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A GENERALIZED FINITE ELEMENT METHOD FOR LINEAR
THERMOELASTICITY

AXEL MALQVIST"* AND ANNA PERSSON!

Abstract. We propose and analyze a generalized finite element method designed for linear quasistatic
thermoelastic systems with spatial multiscale coefficients. The method is based on the local orthogonal
decomposition technique introduced by Malqvist and Peterseim (Math. Comp. 83 (2014) 2583-2603).
We prove convergence of optimal order, independent of the derivatives of the coefficients, in the spatial
H'-norm. The theoretical results are confirmed by numerical examples.
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1. INTRODUCTION

In many applications the expansion and contraction of a material exposed to temperature changes are of great
importance. To model this phenomenon a system consisting of an elasticity equation describing the displacement
coupled with an equation for the temperature is used, see, e.g., [6]. The full system consists of a hyperbolic
elasticity equation coupled with a parabolic equation for the temperature, see [9] for a comprehensive treatment
of this formulation. If the inertia effects are negligible, the hyperbolic term in the elasticity equation can be
removed. This leads to an elliptic-parabolic system, often referred to as quasistatic. This formulation is discussed
in, for instance [24,27]. In some settings it is justified to also remove the parabolic term, which leads to an
elliptic-elliptic system, see, e.g., [24,27]. Since the thermoelastic problem is formally equivalent to the system
describing poroelasticity, several papers on this equation are also relevant, see, e.g., [5,26].

In this paper we study the quasistatic case. Existence and uniqueness of a solution to this system are discussed
in [24] within the framework of linear degenerate evolution equations in Hilbert spaces. It is also shown that this
system is essentially of parabolic type. Existence and uniqueness are also treated in [27] (only two-dimensional
problems) and in [23,25] some results on the thermoelastic contact problem are presented. The classical finite
element method for the thermoelastic system is analyzed in [11,27], where convergence rates of optimal order
are derived for problems with solution in H? or higher.

When the elastic medium of interest is strongly heterogeneous, like composite materials, the coefficients
are highly varying and oscillating. Commonly, such coefficients are said to have multiscale features. For these
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problems classical polynomial finite elements, as in [11,27], fail to approximate the solution well unless the mesh
width resolves the data variations. This is due to the fact that a priori bounds of the error depend on (at least)
the spatial H?-norm of the solution. Since this norm depends on the derivative of the diffusion coefficient, it is of
order e~ ! if the coefficient oscillates with frequency e ~'. To overcome this difficulty, several numerical methods
have been proposed, see for instance [3,4,15,16,18].

In this paper we suggest a generalized finite element method based on the techniques introduced in [18],
often referred to as local orthogonal decomposition. This method builds on ideas from the variational multiscale
method [15,16], where the solution space is split into a coarse and a fine part. The coarse space is modified such
that the basis functions contain information from the diffusion coefficient and have support on small patches.
With this approach the basis functions have good approximation properties locally. In [18] the technique is
applied to elliptic problems with an arbitrary positive and bounded diffusion coefficient. One of the main
advantages is that no assumptions on scale separation or periodicity of the coefficient are needed. Recently, this
technique has been applied to several other problems, for instance, semilinear elliptic equations [13], boundary
value problems [12], eigenvalue problems [19], linear and semilinear parabolic equations [17], and the linear wave
equation [1].

The method we propose in this paper uses generalized finite element spaces similar to those used in [14,18],
together with a correction building on the ideas in [12,16]. We prove convergence of optimal order that does
not depend on the derivatives of the coefficients. We emphasize that by avoiding these derivatives, the a priori
bound does not contain any constant of order ¢!, although coefficients are highly varying.

In Section 2 we formulate the problem of interest, in Section 3 we first recall the classical finite element
method for thermoelasticity and then we define the new generalized finite element method. In Section 4 we
perform a localization of the basis functions and in Section 5 we analyze the error. Finally, in Section 6 we
present some numerical results.

2. PROBLEM FORMULATION

Let 2 C R4, d = 2,3, be a polygonal /polyhedral domain describing the reference configuration of an elastic
body. For a given time 7' > 0 we let u : [0, 7] x £2 — R denote the displacement field and 6 : [0, T] x £2 — R the
temperature. To impose Dirichlet and Neumann boundary conditions, we let I'f; and I'y denote two disjoint
segments of the boundary such that I' := 962 = I'y U I'}:. In addition, we assume meas(Ij5) > 0. The segments
I'% and I'Y are defined similarly.

We use (+,-) to denote the inner product in Ly(£2) and || - || for the corresponding norm. Let H(£2) denote
the classical Sobolev space with norm ||1)H%11(Q) = ||v]|? + ||Vv||? and let H~!(£2) denote the dual space to H®.
Furthermore, we adopt the notation L, ([0, T]; X) for the Bochner space with the norm

1/p

T
|”||Lp([o,T];X>=</ ||v|§(dt> . 1<p<oo,
0

V]2 (0, 77:x) = esssup [Jv]| x,
0<t<T

where X is a Banach space equipped with the norm || - || x. The notation v € H'([0,T]; X) is used to denote
v,0 € Ly([0,T]; X). The dependence on the interval [0,7] and the domain {2 is frequently suppressed and we
write, for instance, La(Ly) for La([0,T]; L2(£2)). We also define the following subspaces of H*

Vi={ve (H' () :v=00onTp}, V>:={ve H(2):v=0o0nTP}.

Under the assumption that the displacement gradients are small, the (linearized) strain tensor is given by:

e(u) = %(Vu + VuT).
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Assuming further that the material is isotropic, Hooke’s law gives the (total) stress tensor, see e.g. [23] and the
references therein,

g =2ue(u) + AV -u)l —abl,

where [ is the d-dimensional identity matrix, « is the thermal expansion coefficient, and g and A are the so
called Lamé coefficients given by:

FE FEv

ST S )k

where E denotes Young’s elastic modulus and v denotes Poisson’s ratio. The materials of interest are strongly
heterogeneous which implies that «, u, and A\ are rapidly varying in space.
The linear quasistatic thermoelastic problem takes the form

=V Que(u) + AV -ul —afl)=f, in (0,T] x £2, (2.1)
0—V-kVO+aV-u=g, in(0,7T]x 0, (2.2)

u=0, in (0,T]xIp, (2.3)

G-n=0, in(0,T]x I (2.4)

=0, on(0,T]xTP, (2.5)

kVO-n=0, on (0,T]x Y. (2.6)

0(0) =0y, in 02, (2.7)

where & is the heat conductivity parameter, which is assumed to be rapidly varying in space.

Remark 2.1. For simplicity we have assumed homogeneous boundary data (2.3)—(2.6). However, using tech-
niques similar to the ones used in [12,14] the analysis in this paper can be extended to non-homogeneous
situations.

Assumption 2.2. We make the following assumptions on the data
(A1) K € Lo (2, R™*9) symmetric,

. . k(x)v v k(x)v-v
0 < k1 :=essinf inf L, 00 > Ko := esssup sup L
€82 veRI\{0} V-V z€Q peRd\{o} V-V

(A2) p, A, a € Loo(£2,R), and

0 < pp :=essinf p(x) < esssup p(z) =: ps < oc.
z€f2 TENR

Similarly, the constants A1, A2, a1, and «aq are used to denote the corresponding upper and lower bounds

for Aand a.
(A?’) faf € Loo(L2)af € Loo(Hil), g€ Loo(L2)a g € Loo(Hil)a and 90 € V2~

To pose a variational form we multiply the equations (2.1) and (2.2) with test functions from V! and V?
and using Green’s formula together with the boundary conditions (2.3)—(2.6) we arrive at the following weak
formulation [11]. Find u(¢,-) € V! and 6(t,-) € V2, such that,

(o(u) : e(v1)) — (B, V -v1) = (f,v1), Yo, €V (2.8)
(97U2) +(KJV9,VU2) —|—(OéV'1l,’U2) = (gav2)a v7}2 S V2a
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and the initial value 0(0,-) = 6y is satisfied. Here we use o to denote the effective stress tensor o(u) :=
2ue(u) + ANV - u)I and : to denote the Frobenius inner product of matrices. Using Korn’s (first) inequality we
have the following bounds, see, e.g., [7,8§],

collvillfn < (o(v1) s (1)) < Colloallip,  Vor € V? (2.10)

where ¢, (resp. Cy) depends on p; (resp. pe and A2). Similarly, there are constants ¢, (resp. C,;) depending on
the bound k1 (resp. k2) such that

crllvzl|?n < (kVve, Vug) < Cyllvall3, Yug € V2. (2.11)
Furthermore, we use the following notation for the energy norms induced by the bilinear forms
lloi]|? == (o(v1) : e(v1)), v1 € VY, |Jua? := (kVvaVug), vy € V2.

Existence and uniqueness of a solution to (2.8) and (2.9) have been proved in [24,27]. There are also some
papers on the solution to contact problems, see [2,25].

Theorem 2.3. Assume that (A1)—(A3) hold and that 02 is sufficiently smooth. Then there exist u and 6 such
that w € La(VY), V-1 € Lo(H™ 1), 6 € Lo(V?), and 0 € La(H™Y) satisfying (2.8) and (2.9) and the initial
condition 6(0,-) = 6.

Remark 2.4. We remark that the equations (2.1)—(2.7) also describe a poroelastic system and, hence, the
method proposed in this paper also applies to problems in poroelasticity. In this case 6 denotes the fluid
pressure, k the permeability and viscosity of the fluid.

3. NUMERICAL APPROXIMATION

In this section we first recall some properties of the classical finite element method for (2.8) and (2.9). In
Section 3.2 we propose a new numerical method built on the ideas from [18]. The localization of this method is
treated in Section 4.

3.1. Classical finite element

First, we need to define appropriate finite element spaces. For this purpose we let {7} }5~0 be a family of
shape regular triangulations of {2 with the mesh size hy := diam(K), for K € 7. Furthermore, we denote the
largest diameter in the triangulation by h := maxxec7, hx. We now define the classical piecewise affine finite
element spaces

St ={ve (C(R2)?%: vk is a polynomial of degree <1, 1 <i <d, VK € Tp,},
S? = {v € C() : v|k is a polynomial of degree < 1,VK € 7;,},
and V! = SL V!, V2 = S2A V2,
For the discretization in time we consider, for simplicity, a uniform time step 7 such that ¢, = n7 for

n € {0,1,...,N} and N7 = T. The classical finite element method with a backward Euler scheme in time
reads; for n € {1,..., N} find u} € V;! and 67 € V}2, such that

(o(up) :e(vy)) — (abp, V- v1) = (f*,v1), VY € Vhl, (3.1)
(0407, v2) + (KVOY, Vug) + (aV - Opull, va) = (g™, v2), Vv € Vi,

where 0,07 := (07 — 07" ")/7 and similarly for dyu}!. The right hand sides are evaluated at time t,, that is,
™= f(tn) and g™ := g(t,). Given initial data u) and 69 the system (3.1) and (3.2) is well posed [11]. We assume
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that 69 € V}! is a suitable approximation of fy. For u) we note that u(0) is uniquely determined by (2.8) at
t = 0, that is, u(0) fulfills the equation

(0(u(0)) : e(v1)) = (ab®, V- v1) = (f%v1), Yoy €V,
and we thus define u% S Vh1 to be the solution to
(a(ug) ce(v1)) — (a02,v cv1) = (fo,vl), Yo, € Vhl. (3.3)

The following theorem is a consequence of ([11], Thm. 3.1). The convergence rate is optimal for the two
first norms. However, it is not optimal for the Lo-norm |6 — #}}||. In [11] this is avoided by using second
order continuous piecewise polynomials for the displacement (P2-P1 elements). It is, however, noted that the
problem is still stable using P1-P1 elements. In this paper we use P1-P1 elements and derive error bounds in
the Lo (H')-norm, of optimal order, for both the displacement and the temperature.

Theorem 3.1. Let u and 6 be the solution to (2.8) and (2.9) and {uf}N_, and {02 }1_, be the solution to (3.1)
and (3.2). Forn € {1,..., N} we have

n

1/2
[[u" = uplla + (Z (o™ — 92”@11) + 116" = 05|l < Ce—rh + Cr,

m=1
where C.—1 is of order e~ if the material varies on a scale of size €.

Note that the constant C.-1 involved in this error bound contains derivatives of the coefficients. Hence, conver-
gence only takes place when the mesh size h is sufficiently small (b < €). Throughout this paper, it is assumed
that h is small enough and V;! and V;? are referred to as reference spaces for the solution. Similarly, u} and 67
are referred to as reference solutions. In Section 5 this solution is compared with the generalized finite element
solution. We emphasize that the generalized finite element solution is computed in spaces of lower dimension
and hence not as computationally expensive. It should also be noted that there, of course, is an initial cost of
generating the generalized finite element space itself, but this space can be reused in each time step.

Remark 3.2. The classical linear elasticity equation can suffer from (Poisson) locking effects when using con-
tinuous piecewise linear polynomials (P1 elements) and v is close to 1/2. In [14], the GFEM that this paper is
based on is applied to linear elasticity equations and it is shown that the Poisson locking effects is reduced. It
is reasonable to believe that this property is transferred to the method presented here, but we shall, to simplify
the analysis, refrain from investigating this. Instead we assume that the Lamé coefficients are of moderate size,
such that the reference solution is a good approximation.

Furthermore, the coupled time-dependent problem can suffer from another type of locking, occurring if 0 is
neglected in (2.2) and P1 elements are used in both spaces (P1-P1). The locking produces artificial oscillations
in the numerical approximation of the temperature (or pressure) for early time steps. However, when 6 is not
neglected, numerical observations indicate that this locking effect does not occur. See [21,22] and references
therein for a further discussion. Hence, we shall consider a P1-P1 discretization for the reference solution in this
paper.

In the following theorem we prove some regularity results for the finite element solution.

Theorem 3.3. Let {uf})_, and {07 }N_, be the solution to (3.1) and (3.2). Then the following bound holds

n=1

1/2 1/2
n n

YorldpliEn |+ [ DorIaOP )+ 16l < CUlgleaiwa + 1 oy +100]a)- (34)
j=1 j=1
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If 09 =0, then forn € {1,...,N}
1/2
n

10l + 1007 Z 19:63 1171

C ||9HLOO(L2) 9l Lo 1) + Hf”Loc(H—l) + Hf.HLOC(H—l)) .
If f=0and g =0, then forne {1,...,N}

10cup |l + 1005 + /211005 | 1 < Ctr 2|69 | a2

(3.5)

(3.6)

Proof. From (3.1) and (3.2) and the initial data (3.3) we deduce that the following relation must hold for n > 1

(0(Dpup) s (1)) = (adsby, V - v1) = (3 f",01), Vo € Vy,
(0107, v2) + (KVOR, V) + (aV - dpull, v2) = (9", v2),  Vug € V2.

By choosing v; = dyu} and vy = 3;03 and adding the resulting equations we have
||8tuhHH1 +35 Hat@h\l2 (kY0 V005) < Clg"|I” + 10 f " 1 F-1)-
Note that the coupling terms cancel. By using Cauchy—Schwarz and Young’s inequality we can bound
_ 1 1
(kYO0 VO0y) = |-V P — (kYO Vo) > ORI = S0

Multiplying (3.9) by 7, summing over n, and using (2.11) gives

n

S w0 |3+ rlobhl1? + 10013 < C Dl 12+ 10e 13 -1) + Cloplan

Jj=1 Jj=1 Jj=1

which is bounded by the right hand side in (3.4).
For the bound (3.5) we note that the following relation must hold for n > 2

(0 (Dpuf) < e(v1)) — (D02, V - v1) = (e f™,v1), Yoy € V3L,
(D207, v2) + (VD05 , Vo) + (aV - O2ul, v2) = (0i9™,v2), Vup € V2.

Now choose v1 = d2u} and vy = 9,0} and add the resulting equations to get
(0(Deupy) = €(OFup)) + (705, 0:03) + (kV 0,0}, VOOy) = (Oef ", Fupy) + (Deg”, 0:0}).

Multiplying by 7 and using Cauchy—Schwarz and Young’s inequality gives

1 = 1 = = 1, .. 1 =
SNORIE + 5187 + Crllop s < 50085 1P + 5B 12 + m(Bef™, Bug) + Clg™ .

Summing over n and using (2.10) now gives

00k + 108517 + 3 71003 < C (10 + 10O + 30 (00, 5Pl + 105 )

Jj=2 Jj=2

(3.7)
(3.8)

(3.9)
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Here we use summation by parts to get

n n

> T0if7,07uf) = (Def, ) = (Dof* Opup) = Y (DS, Dyup )
Jj=2 Jj=2
<0 g 100 Vs 4 SR ) o, 100
=

and maxi<j<n ||_5tufl\|H1 can now be kicked to the left hand side.
To estimate 8t9,11 and 8tu,1l we choose v = atu,ll and vy = 8t0}1L in (3.7) and (3.8) for n = 1. We thus have,
since 92 =0,

_ _ 1 _
10run |7+ 110:04 1% + ;II%H?p < C|Of 52 + g 1)

The observation that (|6} ||%,, = 7(|0,0} /% completes the bound (3.5).
Now assume f =0 and g = 0 and note that the following holds for n > 2,

(U(éfuﬁ) ce(vr)) — (ozétz RV ev) =0, Yu € Vhl,
(0201, v2) + (KVO0), Vo) + (aV - OZujl,v2) =0, Youg € Vi2.

Choosing v, = 5,52112, vy = 5,529,7: and adding the resulting equations gives
(0(0Fupy) : £(0Fup) + (9705, 7 05) + (kVO;, VO 6}) = 0,

where, again, the coupling terms cancel. The two first terms on the left hand side are positive and can thus be
ignored. Multiplying by 7 and 2 gives after using Cauchy—Schwarz and Young’s inequality

tallOwOR 112 < th 1 110:0; 112 + (t2 — ta_)197 05|12
Note that t% — ti_l < 37t,_1, where we use that t, < 2t,_1 if n > 2. Summing over n now gives
n
_ _ _
21007112 < 1004112 + 3> 7t 1110:67 |12
j=2

To bound the last sum we choose vy = 02ull, vo = 9,07 in (3.10) and (3.11), now with f = 0 and g = 0. Adding
the resulting equations gives

(0207, 0:07) + (kN 005, NV O07) + (0(Opul) : e(Oful)) =0,

Multiplying by 7 and t,, gives after using Cauchy—Schwarz inequality

t = t = = t 1,5 1 t 1,5 -1 T, = 1 T, = -1
SNGR I + NGO + cartall G513 < 10 Z + A0 P + NG 2 + 158
Summing over n and using (2.10) thus gives
Cotn | = tn s - _ Coty, = -
I G B+ 10BN+ D 7108 < S e + L1831

Jj=2

+ O3 (10 3 + 190817 -
j=2
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To bound the last sum in this estimate we choose v1 = Jyu}, vo = 9,07 in (3.7)—(3.8) and multiply by 7 to get
= - 1 1,
comllOvuy [ + TIOORI® + SIIORIE < 105 II%-

Summing over n and using (2.11) gives

- a ] a ] Cx n CN
Y (1B + 191 3 ) + 1671 < =~ 16015 (3.12)
j=1

It remains to bound #39,0} (1%, t1]/0:0}||?, and t1||Ozu}|| . For this purpose we recall that ¢; = 7 and use
(3.12) for n =1 to get

tl|Ocunll e + till0e0411* + 111100315 < C(T(10eunllip + 1004 11%) + 10117 + 168 17) < CllORNZ-
Finally, we have that
tallOrupllzn + tall O3 11° < ClOIZ, 21007 17 < ClORNI
and thus (3.6) follows. O

3.2. Generalized finite element

In this section we shall derive a generalized finite element method. First we define V} and V7 analogously
to Vh1 and VhQ, but with a larger mesh size H > h. In addition, we assume that the family of triangulations
{7y} gr>» is quasi-uniform and that 7}, is a refinement of 7y such that VI_ll - Vh1 and VI_QI - th. Furthermore, we
use the notation N' = N1 x A2 to denote the free nodes in V}; x V2. The aim is now to define a new (multiscale)
space with the same dimension as Vj; x V32, but with better approximation properties. For this purpose we
define an interpolation operator Iy = (I}, I%) : V;} x V2 — VL x V2 with the property that Iy o Iy = Iy and
for all v = (v1,v9) € V}! x V}2

Hi o = Invll Ly + IVIa0l Lyk) < CrlIVOllywr): VK € Th, (3.13)
where
wg = int {KGTHKQK#Q)}

Note that I}, is vector-valued. Since the mesh is assumed to be shape regular, the estimates in (3.13) are also
global, i.e.,

H™ o = Igvll + IVIgvl < C|| Vo], (3.14)

where C is a constant depending on the shape regularity parameter, v > 0;

diam B
~ = max yg, with yx = M, for K € Ty, (3.15)

KeTy diam K
where B is the largest ball contained in K.

One example of an interpolation that satisfies the above assumptions is I; = E% o [T, i = 1,2. Here I}
denotes the piecewise Lo-projection onto Py (7z) ((Pi(7z))? if i = 1), the space of functions that are affine on
each triangle K € Ty. Furthermore, F}, is an averaging operator mapping (P;(7z))¢ into V%, by (coordinate
wise)

; 1
Ey = > ; 1<j<
( H (U))(Z) Card{K c 7—[{ cs K} KETH.ZEK/U]‘K(Z)’ 7> d7
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where 2 € N''. E? mapping Py(7y) to V3 is defined similarly. For a further discussion on this interpolation
and other available options we refer to [20].
Let us now define the kernels of I}, and 1%

Viii={veV  Igv=0}, VZ:={veV?:I{v=0}

The kernels are fine scale spaces in the sense that they contain all features that are not captured by the
(coarse) finite element spaces Vi and V7. Note that the interpolation leads to the splits V;! = Vit @ V}! and
th = V2 @ V{2, meaning that any function v, € Vh1 can be uniquely decomposed as vi = vi, g + v1 ¢, With
VI,H € VI_ll and vy 5 € Vfl, and similarly for vy € Vh2.

Now, we introduce a Ritz projection onto the fine scale spaces. For this we use the bilinear forms associated
with the diffusion in (2.8) and (2.9). The projection of interest is thus Ry : V;! x V2 — V' x V2, such that for
all (v1,v2) € Vi} x V2, Re(v1,v2) = (R}vi, Rvo) fulfills

(0(vy — Rfvy) s e(wy)) =0, Vwy € Vi, (3.16)
(kV(vg — R?v3), Vws) =0, Yawsy € V2. (3.17)

Note that this is an uncoupled system and R} and R? are classical Ritz projections.
For any (vi,v2) € V! x V;2 we have, due to the splits of the spaces V;! and V;? above, that

’U1—R%’U1 :’ULH—RflUl,H, UQ—R?UQZUQ,H—R?UQ,H.
Using this we define the multiscale spaces
Vi ={v-Riv:iveVy}, Vi :={v-Riv:iveVi} (3.18)

Clearly V.1 x V2. has the same dimension as V3 x V2. Indeed, with Al* denoting a basis function in V}; with

a hat function at the ith position at node z, 1 <i < d, and )\Z the hat function in V3 at node y, such that
Vi x VA = span{(\L*,0), (0,/\3) 11 <i<d, (z,y) € N},

a basis for V.1 x V2 is given by:
{OL = RENY,0),(0,A] — REXY) 1 1 <i < d, (x,y) € N} (3.19)

Finally, we also note that the splits V! = V), & V{* and V2 = V2, & V{* hold, which fulfill the following
orthogonality relations

(o(v1) :e(wy)) =0, Yo, € VL, w €V}, (3.20)

ms’

(kVvy, Vwy) =0, Yy € V2., wy € V2. (3.21)

ms’

3.2.1. Stationary problem

For the error analysis in Section 5 it is convenient to define the Ritz projection onto the multiscale space using
the bilinear form given by the stationary version of (2.8) and (2.9). We thus define Ry, : V! x V2 — VI x V2,
such that for all (vi,v2) € V! X V2, Rins(v1,v2) = (RL(v1,v2), RZ v0) fulfills

(0(v1 = Rips(v1,12)) s €(wn)) = (a(vz = Rigva),V -w1) =0, Vawy € Vg, (3.22)
(kV(v2 — RZ 02), Vws) =0, Vws € V2. (3.23)

Note that we must have R2 =1 — R?, but R} # I — R} in general.
The Ritz projection in (3.22) and (3.23) is upper triangular. Hence, when solving for R} (v1,v2) the term

(aR2 vy, V -w1) in (3.22) is known. Since this term has multiscale features and appears on the right hand side,
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we impose a correction on R} (v1,vz) inspired by the ideas in [12] and [16]. The correction is defined as the
element Rgvy € Vfl, which fulfills

(o(Rev2) : e(wy)) = (aR?

ms

v,V -wy), Yuwy € Vi, (3.24)

and we define R%ns(vl, ve) = RL (v1,v2) + Rivs.
Note that the Ritz projections are stable in the sense that

1R (v v2) [ < Clloallar + ozl mn), | REgvella < Cllvallr (3.25)

Remark 3.4. The problem to find Rsvs is posed in the entire fine scale space and is thus computationally
expensive to solve. The aim is to localize these computations to smaller patches of coarse elements, see Section 4.

To derive error bounds for this projection we define two operators A; : Vi! x V2 — VI and Ay : V2 — V)2
such that for all (v1,vs) € V}} x V2 we have

(A1 (v1,v2),w1) = (o(v1) s e(wr)) — (e, V- wy), Vuw € Vhl, (3.26)
(Agvz,wo) = (KVv2, Vwg), Yws € Vi2. (3.27)
Lemma 3.5. For all (vy,v2) € V;! x V}2 it holds that
o1 = Rl (v1,v2) | < C(H || Ax(vr,v2) || + [[vz2 — Rival)) (3.28)
< CH(|JAx(v1, v2) || + [lva] ),
HUQ — R?HS’U2HH1 S OH”AQUQH (329)

Proof. Tt follows from [18] that (3.29) holds, since (3.23) is an elliptic equation of Poisson type. Using an
Aubin—Nitsche duality argument as in, e.g., [17], we can derive the following estimate in the Lo-norm

lvs — Ry vl < CH|lvz — Rigvall e < CH|lvzal i,
which proves the second inequality in (3.28).
It remains to bound ||v; — RL(v1,v2)| 1. Recall that any v € V;! can be decomposed as
v=v— R}v+ R}v= (I - R})v+ R}v,

where (I — R})v € V1. Using the orthogonality (3.20) and that (o(-) : £(+)) is a symmetric bilinear form we get

(0(Rins (01, 02)) 2 £(v)) = (0(Rpng (01, 02) + Rpva) (I = Rf)v + Riv))
= (0(Rps(v1,02)) (I = R}))) + (0(Revs) : e(Rfv)).
Due to (3.22) and (3.24) we thus have
(0(Rips(v1,02)) = (I = Ri)v)) + (0(Revs) : e(Rjfv))
= (o(v1) s e(( = Ri)v)) = (alv2 = Ri,02), V- (I = Ri)v) + (aR7 02,V - Ryv)
= (A1 (v1,v2), (I — R})v) + (aR2 02,V - v).

Define e := v; — RL_(v1,v2). Using the above relation together with (3.26) we get the bound

collelFn < (a(e) s e(e)) = (o(v1) : e(e)) = (Ar(vi,v2), (I — Rf)e) — (aRh w2,V - €)
= (A1 (v1,v2), Rie) + (a(vy — R2 12),V - ¢€)

< || (v1, v2) || Riell + Cllve — Ry vallllel e
Since Rie € Vi* we have due to (3.13)
|Rgell = || R¢e — Iy Rie|| < CH|Rielm < CH|le| s,

where we have used the stability | R}v| g < C||v|| g for v € V;!. The first inequality in (3.28) now follows. [
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Remark 3.6. Without the correction Ry the error bound (3.28) would depend on the derivatives of «,
lv1 = R (o1, 02)ll i < Cor (H|| A (v1,02) | + [|vz — RE o2,
where o is large if a has multiscale features.

3.2.2. Time-dependent problem

A generalized finite element method with a backward Euler discretization in time is now defined by replacing
Vi with VL, and V;2 with V2 in (3.1) and (3.2) and adding a correction similar to (3.24). The method thus

reads; for n € {1,..., N} find 4, = ul, +uf, with u € V1 ul € Vi1, and 07, € V2, such that
(0(tipe) : €(v1)) = (abs, V- v1) = (f",v1), Vor € Vi, (3.30)
(0101, v2) + (KV O, V) + (aV - Byl v2) = (9", v2), Vo2 € Vi2, (3.31)
(o(uf) : e(wr)) — (abp s, V - w1) =0, Vw, € Vi (3.32)
where 00 = RZ_6). Furthermore, we define 4 := u%  + u{, where u € V{! is defined by (3.32) for n = 0 and
ud € V1 such that
(0() : (01)) = (@0, V- v1) = (f0v1), Vor € Vi, (3.33)

Lemma 3.7. The problem (3.30) and (3.31) is well-posed.

Proof. Given ulgt, 0751, and uf™!, equations (3.30)-(3.32) yields a square system. Hence, it is sufficient to

ms ms
prove that the solution is unique. Let v; = uf — u% ! in (3.30) and ve = 767 in (3.31) and add the resulting
equations to get

(0 (une) + €(upms — uine ) + (0(ufl) : e(upe — upe ') + 7805, 01na) + exT0sll7pn + (@V - (uf —uf ™), 07)
< (f" s — e ) +7(9", 00)-

Using the orthogonality (3.20) and (3.32) this simplifies to

(o)« €(ups — uis)) + 7(0i0hs, Ome) + cutllOsllZn + colluf 7

< (" gy =i ) (0" O) (o) ).
Now, using that (o(-) : €(+)) is a symmetric bilinear form we get the following identity
(0(0) (v — ) = 5(0(0) : £0) + o0 —w) : v — ) — S(o(w) : cw)) (3.34)
and using Cauchy—Schwarz and Young’s inequality we derive

_ 1 _ _
(fn7u:”15 - uglsl) < C’an”H_1 + 5(0—(”&5 - uglsl) : 5(“’71;15 - urrilsl))'

This, together with the estimate 7(3,0%, 0% ) > (/6712 — 1[|0m51||? and (2.10), leads to
c 1 c
O il + 3103l + om0 + S
- - —1
< O™ -2 + 7lg™ 117 + 105 112 + llugs Iz + llaf )

Hence, a unique solution exists. U
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4. LOCALIZATION

In this section we show how to truncate the basis functions, which is motivated by the exponential decay
of (3.19). We consider a localization inspired by the one proposed in [12], which is performed by restricting the
fine scale space to patches of coarse elements defined by the following; for K € Ty

wo(K) :=int K,
wi(K) = int (u{K € Ty : K Nwop_ 1 (K) # @}) k=1,2,...
Now let Vi (wi(K)) :={v € Vit 1 v(2) =0 on (2\ ') \ wx(K)} be the restriction of Vit to the patch wy(T).
We define Vi (wy,(K)) similarly.
The localized fine scale space can now be used to approximate the fine scale part of the basis functions

n (3.19), which significantly reduces the computational cost for these problems. Let (-, ), denote the Lo inner
product over a subdomain w C {2 and define the local Ritz projection Rka Vi x V2 — Vil (wi(K)) x V& (wi(K))

such that for all (v1,v2) € Vil x Vi, Rf, (v1,v2) = (R;Kklm, Rf 7 %v1) fulfills
(@ (R 1) s e(wn))w, (i) = (0(01) s e(wr) i, Y € Vi (wi(K)), (4.1)
(EV(R{202), Vo) (1) = (Y02, V)i, Vg € VA (wi(K)). (4.2)
Note that if we replace wy (K) with 2 in (4.1) and (4.2) and denote the resulting projection
R{((Ul,’vz) = (RfK’lUl,RfKQUQ),

then for all (vy,v9) € Vh1 X th we have

E : } : K,1 K,2
1}1,1)2 Rf 1)1,1)2 (Rf Ul,Rf ’Ug).

KeTy KeTy

Motivated by this we now define the localized fine scale projection as

2 : 2 : K,1 K,2
Rf k 1}1,1}2 Rf k ’U1,U2 (Rf,k 'Ulny,k 1}2), (43)
KeTy KeTy

and the localized multiscale spaces

Visr ={vi — Rigv1 :v1 € Vi b, Voo, = {va — R} yva 1 v2 € Vi1, (4.4)

with the corresponding localized basis
{()‘;:7Z - Rfl,kA;}chO)a (07 Ai - R?,kA?;) i1 < { < da ('Ta y) € N} (45)

4.1. Stationary problem

In this section we define a localized version of the stationary problem (3.22) and (3.23). Let R : Vj! x V;2 —
anls,k X Vn?ls,k:’ such that for all (vq1,v2) € Vh1 X VhQ, Runs 1 (v1,v2) = (erns,k(vl’UQ)’R?ns,kvz)‘ The method now
reads; find

erns,k(vlﬁ UQ) = erns,k(vl’ UQ) + Z Rflfkv% where Rfl,(kv2 € val ((Uk(K)),
KeTy
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and ans’ 52 such that

(0(v1 = Ripg 1 (v1,02)) s e(w1)) = (a(va = Rig 02), V- wi) = 0, Vi € Vi, (4.6)
(kV(va — R2 jv2), Vwz) =0, Vs € V2 .
(0(Rffyv2) s e(w)) — (@R 402, V- w)i = 0, Vw € Vi (wy(K)).

Note that the Ritz projection is stable in the sense that
1R bas (01, v2) [ < Cllloalln + llvallan)s || Ris wvellan < Cloallan- (4.9)

The following two lemmas give a bound on the error introduced by the localization.

Lemma 4.1. For all (vi,v2) € V;! x V}2, there exists £ € (0,1), such that

IRf o1 — Riwi |3 < CKIE* Y~ RS o |13, (4.10)
KeTy

|R? jv2 — Rivall3n < CKIEF N~ IR Pv2| 3, (4.11)
KeTy

| Rs w2 — Reva||3pn < CRAEF Y [|Rf s 30 (4.12)
KeTy

The bounds (4.10) and (4.11) are direct results from [14] and [12, 18] respectively, while (4.12) follows from [14]
by a slight modification of the right hand side. We omit the proof here.
The next lemma gives a bound for the localized Ritz projection.

Lemma 4.2. For all (vi,v2) € V;! x V}2 there exist &€ € (0,1) such that

Jor = Ry (o1, v0)ll s < CCH + K265 ([l A (w1, v2) | + [[ozl] ), (4.13)
o — B2 pvsllins < CH + k2€%)| Agvs. (4.14)

Proof. 1t follows from [12] that (4.14) holds. To prove (4.13) we let vy € VA and vy, € Vi be elements such
that

1 1 1 1
Rp(vi,v2) = v — Rpvm, Ry (v1,v2) = vm gk — R pvm k-

Define e := v; — RL

ms.k (1, 02). From (4.6) and (4.7) we get have the following identity for any z € Vn}ls,k
(o(e) s e(e)) — (a(ve — Rig pv2), V- €) = (0(e) 1 e(vy — 2 — Ry xv1)) — (a(vg — RExv2), V- (01 — 2 — Rs xv2)).

Using this with z = vy — Rflyka € VlsJc we get

m

eollelZn < (o(e) : e(e)) = (o(e) : e(vr — vy — R o — Rivn))

—

— (afvg — ans’kvg),v (v —vg — Rfl’ka — ngvg))

+ (v — ernsvk’l)g), V-e).
Now, using Cauchy—Schwarz and Young’s inequality we get

lellZn < C(lvr = v — R on — Regeva| T + [lv2 = R gval®),
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where the last term is bounded in (4.14). For the first term we get
o1 — vy — Rf jvr — Regva| i < |lv1 — (vir — Rfvy + Reva) ||l + | Rfve — Ri jom || + || Reva — Re vl
< |lor = Ry (or, 02) |l + | Biver — RY jonl|n + || Revz — Re vz e,

where the first term on the right hand side is bounded in Lemma 3.5. For the second term we use Lemma 4.1
to get

IRfvr — Ri joul3n < CK* YIRS oullzn < CRE* D vl
KeTy KeTy

= Ck'¢* vy |3 = CKY || Iy (v — Rivm) | in

= CRUE | I Rips(v1,02) [ B < CRUE™ || Ry (01, 02) [
We can bound this further by using (3.25) and (3.26), such that
1R (1, v2) [ < Clllvallzn + vzl ) < O AL (or, v2)|| + vz ] a0)-
Similar arguments, using Lemma 4.1 and (4.8), prove
| Revy — Re jva|| g < CkY2€R ||| g1,
and (4.13) follows. O

Remark 4.3. To preserve linear convergence, the localization parameter k should be chosen such that k£ =
clog(H~') for some constant c. With this choice of k we get k%/2¢* ~ H and we get linear convergence in
Lemma 4.2.

Remark 4.4. Tt is possible to consider different patch sizes k., kg, and k¢ in (4.1), (4.2), and (4.8), corresponding
to the displacement u, the temperature 6, and the additional correction, respectively. This would give us three
different values of &, say &,, &, and &, in Lemma 4.1. To achieve linear convergence, the patch sizes should
be chosen such that kg/z ko kﬁ”g};e, k;f/2 ?f ~ H, see Remark 4.3. This may be advantageous if one equation
requires significantly larger patches. However, we shall, for simplicity, consider the same patch size k in all
instances.

We note that the orthogonality relation (3.20) does not hold when V1. is replaced by ‘/;rlls,k' However, we
have that anls’k and Vi are almost orthogonal in the sense that

(o(v) : e(w)) < CEY2* ||| g [|wl| g2, Yo € Vs w € Vi (4.15)
To prove this, note that v = vy — R%,kayk for some v 1 € V}l], and

(o(v) : e(w)) = (o(vak — Rivag) : e(w)) + (o(Riverk — R pvm i) : £(w))

= (o(Rfvmk — Ri yom k) - €(w)) < Co||Rivei — R jomk

| |lwl| g

where we have used that vy — Rivg s, € V.., and the orthogonality (3.20). Due to Lemma 4.1 we now have

|Rfvek — Ri pomklin < CEE* > RS gl fn < CREF > o kllin
KeTy KeTy

= CK'M lvp k7 = CkE* | I (vm ke — R jome)llin

= CK*& | Igo|3p < CRAEF||v]| 3,

and (4.15) follows.
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4.2. Time-dependent problem

A localized version of (3.30)~(3.32) is now defined by replacing V5, with Vi , and Vi, with V72 . The
method thus reads; for n € {1,..., N} find
,aITIL”lS,kZ = u;s,k + Z u;l,}ch with u;s,k € Vms k> uf k € Vf (wk(K))
KeTy
and 0, € V.2, k> such that
(0 (i) : €(01) — (A8l V- v1) = (f",01), Vor € Vi, (4.16)
(6t917;15,k7 U2) + (Hvems ks VUQ) (OZV ' afa?as,kv U2) = (gn’ U2)7 Vg € vas,k? (417)
(o) e(wn)) — (@B T w01)ic = 0, Yy € Vi (wr(K), (4.18)

where 60, = R2, .07 Furthermore, we define a9, = ub, + Y xer, u?’,f, where u?’,f € Vi (wi(K)) is
defined by (4.18) for n = 0 and u?ns’k € V1. such that

(a(a?‘ﬂs k:) : 8(’01)) (aems ks V- Ul) = (f07 U1)7 Vv € anls,k' (419)
We also define uf') := 3" pcr, uf k . Note that for uf we have due to (3.32)
(o(uf) : e(wr)) = (ab, V- wi) =0, Vuwy € Vi

For the localized version uj'; this relation is not true. Instead, we prove the following lemma.

Lemma 4.5. For w; € Vfl, it holds that
|(o(ufy) = e(w1)) = (@8, V - w1)] < CRY2ER 0 lwn ]
Proof. Note that from (4.18) we have
(a(u?kK) ce(wr)) — (a1, V-wi)x =0, Yy € Vi (wi(K)). (4.20)
This equation can be viewed as the localization of the following problem. Find 2! € V{!, such that
(o(zf') e(w)) — (b p, V-w1) =0, Yw € Vit (4.21)
Now ([14], Lem. 4.4) gives the bound

K
28 — uf il < CRIEF > [l (150

KeTy
where 2§ = 3", cr 2% such that
(0 (2" s e(wn)) = (@B 4, V- wi) i =0, Y € V.
Using this we derive the bound

K
2 = ufllzn < CRIER Y (M50 < CRAEF Y 100 1ll7, ) = CEAE* 107 117 (4.22)
KeTy KeTy

Now, to prove the lemma we use (4.21) and Cauchy—Schwarz inequality to get
(o (ufy) s e(wr)) = (@b 1, V- wi)| = [(o(ugy — 2f) : e(wn))| < Colluf'y, — 2| [[wr || a2

Applying (4.22) finishes the proof. O
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The proof can be modified slightly to show the following bound

(0 (Dpuf'y) = e(wn)) = (00 1 V - wi)| < CRV2E 0,00 il 1w || - (4.23)
Also note that it follows, by choosing w1 = uf';, and wy = 8tuf  respectively, that
luf il < CllORs kN, 119 0:0rts. 1| (4.24)

To prove that (4.16)—(4.18) is well posed, we need the followmg condition on the size of H.
Assumption 4.6. We make the following assumption on the size of H.

(A4) H < min (ﬁ, (Ccoiiac“)), where C,, is the constant in Lemma 4.5 and C,.; is the constant in the
almost orthogonal property (4.15).

Lemma 4.7. Assuming (A4) the problem (4.16)—(4.18) is well-posed.

Proof. This proof is similar the proof of Lemma 3.7, but we need to account for the lack of orthogonality and
the fact that (3 32) is not satisfied.
Given u! 6" 1, and u"_l = >k u?kl K the equations (4.16) (4. 18) yields a square system, so it is

ms, k’ ms,k’
sufficient to prove that the solution is unique. Choosmg v = up um g in (4.16) and vy = 767 in (4.17)

and adding the resulting equations we get

ms,k

(o(ums k) = €(Upms i — Uﬁ;}c)) + (o(uf'y) + e(Upmg ) — upg nog)) (000 s, k> Oms k)
+ o0kl + @V - (Ul —uf i), O k)
< (F" s = U i) + 79" O )
Now, using (3.34) and

(fnvu?ns,k ms k) < Can”H 1 2( ( gls,k - u&;}c) : €(ur71Lrls,k - U;Ln;}c))

together with the estimate 7(0;0" R Lilen rrll® — |9mS L2, gives

|| ZII%S,kll2 + e |0he k7 + (o (ufy) - 6(1&5 1) (V- ufy, O k)

n T n
< O™ 5 + 5llg 1+ || Uns el Fn + 5 ||0msk||2
+(o(afy)  elupsy)) + (aV ufy ?ns,k)-
Using Lemma 4.5 we have
(@V - ugy, O 1) = (@0 1 V- ui' ) — (0 (uf'y) < e(ufy)) + (o (uf'y) < e(uf 1))
= _\(QQZN o Vo U?k) - ( (“?,k) : E(U?km + CaH“f,k”Hl
—C, ]{id/2§k

V

Y

and the almost orthogonal property (4.15) gives
(o (ufs) (g )| = —Coxch™ ¥ [uf | 1 |

Now, using that k should be chosen such that linear convergence is obtained, see Remark 4.3, that is k%/2¢* ~ H,
we conclude after using Young’s inequality that

¢y ConH 1 CoH (Ceo + Cort)H
(5 - %) Ml + (5 - 5 )|emsk|2+cn|9fns,k||zl+(ca—% a3

9%1

|-

<c (nf”nH U el i W)

where Assumption 4.6 guarantees that the coefficients are positive. Hence, a unique solution exists. O
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5. ERROR ANALYSIS

In this section we analyze the error of the generalized finite element method. The results are based on
Assumption 4.6. In the analysis we utilize the following property, which is similar to Lemma 4.5.

Lemma 5.1. Let éﬁk = Rg;ﬁﬁ — u?k and ny = R? oy — 0

ms,k ms,k*

Then, for wy € Vi1, it holds that
(o(@F ) = e(wn)) = (amg, V- wi)| < CRY2E | ||| wn| a2
Proof. The proof is similar to the proof of Lemma 4.5. We omit the details. O
This can be modified slightly to show the following bound
(0 (D) = e(wn)) = (adeng, V - wr)| < CRY2E8 || 0png || wn]| 2 - (5.1)
Also note that it follows, by choosing w1 = éf'; and wy = @é}’, . respectively, that
1ef il < Cllngll, 10t illen < Clldwmg |- (5.2)

Theorem 5.2. Assume that (A4) holds. Let {ul}N_, and {07}N_, be the solution to (3.1) and (3.2) and
{ﬂ&s,k}nNzl and {Qgs,k}nNzl the solution to (4.16)—(4.18). For n € {1,..., N} we have

l[up, = s gl + 110k — Ofs xll g < C(H + kd/2§k)<“g”Lo¢(L2) F 9l L) + 1 F Nl r2)
Uz + 1 i) + 22068 ).
The proof of Theorem 5.2 is based on two lemmas.

Lemma 5.3. Assume that 09 = 0 and (A4) holds. Let {uf}N_, and {67}, be the solution to (3.1) and (3.2)
and {al 3=y and {07 3N, the solution to (4.16)~(4.18). Forn € {1,..., N} we have

l[u, = tps gl + 110k — Ofs wll e < C(H + kd/2§k)<\|glle(Lz) F N9l Lo =1y + 1l L (22)
1z + 1l )

Proof. We divide the error into the terms

ujy = Tt g = Upy — Ry o (s 0) + Ry o (uly, 0) — it gy =2 7y + 1

Oh — Oms e = O — Rins s0y + Rong k05 — Ons i = 05 + 105 -
We also adopt the following notation

é?,k = Rf,keg - U?,ka Moy 2= Ty — é?,k = erns,k(UZa Oh) — ugls,k'
From (3.2) it follows that
(kVOY, Vvg) = (g — 0107 — V - Ogull, v2), Vg € VP2,

so by Lemma 4.2 we have the bound

lp5 e < C(H + k¢ | Pig™ — 06} — ¥ - Deui,
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where P,f denotes the Lo-projection onto VhQ. Theorem 3.3 now completes this bound. Similarly, (3.1) gives
(o(up) s e(v1)) = (@b}, V -v1) = (f*,01), Vo1 €V,
so, again, by Lemma 4.2 we get
175 e < CCH + 2N (L) + 1671 10),
which can be further bounded by using Theorem 3.3. To bound 7;; and 7, we note that for v; € Vm &
(o() = e(v1)) = (@, V - v1) = (0(Bpe i (uft, 03)) : £(v1)) — (@R 13,V - 01) = (", 01)
= (o(up) : e(v1)) = (@b, V -v1) = (f",01) =0, (5.3)

where we have used the Ritz projection (4.6), and the equations (3.1) and (4.16). Similarly, for vy € Vés’k we
have

(5t773a UQ) + (Kvngv VUQ) + (OZV . 6”717}’ UQ) = (6t r2ns kez’ UQ) + (KVRz ms, keh’ VU2)

(av at msk(u?weh)?vz)_(g 71)2)
:(_atpea'@) (= av'5t152702)'

For simplicity, we denote p" := pg + a'V - py; such that
(O, v2) + (K, V) + (aV - 0y, vg) = (—Oip™, v2), Vv € Vfls’k. (5.4)

Now, choose v; = 5,577;} and vy = 1y and add the resulting equations. Note that the coupling terms on the left
hand side results in the term (aV - 0iéf';, ny). We conclude that

(o () = @) + Deng ,ng) + (5, Vi) = (=0up" 1) — (V- O 1, ),
and by splitting the first term
(o(my) = €(0eny)) + Qeng ) + (k¥ Vg ) = (—0ep" mg) — (0(€Fx) = €(@emy)) — (aV - ey, ). (5.5)
Using Lemma 5.1 we can bound
—(aV - 0t o) < (V- Opef ) — (0(€Fy) : £(hef )| — (o(€F ) + e(Deery))
< CRY2¢M 0t g || — (o(8F ) = €(Dret ), (5.6)
and the almost orthogonal property (4.15) together with (5.2) gives
—(0(fs) - (@) < CEEME ke |0 < CRU2ER g N 1Oum | - (5.7)

Thus, multiplying (5.5) by 7 and using Cauchy—Schwarz and Young’s inequality we get

Crllng 1 + 5 (Hmll2 el = llma =15 = lleg it 15) + (H773||2— 75~ 11)
< CTH@p -1 + CTR2E gt 111 Derni | e + H@é?,kllm),

where |[n7] < ||n7 ||z can be kicked to the left hand side. Summing over n gives

1
CZTH779HH1 +3 (H%II2 +l1EElIZ) + 5 ling 11®

Jj=1

1 ) n
< Slnallz + —||€f,k||3+CZ (18ep? I3+ + K€ (|19l |I3

),
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where we have used that 1) = 0. Furthermore, we note that if ) = 0, then Ry ;69 = 0 and uf ;. = 0. Hence,
€¢ p = 0. From (4.19) and (3.3) we have, if 09 = Ggls’k =0, for v, € anls,k,

(0 (tms ) 2 €(1)) = (F%,01) = (o(up) : £(v1)) = (0(Ryye o (1, 0)) 2 (1)),

so also 2 = 0.
To bound 5tp3 and aV - 0;p" we note that due to (3.1) and (3.3), 5tuﬁ and 5&2 satisfy the equation

(o (Ogu}t) s e(v1)) — (a0, V - v1) = (Op f™,v1), Yoi € V.
Hence, by Lemma 4.2 and the Aubin—Nitsche duality argument we have
106311 < Bupll < CCH + K2 |8yl s < CCH + KY2€9)]18,07 11, (5.3)
and for 0;p" we get
10V - B2l s < a2l - B2l < CHBALl s < CCH + KV2€5) (10| + 19305 110 )- (5.9)

Thus, using (2.10), we arrive at the following bound

n n

> rlmg e + I 13 < C(H + k262 S 7 (10871130 + 1057
Jj=1

j=1

n

+ ORI r(10m | 2 + 11068 41 20), (5.10)

j=1

where we apply Theorem 3.3 to the first sum on the right hand side. If we can find an upper bound on
Z?Zl (1 0emd |3 + Hgtéf,kﬂz), then (5.10) gives a bound for |77 ||z < |95z + |€F gl 1 - This is done next,
and we bound |7 ||z at the same time. For this purpose, we choose vy = 91y in (5.4) and note that it follows
from (5.3) that

(0(0emy) € (Demy)) — (g, V - Byy) = 0. (5.11)
This also holds for n = 1 since 778 =0 and 70 = 0. Thus, by adding the resulting equations, we have
collOemi Iz + 1105 I* + (5 Vg, Vg
= (=0up", 0img) — (0(0ry) - €(Oumy)) — (aV - Oty Opmy)
< 10" 10en || + Corek™ " 1808t il s | Oemit | e — (@V - Doy, Dumg)
where we have used (4.15). For the last term we use Lemma 5.1 to achieve
—(aV - Ot y,, Ony) < Ceok™ 2" (0187 il 0| — (0(Dret ) - e(ref y))-
Thus, we have
co (10 17 + 1068t kI3 ) + 105 |1 + (kY Vi)
< 119ep" |9eni || + Corek/2€" |10 0y | mr + Cook™2€* 0t |l 1 Oumg |,

and using Young’s inequality we deduce

Cor kd/ng a.m Cor +CC0 kd/ng 3 =
R (S [ LA

1 Ceokd2¢RN - n o5 A n
* <§ B f) 103 11> + (kg Vomy ) < C||0ep™ |12,
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where Assumption 4.6 guarantees that the coefficients are positive. Multiplying by 7, using that

(6, Vo) = (g 1% = [l = 11%);

DO | =

and summing over n we derive

n
Z T Hatnu
j=1

olI1%) + [ [ 72

< OZTH@p 12 < C(H + k20> 2 (|0u 7|12 + 110u8313,1).
j=1

Jj=1

where we have used that 1) = 0, the bound (2.11), and (5.8) and (5.9). We can now apply Theorem 3.3.
Thus, the lemma follows for [|6} — 0} ; [|z1. Moreover, this bounds the last terms in (5.10), which completes
the proof. O

Lemma 5.4. Assume that f =0 and g =0, and that (A4) holds. Let {ul}N_, and {02}]_, be the solution to
(3.1) and (3.2) and {umsk} —1 and {0}, W be the solution to (4.16)—(4.18). Forn € {1,..., N} we have

lufy = s il + 6321165 = Ot il < CCH + k2E) 0711 (5.12)
Proof. As in the proof of Lemma 5.3 we split the error into two parts
U = sk = Py + s On —Ons e = 05 + 1,
where Lemma 4.2 and Theorem 3.3 gives

loglle < C(H + kY€)= 085 — V- Oeuit| < C(H + k221600 1
173l < CCH + K20 [0 < CH + k281031

Now, note that (5.4) and (5.11) holds also when f = 0 and g = 0. In particular, (5.11) holds also for n = 1
due to the definition of u?ns,k and uY in (4.19) and (3.3) respectively. By choosing vo = 0y and adding the
resulting equations we derive

co |0y 3 + 10 I? + (kY , VOmg) + (0(9éfy) = €@eny)) + (aV - Oréf . deny) < [|0ep" [[|0emi |-
Recall p™ = pg +aV - pt. As in the proof of Lemma 5.3 we get from Lemma 5.2
(@V - 0t , Ot ) = —Cook € |0uEE || 111 1 0umit | + (7 (e ) : €(Datr)),s
and from (4.15)
(0(&F4) = £(0emi)) = —Corck2E" 00t | a1 100 | 111 -

Hence, we have

C'or kd/ng a n C'or +Cc0 kd/ng A ~
(ca—t—)@nu@l n (ca—( 1+ Ceo) )|atef,k||%p

92 2
1 C’cokd/zglC a.n n a.n a n
" (5 - f) 10 1P + (. VOg) < 100" 1
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and Assumption 4.6 guarantees that the coefficients are positive. Multiplying by 7t2, using that

(kg Vomg) = =(Ingll% — llng " II2)

DO | —

and t2 —t2_, < 37t,_1, for n > 2, now give

2 _ B ~ B
B Hlmg M2 < Cr2)|0up™ | + Crtn—r|mg )12

_ _ - t2
Crtn (10m s + 198 allzes + 105 1) + =5 ng' 1% —

Note that this inequality also holds for n = 1, since 19 = 0 (recall 9215’ = ans, +0%). Summing over n gives and
using (2.11)

n n n—1
O 2 (10millin + 108 7 + 10smg|1*) + catiillmg 7 < C Y7310 |1+ C D rtsllmlizn,  (5.13)
j=1 j=1 j=1

and since f™ = 0 and ¢" = 0, Lemma 4.2 and the Aubin—Nitsche trick as in (5.8) together with Theorem 3.3
give

19ep" I < 10ep5 1| + 2| Oepisll i < CCH + k2R (087 | + IV - Beuit|) < C(H + k28N |6 (5.14)

To bound the last sum on the right hand side in (5.13) we choose v; = 90" and v = 7} in (5.4) and (5.3) and
add the resulting equations. This gives

(o(n) = €@eny)) + Qeng ) + (5, Vi) = (=0up" ) — (0(E5) = €(@emy)) — (aV - Bréf 15,

where the use of (5.6) and (5.7) gives
(o(my) : €eny)) + (0(€F ) = €(0eet ) + (Demy ,my) + (Vg , Vigg)
< 18ep™ Nl | + CRY2EX g N[ (10 | s + 11OseE i o).

Multiplying by 7t,, and using that ¢,, — t,,_1 = 7 we get
tn—1 _ e t tn—1
"L 12+ e 2) + 2 i -
< Ctor (100" g | + K2 Img 110 s + 10e8t il ) + Crllmg = 113 + 11EE 12 + llmg %)
< Ctpl|0p™||” + Cyta k™ (10em 13n + 10 11 F) + Crllai =I5 + e 12 + llmg =12 + g 1),

—1H2

t ~
Crtallng 17 + 5 (lmill5 + l1egxl5) — 15

where we have used Young’s (weighted) inequality on the form, 7t,,ab < 7t2a? + 7b? /4, in the last step. For the
second term we have used the inequality with an additional Cy, i.e. Tt,ab < Cy7t2a® + (4C,)~'rb%. Note that
Cy can be made arbitrarily small. Summing over n and using (2.10) now gives

n
; cot -
C> rtjllmllin + ”;(HWII% + [[€Fx
j=1

t
30) + 22

<O T30 |* + Cuk* R 2 (1030 + 1068 4 l170))
j=1 j=1
n .
+CY TIN5 + 1,
j=0

[0+ 3 ]1%)- (5.15)
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We can now use (5.13) to deduce

n n n—1
S 5 10emd 5 + 1068 41 72) < C D 7t310:0° 1P + C D 7t gl

j=1 j=1 j=1

Using this in (5.15) gives

n n n
i cyt N t _ & )
C Y rtllnglan + =il + Netellzn) + Slnpl* < O rt3l10ep|* + Cyke™* Y D rtllng 3
j=1 Jj=1 J=1
n . .
+C T + el 3n + 1ml?).  (5.16)
Jj=0

Since Cy, now can be made arbitrarily small the term C,k9¢?* Z?:1 Tt; ||77§H§11 can be moved to the left hand

side. To estimate the last sum on the right hand side in (5.16) we multiply (5.4) by 7 and sum over n to get

(ny — mp,v2) + (kV Zrng, Vug) + (aV -l — 72, ve) = (—p" + p°, va), (5.17)
j=1

where we note that 1J = 0 and 79 = 0. By choosing v; = 7 in (5.3) and v2 = 7} in (5.17) and adding the
resulting equations we get

collmilz + Ing 1> + (= D 7505, Vig) < || = o™ + oIl | — (o(&4) = e(mid)) — (aV - &y, 1)
j=1

|7 R e e S = PPy 7 P

+ Ccokd/2fk||éf,k||H1 Ing Il = collér il

where we have used the almost orthogonal property (4.15) and Lemma 4.5. We conclude that

Corik/2¢x n (Copt + Coo)k¥2ERN
(ca - —) I B + ( _ (Con ) o2

2 2

1 C'cokd/Qé-lC n . j n n
+ (5‘?) 12+ | w37, Vi | <Cl =+ 012 (5.18)
j=1

and Assumption 4.6 guarantees positive coefficients. Now, note that we have the bound

2 2
n n n n n—1
. B o . 1 . .
K 2 ™V, Vg | = | & 2:1 TV, O 2:1 V) > by 2:1 Tl — 2:1 T, ,
j= j= j= j= . j= .

with the convention that Z?=1 Tnz = 0. Multiplying (5.18) by 7, summing over n, and using (2.11) thus gives

2

n n
i ~j i Ck ; .
(i + 18 lin + Il + 5 | D_mm|| <Ol —o + 217
j=1

n
— j=1

Jj=1

H1
n

< C(H + K722 |00 130
j=1

< C(H + k2521160 31 - (5.19)
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Here we have used the Aubin—Nitsche duality argument, Lemma 4.2 and Theorem 3.3 to deduce

1™ < llog Il + Cllpill e < CH + k2 (lpg |l e + 105 |0
< C(H+ 2000 i < CH + KY2R)|100] 1 g, n> 0.

Combining (5.13), (5.14), (5.16), and (5.19) we get
tollng s+ tallmi |3 + tallefallFn < CCH + kY2€%)20.)163 12
which completes the proof. O
Proof of Theorem 5.2. Since the problem is linear we can split the solution
upp = ap +ag, O =05 + 0y,

where 4} and 07 solves (3.1) and (3.2) with f =0 and g = 0 and 4} and é,’; solves (3.1) and (3.2) with 69 = 0.
The theorem now follows by applying Lemmas 5.3 and 5.4. O

6. NUMERICAL EXAMPLES

In this section we perform two numerical examples. For a discussion on how to implement the type of
generalized finite element efficiently described in this paper we refer to [10].

The first numerical example models a composite material which is preheated to a fix temperature and at
time tg = 0 the piece is subject to a cool-down.

The domain is set to be the unit square 2 = [0,1] x [0,1] and we assume that the temperature has a
homogeneous Dirichlet boundary condition, that is I’ g =0 and I' 1% = (). For the displacement we assume the
bottom boundary to be fix and for the remaining part of the boundary we prescribe a homogeneous Neumann
condition, that is I'}y =[0,1] x 0 and I'§ = 02\ I'B.

The composite is assumed to be built up according to Figure 1. The white part in the figure denotes a
background material and the black parts an insulated material. The black squares are of size 27° x 27°. We
assume that the Lamé coefficients 1 and A take the values p; and A on the insulated material, and ps and
A2 on the background material. In this experiment we have set /s = 10 and A1 /A2 = 50. Similarly, using
subscript 1 for the insulated material and subscript 2 for the background material, we set a;/as = 10 and
k = ki I, for i = 1,2, where I is the 2-dimensional identity matrix and x;/k2 = 10. Furthermore, we have
chosen to set f =[0,0]T (no external body forces) and g = —10.

FIGURE 1. Composite material on the unit square. One black square is of size 27° x 2
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The initial data must be zero on the boundary I'%), so we have chosen to put 6° = 500z(1 — z)y(1 — y) and
0} to the La-projection of 6° to V;?. For the generalized finite element solution we have chosen 69, , = R> .0}
and @, ;. is given by (4.19).

The domain is discretized using a uniform triangulation. The reference solution is computed on a mesh
of h = /2 x 276 which resolves the fine parts (the black squares) in the material. The generalized finite
element method (GFEM) in (4.16)—(4.18) is computed for five decreasing values of the mesh size, namely,
H=+2x2"12x272 ...,/2x27°, with the patch sizes k = 1,1,2,2, 3. For comparison, we also compute
the corresponding classical finite element (FEM) solution on the coarse meshes using continuous piecewise
affine polynomials for both spaces (P1-P1). The solutions satisfies (3.1) and (3.2) with A replaced by H and
are denoted u'; and 6%, respectively for n = 1,..., N. When computing these solutions we have evaluated the
integrals exactly to avoid quadrature errors.

We have chosen to set T =1 and 7 = 0.05 for all values of H and for the reference solution. The solutions
are compared at the time point N.

Note that the implementation of the corrections u?’kK in (4.18) given by

(o(ufi) s ewn)) = (@, V- w)ie =0, Vaor € W (wr(K)),
should not be computed explicitly at each time step. It is more efficient to compute xff , given by
(o(ak) s e(wn)) — (@(A3 —~ RE ),V wn)ie =0, Yy € Vi (wi(K)),

Now, since 0", = Zy ﬁ;(/\z - Rﬁk/\f/), we have the

ms,k

where {(,y) € N': A] — Rﬁk)\;} is the basis for V,i&k-
identity

K K

no_ n, K __ n, K
U = U ) _Zzﬁyxy'
Y

With this approach, we only need to compute J;ff once before solving for the system (4.16) and (4.17) for
n=1,...,N.

The relative errors in the H!-seminorm ||V - || are shown in Figure 2. The left graph shows the relative errors
for the displacement, ||V (@Y , —ul)||/|Vud| and |V (ud — ul)||/|[Vud|. The right graph shows the error

ms, k

1073 -2 "1 0 10 -2 "1 0
10 10 10" 10 10 10
H H
(A) Displacement u (B) Temperature 6

FIGURE 2. Relative errors using GFEM (blue o) and P1-P1 FEM (red *) for the linear ther-
moelasticity problem plotted against the mesh size H. The dashed line is H. (color online)
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10

10

FIGURE 4. Relative errors for the displacement u using GFEM with correction for « (blue o)
and GFEM without correction for « (black O) for the linear thermoelasticity problem plotted
against the mesh size H. The dashed line is H. (color online)

for the temperature |V(ON, . — ON)||/IIVON]| and [V (65 — 0N)||/IIVOY]|. As expected the generalized finite

ms, k
element shows convergence of optimal order and outperforms the classical finite element.

The second example shows the importance of the additional correction (4.18), which is designed to handle
multiscale behavior in the coefficient ae. The computational domain, the spatial and the time discretization, and
the patch sizes remain the same as in the first example. However, we let I'p = 042 and I'y = () in this case.

To test the influence of o we let the other coefficients be constants, y = A = 1 and k = I, where the [ is
the 2-dimensional identity matrix. The coefficient « takes values between 0.1 and 10 according to Figure 3. The
boxes are of size 27° x 27 and, hence, the reference mesh of size h = v/2 - 276 is sufficiently small to resolve
the variations in a.
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The initial data is set to 00 = z(1 —2)y(1 —y) and 69 is the La-projection of #° onto V2. For the generalized

finite element solution we have chosen 60, , = R2 0 and @y, is given by (4.19), as in our first example.

Furthermore, we have chosen to set f = [1 1]T and g = 10.

The generalized finite element method (GFEM) in (4.16)-(4.18) is computed for the five decreasing values
of the mesh size used in the first example. For comparison, we compute the generalized finite element without
the additional correction on w? . In this case the system (4.16)—(4.18) simplifies to

ms,k*

(o (ums ) s €(v1)) = (@it 1, V- 01) = (f",01), Vo1 € Vo,
(gte;rl’bls,k’ 1)2) + (Hvegs,kv VUQ) + (OZV ! gturnlas,k’ 1)2) = (gn’ 'UQ)’ Vg € V;gs,k'

The relative errors in the H'-seminorm are shown in Figure 2. The graph shows the errors for the displacement

with correction for «, ||V(12ﬁs,k —uM)||/IVul¥ || and the error without correction for a ||V(uﬁsk —ul)|/IVudY|.

As expected the GFEM with correction for o shows convergence of optimal order and outperforms the GFEM
without correction for a. This is due to the fact that, in the case when the correction for « is neglected, the
constant in (4.13) (and hence also the constant in Thm. 5.2) depends on the variations in « (see Rem. 3.6).
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