)) and κ1n · ∇u0
1 = κ2n · ∇u0

2 and positive diffusion
coefficients κ1, κ2 > 0, this problem has a solution u = {u1, u2} that satisfies [9]

2∑
k =0

‖u‖k,2(2−k) ≤ c

(
1∑

k =0

‖f‖k,2(1−k) + ‖u0‖H4(Ω1(0)∪Ω2(0))

)
. (1.2)

If we have additionally the compatibility condition ∂tf(0) − κiΔf(0) + κ2
iΔ

2u0 ∈ H1
0 (Ωi(0)) and sufficient

regularity of the data f, u0, it holds that

3∑
k =0

‖u‖k,2(3−k) ≤ c

(
2∑

k =0

‖f‖k,2(2−k) + ‖u0‖H6(Ω1(0)∪Ω2(0))

)
. (1.3)

Here, we have used the norms

‖u‖k,l :=
(
‖u‖2

Hk(I,Hl(Ω1(t)))
+ ‖u‖2

Hk(I,Hl(Ω2(t)))

)1/2

on the Bochner spaces
Hk,l := Hk(I,H l(Ω1(t))) ∩Hk(I,H l(Ω2(t)))

that are based on the usual Sobolev spaces Hk, H l in space and time. By H0(Ω) we denote the Lebesgue
space L2(Ω). The solution u has no higher global spatial or temporal regularity across the interface G :=
{(t, Γ (t)), t ∈ I}, instead it carries a weak discontinuity in space and time.

Considering the discretization of such interface problems, we have to deal with two difficulties. First, the
spatial discretization is known to fail for interface-problems [2], if the finite element mesh does not resolve the
interface, i.e., at time t = tm, there must be a compatible finite element space, that is able to resolve the
interface in such a way, that accurate interpolation results hold

‖u− ihu‖Ω + h‖∇(u− ihu)‖Ω ≤ chr+1
(‖∇r+1u‖Ω1 + ‖∇r+1u‖Ω2

)
.
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This is either achieved by using fitted finite element meshes (see e.g. [5]) with triangulations of the two sub-
domains, or by enrichment of standard spaces on non-fitted meshes with additional basis functions. A prominent
example for such a technique is the extended finite element method (XFEM), see [16]. An alternative, very
simple approach, that is based on a local parametric finite element space on standard unfitted meshes has been
presented by the authors [12].

Second, and this is the topic of the paper at hand, the temporal discretization is a major challenge. The method
of lines cannot be applied, if the domain Ω(t) ⊂ �d is changing in time. Rothe’s method relies on time-stepping
tm−1 → tm. In the usual finite element setting, applying a simple one-step method like the backward Euler
scheme, Rothe’s method for the parabolic model problem reads:

1
tm − tm−1

(um − um−1, φ) + (κ∇um,∇φ) = (f(tm), φ) ∀φ ∈ V (tm), (1.4)

where um−1 ∈ V (tm−1) is the solution at time tm−1 and um ∈ V (tm) is the sought solution at time tm. But
again, in the case of moving domains, it holds Ω(tm−1) �= Ω(tm) and therefore V (tm−1) �= V (tm). The problem
comes to the fore, if one considers the role of the scalar product (um−um−1, φ) =

∫
Ω(um−um−1)φdx. Whether

we choose Ω(tm−1) or Ω(tm) as domain for integration, the integral is not defined for one of the solutions um

or um−1.
Next, let us consider interface problems on a fixed domain Q := I × Ω where only the interior interface

moves, but where the outer boundary is fixed. Here, the problem looks less severe. Equation (1.4) is well
defined. However, consider a point x ∈ Ω with x ∈ Ω1(tm−1) and x ∈ Ω2(tm) close to the interface. Then, by
(um(x) − um−1(x))/(tm − tm−1), no approximation to the time-derivative u′ is given, as u is not differentiable
across the interface.

In the context of the extended finite element method, recent advances have been made in literature for this
problem. Fries and Zilian [13] presented a time-stepping scheme based on the backward Euler method and a
number of numerical tests that indicate first-order convergence order. A complete error analysis for this approach
has been presented by Zunino [19]. For a corresponding Crank−Nicolson-like approach, Fries and Zilian found
a reduced convergence order of 1.5. To the best of our knowledge, there is, however, no rigorous convergence
analysis available yet. A second-order scheme based on a space-time dG(1) approach has been presented by
Lehrenfeld and Reusken [15] including error analysis in space and time. Their approach can not be generalized
to a continuous Galerkin scheme, however, as the spatial number of unknowns varies from time step to time
step in their scheme.

Another approach to construct accurate time-stepping schemes is to apply a transformation to a fixed ref-
erence domain Q̂ := I × {Ω̂1 ∪ Γ̂ ∪ Ω̂2}. Let T̂ : Q̂ → Q be such a mapping. If T̂ is a C2-diffeomorphism,
Problem (1.1) is equivalent to

det(∇̂T̂ )
(
∂tû− ∂tT̂ · ∇û

)
− d̂iv

(
det(∇̂T̂ )κ̂∇̂T̂−1∇̂û∇̂T̂−T

)
= det(∇̂T̂ )f̂ in Q̂. (1.5)

This is the ALE-transform of the parabolic model problem (see e.g. [3]). Here, the domain Ω̂ allows a fixed
partitioning Ω̂ = Ω̂1 ∪ Γ̂ ∪ Ω̂2 that does not change in time. Standard spatial and temporal discretization is
possible. However, the ALE approach only works, if a mapping T̂ : Q̂ → Q with sufficient regularity can be
constructed.

In this paper, we follow a different approach: we start by designing a space-time Galerkin method on the
space-time slots Qm = {(t, Ω(t)), t ∈ [tm−1, tm]}. In literature, this approach is known as the continuous
Galerkin (cG) method, see [1,10], and a Galerkin scheme of Crank−Nicolson type is found by using continuous
and piece-wise linear trial functions combined with discontinuous piece-wise constant test-functions. However,
on space-time elements close to the (moving) interface or (moving) outer boundaries, we choose trial-functions,
that are aligned to the element’s faces: the solution is not linear in direction of time t, but linear in directions
that stay within each subdomain or follow the interface line, see Figure 3.
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The resulting time-stepping scheme can be seen as a moving-mesh approach where the reference domain
changes in each time step. Thus, it may be considered a variant of the Fixed-mesh ALE method proposed by
Codina and co-workers in [6] in combination with a projection scheme that is based on projecting residuals.
In the Fixed-mesh ALE method, the authors apply a moving mesh (ALE) technique in each time interval, but
project the solution back to an original fixed mesh afterwards. In this way, the requirement of global regularity
of an ALE map is reduced to local regularity within one time interval. As the relative movement of boundaries
and interfaces with respect to the previous time step is typically rather small, the method is able to deal with
large movements.

The novelty in this work are the application of a Galerkin time discretization within this framework rather
than using a finite difference scheme and the usage of a residual-based projection. This enables us to derive
a priori error estimates of optimal (second) order. To the knowledge of the authors no convergence results are
available within the Fixed-mesh ALE framework yet in literature.

The outline of the paper is as follows: Section 2 details the space-time Galerkin approach and derives a
corresponding time-stepping method. In Section 3, we derive a priori estimates for the temporal discretization
error in the space-time L2-norm and in the L2-norm at the end time. In Section 4, we give some details on our
practical implementation, with focus on numerical integration. Then, in Section 5, we will substantiate these
results by numerical test-cases. We conclude in Section 6.

2. Time discretization

A variational formulation of (1.1) is given by: find u ∈ X such that

B(u, φ) = (f, φ)Q + (u0, φ(0))Ω(0) ∀φ ∈ X,

B(u, φ) := (∂tu, φ)Q + (κ∇u,∇φ)Q + (u(0), φ(0))Ω(0)

(2.1)

where

(f, g)Q :=
∫ T

0

(f(t), g(t))Ω(t) ds, (2.2)

and

X := W (0, T ) =
{
v : Q→ R

∣∣ v ∈ L2(I,H1
0 (Ω(t))), ∂tv ∈ L2(I,H−1(Ω(t)))

}
.

Due to the continuous embedding W (0, T ) ⊂ C(I, L2(Ω(t))), point values u(ti) in time are well-defined and
hence the initial condition can be included into the variational formulation as in (2.1). The well-posedness of
this variational problem for moving outer boundaries has been studied in [9].

In order to derive a time-stepping scheme, we split the time interval into discrete subintervals

I = {0} ∪ I1 ∪ I2 ∪ . . . ∪ IM , Ij = (tj−1, tj ].

For j = 1, . . . ,M , we denote the resulting space-time slabs by Qj := {(x, t) | t ∈ Ij , x ∈ Ω(t)} and the space-
time slabs corresponding to the subdomains by Qj

i := {(x, t) | t ∈ Ij , x ∈ Ωi(t)}, (i = 1, 2). Let us for a moment
assume that the outer boundary ∂Ω(t) is fixed such that Ω(t) = Ω for all times t. Then, similar to (1.4), we
can write down a simple time-stepping scheme of Crank−Nicolson type

1
k
(um − um−1, φ)Ω +

1
2
(κ(tm)∇um,∇φ)Ω +

1
2
(κ(tm−1)∇um−1,∇φ)Ω

=
1
2
(f(tm), φ)Ω +

1
2
(f(tm−1), φ)Ω ∀φ ∈ H1

0 (Ω). (2.3)

Remember that in the case of a moving outer boundary, it is not straight-forward to write down a corre-
sponding formulation, as um and um−1 are defined on different domains Ω(tm) and Ω(tm−1). It is well known
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Figure 2. Space-time domain for a fixed outer domain Ω(t) = Ω. Functions vk ∈ X̃0
k , X̃

1
k are

polynomial on vertical lines (e.g. the indicated arrows).

that the Crank−Nicolson scheme (2.3) is equivalent to a space-time variational formulation with the following
Galerkin trial and test spaces

uk ∈ X̃1
k =

{
v ∈ C(I,H1

0 (Ω))
∣∣∣ v|Im

∈ P1(Im, H1
0 (Ω)), v(0) ∈ H1

0 (Ω)
}

φk ∈ X̃0
k =

{
v ∈ L2(I,H1

0 (Ω))
∣∣∣ v|Im

∈ P0(Im, H1
0 (Ω)), v(0) ∈ H1

0 (Ω)
}
. (2.4)

If the coefficient κ was continuous across the interface (in our case κ1 = κ2), second order convergence estimates
for the discretization error would be straight-forward. This is not the case for a discontinuous coefficient, however,
as the scheme does not account for the (moving) discontinuity of κ, f and ∇u atG. Instead the functions uk ∈ X̃1

k

are polynomial on space-time lines τ that cross the interface (e.g. the arrow crossing the interface in Fig. 2),
which means uk ∈ C∞(τ). It follows that, in general, there is no second-order in time interpolant within the
space X̃1

k and we can only expect a reduced order of convergence.

To derive a second-order scheme (that will also be usable for moving outer boundaries), we introduce a mod-
ified continuous Galerkin ansatz in time. Therefore, we define a Galerkin space of functions that are polynomial
on trajectories that stay within the subdomains and are aligned to the space-time boundary and the interface in
their vicinity. The construction of second-order interpolants in time will be straight-forward within this space.
For deriving error estimates, it would be most convenient to introduce smooth global trajectories in the whole
time-interval I. In practice, however, it is often a challenging task to define sufficiently smooth trajectories
(consider for example large movements of the interface). Furthermore, the interface movement often depends on
the solution itself and is therefore only known from time step to time step. Therefore, we define the trajectories
piecewise in each time interval Im (see Fig. 2).

Specifically, we define the following (semidiscrete) test and trial spaces:

uk ∈ X1
k =

{
v ∈ C(I,H1

0 (Ω(t)))
∣∣∣ (v ◦ Tm)|Im

∈ P1(Im, H1
0 (Ω(t))), v(0) ∈ H1

0 (Ω(0))
}

φk ∈ X0
k =

{
v ∈ L2(I,H1

0 (Ω(t)))
∣∣∣ (v ◦ Tm)|Im

∈ P0(Im, H1
0 (Ω(t))), v(0) ∈ H1

0 (Ω(0))
}
. (2.5)

Note that the outer domain Ω(t) is not assumed to be fixed anymore.

By Tm we denote an arbitrary transformation from a reference domain Ω̂m to the space-time domain Qm

that maps Γ̂m to Γ (t), Ω̂m
1 onto Ω1(t) and Ω̂m

2 onto Ω2(t). In this work, we choose the domain at the new
time step Ω̂m = Ω(tm) as reference domain. Other choices, e.g. Ω̂m = Ω(tm−1) would be possible, as well. For
j = 1, . . . ,M , we denote the space-time slabs in the reference system by Q̂j := Ω̂j × Ij , the space-time slabs
corresponding to the subdomains (i = 1, 2) by Q̂j

i := Ω̂j
i ×Ij and the interface slabs by Ĝj := Γ̂ j ×Ij . Functions
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Figure 3. Illustration of the modified Galerkin trial spaces X0
k , X

1
k . The functions vk ∈ X0
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1
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are polynomial on trajectories that stay within each subdomain Qi, i = 1, 2.
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Figure 4. Piecewise definition of maps Tm. The reference domain (right sketch) corresponds
to the new domain Ωm and changes in each time step.

u ∈ X1
k and φ ∈ X0

k can be written as

(u ◦ Tm)|Im =
t− tm−1

k
(u ◦ Tm)(x, tm) +

tm − t

k
(u ◦ Tm)(x, tm−1)

=:
t− tm−1

k
ûm(x̂) +

tm − t

k
ûm−1,+(x̂)

(φ ◦ Tm)|Im = φ̂m(x̂)

with ûm, φ̂m, ûm−1,+ ∈ H1
0 (Ω̂m) and x̂ = T−1

m (x, t). Due to the continuity condition in X1
k , it must hold that(

ûm−1,+ ◦ T−1
m

)
(tm−1) = ûm−1. (2.6)

In order to simplify notation, we will often skip the second superscript and use the notation ûm−1 instead of
ûm−1,+ in Q̂m.

Finally, we denote by Fm = ∇Tm the spatial derivative of the transformation and by Jm = det(Fm) its
determinant. We define the following bilinear form in a time interval Im, formulated both in Eulerian coordinates
on Qm and on the reference domain Q̂m in ALE coordinates:

Bm(u, φ) : = (∂tu, φ)Qm + (κ∇u,∇φ)Qm (2.7)

=
(
Jm∂tû− ∂tTm(JmFm)−T ∇̂mû, φ̂

)
Q̂m

+
(
κ̂(JmFm)−T ∇̂mû, F

−T
m ∇̂mφ̂

)
Q̂m

.

Here, the notation ∇̂m denotes the gradient with respect to the coordinates x̂m on the reference domain Ω̂m.
For better readability, we will often skip the subscripts m if there is no risk for ambiguity. Comparing (2.1), it
holds that

B(u, φ) =
M∑

m=1

Bm(u, φ) + (u(0), φ(0))Ω(0).
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The discrete formulation in the trial and test spaces defined in (2.5) reads: find uk ∈ X1
k such that

B(uk, φk) = (f, φk)Q + (u0, φ(0))Ω(0) ∀φk ∈ X0
k . (2.8)

This formulation splits into the time-stepping scheme

Bm(uk, φk) =
(
Jf̂, φ̂k

)
Q̂m

(2.9)

where

Bm(uk, φk) :=
1
k

(
J(ûm

k − ûm−1
k ), φ̂m

k

)
Q̂m

−
(
∂tT JF

−T

(
t− tm−1

k
∇̂ûm

k +
tm − t

k
∇̂ûm−1

k

)
, φ̂m

k

)
Q̂m

+
(
κ̂ JF−T

(
t− tm−1

k
∇̂ûm

k +
tm − t

k
∇̂ûm−1

k

)
, F−T ∇̂φ̂m

k

)
Q̂m

. (2.10)

In practice, the interface and boundary movement are often implicitly defined by the solution variables and
might thus be available only at the time points tm−1 and tm. To deal with this kind of problems, we want to
use a further simplification of (2.8). We use approximations of the form

a(t)b(t) ≈ 1
4
(a(tm) + a(tm−1))(b(tm) + b(tm−1))

and use the notation Jm = 1
2 (Jm(tm) + Jm(tm−1)) and analogously JF

−T

m , F
−T

m and ∂tTm . Again, we will
skip the subscript m if there is no risk for ambiguity. We define the discrete bilinear forms

Bm
k (u, φ) =

(
J∂tû, φ̂

)
Q̂m

−
(
∂tT JF

−T ∇̂û, φ̂
)

Q̂m
+
(
κ̂JF

−T ∇̂û, F−T ∇̂φ̂
)

Q̂m
,

Bk(u, φ) =
M∑

m=1

Bm
k (u, φ) + (u(0), φ(0))Ω(0).

We will show below that this approximation of the bilinear form B(·, ·) is of second order and will thus not
perturb the overall accuracy. For uk ∈ X1

k and φk ∈ X0
k , it holds that

Bm
k (uk, φk) =

1
k

(
J
(
ûm

k − ûm−1
k

)
, φ̂m

k )
)

Q̂m
− 1

2

(
∂tT JF

−T ∇̂ (ûm
k + ûm−1

k

)
, φ̂m

k

)
Q̂m

+
1
2

(
κ̂JF

−T ∇̂ (ûm
k + ûm−1

k

)
, F

−T ∇̂φ̂m
k

)
Q̂m

.

The corresponding discrete variational formulation reads: find uk ∈ X1
k such that

Bk(uk, φk) = (f, φk)Q + (u0, φk(0))Ω(0) ∀φk ∈ X0
k . (2.11)

As the continuous solution u fulfills

B(u, φk) = (f, φk)Q + (u0, φ0
k)Ω(0) ∀φk ∈ X0

k ,

we have the Galerkin orthogonality

B(u, φk) −Bk(uk, φk) = 0 ∀φk ∈ X0
k . (2.12)
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Remark 2.1 (Fixed-mesh ALE). The resulting time-stepping scheme can be considered a variant of the Fixed-
mesh ALE method [6]. There are two peculiarities that have not been used within the Fixed-Mesh-ALE method
yet: the first one lies in the approximation of the quantities J, F and ∂tT related to the transformation. Secondly,
to fit into this framework, we define um−1,+

k by the projection of the residual

Bm
old(um−1,+

k , φ) = Bm−1
old (um−1,−

k , φ) ∀φ ∈ H1
0 (Ω(tm−1)) (2.13)

where

Bm
old(w, φ) :=

(
−Jŵ +

k

2
∂tT JF

−T ∇̂ŵ, φ̂
)

Ω̂m

+
k

2

(
κ̂JF

−T ∇̂ŵ, F−T ∇̂φ̂
)

Ω̂m
.

For our practical implementation that avoids the calculation of such a projection, see Section 4.2.

3. A priori error estimates

We will make the following regularity assumptions for the domain movement Tm.

Assumption 3.1.

• For every interval Im, there exists a map Tm : Ω̂m × Im → Ω(t) such that for t ∈ Im

Tm(Ω̂m
i , t) = Ωi(t) (i = 1, 2), Tm(Γ̂m, t) = Γ (t).

• Furthermore, it holds for i = 1, 2 that

sup
t∈Im

(
‖Tm(t)‖W 2,∞(Ω̂m

i ) +
3∑

k=1

‖∂k
t Tm(t)‖W 3−k,∞(Ω̂m

i )

)
≤ c

sup
t∈Im

(
‖T−1

m (t)‖W 2,∞(Ω̂m
i ) +

2∑
k=1

‖∂k
t T

−1
m (t)‖W 3−k,∞(Ω̂m

i )

)
≤ c.

• Finally, we assume that Tm and ∂tTm are continuous across the interface Γ̂m.

Remark 3.2 (On Assumption 3.1). Assumption 3.1 implies that

sup
t∈Im

‖Fm(t)‖W 1,∞(Ω̂m) + sup
t∈Im

‖F−1
m (t)‖W 1,∞(Ω̂m) + sup

t∈Im

‖Jm(t)‖W 1,∞(Ω̂m) ≤ c.

The latter holds true as the determinant of Fm can be written as a summed product of the entries of Fm.

Remark 3.3 (On Assumption 3.1). In many practical cases, the position of the interface and the outer bound-
aries depends on the solution itself and is only available at discrete points in time (e.g. by level set functions
ψm, ψm−1). Let

xm−1 := Tm(xm, tm−1) ∈ Ω(tm−1) (3.1)

be the transformed coordinate corresponding to a point xm ∈ Ω(tm). Then, a suitable transformation in the
interval Im is given by

Tm(xm, t) =
t− tm−1

k
xm +

tm − t

k
xm−1.

Here, the first time derivative is ∂tTm = 1/k (xm − xm−1), higher time derivatives vanish. Assumption 3.1
reduces to the boundedness of the velocity of the domain movement and its spatial derivatives.
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Remark 3.4 (Construction of a mapping Tm). Assume the interface movement is given by a vector-valued
function

ψ : Γ (tm) → Γ (tm−1).

Such a function is available in the context of fluid-structure interactions by the Initial Point Set function (see [8]
or Sect. 5.2), sometimes also called the Backward Characteristics method (see [7]), that traces back points to
their original position in Ω(0). An extension of ψ to the complete domain Ω(tm) (again denoted by ψ) can be
obtained by e.g. a harmonic extension. Then, a transformation T : Ω(tm) → Ω(t) is given by

Tm(x, t) =
t− tm−1

k
x+

tm − t

k
ψ(x).

The regularity of Tm depends only on the regularity of the boundary movement ψ and its extension at time tm.

Remark 3.5 (Regularity). In contrast to the ALE approach (1.5), we need regularity of the transformations
Tm only locally in each time interval Im. No global regularity of a mapping T is required.

3.1. Interpolation and projection

We begin by an auxiliary result for the transformation of derivatives that we will need frequently.

Lemma 3.6 (Transformation of derivatives). Let Assumption 3.1 be valid and û(x̂) := (u ◦ T−1
m )(x) on Q̂m.

For u ∈ H1(Q), û lies piecewise in H1(Q̂m) and it holds that∥∥∥∇̂û∥∥∥
Q̂m

≤ c‖∇u‖Qm and ‖∂tû‖Q̂m ≤ c
{
‖∂tu‖Qm + ‖∇u‖Qm

}
. (3.2)

For u in H2
(
I, L2(Ω(t))

) ∩H1
(
I,H1

0 (Ω(t))
)

it holds that∥∥∂2
t û
∥∥

Q̂m ≤ c
{∥∥∂2

t u
∥∥

Qm + ‖∂t∇u‖Qm + ‖∇u‖Qm

}
. (3.3)

Proof. The proof is standard, see e.g. [17]. �

We define the interpolation iku as standard nodal interpolant in each reference space-time slab Q̂m. This is
equivalent to setting

iku(tm) = u(tm) ∀m = 1, . . . ,M

in each time-grid point tm.

Lemma 3.7. Assume Assumption 3.1. If u ∈ H2(Q1 ∪Q2), it holds for the interpolation error that∥∥∂l
t(u− iku)

∥∥
Q
≤ ck2−l

{∥∥∂2
t u
∥∥

Q1∪Q2
+ ‖∂t∇u‖Q1∪Q2

+ ‖∇u‖Q

}
. (3.4)

for l = 0, 1.

Proof. We begin with the case l = 0 and transform to the reference domain where we use a standard estimate.
The determinant J is bounded by Assumption 3.1

‖u− iku‖2
Qm =

∥∥∥J1/2
(
û− îku

)∥∥∥2

Q̂m
≤
(

sup
t∈Im

‖J‖∞,Ω̂m

)
‖û− ikû‖2

Q̂m ≤ ck4‖∂2
t û‖2

Q̂m
1 ∪Q̂m

2

Transformation of derivatives (see Lem. 3.6), summation overm = 1, . . . ,M and taking the square root complete
the proof. The case l = 1 follows analogously by using

‖∂t(u − iku)‖2
Qm ≤ c ‖∂t(û− ikû)‖2

Q̂m +
∥∥∥∇̂(û− ikû)

∥∥∥2

Q̂m
≤ ck2

(∥∥∂2
t û
∥∥2

Q̂m +
∥∥∥∂t∇̂û

∥∥∥2

Q̂m

)
. �
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Remark 3.8. Even in the case of a fixed outer boundary ∂Ω(t), an analogous interpolation estimate is not
possible for an interpolant in the space X̃1

k if the interface Γ (t) is moving.

Next, we prove a lemma that estimates the interpolation error within the discrete bilinear form.

Lemma 3.9. Let u ∈ H2,1 ∩H1,2. For φk ∈ X0
k , it holds under Assumption 3.1 that

Bk(u− iku, φk) ≤ ck2
(‖∂2

t ∇u‖Q + ‖∂t∇2u‖Q + ‖∇2u‖Q

) ‖∇φk‖Q. (3.5)

Proof. We write ηk = u− iku. By definition, we have on each space-time slab

Bm
k (ηk, φk) = (J∂tη̂k, φ̂k)Q̂m −

(
∂tT JF

−T ∇̂η̂k, φ̂
m
k

)
Q̂m

+
(
κ̂JF

−T ∇̂η̂k, F
−T ∇̂φ̂m

k

)
Q̂m

.

The first part vanishes as φ̂k is piecewise constant and ηk(tj) = 0 for a time grid point tj

(J∂tη̂k, φ̂k)Q̂m = −(Jη̂k, ∂tφ̂k)Q̂m + (Jη̂k(tm), φ̂k)Ω̂m − (Jη̂k(tm−1), φ̂k)Ω̂m = 0.

For the remaining terms, we apply the Cauchy−Schwarz inequality and use Assumption 3.1

Bm
k (ηk, φk) ≤ C

∥∥∥∇̂η̂k

∥∥∥
Q̂m

∥∥∥∇̂φ̂m
k

∥∥∥
Q̂m

≤ C ‖∇ηk‖Qm ‖∇φk‖Qm .

Summation over m = 1, . . . ,M and Lemma 3.7 gives the statement (3.5). �

Finally, we define a projection into the space of piecewise constant functions by setting in each time interval Im

P 0
k : X → X0

k ,
(
P 0

k v ◦ Tm

) |Im =
1
2

(v̂(tm) + v̂(tm−1)) . (3.6)

3.2. Error between discrete and continuous bilinear forms

Next, we provide a result that estimates the difference between the bilinear forms B(·, ·) and Bk(·, ·). Before,
we provide an auxiliary result that will be needed to deal with the domain movement.

Lemma 3.10. Let a, b ∈W 1,∞(I, L∞(Ω(t))) and define a function a by a = 1/2(a(tm)+a(tm−1)). For arbitrary
functions f, g ∈ L2(Ω̂m) and ti ∈ Im, it holds that

((a(ti) − a)f, g)Q̂m ≤ ck
∣∣ (f, g)Q̂m

∣∣, (3.7)

((a− a)f, g)Q̂m ≤ ck
∣∣ (f, g)Q̂m

∣∣, (3.8)(
(a(t)b(t) − ab)f, g

)
Q̂m ≤ ck‖f‖Q̂m‖g‖Q̂m . (3.9)

For g ∈ X0
k piecewise constant, f ∈ H1(Q) and a, b ∈ W 2,∞(I, L∞(Ω(t))), it holds that

((a(t) − a)f, g)Q̂m ≤ ck2‖f‖H1(Im,L2(Ω̂m))‖g‖Q̂m , (3.10)(
(a(t)b(t) − ab)f, g

)
Q̂m ≤ ck2‖f‖H1(Im,L2(Ω̂m))‖g‖Q̂m . (3.11)

Similar results hold true for vector-valued functions.

Proof. The estimates (3.7) to (3.9) follow by simple interpolation arguments. To show (3.10), we add ±f

((a(t) − a)f, g))Q̂m =
(
(a(t) − a)(f − f), g)

)
Q̂m +

(
(a(t) − a)f, g)

)
Q̂m . (3.12)
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We estimate the first term by using the Hölder inequality(
(a(t) − a)(f − f), g)

)
Q̂m ≤ sup

t∈Im

‖a− a‖∞,Ω̂m‖f − f‖Q̂m‖g‖Q̂m

≤ ck2 sup
t∈Im

‖∂ta‖∞,Ω̂m‖∂tf‖Q̂m‖g‖Q̂m . (3.13)

For the second term, we notice that neither f nor g depend on time and thus, time integration reduces to an
error estimate for the trapezoidal rule for a(

(a(t) − a)f, g)
)
Q̂m =

∫
Ω̂m

fg

∫
Im

(a(t) − a) dt ≤ ck2 sup
t∈Im

‖∂2
t a‖∞,Ω̂m‖f‖Q̂m‖g‖Q̂m . (3.14)

The term including f can be estimated by

‖f‖Q̂m ≤ ‖f − f‖Q̂m + ‖f‖Q̂m ≤ ck‖∂tf‖Q̂m + ‖f‖Q̂m . (3.15)

The estimates (3.12) to (3.15) imply (3.10). To show (3.11), we use a similar argumentation and split the
corresponding first term into

sup
x∈Ω̂m

(∫
Im

a(t)b(t) − ab dt
)

= sup
x∈Ω̂m

(∫
Im

(a(t) − a)
(
b(t) − b

)
dt+

∫
Im

(a(t) − a) bdt +
∫

Im

a
(
b(t) − b

)
dt
)
.

�

Lemma 3.11. Let Assumption 3.1 be valid. For u ∈ H2(Q1 ∪Q2) and zk ∈ X0
k it holds that (m = 1, . . . ,M)∣∣Bm(u, zk) −Bm

k (u, zk)
∣∣ ≤ ck2 ‖û‖H2(Q̂m

1 ∪Q̂m
2 ) ‖∇̂ẑk‖m

Q̂

≤ ck2 ‖u‖H2(Qm
1 ∪Qm

2 ) ‖∇zk‖m
Q (3.16)

and ∣∣B(u, zk) −Bk(u, zk)
∣∣ ≤ ck2 ‖u‖H2(Q1∪Q2) ‖∇zk‖Q. (3.17)

Proof. By definition, we have

Bm(u, zk) −Bm
k (u, zk) =

(
(J − J)∂tû−

(
∂tTJF

−T − ∂tT JF
−T
)
∇̂û, ẑm

k

)
Q̂m

+
(
κ̂
(
JF−1F−T − JF

−1
F

−T
)
∇̂û, ∇̂ẑm

k

)
Q̂m

. (3.18)

We estimate the integrals on the domains Q̂m
1 and Q̂m

2 separately. Applying (3.10) for the determinant J , the
first term in (3.18) is bounded by(

(J − J)∂tû, ẑ
m
k

)
Q̂m ≤ ck2

(
‖∂2

t û‖Q̂m
1

+ ‖∂2
t û‖Q̂m

2

)
‖ẑm

k ‖Q̂m .

Similarly, we get for the remaining terms in (3.18) using the Poincaré inequality(
κ̂
(
JF−TF−1 − JF

−T
F

−1)∇̂û, ∇̂ẑm
k

)
Q̂m

−
((
∂tTJF

−T − ∂tT JF
−T )∇̂û, ẑm

k

)
Q̂m

≤ ck2
(
‖∂t∇̂û‖Q̂m

1
+ ‖∂t∇̂û‖Q̂m

2

)
‖∇̂ẑm

k ‖Q̂m .

Transformation of derivatives (Lem. 3.6) yields (3.16). (3.17) follows by summation over m = 1, . . . ,M . �
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3.3. Error estimates

Our error estimates will be based on the following lemma.

Lemma 3.12 (Discrete Gronwall lemma). Let (wn)n≥0, (pn)n≥0, (an)n≥0 and (bn)n≥0 be sequences of non-
negative numbers and c0 ≥ 0. Furthermore, let the inequality

wM +
M∑

n=1

pn ≤
M∑

n=1

(anwn + bn) + c0

be valid for all n ≥ 0. For σM = 1 − aM > 0, it holds that

wM +
M∑

n=1

pn ≤ exp

(
σ−1

M

M∑
n=1

an

)(
c0 +

M∑
n=1

bn

)
.

A proof for this result can be found e.g. in [14]. Our first theorem estimates the error u − uk at a time grid
point tm.

Theorem 3.13. Let u ∈ X be the solution of (2.1), uk ∈ X1
k the time discrete solution of (2.11) and ek = u−uk.

Furthermore, let f ∈ H2,0 ∩ H1,2 ∩ H0,4, u0 ∈ H6(Ω1(0) ∪ Ω2(0)), Q1 and Q2 sufficiently smooth and let u0

satisfy the compatibility conditions such that the regularity estimate (1.3) is fulfilled. Under Assumption 3.1, it
holds that

‖ek(tm)‖Ω(tm) ≤ ck2 exp(ctm)

(
2∑

k = 0

‖f‖k,2(m−k) + ‖u0‖H6(Ω1(0)∪Ω2(0))

)
. (3.19)

Proof. We start with the Galerkin orthogonality (2.12)

B(u, φk) −Bk(uk, φk) = 0 ∀φk ∈ X0
k

and write again ηk = u− iku for the interpolation error and ξk = iku− uk. With the Galerkin orthogonality it
follows that

Bk(ξk, φk) = Bk(u, φk) −B(u, φk) −Bk(ηk, φk) ∀φk ∈ X0
k . (3.20)

We test (3.20) with φk = P 0
k ek = P 0

k ξk which means φ̂m = 1
2 (êm

k + êm−1
k ) and get on every time interval Im:

1
2k
(
J(êm

k −êm−1
k ), êm

k + êm−1
k

)
Q̂m − 1

4

(
∂tT JF

−T
(∇̂êm

k + ∇̂êm−1
k ), êm

k + êm−1
k

)
Q̂m

+
1
4

(
κ̂JF

−T ∇̂(êm
k + êm−1

k ), F
−T ∇̂(êm

k + êm−1
k )

)
Q̂m

= Bm
k (u, P 0

k ek) −Bm(u, P 0
k ek) −Bm

k (ηk, P
0
k ek). (3.21)

Before we estimate (3.21) term by term, note that with the help of Lemma 3.10 and Assumption 3.1, we have
for an arbitrary function f ∈ L2(Ω(ti)), i = m− 1 or i = m and its counterpart f̂ ∈ L2(Ω̂m)∥∥∥J1/2

f̂
∥∥∥2

Ω̂m
=
(
Jf̂, f̂

)
Ω̂m

=
(
J(ti)f̂ , f̂

)
Ω̂m

+
((
J − J(ti)

)
f̂ , f̂

)
Ω̂m

≥
∥∥∥J(ti)1/2f̂

∥∥∥2

Ω̂m
− ck

∥∥∥f̂∥∥∥2

Ω̂m

≥ (1 − ck)
∥∥∥J(ti)1/2f̂

∥∥∥2

Ω̂m
= (1 − ck) ‖f‖2

Ω(ti)
.
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The same argumentation can be used e.g. for F−T instead of J . We get for the first term in (3.21)

1
2k
(
J(êm

k − êm−1
k ), êm

k + êm−1
k

)
Q̂m =

1
2

∥∥∥J1/2
êm

k

∥∥∥2

Ω̂m
− 1

2

∥∥∥J1/2
êm−1

k

∥∥∥2

Ω̂m

≥
(

1
2
− ck

)
‖ek(tm)‖2

Ω(tm) −
(

1
2

+ ck

)
‖ek(tm−1)‖2

Ω(tm−1)
.

For the second term we use Assumption 3.1, Lemma 3.10 and Young’s inequality and obtain

1
4

(
∂tT JF

−T ∇̂(êm
k + êm−1

k ), êm
k + êm−1

k

)
Q̂m

≥ −c
∥∥∥JF−T ∇̂(êm

k + êm−1
k )

∥∥∥
Q̂m

∥∥êm
k + êm−1

k

∥∥
Q̂m

≥ −c‖JF−T ∇̂(êm
k + êm−1

k )‖Q̂mk
1/2
(‖êm

k ‖Ω̂m + ‖êm−1
k ‖Ω̂m

)
≥ −κmin

8
‖∇P 0

k ek‖2
Qm − ck

(
‖em

k ‖2
Ω(tm) + ‖em−1

k ‖2
Ω(tm−1)

)
.

With similar arguments we get for the third term

1
4

(
κ̂JF

−T ∇̂(êm
k + êm−1

k ), F
−T ∇̂(êm

k + êm−1
k )

)
Q̂m

≥ (1 − ck)κmin‖∇P 0
k ek‖2

Qm .

For the first part on the right-hand side of (3.21), we use Lemma 3.11 and Young’s inequality

Bm
k (u, P 0

k ek) −Bm(u, P 0
k ek) ≤ ck2 ‖u‖H2(Qm

1 ∪Qm
2 ) ‖∇P 0

k ek‖2
Qm ≤ ck4 ‖u‖2

H2(Qm
1 ∪Qm

2 ) +
κmin

8
‖∇P 0

k ek‖2
Qm .

For the second part, it follows with Lemma 3.9

Bm
k (ηk,P

0
k ek) ≤ ck4

(
‖∂2

t ∇u‖2
Qm

1 ∪Qm
2

+ ‖∂t∇2u‖2
Qm

1 ∪Qm
2

+ ‖∇2u‖2
Q

)
+
κmin

8
‖∇P 0

k ek‖2
Qm .

Altogether we have shown that∥∥ek(tm)
∥∥2

Ω(tm)
− ∥∥ek(tm−1)

∥∥2

Ω(tm−1)
+
κmin

4

∥∥∇P 0
k ek

∥∥2

Qm

≤ ck
{
‖ek(tm)‖2

Ω(tm) + ‖ek(tm−1)‖2
Ω(tm−1)

}
+ ck4

(
‖∂2

t ∇u‖Qm
1 ∪Qm

2
+ ‖∂t∇2u‖Qm

1 ∪Qm
2

+ ‖u‖2
H2(Qm

1 ∪Qm
2 )

)
.

Finally, summation over m and the regularity estimate (1.3) yield

‖ek(T )‖2
Ω(T ) +

κmin

4
‖∇P 0

k ek‖2
Q

≤ c

M∑
m=1

(
k‖ek(tm)‖2

Ω(tm)

)
+ ck4

(
2∑

k = 0

‖f‖k,2(2−k) + ‖u0‖H6(Ω1(0)∪Ω2(0))

)
.

Applying the discrete Gronwall lemma (Lem. 3.12) and using the regularity estimate (1.3) prove the
assertion. �

Next, we show a similar result for the space-time L2 norm:

Theorem 3.14. Let u ∈ X be the solution of (2.1), uk ∈ X1
k the time discrete solution of (2.11) and ek = u−uk.

Under the conditions of Theorem 3.13, it holds that

‖ek‖Q ≤ ck2 exp(cT )

(
2∑

k =0

‖f‖k,2(m−k) + ‖u0‖H6(Ω1(0)∪Ω2(0))

)
. (3.22)
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Proof. We split the error ek again into an interpolation error ηk = u− iku and a discrete part ξk = iku− uk

‖ek‖Q ≤ ‖ηk‖Q + ‖ξk‖Q.

The interpolation error is bounded by Lemma 3.7

‖ηk‖Q ≤ ck2 ‖u‖H2(Q1∪Q2)
.

For the discrete part, note that ξk(tm) = ek(tm) and thus the result of Theorem 3.13 is valid for ξk as well. By
definition, we have

‖ξk‖2
Qm =

∫
Q̂m

J

(
t− tm−1

k
ξ̂k(tm) +

tm − t

k
ξ̂k(tm−1)

)2

dx̂ dt

≤ 2(1 + ck)
(
‖J(tm)ξ̂k(tm)‖2

Q̂m + ‖J(tm−1)ξ̂k(tm−1)‖2
Q̂m

)
≤ ck

(
‖ξk(tm)‖2

Ω(tm) + ‖ξk(tm−1)‖2
Ω(tm−1)

)
.

We sum over all time intervals m = 1, . . . ,M , use Theorem 3.13 and M = T/k to get

‖ξk‖2
Q ≤

M∑
m=1

ck‖ξk(tm)‖2
Ω(tm) ≤ ck4 exp(cT )

(
2∑

k =0

‖f‖k,2(m−k) + ‖u0‖H6(Ω1(0)∪Ω2(0))

)
. �

3.4. On the regularity of the data

The regularity for the data f and u0 on the right-hand side in the Theorems 3.13 and 3.14 is not optimal.
Instead, the estimate

‖ek‖ ≤ ck2 exp(cT )

(
1∑

k =0

‖f‖k,2(m−k) + ‖u0‖H4(Ω1(0)∪Ω2(0))

)
.

is possible for both norms by a more involved argumentation. The necessity for the higher regularity for the
data in the argumentation above comes from Lemma 3.9. There, we estimated the diffusive term by(

κ̂JF
−T ∇̂η̂k, F

−T ∇̂P̂ 0
k ek

)
Q̂m

≤ C‖∇ηk‖Qm‖∇P 0
k ek‖Qm . (3.23)

and used a bound for ‖∇ηk‖Qm that depends on the term ‖∂2
t ∇u‖ which by (1.3) requires higher regularity of

the data. To avoid this, one could think of applying integration by parts for the left-hand side in (3.23). Then,
however, we would need a stability bound for

ΔP 0
k ek := d̂iv

(
F

−1
JF

−T ∇̂P̂ 0
k ek

)
.

This is possible in the case of a fixed interface by a similar argumentation as in the proof of Theorem 3.13. In
the case of a moving interface, we have the additional terms

Bm
k (ηk, ΔP

0
k ek) and

([
ΔP 0

k ek, n̂
(
κ̂F

−1
JF

−T ∇̂P̂ 0
k ek

)])
ˆΓ m

when testing (3.21) by ΔP 0
k ek. We do not see any way to estimate these terms by an appropriate bound to show

the desired stability estimate. To circumvent the necessity for higher regularity of the data, there is another
possibility, however. Therefore, we define zk ∈ X0

k as solution to the discrete dual problem

Bk(φk, zk) = (ek, φk) ∀φk ∈ X1
k .
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By using Galerkin orthogonality, this yields

(ek, ξk) = Bk(ξk, zk) = Bk(iku, zk) −B(u, zk) = Bk(u, zk) −B(u, zk) −Bk(ηk, zk). (3.24)

The only difficult term to estimate is again the diffusive part of Bk(ηk, zk). In contrast to the situation above,
we have zk instead of P 0

k ek in (3.24). The advantage of this situation is now that to zk, there is a corresponding
continuous counterpart z which is the dual solution to

B(φ, z) = (ek, φ) ∀φ ∈ X.

For z integration by parts will not cause any problematic terms. Inserting ±z and using integration by parts
yields

(κ∇ηk,∇zk)Qm = (κ∇ηk,∇(zk − z))Qm + (κ∇ηk,∇z)Qm

= − (div(κ∇ηk), (zk − z))Qm + ([n(t)κ∇ηk], zk − z)Γ m + (ηk, div(κ∇z))Qm .

It remains to derive an error estimate for the dual solutions in the L2-norm as well as the estimation of the
interface term. For the details, we refer to [11].

4. Practical aspects

An important component of the numerical algorithm is the choice of a projection of the solution at the
previous time step um−1

k from the old to the new reference domain. In this section, we will show that we do not
need to calculate such a projection, as we can directly evaluate the arising integrals including um−1

k . Therefore,
we will derive a numerical integration scheme that integrates scalar products including functions from two
different reference domains exactly. We will see in Section 5 that exact integration is crucial in order to obtain
second-order accuracy.

Before we describe the integration scheme we use, we introduce a spatial discretization scheme that guar-
antees optimal convergence in space in Section 4.1. The time discretization scheme presented here is, however,
not restricted to this spatial discretization, other choices e.g. based on the extended finite element method
(XFEM, [16]), are possible.

4.1. Spatial discretization: A locally modified finite element scheme

For spatial discretization, we use the modified finite element scheme introduced in [12]. The key idea is to use
one fixed background mesh consisting of patches P ∈ Ωc

h for all time steps. In this way, we avoid the need for
remeshing as we advance in time and the reference domain changes. Furthermore, the transition from functions
defined on an old reference domain Ω̂m−1 to the new domain Ω̂m by means of exact numerical integration will
be considerably simplified (see Sect. 4.2).

The region for triangulation for Ωc
h has to be chosen large enough to cover all domains Ω(t), t ∈ I. Grid

points that lie outside the reference domain Ω̂m may be eliminated from the system matrix in time step m. In
order to obtain a spatial discretization of optimal order, special care has to be taken for the cells that are cut
by the interface. If a patch is cut by the interface, we divide it into 8 triangles in such a way that the interface is
resolved properly, see Figure 5. Furthermore, in order to avoid hanging nodes and to have the same number of
degrees of freedom independent of the interface location, we split a patch into four quadrilaterals if P ∩Γ (t) = ∅.

The four cases that have to be dealt with are shown in Figure 6: in all four cases, we can adjust the edge
midpoints and the midpoint of the cell in such a way that the interface is resolved in a linear approximation.
On the patch mesh Ωc

h, we define the finite element trial space Vh ⊂ H1
0 (Ω) as an iso-parametric space. If a

patch is not cut by the interface, we use the standard space of bilinear functions Q̂ (bilinear on each of the four
sub-quads) for both reference element transformation and the finite element basis. If a patch P ∈ Ωc

h is cut,
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ΓhΩ1

Ω2

Γ

Figure 5. Left: Patches P ∈ Ω2h with interface Γ . Right: Cells T ∈ Ωh that arise from
subdivision of patches P̂1, . . . , P̂4 into eight triangles or four quadrilaterals and the piecewise
linear discrete interface Γh.

r

s
rs

s

Figure 6. Different types of cut patches. From left to right: A, B, C and D. The subdivision
can be anisotropic with r, s ∈ (0, 1) arbitrary.

we use the space Q̂mod of piecewise linear functions (linear on each of the eight triangles) for transformation
and basis.

Although this ansatz is in principle equivalent to a finite element ansatz on a hybrid mesh consisting of
quadrilaterals and triangles, we base our implementation on the patch mesh Ωc

h and use whole patches P̂
as reference elements. The local subdivision into triangles and quadrilaterals is hereby included in the local
transformation

ξ̂P : P̂ → P, ξ̂P ∈ Q̂mod (or Q̂ resp).

For m = 1, . . . ,M , we obtain meshes Ωm
h consisting of quadrilaterals and triangles that differ from each

other in the interface region. The arising subcells can become arbitrarily anisotropic for r, s→ 0, 1 (Fig. 6). We
can guarantee, however, that a maximum angle condition remains valid. This enables us to show optimal error
estimates of second order. Furthermore, using a hierarchical finite element basis, the condition number of the
corresponding system matrix remains bounded [12].

4.2. Projection between reference domains and numerical integration

In the time-stepping scheme (2.11), the old solution ûm−1
k appears as ûm−1,+

k on the new reference domain
Ω̂m. However, from the previous time-step, ûm−1

k is given as a function on Ω̂m−1. To evaluate the expressions
in (2.11), we have to apply a projection to the new reference domain. Using interpolation may lead to a reduced
order of convergence (see Sect. 5). A projection that conserves the order of convergence is given in (2.13). Here,
however, we will show that it is not necessary to calculate this projection.

By definition of the trial space X1
k , we have the continuity relation (2.6)

ûm−1,+
k = ûm−1

k ◦ T−1
m (tm−1),
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P
P̃

T1

T2

T1

T3
T2

Figure 7. Left: Two overlapping elements P ∈ Ωm,c
h and P̃ ∈ Ω̃m−1,c

h . Right: A triangle can
be cut by a line in two different ways: the cut goes through two edges or through an edge end
a vertex. We add three or two triangles to the list L, respectively.

i.e. continuity in the current configuration on Ω(tm−1). For the derivatives, we have

∇̂mû
m−1,+
k =

(
F−T

m−1(tm−1)∇̂m−1û
m−1
k

)
◦ T−1

m (tm−1).

In our practical implementation we use these expressions to evaluate ûm−1,+ on the old domain Ω̂m−1. As an
example, let us consider the evaluation of∫

Ω̂m

ûm−1,+
k · φ̂m

k dx̂ =
∫

Ω̂m

(
ûm−1

k ◦ T−1
m (tm−1)

) · φ̂m
k dx̂. (4.1)

While the first factor on the right-hand side is a smooth function on the cells of the moved grid Ω̃m−1
h =

T−1
m (tm−1)(Ωm−1

h ), the second factor is smooth on Ωm
h (see Fig. 7 for an example of two overlapping patches

P ∈ Ωm,c
h and P̃ ∈ Ω̃m−1,c

h ). A high-order integration formula has to account for both the singularities of the
integrands. For this purpose, we construct a cut grid consisting of triangles that contains the mesh lines of both
grids. In two dimensions, this cut grid can be constructed by a rather simple algorithm:

Algorithm 4.1. We initialize a list of triangles L that contains the elements of Ω̂m (quadrilaterals are split
into two triangles). Then, we augment the list in the following way: for all mesh lines ei in Ω̃m−1

h :

(1) Check which triangles in L are cut by ei.
(2) If a triangle is cut, eliminate the triangle from the list L, split it into two or three subtriangles (see Fig. 7)

and add them to L.

In three space dimension, the construction of a cut grid is much more technical. We refer to Sudakhar & Wall [18]
and Bastian & Engwer [4] for possible approaches. Once the list L has been created, we use a standard Gauß
quadrature rule on the triangles in L.

Remark 4.2. The movement T−1
m (tm−1) of grid cells is bounded by Assumption 3.1. In our practical imple-

mentation, we make the additional assumption that the interface does not jump over more than one patch
within one time step. In the opposite case, we decrease the time step k = tm − tm−1. In this way, we only have
to check if the triangles that are part of the same patch and the neighboring patches are affected by ei in 1.
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Figure 8. End time error of the modified dG(0) and cG(1) schemes for k = h and a fixed
outer boundary (interface movement prescribed by y = T ).

5. Numerical examples

Finally, we present two numerical examples to substantiate the findings of the previous section.

5.1. Numerical example with analytical solution

We consider Problem (1.1) on a moving domain Ω(t) = Ω1(t) ∪Ω2(t) ∪ Γ (t). The subdomains are defined by

Ω1(t) = [−1, 1]× [−1, t], Ω2(t) = [−1, 1]× [t, 1 + t].

We use the diffusion coefficients κ1 = 1, κ2 = 0.1 and choose Dirichlet boundary data ud and a right-hand side
f such that the exact solution is given by

u(x, t) =

⎧⎨⎩sin
(
κ2

κ1
(x2 − t)

)
, x ∈ Ω1(t),

sin(x2 − t), x ∈ Ω2(t).

In an interval Im = [tm−1, tm], we use the transformations

Tm(x, t) =

⎧⎨⎩
(
x1, x2 − 1 + x2

1 + tm
(tm − t)

)
, x ∈ Ω1(t),

(x1, x2 − tm + t)) , x ∈ Ω2(t),

that fulfill the conditions of Assumption 3.1. In Figure 8, we plot the error at the end time T = 0.512 for the
modified cG(1) scheme presented in this paper and a modified dG(0) scheme that is defined analogously using
a dG(0) Galerkin ansatz in time. We decrease the spatial and temporal discretization parameter simultaneously
using k = h. As expected, we observe second-order convergence for the modified cG(1) scheme and first-order
convergence for the modified dG(0) scheme.

Next, we study the effect of numerical integration and inexact projection schemes. First, we use a linear
interpolation as projection from Ω̃m−1

h to Ω̂m
h after every time step. The interpolation operator imh is defined

by the relation

imh u
m−1,+
kh (x̂i) =

(
ûm−1

kh ◦ T−1
m (tm−1)

)
(x̂i)
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Figure 9. End time error for the modified cG(1) scheme applied to the model problem. We
observe a reduced order of convergence when using non-exact integration formulas or projection
schemes.

in each grid point xi ∈ Ω̂m. Secondly, we use a summed midpoint rule with 64 points per patch for the evaluation
of integrals like (4.1) instead of the exact quadrature scheme presented in Section 4.2.

In Figure 9, we compare the errors for these two schemes to the exact integration scheme. For the linear
interpolation, we observe only linear convergence. As one would expect the projection error dominates the total
error. The midpoint rule behaves similarly to our quadrature formula for larger time-steps k. For smaller time-
step size, however, we observe again a reduction in the order of convergence. For k = h ≈ 10−2 the convergence
rate is close to linear convergence. Here, again, the quadrature error becomes the dominant part of the total
error. Our integration scheme, on the other hand, does not affect the quadratic convergence behaviour of the
time stepping method.

5.2. Rotating ellipsoid

As a second example, we consider a rotating ellipsoid Ωell(t) inside a fixed outer box Ω = [−1.2, 1.2]2 (see
Fig. 10). Initially, the ellipsoid has the Cartesian vectors as semi-principal axes with length 0.25 in vertical
and 0.5 in horizontal direction. We apply a counter-clockwise rotation of the ellipsoid driven by the prescribed
velocity field

vdom = 0.1
(
x2

−x1

)
.

Despite the fact that we could use this analytical velocity field to compute an analytical transformation Tm near
the interface, we take a different approach here in order to show how to calculate a suitable transformation for
realistic interface problems where the domain movement is only known at discrete points in time. A standard
approach to capture the interface would be to define a scalar level-set function Φ that moves with the interface

∂tΦ+ vdom · ∇Φ = 0 in Ω.

In order to define suitable transformations Tm, however, we follow a slightly different approach inspired by
fluid-structure interaction problems [8]. We use the vector-valued Initial Point Set function ΦIPS(t) : Ω → R2

defined by the equation

∂tΦIPS − vdom · ∇ΦIPS = 0 in Ω
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Ωell(0)

Ω2(0)

Figure 10. Subdomains of the second test configuration. The ellipsoid rotates counter-
clockwise, while the outer domain Ω is fixed.

Figure 11. Spatial grid at time t = 0, t = 15, t = 30 and t = 45. The ellipsoid rotates
counter-clockwise.

with initial value ΦIPS(t = 0) = id. This function traces back points x ∈ Ωell(t) to their original position in
Ωell(0). Thus, we can define the inner subdomain Ωell(t) by setting

Ωell(t) = {x ∈ Ω, ΦIPS(x, t) ∈ Ωell(0)}

and the outer domain is given by Ω2(t) = Ω\Ωell(t). Note that we do not define any spatial boundary conditions
for ΦIPS, as this could lead to a degeneration of the function before a full rotation of the ellipsoid is complete.
Using the Initial Point Set function ΦIPS, it is straight-forward to define a map that maps Ωell(tm) to Ωell(t)
and Γi(tm) to Γi(t) such that for t ∈ Im

T̃m(t) = (ΦIPS(t))−1 ◦ ΦIPS(tm).

In our practical implementation, we determine the point xm−1 := Tm(xm) ∈ Ω(tm−1) by solving

ΦIPS(tm−1)(xm−1) = ΦIPS(tm)(xm)

with Newton’s method and extend it linearly to the time interval Im. To map the outer domain Ω2(tm) to Ω2(t),
we use an interpolation between the movement at the interface and the identity, id, at the outer boundary ∂Ω

Tm(t) = g(x)T̃m(t) + (1 − g(x))id.

where g denotes a smooth function with g = 1 in Ωell(tm) ∪ Γ (tm) and g = 0 on ∂Ω.
As data, we choose f =

√
(1+ cos(5t)) as well as homogeneous initial data u0 = 0 and Dirichlet data ud = 0.

The diffusion coefficients are again given by κ1 = 1 and κ2 = 0.1. The movement of the ellipsoid as well as the
spatial grid are illustrated in Figure 11.



SECOND-ORDER TIME-STEPPING FOR PARABOLIC INTERFACE PROBLEMS 1559

Table 1. Functional values for the ellipsoid problem in the space-time L2-norm and in the
L2-norm at time T = 15 for a modified dG(0) and a modified cG(1) time stepping scheme and
k = h. Furthermore, we give an extrapolated functional values for k = h → 0 and estimate
the convergence orders. The convergence orders are in good agreement with the theoretical
predictions.

‖uk(T )‖Ω ‖uk‖Q

k = h dG(0) cG(1) dG(0) cG(1)
0.15 0.619 0.5858 2.121 2.1286
0.075 0.605 0.5890 2.134 2.1423
0.0375 0.598 0.5899 2.140 2.1456
0.01875 0.594 0.5900 2.143 2.1463
Extrap. 0.589 0.5901 2.146 2.1466
Conv. 0.87 2.01 1.11 2.08

O(k2)

O(k)

dG(0)

cG(1)

End time error

time step size k

10.10.01
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Figure 12. Functional errors for the ellipsoid problem in the end time L2-norm and the
L2-norm over the space-time domain Q for h = k → 0. As our theoretical results predict, we
observe second-order convergence for the modified cG(1) approach and first-order convergence
for a modified dG(0) approach.

To study convergence, we compare the functional values for ‖uk(T )‖Ω(T ) and ‖uk‖Q for different time step
sizes k, grid size h = k and a modified cG(1) as well as a modified dG(0) scheme in Table 1. Furthermore,
we calculate an extrapolated value e0 as well as an estimated convergence order α by a least squares fit of the
function e(k) = e0 + ckα. For both functionals, we observe second-order convergence for the modified cG(1)
approach and first-order convergence for the dG(0) variant. Finally, we plot the errors over the mesh/time-step
size h = k in Figure 12 to illustrate the convergence behaviour.

6. Conclusion

We have presented a time-stepping scheme for parabolic interface problems with a moving interface. The
method is based on a Galerkin formulation of Crank−Nicolson type. To obtain the optimal order of convergence
we use space-time test- and trial-functions, that are aligned with the moving interface. The resulting method
is in each time step equivalent to a standard Galerkin approach applied to an ALE formulation on a fixed
reference domain. For realization, the Galerkin formulation is approximated by suitable quadrature rules on
every space-time slab. For this numerical approximation, we prove second order convergence in the L2-norm in
time and for the error at the end time. While we require the typical regularity of the unknown solution, a very
smooth interface motion is needed. Numerical tests demonstrate the expected order of convergence.
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Problems with moving interfaces appear in various application fields, such as multiphase flows or fluid-
structure interactions. Future work will focus on the efficient application of the time-stepping scheme to such
complex applications.
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