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A GENERALIZED FINITE ELEMENT METHOD FOR LINEAR
THERMOELASTICITY

Axel Målqvist1,∗ and Anna Persson1

Abstract. We propose and analyze a generalized finite element method designed for linear quasistatic
thermoelastic systems with spatial multiscale coefficients. The method is based on the local orthogonal
decomposition technique introduced by Målqvist and Peterseim (Math. Comp. 83 (2014) 2583–2603).
We prove convergence of optimal order, independent of the derivatives of the coefficients, in the spatial
H1-norm. The theoretical results are confirmed by numerical examples.

Mathematics Subject Classification. 65M60, 65M15, 74F05.

Received April 18, 2016. Revised July 25, 2016. Accepted August 20, 2016.

1. Introduction

In many applications the expansion and contraction of a material exposed to temperature changes are of great
importance. To model this phenomenon a system consisting of an elasticity equation describing the displacement
coupled with an equation for the temperature is used, see, e.g., [6]. The full system consists of a hyperbolic
elasticity equation coupled with a parabolic equation for the temperature, see [9] for a comprehensive treatment
of this formulation. If the inertia effects are negligible, the hyperbolic term in the elasticity equation can be
removed. This leads to an elliptic-parabolic system, often referred to as quasistatic. This formulation is discussed
in, for instance [24, 27]. In some settings it is justified to also remove the parabolic term, which leads to an
elliptic-elliptic system, see, e.g., [24, 27]. Since the thermoelastic problem is formally equivalent to the system
describing poroelasticity, several papers on this equation are also relevant, see, e.g., [5, 26].

In this paper we study the quasistatic case. Existence and uniqueness of a solution to this system are discussed
in [24] within the framework of linear degenerate evolution equations in Hilbert spaces. It is also shown that this
system is essentially of parabolic type. Existence and uniqueness are also treated in [27] (only two-dimensional
problems) and in [23, 25] some results on the thermoelastic contact problem are presented. The classical finite
element method for the thermoelastic system is analyzed in [11, 27], where convergence rates of optimal order
are derived for problems with solution in H2 or higher.

When the elastic medium of interest is strongly heterogeneous, like composite materials, the coefficients
are highly varying and oscillating. Commonly, such coefficients are said to have multiscale features. For these
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problems classical polynomial finite elements, as in [11,27], fail to approximate the solution well unless the mesh
width resolves the data variations. This is due to the fact that a priori bounds of the error depend on (at least)
the spatial H2-norm of the solution. Since this norm depends on the derivative of the diffusion coefficient, it is of
order ε−1 if the coefficient oscillates with frequency ε−1. To overcome this difficulty, several numerical methods
have been proposed, see for instance [3, 4, 15, 16, 18].

In this paper we suggest a generalized finite element method based on the techniques introduced in [18],
often referred to as local orthogonal decomposition. This method builds on ideas from the variational multiscale
method [15,16], where the solution space is split into a coarse and a fine part. The coarse space is modified such
that the basis functions contain information from the diffusion coefficient and have support on small patches.
With this approach the basis functions have good approximation properties locally. In [18] the technique is
applied to elliptic problems with an arbitrary positive and bounded diffusion coefficient. One of the main
advantages is that no assumptions on scale separation or periodicity of the coefficient are needed. Recently, this
technique has been applied to several other problems, for instance, semilinear elliptic equations [13], boundary
value problems [12], eigenvalue problems [19], linear and semilinear parabolic equations [17], and the linear wave
equation [1].

The method we propose in this paper uses generalized finite element spaces similar to those used in [14, 18],
together with a correction building on the ideas in [12, 16]. We prove convergence of optimal order that does
not depend on the derivatives of the coefficients. We emphasize that by avoiding these derivatives, the a priori
bound does not contain any constant of order ε−1, although coefficients are highly varying.

In Section 2 we formulate the problem of interest, in Section 3 we first recall the classical finite element
method for thermoelasticity and then we define the new generalized finite element method. In Section 4 we
perform a localization of the basis functions and in Section 5 we analyze the error. Finally, in Section 6 we
present some numerical results.

2. Problem formulation

Let Ω ⊆ R
d, d = 2, 3, be a polygonal/polyhedral domain describing the reference configuration of an elastic

body. For a given time T > 0 we let u : [0, T ]×Ω → R
d denote the displacement field and θ : [0, T ]×Ω → R the

temperature. To impose Dirichlet and Neumann boundary conditions, we let Γ u
D and Γ u

N denote two disjoint
segments of the boundary such that Γ := ∂Ω = Γ u

D ∪ Γ u
N . In addition, we assume meas(Γ u

D) > 0. The segments
Γ θ

D and Γ θ
N are defined similarly.

We use (·, ·) to denote the inner product in L2(Ω) and ‖ · ‖ for the corresponding norm. Let H1(Ω) denote
the classical Sobolev space with norm ‖v‖2

H1(Ω) = ‖v‖2 + ‖∇v‖2 and let H−1(Ω) denote the dual space to H1.
Furthermore, we adopt the notation Lp([0, T ]; X) for the Bochner space with the norm

‖v‖Lp([0,T ];X) =

(∫ T

0

‖v‖p
X dt

)1/p

, 1 ≤ p < ∞,

‖v‖L∞([0,T ];X) = ess sup
0≤t≤T

‖v‖X ,

where X is a Banach space equipped with the norm ‖ · ‖X . The notation v ∈ H1([0, T ]; X) is used to denote
v, v̇ ∈ L2([0, T ]; X). The dependence on the interval [0, T ] and the domain Ω is frequently suppressed and we
write, for instance, L2(L2) for L2([0, T ]; L2(Ω)). We also define the following subspaces of H1

V 1 := {v ∈ (H1(Ω))d : v = 0 on Γ u
D}, V 2 := {v ∈ H1(Ω) : v = 0 on Γ θ

D}.

Under the assumption that the displacement gradients are small, the (linearized) strain tensor is given by:

ε(u) =
1
2
(∇u + ∇uᵀ).
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Assuming further that the material is isotropic, Hooke’s law gives the (total) stress tensor, see e.g. [23] and the
references therein,

σ̄ = 2με(u) + λ(∇ · u)I − αθI,

where I is the d-dimensional identity matrix, α is the thermal expansion coefficient, and μ and λ are the so
called Lamé coefficients given by:

μ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1 − 2ν)
,

where E denotes Young’s elastic modulus and ν denotes Poisson’s ratio. The materials of interest are strongly
heterogeneous which implies that α, μ, and λ are rapidly varying in space.

The linear quasistatic thermoelastic problem takes the form

−∇ · (2με(u) + λ∇ · uI − αθI) = f, in (0, T ]× Ω, (2.1)

θ̇ −∇ · κ∇θ + α∇ · u̇ = g, in (0, T ]× Ω, (2.2)
u = 0, in (0, T ]× Γ u

D, (2.3)
σ̄ · n = 0, in (0, T ]× Γ u

N . (2.4)

θ = 0, on (0, T ]× Γ θ
D, (2.5)

κ∇θ · n = 0, on (0, T ]× Γ θ
N . (2.6)

θ(0) = θ0, in Ω, (2.7)

where κ is the heat conductivity parameter, which is assumed to be rapidly varying in space.

Remark 2.1. For simplicity we have assumed homogeneous boundary data (2.3)–(2.6). However, using tech-
niques similar to the ones used in [12, 14] the analysis in this paper can be extended to non-homogeneous
situations.

Assumption 2.2. We make the following assumptions on the data

(A1) κ ∈ L∞(Ω, Rd×d), symmetric,

0 < κ1 := ess inf
x∈Ω

inf
v∈Rd\{0}

κ(x)v · v
v · v , ∞ > κ2 := ess sup

x∈Ω
sup

v∈Rd\{0}

κ(x)v · v
v · v ,

(A2) μ, λ, α ∈ L∞(Ω, R), and

0 < μ1 := ess inf
x∈Ω

μ(x) ≤ ess sup
x∈Ω

μ(x) =: μ2 < ∞.

Similarly, the constants λ1, λ2, α1, and α2 are used to denote the corresponding upper and lower bounds
for λ and α.

(A3) f, ḟ ∈ L∞(L2), f̈ ∈ L∞(H−1), g ∈ L∞(L2), ġ ∈ L∞(H−1), and θ0 ∈ V 2.

To pose a variational form we multiply the equations (2.1) and (2.2) with test functions from V 1 and V 2

and using Green’s formula together with the boundary conditions (2.3)–(2.6) we arrive at the following weak
formulation [11]. Find u(t, ·) ∈ V 1 and θ(t, ·) ∈ V 2, such that,

(σ(u) : ε(v1)) − (αθ,∇ · v1) = (f, v1), ∀v1 ∈ V 1, (2.8)

(θ̇, v2) + (κ∇θ,∇v2) + (α∇ · u̇, v2) = (g, v2), ∀v2 ∈ V 2, (2.9)
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and the initial value θ(0, ·) = θ0 is satisfied. Here we use σ to denote the effective stress tensor σ(u) :=
2με(u) + λ(∇ · u)I and : to denote the Frobenius inner product of matrices. Using Korn’s (first) inequality we
have the following bounds, see, e.g., [7, 8],

cσ‖v1‖2
H1 ≤ (σ(v1) : ε(v1)) ≤ Cσ‖v1‖2

H1 , ∀v1 ∈ V 1 (2.10)

where cσ (resp. Cσ) depends on μ1 (resp. μ2 and λ2). Similarly, there are constants cκ (resp. Cκ) depending on
the bound κ1 (resp. κ2) such that

cκ‖v2‖2
H1 ≤ (κ∇v2,∇v2) ≤ Cκ‖v2‖2

H1 , ∀v2 ∈ V 2. (2.11)

Furthermore, we use the following notation for the energy norms induced by the bilinear forms

‖v1‖2
σ := (σ(v1) : ε(v1)), v1 ∈ V 1, ‖v2‖2

κ := (κ∇v2∇v2), v2 ∈ V 2.

Existence and uniqueness of a solution to (2.8) and (2.9) have been proved in [24, 27]. There are also some
papers on the solution to contact problems, see [2, 25].

Theorem 2.3. Assume that (A1)–(A3) hold and that ∂Ω is sufficiently smooth. Then there exist u and θ such
that u ∈ L2(V 1), ∇ · u̇ ∈ L2(H−1), θ ∈ L2(V 2), and θ̇ ∈ L2(H−1) satisfying (2.8) and (2.9) and the initial
condition θ(0, ·) = θ0.

Remark 2.4. We remark that the equations (2.1)–(2.7) also describe a poroelastic system and, hence, the
method proposed in this paper also applies to problems in poroelasticity. In this case θ denotes the fluid
pressure, κ the permeability and viscosity of the fluid.

3. Numerical approximation

In this section we first recall some properties of the classical finite element method for (2.8) and (2.9). In
Section 3.2 we propose a new numerical method built on the ideas from [18]. The localization of this method is
treated in Section 4.

3.1. Classical finite element

First, we need to define appropriate finite element spaces. For this purpose we let {Th}h>0 be a family of
shape regular triangulations of Ω with the mesh size hK := diam(K), for K ∈ Th. Furthermore, we denote the
largest diameter in the triangulation by h := maxK∈Th

hK . We now define the classical piecewise affine finite
element spaces

S1
h = {v ∈ (C(Ω̄))d : vi|K is a polynomial of degree ≤ 1, 1 ≤ i ≤ d, ∀K ∈ Th},

S2
h = {v ∈ C(Ω̄) : v|K is a polynomial of degree ≤ 1, ∀K ∈ Th},

and V 1
h = S1

h ∩ V 1, V 2
h = S2

h ∩ V 2.
For the discretization in time we consider, for simplicity, a uniform time step τ such that tn = nτ for

n ∈ {0, 1, . . . , N} and Nτ = T . The classical finite element method with a backward Euler scheme in time
reads; for n ∈ {1, . . . , N} find un

h ∈ V 1
h and θn

h ∈ V 2
h , such that

(σ(un
h) : ε(v1)) − (αθn

h ,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
h , (3.1)

(∂̄tθ
n
h , v2) + (κ∇θn

h ,∇v2) + (α∇ · ∂̄tu
n
h, v2) = (gn, v2), ∀v2 ∈ V 2

h , (3.2)

where ∂̄tθ
n
h := (θn

h − θn−1
h )/τ and similarly for ∂̄tu

n
h. The right hand sides are evaluated at time tn, that is,

fn := f(tn) and gn := g(tn). Given initial data u0
h and θ0

h the system (3.1) and (3.2) is well posed [11]. We assume
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that θ0
h ∈ V 1

h is a suitable approximation of θ0. For u0
h we note that u(0) is uniquely determined by (2.8) at

t = 0, that is, u(0) fulfills the equation

(σ(u(0)) : ε(v1)) − (αθ0,∇ · v1) = (f0, v1), ∀v1 ∈ V 1,

and we thus define u0
h ∈ V 1

h to be the solution to

(σ(u0
h) : ε(v1)) − (αθ0

h,∇ · v1) = (f0, v1), ∀v1 ∈ V 1
h . (3.3)

The following theorem is a consequence of ([11], Thm. 3.1). The convergence rate is optimal for the two
first norms. However, it is not optimal for the L2-norm ‖θn − θn

h‖. In [11] this is avoided by using second
order continuous piecewise polynomials for the displacement (P2-P1 elements). It is, however, noted that the
problem is still stable using P1-P1 elements. In this paper we use P1-P1 elements and derive error bounds in
the L∞(H1)-norm, of optimal order, for both the displacement and the temperature.

Theorem 3.1. Let u and θ be the solution to (2.8) and (2.9) and {un
h}N

n=1 and {θn
h}N

n=1 be the solution to (3.1)
and (3.2). For n ∈ {1, . . . , N} we have

‖un − un
h‖H1 +

(
n∑

m=1

τ‖θm − θm
h ‖2

H1

)1/2

+ ‖θn − θn
h‖ ≤ Cε−1h + Cτ,

where Cε−1 is of order ε−1 if the material varies on a scale of size ε.

Note that the constant Cε−1 involved in this error bound contains derivatives of the coefficients. Hence, conver-
gence only takes place when the mesh size h is sufficiently small (h < ε). Throughout this paper, it is assumed
that h is small enough and V 1

h and V 2
h are referred to as reference spaces for the solution. Similarly, un

h and θn
h

are referred to as reference solutions. In Section 5 this solution is compared with the generalized finite element
solution. We emphasize that the generalized finite element solution is computed in spaces of lower dimension
and hence not as computationally expensive. It should also be noted that there, of course, is an initial cost of
generating the generalized finite element space itself, but this space can be reused in each time step.

Remark 3.2. The classical linear elasticity equation can suffer from (Poisson) locking effects when using con-
tinuous piecewise linear polynomials (P1 elements) and ν is close to 1/2. In [14], the GFEM that this paper is
based on is applied to linear elasticity equations and it is shown that the Poisson locking effects is reduced. It
is reasonable to believe that this property is transferred to the method presented here, but we shall, to simplify
the analysis, refrain from investigating this. Instead we assume that the Lamé coefficients are of moderate size,
such that the reference solution is a good approximation.

Furthermore, the coupled time-dependent problem can suffer from another type of locking, occurring if θ̇ is
neglected in (2.2) and P1 elements are used in both spaces (P1-P1). The locking produces artificial oscillations
in the numerical approximation of the temperature (or pressure) for early time steps. However, when θ̇ is not
neglected, numerical observations indicate that this locking effect does not occur. See [21, 22] and references
therein for a further discussion. Hence, we shall consider a P1-P1 discretization for the reference solution in this
paper.

In the following theorem we prove some regularity results for the finite element solution.

Theorem 3.3. Let {un
h}N

n=1 and {θn
h}N

n=1 be the solution to (3.1) and (3.2). Then the following bound holds

⎛
⎝ n∑

j=1

τ‖∂̄tu
j
h‖2

H1

⎞
⎠

1/2

+

⎛
⎝ n∑

j=1

τ‖∂̄tθ
j
h‖2

⎞
⎠

1/2

+ ‖θn
h‖H1 ≤ C(‖g‖L∞(L2) + ‖ḟ‖L∞(H−1) + ‖θ0

h‖H1). (3.4)
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If θ0
h = 0, then for n ∈ {1, . . . , N}

‖∂̄tu
n
h‖H1 + ‖∂̄tθ

n
h‖ +

⎛
⎝ n∑

j=1

τ‖∂̄tθ
j
h‖2

H1

⎞
⎠

1/2

≤ C
(
‖g‖L∞(L2) + ‖ġ‖L∞(H−1) + ‖ḟ‖L∞(H−1) + ‖f̈‖L∞(H−1)

)
. (3.5)

If f = 0 and g = 0, then for n ∈ {1, . . . , N}

‖∂̄tu
n
h‖H1 + ‖∂̄tθ

n
h‖ + t1/2

n ‖∂̄tθ
n
h‖H1 ≤ Ct−1/2

n ‖θ0
h‖H1 . (3.6)

Proof. From (3.1) and (3.2) and the initial data (3.3) we deduce that the following relation must hold for n ≥ 1

(σ(∂̄tu
n
h) : ε(v1)) − (α∂̄tθ

n
h ,∇ · v1) = (∂̄tf

n, v1), ∀v1 ∈ V 1
h , (3.7)

(∂̄tθ
n
h , v2) + (κ∇θn

h ,∇v2) + (α∇ · ∂̄tu
n
h, v2) = (gn, v2), ∀v2 ∈ V 2

h . (3.8)

By choosing v1 = ∂̄tu
n
h and v2 = ∂̄tθ

n
h and adding the resulting equations we have

cσ

2
‖∂̄tu

n
h‖2

H1 +
1
2
‖∂̄tθ

n
h‖2 + (κ∇θn

h ,∇∂̄tθ
n
h) ≤ C(‖gn‖2 + ‖∂̄tf

n‖2
H−1). (3.9)

Note that the coupling terms cancel. By using Cauchy–Schwarz and Young’s inequality we can bound

τ(κ∇θn
h ,∇∂̄tθ

n
h) = ‖κ1/2∇θn

h‖2 − (κ∇θn
h ,∇θn−1

h ) ≥ 1
2
‖θn

h‖2
κ − 1

2
‖θn−1

h ‖2
κ.

Multiplying (3.9) by τ , summing over n, and using (2.11) gives

n∑
j=1

τ‖∂̄tu
j
h‖2

H1 +
n∑

j=1

τ‖∂̄tθ
j
h‖2 + ‖θn

h‖2
H1 ≤ C

n∑
j=1

τ(‖gj‖2 + ‖∂̄tf
j‖2

H−1) + C‖θ0
h‖H1 ,

which is bounded by the right hand side in (3.4).
For the bound (3.5) we note that the following relation must hold for n ≥ 2

(σ(∂̄tu
n
h) : ε(v1)) − (α∂̄tθ

n
h ,∇ · v1) = (∂̄tf

n, v1), ∀v1 ∈ V 1
h , (3.10)

(∂̄2
t θn

h , v2) + (κ∇∂̄tθ
n
h ,∇v2) + (α∇ · ∂̄2

t un
h, v2) = (∂̄tg

n, v2), ∀v2 ∈ V 2
h . (3.11)

Now choose v1 = ∂̄2
t un

h and v2 = ∂̄tθ
n
h and add the resulting equations to get

(σ(∂̄tu
n
h) : ε(∂̄2

t un
h)) + (∂̄2

t θn
h , ∂̄tθ

n
h) + (κ∇∂̄tθ

n
h ,∇∂̄tθ

n
h) = (∂̄tf

n, ∂̄2
t un

h) + (∂̄tg
n, ∂̄tθ

n
h).

Multiplying by τ and using Cauchy–Schwarz and Young’s inequality gives

1
2
‖∂̄tu

n
h‖2

σ +
1
2
‖∂̄tθ

n
h‖2 + Cτ‖∂̄tθ

n
h‖2

H1 ≤ 1
2
‖∂̄tθ

n−1
h ‖2 +

1
2
‖∂̄tu

n−1
h ‖2

σ + τ(∂̄tf
n, ∂̄2

t un
h) + C‖∂̄tg

n‖2
H−1 .

Summing over n and using (2.10) now gives

‖∂̄tu
n
h‖2

H1 + ‖∂̄tθ
n
h‖2 +

n∑
j=2

τ‖∂̄tθ
j
h‖2

H1 ≤ C

⎛
⎝‖∂̄tu

1
h‖2

H1 + ‖∂̄tθ
1
h‖2 +

n∑
j=2

τ
(
(∂̄tf

j, ∂̄2
t uj

h) + ‖∂̄tg
j‖2

H−1

)⎞⎠ .
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Here we use summation by parts to get

n∑
j=2

τ(∂̄tf
j, ∂̄2

t uj
h) = (∂̄tf

n, ∂̄tu
n
h) − (∂̄tf

1, ∂̄tu
1
h) −

n∑
j=2

τ(∂̄2
t f j , ∂̄tu

j−1
h )

≤ C

(
max

1≤j≤n
‖∂̄tf

j‖H−1 +
n∑

j=2

τ‖∂̄2
t f j‖H−1

)
max

1≤j≤n
‖∂̄tu

j
h‖H1 ,

and max1≤j≤n ‖∂̄tu
j
h‖H1 can now be kicked to the left hand side.

To estimate ∂̄tθ
1
h and ∂̄tu

1
h we choose v1 = ∂̄tu

1
h and v2 = ∂̄tθ

1
h in (3.7) and (3.8) for n = 1. We thus have,

since θ0
h = 0,

‖∂̄tu
1
h‖2

H1 + ‖∂̄tθ
1
h‖2 +

1
τ
‖θ1

h‖2
H1 ≤ C(‖∂̄tf

1‖2
H−1 + ‖g1‖2).

The observation that 1
τ ‖θ1

h‖2
H1 = τ‖∂̄tθ

1
h‖2

H1 completes the bound (3.5).
Now assume f = 0 and g = 0 and note that the following holds for n ≥ 2,

(σ(∂̄2
t un

h) : ε(v1)) − (α∂̄2
t θn

h ,∇ · v1) = 0, ∀v1 ∈ V 1
h ,

(∂̄2
t θn

h , v2) + (κ∇∂̄tθ
n
h ,∇v2) + (α∇ · ∂̄2

t un
h, v2) = 0, ∀v2 ∈ V 2

h .

Choosing v1 = ∂̄2
t un

h, v2 = ∂̄2
t θn

h and adding the resulting equations gives

(σ(∂̄2
t un

h) : ε(∂̄2
t un

h)) + (∂̄2
t θn

h , ∂̄2
t θn

h) + (κ∇∂̄tθ
n
h ,∇∂̄2

t θn
h) = 0,

where, again, the coupling terms cancel. The two first terms on the left hand side are positive and can thus be
ignored. Multiplying by τ and t2n gives after using Cauchy–Schwarz and Young’s inequality

t2n‖∂̄tθ
n
h‖2

κ ≤ t2n−1‖∂̄tθ
n−1
h ‖2

κ + (t2n − t2n−1)‖∂̄2
t θn−1

h ‖2
κ.

Note that t2n − t2n−1 ≤ 3τtn−1, where we use that tn ≤ 2tn−1 if n ≥ 2. Summing over n now gives

t2n‖∂̄tθ
n
h‖2

κ ≤ t21‖∂̄tθ
1
h‖2

κ + 3
n∑

j=2

τtj−1‖∂̄tθ
j−1
h ‖2

κ.

To bound the last sum we choose v1 = ∂̄2
t un

h, v2 = ∂̄tθ
n
h in (3.10) and (3.11), now with f = 0 and g = 0. Adding

the resulting equations gives

(∂̄2
t θn

h , ∂̄tθ
n
h) + (κ∇∂̄tθ

n
h ,∇∂̄tθ

n
h) + (σ(∂̄tu

n
h) : ε(∂̄2

t un
h)) = 0,

Multiplying by τ and tn gives after using Cauchy–Schwarz inequality

tn
2
‖∂̄tu

n
h‖2

σ +
tn
2
‖∂̄tθ

n
h‖2 + cκτtn‖∂̄tθ

n
h‖2

H1 ≤ tn−1

2
‖∂̄tu

n−1
h ‖2

σ +
tn−1

2
‖∂̄tθ

n−1
h ‖2 +

τ

2
‖∂̄tu

n−1
h ‖2

σ +
τ

2
‖∂̄tθ

n−1
h ‖2.

Summing over n and using (2.10) thus gives

cσtn
2

‖∂̄tu
n
h‖2

H1 +
tn
2
‖∂̄tθ

n
h‖2 +

n∑
j=2

τtj‖∂̄tθ
j
h‖2

H1 ≤ Cσt1
2

‖∂̄tu
1
h‖2

H1 +
t1
2
‖∂̄tθ

1
h‖2

+ C

n∑
j=2

τ
(
‖∂̄tu

j−1
h ‖2

H1 + ‖∂̄tθ
j−1
h ‖2

)
.
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To bound the last sum in this estimate we choose v1 = ∂̄tu
n
h, v2 = ∂̄tθ

n
h in (3.7)–(3.8) and multiply by τ to get

cστ‖∂̄tu
n
h‖2

H1 + τ‖∂̄tθ
n
h‖2 +

1
2
‖θn

h‖2
κ ≤ 1

2
‖θn−1

h ‖2
κ.

Summing over n and using (2.11) gives

C

n∑
j=1

τ
(
‖∂̄tθ

j
h‖

2 + ‖∂̄tu
j
h‖

2
H1

)
+

cκ

2
‖θn

h‖2
H1 ≤ Cκ

2
‖θ0

h‖2
H1 . (3.12)

It remains to bound t21‖∂̄tθ
1
h‖2

H1 , t1‖∂̄tθ
1
h‖2, and t1‖∂̄tu

1
h‖H1 . For this purpose we recall that t1 = τ and use

(3.12) for n = 1 to get

t1‖∂̄tu
1
h‖H1 + t1‖∂̄tθ

1
h‖2 + t21‖∂̄tθ

1
h‖2

H1 ≤ C(τ(‖∂̄tu
1
h‖2

H1 + ‖∂̄tθ
1
h‖2) + ‖θ1

h‖2
H1 + ‖θ0

h‖2
H1) ≤ C‖θ0

h‖2
H1 .

Finally, we have that

tn‖∂̄tu
n
h‖2

H1 + tn‖∂̄tθ
n
h‖2 ≤ C‖θ0

h‖2
H1 , t2n‖∂̄tθ

n
h‖2

H1 ≤ C‖θ0
h‖2

H1 ,

and thus (3.6) follows. �

3.2. Generalized finite element

In this section we shall derive a generalized finite element method. First we define V 1
H and V 2

H analogously
to V 1

h and V 2
h , but with a larger mesh size H > h. In addition, we assume that the family of triangulations

{TH}H>h is quasi-uniform and that Th is a refinement of TH such that V 1
H ⊆ V 1

h and V 2
H ⊆ V 2

h . Furthermore, we
use the notation N = N 1×N 2 to denote the free nodes in V 1

H ×V 2
H . The aim is now to define a new (multiscale)

space with the same dimension as V 1
H × V 2

H , but with better approximation properties. For this purpose we
define an interpolation operator IH = (I1

H , I2
H) : V 1

h ×V 2
h → V 1

H ×V 2
H with the property that IH ◦ IH = IH and

for all v = (v1, v2) ∈ V 1
h × V 2

h

H−1
K ‖v − IHv‖L2(K) + ‖∇IHv‖L2(K) ≤ CI‖∇v‖L2(ωK), ∀K ∈ TH , (3.13)

where

ωK := int {K̂ ∈ TH : K̂ ∩ K �= ∅}.

Note that I1
H is vector-valued. Since the mesh is assumed to be shape regular, the estimates in (3.13) are also

global, i.e.,

H−1‖v − IHv‖ + ‖∇IHv‖ ≤ C‖∇v‖, (3.14)

where C is a constant depending on the shape regularity parameter, γ > 0;

γ := max
K∈TH

γK , with γK :=
diamBK

diam K
, for K ∈ TH , (3.15)

where BK is the largest ball contained in K.
One example of an interpolation that satisfies the above assumptions is Ii

H = Ei
H ◦ Πi

H , i = 1, 2. Here Πi
H

denotes the piecewise L2-projection onto P1(TH) ((P1(TH))d if i = 1), the space of functions that are affine on
each triangle K ∈ TH . Furthermore, E1

H is an averaging operator mapping (P1(TH))d into V 1
H , by (coordinate

wise)

(E1,j
H (v))(z) =

1
card{K ∈ TH : z ∈ K}

∑
K∈TH :z∈K

vj |K(z), 1 ≤ j ≤ d,
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where z ∈ N 1. E2
H mapping P1(TH) to V 2

H is defined similarly. For a further discussion on this interpolation
and other available options we refer to [20].

Let us now define the kernels of I1
H and I2

H

V 1
f := {v ∈ V 1

h : I1
Hv = 0}, V 2

f := {v ∈ V 2
h : I2

Hv = 0}

The kernels are fine scale spaces in the sense that they contain all features that are not captured by the
(coarse) finite element spaces V 1

H and V 2
H . Note that the interpolation leads to the splits V 1

h = V 1
H ⊕ V 1

f and
V 2

h = V 2
H ⊕ V 2

f , meaning that any function v1 ∈ V 1
h can be uniquely decomposed as v1 = v1,H + v1,f , with

v1,H ∈ V 1
H and v1,f ∈ V 1

f , and similarly for v2 ∈ V 2
h .

Now, we introduce a Ritz projection onto the fine scale spaces. For this we use the bilinear forms associated
with the diffusion in (2.8) and (2.9). The projection of interest is thus Rf : V 1

h × V 2
h → V 1

f × V 2
f , such that for

all (v1, v2) ∈ V 1
h × V 2

h , Rf(v1, v2) = (R1
f v1, R

2
f v2) fulfills

(σ(v1 − R1
f v1) : ε(w1)) = 0, ∀w1 ∈ V 1

f , (3.16)
(κ∇(v2 − R2

f v2),∇w2) = 0, ∀w2 ∈ V 2
f . (3.17)

Note that this is an uncoupled system and R1
f and R2

f are classical Ritz projections.
For any (v1, v2) ∈ V 1

h × V 2
h we have, due to the splits of the spaces V 1

h and V 2
h above, that

v1 − R1
f v1 = v1,H − R1

f v1,H , v2 − R2
f v2 = v2,H − R2

f v2,H .

Using this we define the multiscale spaces

V 1
ms := {v − R1

f v : v ∈ V 1
H}, V 2

ms := {v − R2
f v : v ∈ V 2

H}. (3.18)

Clearly V 1
ms × V 2

ms has the same dimension as V 1
H × V 2

H . Indeed, with λ1,i
x denoting a basis function in V 1

H with
a hat function at the ith position at node x, 1 ≤ i ≤ d, and λ2

y the hat function in V 2
H at node y, such that

V 1
H × V 2

H = span{(λ1,i
x , 0), (0, λ2

y) : 1 ≤ i ≤ d, (x, y) ∈ N},

a basis for V 1
ms × V 2

ms is given by:

{(λ1,i
x − R1

f λ
1,i
x , 0), (0, λ2

y − R2
f λ

2
y) : 1 ≤ i ≤ d, (x, y) ∈ N}. (3.19)

Finally, we also note that the splits V 1
h = V 1

ms ⊕ V 1
f and V 2

h = V 2
ms ⊕ V 2

f hold, which fulfill the following
orthogonality relations

(σ(v1) : ε(w1)) = 0, ∀v1 ∈ V 1
ms, w1 ∈ V 1

f , (3.20)
(κ∇v2,∇w2) = 0, ∀v2 ∈ V 2

ms, w2 ∈ V 2
f . (3.21)

3.2.1. Stationary problem

For the error analysis in Section 5 it is convenient to define the Ritz projection onto the multiscale space using
the bilinear form given by the stationary version of (2.8) and (2.9). We thus define Rms : V 1

h ×V 2
h → V 1

ms ×V 2
ms,

such that for all (v1, v2) ∈ V 1
h × V 2

h , Rms(v1, v2) = (R1
ms(v1, v2), R2

msv2) fulfills

(σ(v1 − R1
ms(v1, v2)) : ε(w1)) − (α(v2 − R2

msv2),∇ · w1) = 0, ∀w1 ∈ V 1
ms, (3.22)

(κ∇(v2 − R2
msv2),∇w2) = 0, ∀w2 ∈ V 2

ms. (3.23)

Note that we must have R2
ms = I − R2

f , but R1
ms �= I − R1

f in general.
The Ritz projection in (3.22) and (3.23) is upper triangular. Hence, when solving for R1

ms(v1, v2) the term
(αR2

msv2,∇·w1) in (3.22) is known. Since this term has multiscale features and appears on the right hand side,
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we impose a correction on R1
ms(v1, v2) inspired by the ideas in [12] and [16]. The correction is defined as the

element R̃fv2 ∈ V 1
f , which fulfills

(σ(R̃fv2) : ε(w1)) = (αR2
msv2,∇ · w1), ∀w1 ∈ V 1

f , (3.24)

and we define R̃1
ms(v1, v2) = R1

ms(v1, v2) + R̃fv2.
Note that the Ritz projections are stable in the sense that

‖R̃1
ms(v1, v2)‖H1 ≤ C(‖v1‖H1 + ‖v2‖H1), ‖R2

msv2‖H1 ≤ C‖v2‖H1 . (3.25)

Remark 3.4. The problem to find R̃fv2 is posed in the entire fine scale space and is thus computationally
expensive to solve. The aim is to localize these computations to smaller patches of coarse elements, see Section 4.

To derive error bounds for this projection we define two operators A1 : V 1
h × V 2

h → V 1
h and A2 : V 2

h → V 2
h

such that for all (v1, v2) ∈ V 1
h × V 2

h we have

(A1(v1, v2), w1) = (σ(v1) : ε(w1)) − (αv2,∇ · w1), ∀w1 ∈ V 1
h , (3.26)

(A2v2, w2) = (κ∇v2,∇w2), ∀w2 ∈ V 2
h . (3.27)

Lemma 3.5. For all (v1, v2) ∈ V 1
h × V 2

h it holds that

‖v1 − R̃1
ms(v1, v2)‖H1 ≤ C(H‖A1(v1, v2)‖ + ‖v2 − R2

msv2‖) (3.28)
≤ CH(‖A1(v1, v2)‖ + ‖v2‖H1),

‖v2 − R2
msv2‖H1 ≤ CH‖A2v2‖. (3.29)

Proof. It follows from [18] that (3.29) holds, since (3.23) is an elliptic equation of Poisson type. Using an
Aubin–Nitsche duality argument as in, e.g., [17], we can derive the following estimate in the L2-norm

‖v2 − R2
msv2‖ ≤ CH‖v2 − R2

msv2‖H1 ≤ CH‖v2‖H1 ,

which proves the second inequality in (3.28).
It remains to bound ‖v1 − R̃1

ms(v1, v2)‖H1 . Recall that any v ∈ V 1
h can be decomposed as

v = v − R1
f v + R1

f v = (I − R1
f )v + R1

f v,

where (I −R1
f )v ∈ V 1

ms. Using the orthogonality (3.20) and that (σ(·) : ε(·)) is a symmetric bilinear form we get

(σ(R̃1
ms(v1, v2)) : ε(v)) = (σ(R1

ms(v1, v2) + R̃fv2) : ε((I − R1
f )v + R1

f v))

= (σ(R1
ms(v1, v2)) : ε((I − R1

f )v)) + (σ(R̃fv2) : ε(R1
f v)).

Due to (3.22) and (3.24) we thus have

(σ(R1
ms(v1, v2)) : ε((I − R1

f )v)) + (σ(R̃fv2) : ε(R1
f v))

= (σ(v1) : ε((I − R1
f )v)) − (α(v2 − R2

msv2),∇ · (I − R1
f )v) + (αR2

msv2,∇ · R1
f v)

= (A1(v1, v2), (I − R1
f )v) + (αR2

msv2,∇ · v).

Define e := v1 − R̃1
ms(v1, v2). Using the above relation together with (3.26) we get the bound

cσ‖e‖2
H1 ≤ (σ(e) : ε(e)) = (σ(v1) : ε(e)) − (A1(v1, v2), (I − R1

f )e) − (αR2
msv2,∇ · e)

= (A1(v1, v2), R1
f e) + (α(v2 − R2

msv2),∇ · e)
≤ ‖A1(v1, v2)‖‖R1

f e‖ + C‖v2 − R2
msv2‖‖e‖H1 .

Since R1
f e ∈ V 1

f we have due to (3.13)

‖R1
f e‖ = ‖R1

f e − I1
HR1

f e‖ ≤ CH‖R1
f e‖H1 ≤ CH‖e‖H1 ,

where we have used the stability ‖R1
f v‖H1 ≤ C‖v‖H1 for v ∈ V 1

h . The first inequality in (3.28) now follows. �
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Remark 3.6. Without the correction R̃f the error bound (3.28) would depend on the derivatives of α,

‖v1 − R1
ms(v1, v2)‖H1 ≤ Cα′(H‖A1(v1, v2)‖ + ‖v2 − R2

msv2‖),

where α′ is large if α has multiscale features.

3.2.2. Time-dependent problem

A generalized finite element method with a backward Euler discretization in time is now defined by replacing
V 1

h with V 1
ms and V 2

h with V 2
ms in (3.1) and (3.2) and adding a correction similar to (3.24). The method thus

reads; for n ∈ {1, . . . , N} find ũn
ms = un

ms + un
f , with un

ms ∈ V 1
ms, un

f ∈ V 1
f , and θn

ms ∈ V 2
ms, such that

(σ(ũn
ms) : ε(v1)) − (αθn

ms,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
ms, (3.30)

(∂̄tθ
n
ms, v2) + (κ∇θn

ms,∇v2) + (α∇ · ∂̄tũ
n
ms, v2) = (gn, v2), ∀v2 ∈ V 2

ms, (3.31)
(σ(un

f ) : ε(w1)) − (αθn
ms,∇ · w1) = 0, ∀w1 ∈ V 1

f . (3.32)

where θ0
ms = R2

msθ
0
h. Furthermore, we define ũ0

ms := u0
ms + u0

f , where u0
f ∈ V 1

f is defined by (3.32) for n = 0 and
u0

ms ∈ V 1
ms, such that

(σ(ũ0
ms) : ε(v1)) − (αθ0

ms,∇ · v1) = (f0, v1), ∀v1 ∈ V 1
ms. (3.33)

Lemma 3.7. The problem (3.30) and (3.31) is well-posed.

Proof. Given un−1
ms , θn−1

ms , and un−1
f , equations (3.30)–(3.32) yields a square system. Hence, it is sufficient to

prove that the solution is unique. Let v1 = un
ms − un−1

ms in (3.30) and v2 = τθn
ms in (3.31) and add the resulting

equations to get

(σ(un
ms) : ε(un

ms − un−1
ms )) + (σ(un

f ) : ε(un
ms − un−1

ms )) + τ(∂̄tθ
n
ms, θ

n
ms) + cκτ‖θn

ms‖2
H1 + (α∇ · (un

f − un−1
f ), θn

ms)
≤ (fn, un

ms − un−1
ms ) + τ(gn, θn

ms).

Using the orthogonality (3.20) and (3.32) this simplifies to

(σ(un
ms) : ε(un

ms − un−1
ms )) + τ(∂̄tθ

n
ms, θ

n
ms) + cκτ‖θn

ms‖2
H1 + cσ‖un

f ‖2
H1

≤ (fn, un
ms − un−1

ms ) + τ(gn, θn
ms) + (σ(un

f ) : ε(un−1
f )).

Now, using that (σ(·) : ε(·)) is a symmetric bilinear form we get the following identity

(σ(v) : ε(v − w)) =
1
2
(σ(v) : ε(v)) +

1
2
(σ(v − w) : ε(v − w)) − 1

2
(σ(w) : ε(w)), (3.34)

and using Cauchy–Schwarz and Young’s inequality we derive

(fn, un
ms − un−1

ms ) ≤ C‖fn‖H−1 +
1
2
(σ(un

ms − un−1
ms ) : ε(un

ms − un−1
ms )).

This, together with the estimate τ(∂̄tθ
n
ms, θ

n
ms) ≥ 1

2‖θn
ms‖2 − 1

2‖θn−1
ms ‖2 and (2.10), leads to

cσ

2
‖un

ms‖2
H1 +

1
4
‖θn

ms‖2 + cκτ‖θn
ms‖2

H1 +
cσ

2
‖un

f ‖2
H1

≤ C(‖fn‖2
H−1 + τ‖gn‖2 + ‖θn−1

ms ‖2 + ‖un−1
ms ‖2

H1 + ‖un−1
f ‖2

H1).

Hence, a unique solution exists. �
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4. Localization

In this section we show how to truncate the basis functions, which is motivated by the exponential decay
of (3.19). We consider a localization inspired by the one proposed in [12], which is performed by restricting the
fine scale space to patches of coarse elements defined by the following; for K ∈ TH

ω0(K) := int K,

ωk(K) := int
(
∪{K̂ ∈ TH : K̂ ∩ ωk−1(K) �= ∅}

)
, k = 1, 2, . . .

Now let V 1
f (ωk(K)) := {v ∈ V 1

f : v(z) = 0 on (Ω \ Γ u
N ) \ ωk(K)} be the restriction of V 1

f to the patch ωk(T ).
We define V 2

f (ωk(K)) similarly.
The localized fine scale space can now be used to approximate the fine scale part of the basis functions

in (3.19), which significantly reduces the computational cost for these problems. Let (·, ·)ω denote the L2 inner
product over a subdomain ω ⊆ Ω and define the local Ritz projection RK

f,k : V 1
h ×V 2

h → V 1
f (ωk(K))×V 2

f (ωk(K))
such that for all (v1, v2) ∈ V 1

h × V 2
h , RK

f,k(v1, v2) = (RK,1
f,k v1, R

K,2
f,k v1) fulfills

(σ(RK,1
f,k v1) : ε(w1))ωk(K) = (σ(v1) : ε(w1))K , ∀w1 ∈ V 1

f (ωk(K)), (4.1)

(κ∇(RK,2
f,k v2),∇w2)ωk(K) = (κ∇v2,∇w2)K , ∀w2 ∈ V 2

f (ωk(K)). (4.2)

Note that if we replace ωk(K) with Ω in (4.1) and (4.2) and denote the resulting projection

RK
f (v1, v2) = (RK,1

f v1, R
K,2
f v2),

then for all (v1, v2) ∈ V 1
h × V 2

h we have

Rf(v1, v2) =
∑

K∈TH

RK
f (v1, v2) =

∑
K∈TH

(RK,1
f v1, R

K,2
f v2).

Motivated by this we now define the localized fine scale projection as

Rf,k(v1, v2) :=
∑

K∈TH

RK
f,k(v1, v2) =

∑
K∈TH

(RK,1
f,k v1, R

K,2
f,k v2), (4.3)

and the localized multiscale spaces

V 1
ms,k := {v1 − R1

f,kv1 : v1 ∈ V 1
H}, V 2

ms,k := {v2 − R2
f,kv2 : v2 ∈ V 2

H}, (4.4)

with the corresponding localized basis

{(λ1,i
x − R1

f,kλ1,i
x , 0), (0, λ2

y − R2
f,kλ2

y) : 1 ≤ i ≤ d, (x, y) ∈ N}. (4.5)

4.1. Stationary problem

In this section we define a localized version of the stationary problem (3.22) and (3.23). Let Rms,k : V 1
h ×V 2

h →
V 1

ms,k × V 2
ms,k, such that for all (v1, v2) ∈ V 1

h × V 2
h , Rms,k(v1, v2) = (R1

ms,k(v1, v2), R2
ms,kv2). The method now

reads; find

R̃1
ms,k(v1, v2) = R1

ms,k(v1, v2) +
∑

K∈TH

R̃K
f,kv2, where R̃K

f,kv2 ∈ V 1
f (ωk(K)),



A GENERALIZED FINITE ELEMENT METHOD FOR LINEAR THERMOELASTICITY 1157

and R2
ms,kv2 such that

(σ(v1 − R̃1
ms,k(v1, v2)) : ε(w1)) − (α(v2 − R2

ms,kv2),∇ · w1) = 0, ∀w1 ∈ V 1
ms,k, (4.6)

(κ∇(v2 − R2
ms,kv2),∇w2) = 0, ∀w2 ∈ V 2

ms,k. (4.7)

(σ(R̃K
f,kv2) : ε(w)) − (αR2

ms,kv2,∇ · w)K = 0, ∀w ∈ V 1
f (wk(K)). (4.8)

Note that the Ritz projection is stable in the sense that

‖R̃1
ms,k(v1, v2)‖H1 ≤ C(‖v1‖H1 + ‖v2‖H1), ‖R2

ms,kv2‖H1 ≤ C‖v2‖H1 . (4.9)

The following two lemmas give a bound on the error introduced by the localization.

Lemma 4.1. For all (v1, v2) ∈ V 1
h × V 2

h , there exists ξ ∈ (0, 1), such that

‖R1
f,kv1 − R1

f v1‖2
H1 ≤ Ckdξ2k

∑
K∈TH

‖RK,1
f v1‖2

H1 , (4.10)

‖R2
f,kv2 − R2

f v2‖2
H1 ≤ Ckdξ2k

∑
K∈TH

‖RK,2
f v2‖2

H1 , (4.11)

‖R̃f,kv2 − R̃fv2‖2
H1 ≤ Ckdξ2k

∑
K∈TH

‖R̃K
f v2‖2

H1 . (4.12)

The bounds (4.10) and (4.11) are direct results from [14] and [12,18] respectively, while (4.12) follows from [14]
by a slight modification of the right hand side. We omit the proof here.

The next lemma gives a bound for the localized Ritz projection.

Lemma 4.2. For all (v1, v2) ∈ V 1
h × V 2

h there exist ξ ∈ (0, 1) such that

‖v1 − R̃1
ms,k(v1, v2)‖H1 ≤ C(H + kd/2ξk)(‖A1(v1, v2)‖ + ‖v2‖H1), (4.13)

‖v2 − R2
ms,kv2‖H1 ≤ C(H + kd/2ξk)‖A2v2‖. (4.14)

Proof. It follows from [12] that (4.14) holds. To prove (4.13) we let vH ∈ V 1
H and vH,k ∈ V 1

H be elements such
that

R1
ms(v1, v2) = vH − R1

f vH , R1
ms,k(v1, v2) = vH,k − R1

f,kvH,k.

Define e := v1 − R̃1
ms,k(v1, v2). From (4.6) and (4.7) we get have the following identity for any z ∈ V 1

ms,k

(σ(e) : ε(e)) − (α(v2 − R2
ms,kv2),∇ · e) = (σ(e) : ε(v1 − z − R̃f,kv1)) − (α(v2 − R2

ms,kv2),∇ · (v1 − z − R̃f,kv2)).

Using this with z = vH − R1
f,kvH ∈ V 1

ms,k we get

cσ‖e‖2
H1 ≤ (σ(e) : ε(e)) = (σ(e) : ε(v1 − vH − R1

f,kvH − R̃fv1))

− (α(v2 − R2
ms,kv2),∇ · (v1 − vH − R1

f,kvH − R̃f,kv2))

+ (α(v2 − R2
ms,kv2),∇ · e).

Now, using Cauchy–Schwarz and Young’s inequality we get

‖e‖2
H1 ≤ C(‖v1 − vH − R1

f,kvH − R̃f,kv2‖2
H1 + ‖v2 − R2

ms,kv2‖2),
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where the last term is bounded in (4.14). For the first term we get

‖v1 − vH − R1
f,kvH − R̃f,kv2‖H1 ≤ ‖v1 − (vH − R1

f vH + R̃fv2)‖H1 + ‖R1
f vH − R1

f,kvH‖H1 + ‖R̃fv2 − R̃f,kv2‖H1

≤ ‖v1 − R̃1
ms(v1, v2)‖H1 + ‖R1

f vH − R1
f,kvH‖H1 + ‖R̃fv2 − R̃f,kv2‖H1 ,

where the first term on the right hand side is bounded in Lemma 3.5. For the second term we use Lemma 4.1
to get

‖R1
f vH − R1

f,kvH‖2
H1 ≤ Ckdξ2k

∑
K∈TH

‖RK,1
f vH‖2

H1 ≤ Ckdξ2k
∑

K∈TH

‖vH‖2
H1(K)

= Ckdξ2k‖vH‖2
H1 = Ckdξ2k‖IH(vH − R1

f vH)‖2
H1

= Ckdξ2k‖IHR1
ms(v1, v2)‖2

H1 ≤ Ckdξ2k‖R1
ms(v1, v2)‖2

H1 .

We can bound this further by using (3.25) and (3.26), such that

‖R1
ms(v1, v2)‖H1 ≤ C(‖v1‖H1 + ‖v2‖H1) ≤ C(‖A1(v1, v2)‖ + ‖v2‖H1).

Similar arguments, using Lemma 4.1 and (4.8), prove

‖R̃fv2 − R̃f,kv2‖H1 ≤ Ckd/2ξk‖v2‖H1 ,

and (4.13) follows. �

Remark 4.3. To preserve linear convergence, the localization parameter k should be chosen such that k =
c log(H−1) for some constant c. With this choice of k we get kd/2ξk ∼ H and we get linear convergence in
Lemma 4.2.

Remark 4.4. It is possible to consider different patch sizes ku, kθ, and kf in (4.1), (4.2), and (4.8), corresponding
to the displacement u, the temperature θ, and the additional correction, respectively. This would give us three
different values of ξ, say ξu, ξθ, and ξf , in Lemma 4.1. To achieve linear convergence, the patch sizes should
be chosen such that k

d/2
u ξku

u , k
d/2
θ ξkθ

θ , k
d/2
f ξkf

f ∼ H , see Remark 4.3. This may be advantageous if one equation
requires significantly larger patches. However, we shall, for simplicity, consider the same patch size k in all
instances.

We note that the orthogonality relation (3.20) does not hold when V 1
ms is replaced by V 1

ms,k. However, we
have that V 1

ms,k and V 1
f are almost orthogonal in the sense that

(σ(v) : ε(w)) ≤ Ckd/2ξk‖v‖H1‖w‖H1 , ∀v ∈ V 1
ms,k, w ∈ V 1

f . (4.15)

To prove this, note that v = vH,k − R1
f,kvH,k for some vH,k ∈ V 1

H , and

(σ(v) : ε(w)) = (σ(vH,k − R1
f vH,k) : ε(w)) + (σ(R1

f vH,k − R1
f,kvH,k) : ε(w))

= (σ(R1
f vH,k − R1

f,kvH,k) : ε(w)) ≤ Cσ‖R1
f vH,k − R1

f,kvH,k‖H1‖w‖H1 ,

where we have used that vH,k − R1
f vH,k ∈ V 1

ms and the orthogonality (3.20). Due to Lemma 4.1 we now have

‖R1
f vH,k − R1

f,kvH,k‖2
H1 ≤ Ckdξ2k

∑
K∈TH

‖RK,1
f vH,k‖2

H1 ≤ Ckdξ2k
∑

K∈TH

‖vH,k‖2
H1(K)

= Ckdξ2k‖vH,k‖2
H1 = Ckdξ2k‖IH(vH,k − R1

f,kvH,k)‖2
H1

= Ckdξ2k‖IHv‖2
H1 ≤ Ckdξ2k‖v‖2

H1 ,

and (4.15) follows.
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4.2. Time-dependent problem

A localized version of (3.30)–(3.32) is now defined by replacing V 1
ms with V 1

ms,k and V 2
ms with V 2

ms,k. The
method thus reads; for n ∈ {1, . . . , N} find

ũn
ms,k = un

ms,k +
∑

K∈TH

un,K
f,k , with un

ms,k ∈ V 1
ms,k, un,K

f,k ∈ V 1
f (ωk(K)),

and θn
ms,k ∈ V 2

ms,k, such that

(σ(ũn
ms,k) : ε(v1)) − (αθn

ms,k,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
ms,k, (4.16)

(∂̄tθ
n
ms,k, v2) + (κ∇θn

ms,k,∇v2) + (α∇ · ∂̄tũ
n
ms,k, v2) = (gn, v2), ∀v2 ∈ V 2

ms,k, (4.17)

(σ(un,K
f,k ) : ε(w1)) − (αθn

ms,k,∇ · w1)K = 0, ∀w1 ∈ V 1
f (ωk(K)), (4.18)

where θ0
ms,k = R2

ms,kθ0
h. Furthermore, we define ũ0

ms,k = u0
ms,k +

∑
K∈TH

u0,K
f,k , where u0,K

f,k ∈ V 1
f (ωk(K)) is

defined by (4.18) for n = 0 and u0
ms,k ∈ V 1

ms such that

(σ(ũ0
ms,k) : ε(v1)) − (αθ0

ms,k,∇ · v1) = (f0, v1), ∀v1 ∈ V 1
ms,k. (4.19)

We also define un
f,k :=

∑
K∈TH

un,K
f,k . Note that for un

f we have due to (3.32)

(σ(un
f ) : ε(w1)) − (αθn

ms,∇ · w1) = 0, ∀w1 ∈ V 1
f .

For the localized version un
f,k this relation is not true. Instead, we prove the following lemma.

Lemma 4.5. For w1 ∈ V 1
f , it holds that

|(σ(un
f,k) : ε(w1)) − (αθn

ms,k,∇ · w1)| ≤ Ckd/2ξk‖θn
ms,k‖‖w1‖H1 .

Proof. Note that from (4.18) we have

(σ(un,K
f,k ) : ε(w1)) − (αθn

ms,k,∇ · w1)K = 0, ∀w1 ∈ V 1
f (ωk(K)). (4.20)

This equation can be viewed as the localization of the following problem. Find zn
f ∈ V 1

f , such that

(σ(zn
f ) : ε(w1)) − (αθn

ms,k,∇ · w1) = 0, ∀w1 ∈ V 1
f . (4.21)

Now ([14], Lem. 4.4) gives the bound

‖zn
f − un

f,k‖2
H1 ≤ Ckdξ2k

∑
K∈TH

‖zn,K
f ‖2

H1

where zn
f =

∑
K∈TH

zn,K
f such that

(σ(zn,K
f ) : ε(w1)) − (αθn

ms,k,∇ · w1)K = 0, ∀w1 ∈ V 1
f .

Using this we derive the bound

‖zn
f − un

f,k‖2
H1 ≤ Ckdξ2k

∑
K∈TH

‖zn,K
f ‖2

H1 ≤ Ckdξ2k
∑

K∈TH

‖θn
ms,k‖2

L2(K) = Ckdξ2k‖θn
ms,k‖2. (4.22)

Now, to prove the lemma we use (4.21) and Cauchy–Schwarz inequality to get

|(σ(un
f,k) : ε(w1)) − (αθn

ms,k,∇ · w1)| = |(σ(un
f,k − zn

f ) : ε(w1))| ≤ Cσ‖un
f,k − zn

f ‖H1‖w1‖H1 .

Applying (4.22) finishes the proof. �
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The proof can be modified slightly to show the following bound

|(σ(∂̄tu
n
f,k) : ε(w1)) − (α∂̄tθ

n
ms,k,∇ · w1)| ≤ Ckd/2ξk‖∂̄tθ

n
ms,k‖‖w1‖H1 . (4.23)

Also note that it follows, by choosing w1 = un
f,k and w1 = ∂̄tu

n
f,k respectively, that

‖un
f,k‖H1 ≤ C‖θn

ms,k‖, ‖∂̄tu
n
f,k‖H1 ≤ C‖∂̄tθ

n
ms,k‖. (4.24)

To prove that (4.16)–(4.18) is well posed, we need the following condition on the size of H .

Assumption 4.6. We make the following assumption on the size of H .

(A4) H ≤ min
(

1
4Cco

, cσ

(Cco+Cort)

)
, where Cco is the constant in Lemma 4.5 and Cort is the constant in the

almost orthogonal property (4.15).

Lemma 4.7. Assuming (A4) the problem (4.16)–(4.18) is well-posed.

Proof. This proof is similar the proof of Lemma 3.7, but we need to account for the lack of orthogonality and
the fact that (3.32) is not satisfied.

Given un−1
ms,k, θn−1

ms,k, and un−1
f,k =

∑
K un−1,K

f,k , the equations (4.16)–(4.18) yields a square system, so it is
sufficient to prove that the solution is unique. Choosing v1 = un

ms,k − un−1
ms,k in (4.16) and v2 = τθn

ms,k in (4.17)
and adding the resulting equations we get

(σ(un
ms,k) : ε(un

ms,k − un−1
ms,k)) + (σ(un

f,k) : ε(un
ms,k − un−1

ms,k)) + τ(∂̄tθ
n
ms,k, θn

ms,k)

+ cκτ‖θn
ms,k‖2

H1 + (α∇ · (un
f,k − un−1

f,k ), θn
ms,k)

≤ (fn, un
ms,k − un−1

ms,k) + τ(gn, θn
ms,k).

Now, using (3.34) and

(fn, un
ms,k − un−1

ms,k) ≤ C‖fn‖H−1 +
1
2
(σ(un

ms,k − un−1
ms,k) : ε(un

ms,k − un−1
ms,k)).

together with the estimate τ(∂̄tθ
n
ms,k, θn

ms,k) ≥ 1
2‖θn

ms,k‖2 − 1
2‖θ

n−1
ms,k‖2, gives

cσ

2
‖un

ms,k‖2
H1 +

1
4
‖θn

ms,k‖2 + cκτ‖θn
ms,k‖2

H1 + (σ(un
f,k) : ε(un

ms,k)) + (α∇ · un
f,k, θ

n
ms,k)

≤ C‖fn‖2
H−1 +

τ

2
‖gn‖2 +

Cσ

2
‖un−1

ms,k‖2
H1 +

1
2
‖θn−1

ms,k‖2

+ (σ(ũn
f,k) : ε(un−1

ms,k)) + (α∇ · un−1
f,k , θn

ms,k).

Using Lemma 4.5 we have

(α∇ · un
f,k, θ

n
ms,k) = (αθn

ms,k,∇ · un
f,k) − (σ(un

f,k) : ε(un
f,k)) + (σ(un

f,k) : ε(un
f,k))

≥ −|(αθn
ms,k,∇ · un

f,k) − (σ(un
f,k) : ε(un

f,k))| + cσ‖un
f,k‖2

H1

≥ −Ccok
d/2ξk‖un

f,k‖H1‖θn
ms,k‖ + cσ‖un

f,k‖2
H1 ,

and the almost orthogonal property (4.15) gives

|(σ(un
f,k) : ε(un

ms,k))| ≥ −Cortk
d/2ξk‖un

f,k‖H1‖un
ms,k‖H1 .

Now, using that k should be chosen such that linear convergence is obtained, see Remark 4.3, that is kd/2ξk ∼ H ,
we conclude after using Young’s inequality that(

cσ

2
− CortH

2

)
‖un

ms,k‖2
H1 +

(
1
8
− CcoH

2

)
‖θn

ms,k‖2 + cκ‖θn
ms,k‖2

H1 +
(

cσ − (Cco + Cort)H
2

)
‖un

f,k‖2
H1

≤ C
(
‖fn‖2

H−1 + τ‖gn‖2 + ‖un−1
ms,k‖2

H1 + ‖θn−1
ms,k‖2 + ‖un−1

f,k ‖2
H1

)
,

where Assumption 4.6 guarantees that the coefficients are positive. Hence, a unique solution exists. �
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5. Error analysis

In this section we analyze the error of the generalized finite element method. The results are based on
Assumption 4.6. In the analysis we utilize the following property, which is similar to Lemma 4.5.

Lemma 5.1. Let ẽn
f,k := R̃f,kθ

n
h − un

f,k and ηn
θ := R2

ms,kθn
h − θn

ms,k. Then, for w1 ∈ V 1
f , it holds that

|(σ(ẽn
f,k) : ε(w1)) − (αηn

θ ,∇ · w1)| ≤ Ckd/2ξk‖ηn
θ ‖‖w1‖H1 .

Proof. The proof is similar to the proof of Lemma 4.5. We omit the details. �

This can be modified slightly to show the following bound

|(σ(∂̄t ẽ
n
f,k) : ε(w1)) − (α∂̄tη

n
θ ,∇ · w1)| ≤ Ckd/2ξk‖∂̄tη

n
θ ‖‖w1‖H1 . (5.1)

Also note that it follows, by choosing w1 = ẽn
f,k and w1 = ∂̄tẽ

n
f,k respectively, that

‖ẽn
f,k‖H1 ≤ C‖ηn

θ ‖, ‖∂̄tẽ
n
f,k‖H1 ≤ C‖∂̄tη

n
θ ‖. (5.2)

Theorem 5.2. Assume that (A4) holds. Let {un
h}N

n=1 and {θn
h}N

n=1 be the solution to (3.1) and (3.2) and
{ũn

ms,k}N
n=1 and {θn

ms,k}N
n=1 the solution to (4.16)–(4.18). For n ∈ {1, . . . , N} we have

‖un
h − ũn

ms,k‖H1 + ‖θn
h − θn

ms,k‖H1 ≤ C(H + kd/2ξk)
(
‖g‖L∞(L2) + ‖ġ‖L∞(H−1) + ‖f‖L∞(L2)

+ ‖ḟ‖L∞(L2) + ‖f̈‖L∞(H−1) + t−1/2
n ‖θ0

h‖H1

)
.

The proof of Theorem 5.2 is based on two lemmas.

Lemma 5.3. Assume that θ0
h = 0 and (A4) holds. Let {un

h}N
n=1 and {θn

h}N
n=1 be the solution to (3.1) and (3.2)

and {ũn
ms,k}N

n=1 and {θn
ms,k}N

n=1 the solution to (4.16)–(4.18). For n ∈ {1, . . . , N} we have

‖un
h − ũn

ms,k‖H1 + ‖θn
h − θn

ms,k‖H1 ≤ C(H + kd/2ξk)
(
‖g‖L∞(L2) + ‖ġ‖L∞(H−1) + ‖f‖L∞(L2)

+ ‖ḟ‖L∞(L2) + ‖f̈‖L∞(H−1)

)
.

Proof. We divide the error into the terms

un
h − ũn

ms,k = un
h − R̃1

ms,k(un
h, θn

h) + R̃1
ms,k(un

h, θn
h) − ũn

ms,k =: ρ̃n
u + η̃n

u ,

θn
h − θn

ms,k = θn
h − R2

ms,kθn
h + R2

ms,kθn
h − θn

ms,k =: ρn
θ + ηn

θ .

We also adopt the following notation

ẽn
f,k := R̃f,kθ

n
h − un

f,k, ηn
u := η̃n

u − ẽn
f,k = R1

ms,k(un
h, θn

h) − un
ms,k.

From (3.2) it follows that

(κ∇θn
h ,∇v2) = (gn − ∂̄tθ

n
h −∇ · ∂̄tu

n
h, v2), ∀v2 ∈ V 2

h ,

so by Lemma 4.2 we have the bound

‖ρn
θ ‖H1 ≤ C(H + kd/2ξk)‖P 2

hgn − ∂̄tθ
n
h −∇ · ∂̄tu

n
h‖,
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where P 2
h denotes the L2-projection onto V 2

h . Theorem 3.3 now completes this bound. Similarly, (3.1) gives

(σ(un
h) : ε(v1)) − (αθn

h ,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
h ,

so, again, by Lemma 4.2 we get

‖ρ̃n
u‖H1 ≤ C(H + kd/2ξk)(‖fn‖ + ‖θn

h‖H1),

which can be further bounded by using Theorem 3.3. To bound η̃n
u and ηn

θ we note that for v1 ∈ V 1
ms,k

(σ(η̃n
u ) : ε(v1)) − (αηn

θ ,∇ · v1) = (σ(R̃1
ms,k(un

h, θn
h)) : ε(v1)) − (αR2

ms,kθn
h ,∇ · v1) − (fn, v1)

= (σ(un
h) : ε(v1)) − (αθn

h ,∇ · v1) − (fn, v1) = 0, (5.3)

where we have used the Ritz projection (4.6), and the equations (3.1) and (4.16). Similarly, for v2 ∈ V 2
ms,k we

have

(∂̄tη
n
θ , v2) + (κ∇ηn

θ ,∇v2) + (α∇ · ∂̄tη̃
n
u , v2) = (∂̄tR

2
ms,kθn

h , v2) + (κ∇R2
ms,kθn

h ,∇v2)

+ (α∇ · ∂̄tR̃
1
ms,k(un

h, θn
h), v2) − (gn, v2)

= (−∂̄tρ
n
θ , v2) + (−α∇ · ∂̄tρ̃

n
u, v2).

For simplicity, we denote ρn := ρn
θ + α∇ · ρ̃n

u such that

(∂̄tη
n
θ , v2) + (κ∇ηn

θ ,∇v2) + (α∇ · ∂̄tη̃
n
u , v2) = (−∂̄tρ

n, v2), ∀v2 ∈ V 2
ms,k. (5.4)

Now, choose v1 = ∂̄tη
n
u and v2 = ηn

θ and add the resulting equations. Note that the coupling terms on the left
hand side results in the term (α∇ · ∂̄tẽ

n
f,k, ηn

θ ). We conclude that

(σ(η̃n
u ) : ε(∂̄tη

n
u )) + (∂̄tη

n
θ , ηn

θ ) + (κ∇ηn
θ ,∇ηn

θ ) = (−∂̄tρ
n, ηn

θ ) − (α∇ · ∂̄tẽ
n
f,k, ηn

θ ),

and by splitting the first term

(σ(ηn
u ) : ε(∂̄tη

n
u)) + (∂̄tη

n
θ , ηn

θ ) + (κ∇ηn
θ ,∇ηn

θ ) = (−∂̄tρ
n, ηn

θ ) − (σ(ẽn
f,k) : ε(∂̄tη

n
u)) − (α∇ · ∂̄tẽ

n
f,k, ηn

θ ). (5.5)

Using Lemma 5.1 we can bound

−(α∇ · ∂̄tẽ
n
f,k, ηn

θ ) ≤ |(α∇ · ∂̄tẽ
n
f,k, ηn

θ ) − (σ(ẽn
f,k) : ε(∂̄tẽ

n
f,k))| − (σ(ẽn

f,k) : ε(∂̄tẽ
n
f,k))

≤ Ckd/2ξk‖∂̄tẽ
n
f,k‖H1‖ηn

θ ‖ − (σ(ẽn
f,k) : ε(∂̄tẽ

n
f,k)), (5.6)

and the almost orthogonal property (4.15) together with (5.2) gives

−(σ(ẽn
f,k) : ε(∂̄tη

n
u )) ≤ Ckd/2ξk‖ẽn

f,k‖H1‖∂̄tη
n
u‖H1 ≤ Ckd/2ξk‖ηn

θ ‖‖∂̄tη
n
u‖H1 . (5.7)

Thus, multiplying (5.5) by τ and using Cauchy–Schwarz and Young’s inequality we get

Cτ‖ηn
θ ‖2

H1 +
1
2
(‖ηn

u‖2
σ + ‖ẽn

f,k‖2
σ − ‖ηn−1

u ‖2
σ − ‖ẽn−1

f,k ‖2
σ) +

1
2
(‖ηn

θ ‖2 − ‖ηn−1
θ ‖2)

≤ Cτ‖∂̄tρ
n‖2

H−1 + Cτkd/2ξk‖ηn
θ ‖(‖∂̄tη

n
u‖H1 + ‖∂̄tẽ

n
f,k‖H1),

where ‖ηn
θ ‖ ≤ ‖ηn

θ ‖H1 can be kicked to the left hand side. Summing over n gives

C
n∑

j=1

τ‖ηj
θ‖2

H1 +
1
2
(‖ηn

u‖2
σ + ‖ẽn

f,k‖2
σ) +

1
2
‖ηn

θ ‖2

≤ 1
2
‖η0

u‖2
σ +

1
2
‖ẽ0

f,k‖2
σ + C

n∑
j=1

τ(‖∂̄tρ
j‖2

H−1 + kdξ2k(‖∂̄tη
j
u‖2

H1 + ‖∂̄tẽ
j
f,k‖2

H1)),
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where we have used that η0
θ = 0. Furthermore, we note that if θ0

h = 0, then R̃f,kθ0
h = 0 and u0

f,k = 0. Hence,
ẽ0
f,k = 0. From (4.19) and (3.3) we have, if θ0

h = θ0
ms,k = 0, for v1 ∈ V 1

ms,k,

(σ(u0
ms,k) : ε(v1)) = (f0, v1) = (σ(u0

h) : ε(v1)) = (σ(R1
ms,k(u0

h, 0)) : ε(v1)),

so also η0
u = 0.

To bound ∂̄tρ
n
θ and α∇ · ∂̄tρ̃

n
u we note that due to (3.1) and (3.3), ∂̄tu

n
h and ∂̄tθ

n
h satisfy the equation

(σ(∂̄tu
n
h) : ε(v1)) − (α∂̄tθ

n
h ,∇ · v1) = (∂̄tf

n, v1), ∀v1 ∈ V 1
h .

Hence, by Lemma 4.2 and the Aubin–Nitsche duality argument we have

‖∂̄tρ
n
θ ‖H−1 ≤ ‖∂̄tρ

n
θ ‖ ≤ C(H + kd/2ξk)‖∂̄tρ

n
θ ‖H1 ≤ C(H + kd/2ξk)‖∂̄tθ

n
h‖H1 , (5.8)

and for ∂̄tρ̃
n
u we get

‖α∇ · ∂̄tρ̃
n
u‖H−1 ≤ α2‖∇ · ∂̄tρ̃

n
u‖ ≤ C‖∂̄tρ̃

n
u‖H1 ≤ C(H + kd/2ξk)(‖∂̄tf

n‖ + ‖∂̄tθ
n
h‖H1). (5.9)

Thus, using (2.10), we arrive at the following bound
n∑

j=1

τ‖ηj
θ‖

2
H1 + ‖ηn

u‖2
H1 + ‖ẽn

f,k‖2
H1 + ‖ηn

θ ‖2 ≤ C(H + kd/2ξk)2
n∑

j=1

τ
(
‖∂̄tθ

j
h‖

2
H1 + ‖∂̄tf

j‖2
)

+ Ckdξ2k
n∑

j=1

τ(‖∂̄tη
j
u‖2

H1 + ‖∂̄tẽ
j
f,k‖2

H1), (5.10)

where we apply Theorem 3.3 to the first sum on the right hand side. If we can find an upper bound on∑n
j=1 τ(‖∂̄tη

j
u‖2

H1 + ‖∂̄tẽ
j
f,k‖2), then (5.10) gives a bound for ‖η̃n

u‖H1 ≤ ‖ηn
u‖H1 + ‖ẽn

f,k‖H1 . This is done next,
and we bound ‖ηn

θ ‖H1 at the same time. For this purpose, we choose v2 = ∂̄tη
n
θ in (5.4) and note that it follows

from (5.3) that

(σ(∂̄tη̃
n
u ) :ε(∂̄tη

n
u )) − (α∂̄tη

n
θ ,∇ · ∂̄tη

n
u) = 0. (5.11)

This also holds for n = 1 since η0
θ = 0 and η̃0

u = 0. Thus, by adding the resulting equations, we have

cσ‖∂̄tη
n
u‖2

H1 + ‖∂̄tη
n
θ ‖2 + (κ∇ηn

θ ,∇∂̄tη
n
θ )

= (−∂̄tρ
n, ∂̄tη

n
θ ) − (σ(∂̄tẽ

n
f,k) : ε(∂̄tη

n
u)) − (α∇ · ∂̄tẽ

n
f,k, ∂̄tη

n
θ )

≤ ‖∂̄tρ
n‖‖∂̄tη

n
θ ‖ + Cortk

d/2ξk‖∂̄tẽ
n
f,k‖H1‖∂̄tη

n
u‖H1 − (α∇ · ∂̄tẽ

n
f,k, ∂̄tη

n
θ )

where we have used (4.15). For the last term we use Lemma 5.1 to achieve

−(α∇ · ∂̄tẽ
n
f,k, ∂̄tη

n
θ ) ≤ Ccok

d/2ξk‖∂̄tẽ
n
f,k‖H1‖∂̄tη

n
θ ‖ − (σ(∂̄tẽ

n
f,k) : ε(∂̄tẽ

n
f,k)).

Thus, we have

cσ(‖∂̄tη
n
u‖2

H1 + ‖∂̄tẽ
n
f,k‖2

H1) + ‖∂̄tη
n
θ ‖2 + (κ∇ηn

θ ,∇∂̄tη
n
θ )

≤ ‖∂̄tρ
n‖‖∂̄tη

n
θ ‖ + Cortk

d/2ξk‖∂̄tẽ
n
f,k‖H1‖∂̄tη

n
u‖H1 + Ccok

d/2ξk‖∂̄tẽ
n
f,k‖H1‖∂̄tη

n
θ ‖,

and using Young’s inequality we deduce(
cσ − Cortk

d/2ξk

2

)
‖∂̄tη

n
u‖2

H1 +
(

cσ − (Cort + Cco)kd/2ξk

2

)
‖∂̄tẽ

n
f,k‖2

H1)

+
(

1
2
− Ccok

d/2ξk

2

)
‖∂̄tη

n
θ ‖2 +

(
κ∇ηn

θ ,∇∂̄tη
n
θ

)
≤ C‖∂̄tρ

n‖2,
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where Assumption 4.6 guarantees that the coefficients are positive. Multiplying by τ , using that

τ(κ∇ηn
θ ,∇∂̄tη

n
θ ) ≥ 1

2
(‖ηn

θ ‖2
κ − ‖ηn−1

θ ‖2
κ),

and summing over n we derive

n∑
j=1

τ(‖∂̄tη
j
u‖2

H1 + ‖∂̄tẽ
j
f,k‖2

H1 + ‖∂̄tη
j
θ‖2) + ‖ηn

θ ‖2
H1

≤ C
n∑

j=1

τ‖∂̄tρ
j‖2 ≤ C(H + kd/2ξk)

n∑
j=1

τ(‖∂̄tf
j‖2 + ‖∂̄tθ

j
h‖2

H1),

where we have used that η0
θ = 0, the bound (2.11), and (5.8) and (5.9). We can now apply Theorem 3.3.

Thus, the lemma follows for ‖θn
h − θn

ms,k‖H1 . Moreover, this bounds the last terms in (5.10), which completes
the proof. �

Lemma 5.4. Assume that f = 0 and g = 0, and that (A4) holds. Let {un
h}N

n=1 and {θn
h}N

n=1 be the solution to
(3.1) and (3.2) and {ũn

ms,k}N
n=1 and {θn

ms,k}N
n=1 be the solution to (4.16)–(4.18). For n ∈ {1, . . . , N} we have

‖un
h − ũn

ms,k‖H1 + t1/2
n ‖θn

h − θn
ms,k‖H1 ≤ C(H + kd/2ξk)‖θ0

h‖H1 . (5.12)

Proof. As in the proof of Lemma 5.3 we split the error into two parts

un
h − ũn

ms,k = ρ̃n
u + η̃n

u , θn
h − θn

ms,k = ρn
θ + ηn

θ ,

where Lemma 4.2 and Theorem 3.3 gives

‖ρn
θ ‖H1 ≤ C(H + kd/2ξk)‖ − ∂̄tθ

n
h −∇ · ∂̄tu

n
h‖ ≤ C(H + kd/2ξk)t−1/2

n ‖θ0
h‖H1 ,

‖ρ̃n
u‖H1 ≤ C(H + kd/2ξk)‖θn

h‖H1 ≤ C(H + kd/2ξk)‖θ0
h‖H1 .

Now, note that (5.4) and (5.11) holds also when f = 0 and g = 0. In particular, (5.11) holds also for n = 1
due to the definition of u0

ms,k and u0
h in (4.19) and (3.3) respectively. By choosing v2 = ∂̄tη

n
θ and adding the

resulting equations we derive

cσ‖∂̄tη
n
u‖2

H1 + ‖∂̄tη
n
θ ‖2 + (κ∇ηn

θ ,∇∂̄tη
n
θ ) + (σ(∂̄tẽ

n
f,k) : ε(∂̄tη

n
u)) + (α∇ · ∂̄tẽ

n
f,k, ∂̄tη

n
θ ) ≤ ‖∂̄tρ

n‖‖∂̄tη
n
θ ‖.

Recall ρn = ρn
θ + α∇ · ρ̃n

u. As in the proof of Lemma 5.3 we get from Lemma 5.2

(α∇ · ∂̄tẽ
n
f,k, ∂̄tη

n
θ ) ≥ −Ccok

d/2ξk‖∂̄tẽ
n
f,k‖H1‖∂̄tη

n
θ ‖ + (σ(∂̄tẽ

n
f,k) : ε(∂̄tẽ

n
f,k)),

and from (4.15)

(σ(ẽn
f,k) : ε(∂̄tη

n
u)) ≥ −Cortk

d/2ξk‖∂̄tẽ
n
f,k‖H1‖∂̄tη

n
u‖H1 .

Hence, we have (
cσ − Cortk

d/2ξk

2

)
‖∂̄tη

n
u‖2

H1 +
(

cσ − (Cort + Cco)kd/2ξk

2

)
‖∂̄tẽ

n
f,k‖2

H1

+
(

1
2
− Ccok

d/2ξk

2

)
‖∂̄tη

n
θ ‖2 +

(
κ∇ηn

θ ,∇∂̄tη
n
θ

)
≤ ‖∂̄tρ

n‖2,
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and Assumption 4.6 guarantees that the coefficients are positive. Multiplying by τt2n, using that

τ(κ∇ηn
θ ,∇∂̄tη

n
θ ) ≥ 1

2
(‖ηn

θ ‖2
κ − ‖ηn−1

θ ‖2
κ)

and t2n − t2n−1 ≤ 3τtn−1, for n ≥ 2, now give

Cτt2n(‖∂̄tη
n
u‖2

H1 + ‖∂̄tẽ
n
f,k‖2

H1 + ‖∂̄tη
n
θ ‖2) +

t2n
2
‖ηn

θ ‖2
κ −

t2n−1

2
‖ηn−1

θ ‖2
κ ≤ Cτt2n‖∂̄tρ

n‖2 + Cτtn−1‖ηn−1
θ ‖2

κ.

Note that this inequality also holds for n = 1, since η0
θ = 0 (recall θ0

ms,k = R2
ms,kθ0

h). Summing over n gives and
using (2.11)

C

n∑
j=1

τt2j (‖∂̄tη
j
u‖2

H1 + ‖∂̄tẽ
j
f,k‖

2
H1 + ‖∂̄tη

j
θ‖

2) + cκt2n‖ηn
θ ‖2

H1 ≤ C

n∑
j=1

τt2j‖∂̄tρ
j‖2 + C

n−1∑
j=1

τtj‖ηj
θ‖

2
H1 , (5.13)

and since fn = 0 and gn = 0, Lemma 4.2 and the Aubin–Nitsche trick as in (5.8) together with Theorem 3.3
give

‖∂̄tρ
n‖ ≤ ‖∂̄tρ

n
θ ‖ + α2‖∂̄tρ

n
u‖H1 ≤ C(H + kd/2ξk)(‖∂̄tθ

n
h‖H1 + ‖∇ · ∂̄tu

n
h‖) ≤ C(H + kd/2ξk)t−1

n ‖θ0
h‖H1 . (5.14)

To bound the last sum on the right hand side in (5.13) we choose v1 = ∂̄tη
n
u and v2 = ηn

θ in (5.4) and (5.3) and
add the resulting equations. This gives

(σ(ηn
u ) : ε(∂̄tη

n
u)) + (∂̄tη

n
θ , ηn

θ ) + (κ∇ηn
θ ,∇ηn

θ ) = (−∂̄tρ
n, ηn

θ ) − (σ(ẽn
f,k) : ε(∂̄tη

n
u )) − (α∇ · ∂̄tẽ

n
f,k, η

n
θ ),

where the use of (5.6) and (5.7) gives

(σ(ηn
u ) : ε(∂̄tη

n
u)) + (σ(ẽn

f,k) : ε(∂̄tẽ
n
f,k)) + (∂̄tη

n
θ , ηn

θ ) + (κ∇ηn
θ ,∇ηn

θ )

≤ ‖∂̄tρ
n‖‖ηn

θ ‖ + Ckd/2ξk‖ηn
θ ‖(‖∂̄tη

n
u‖H1 + ‖∂̄tẽ

n
f,k‖H1).

Multiplying by τtn and using that tn − tn−1 = τ we get

Cτtn‖ηn
θ ‖2

H1 +
tn
2

(‖ηn
u‖2

σ + ‖ẽn
f,k‖2

σ) − tn−1

2
(‖ηn−1

u ‖2
σ + ‖ẽn−1

f,k ‖2
σ) +

tn
2
‖ηn

θ ‖2 − tn−1

2
‖ηn−1

θ ‖2

≤ Ctnτ(‖∂̄tρ
n‖‖ηn

θ ‖ + kd/2ξk‖ηn
θ ‖(‖∂̄tη

n
u‖H1 + ‖∂̄tẽ

n
f,k‖H1) + Cτ(‖ηn−1

u ‖2
σ + ‖ẽn−1

f,k ‖2
σ + ‖ηn−1

θ ‖2)

≤ Ct2nτ‖∂̄tρ
n‖2 + Cyt2nτkdξ2k(‖∂̄tη

n
u‖2

H1 + ‖∂̄tẽ
n
f,k‖2

H1) + Cτ(‖η̃n−1
u ‖2

σ + ‖ẽn−1
f,k ‖2

σ + ‖ηn−1
θ ‖2 + ‖ηn

θ ‖2),

where we have used Young’s (weighted) inequality on the form, τtnab ≤ τt2na2 + τb2/4, in the last step. For the
second term we have used the inequality with an additional Cy, i.e. τtnab ≤ Cyτt2na2 + (4Cy)−1τb2. Note that
Cy can be made arbitrarily small. Summing over n and using (2.10) now gives

C
n∑

j=1

τtj‖ηj
θ‖

2
H1 +

cσtn
2

(‖ηn
u‖2

H1 + ‖ẽn
f,k‖2

H1) +
tn
2
‖ηn

θ ‖2

≤ C
n∑

j=1

τt2j‖∂̄tρ
j‖2 + Cykdξ2k

n∑
j=1

τt2j (‖∂̄tη
j
u‖2

H1 + ‖∂̄tẽ
j
f,k‖2

H1))

+ C

n∑
j=0

τ(‖ηj
u‖2

H1 + ‖ẽj
f,k‖2

H1 + ‖ηj
θ‖2). (5.15)
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We can now use (5.13) to deduce

n∑
j=1

τt2j (‖∂̄tη
j
u‖2

H1 + ‖∂̄tẽ
j
f,k‖2

H1) ≤ C
n∑

j=1

τt2j‖∂̄tρ
j‖2 + C

n−1∑
j=1

τtj‖ηj
θ‖2

H1 .

Using this in (5.15) gives

C

n∑
j=1

τtj‖ηj
θ‖2

H1 +
cσtn

2
(‖ηn

u‖2
H1 + ‖ẽn

f,k‖2
H1) +

tn
2
‖ηn

θ ‖2 ≤ C

n∑
j=1

τt2j‖∂̄tρ
j‖2 + Cykdξ2k

n∑
j=1

τtj‖ηj
θ‖2

H1

+ C

n∑
j=0

τ(‖ηj
u‖2

H1 + ‖ẽj
f,k‖

2
H1 + ‖ηj

θ‖
2). (5.16)

Since Cy now can be made arbitrarily small the term Cykdξ2k
∑n

j=1 τtj‖ηj
θ‖2

H1 can be moved to the left hand
side. To estimate the last sum on the right hand side in (5.16) we multiply (5.4) by τ and sum over n to get

(ηn
θ − η0

θ , v2) + (κ∇
n∑

j=1

τηj
θ ,∇v2) + (α∇ · η̃n

u − η̃0
u, v2) = (−ρn + ρ0, v2), (5.17)

where we note that η0
θ = 0 and η̃0

u = 0. By choosing v1 = ηn
u in (5.3) and v2 = ηn

θ in (5.17) and adding the
resulting equations we get

cσ‖ηn
u‖2

H1 + ‖ηn
θ ‖2 + (κ

n∑
j=1

τ∇ηj
θ ,∇ηn

θ ) ≤ ‖ − ρn + ρ0‖‖ηn
θ ‖ − (σ(ẽn

f,k) : ε(ηn
u )) − (α∇ · ẽn

f,k, η
n
θ )

≤ ‖ − ρn + ρ0‖‖ηn
θ ‖ + Cortk

d/2ξk‖ẽn
f,k‖H1‖ηn

u‖H1

+ Ccok
d/2ξk‖ẽn

f,k‖H1‖ηn
θ ‖ − cσ‖ẽn

f,k‖2
H1 ,

where we have used the almost orthogonal property (4.15) and Lemma 4.5. We conclude that(
cσ − Cortk

d/2ξk

2

)
‖ηn

u‖2
H1 +

(
cσ − (Cort + Cco)kd/2ξk

2

)
‖ẽn

f,k‖2
H1

+
(

1
2
− Ccok

d/2ξk

2

)
‖ηn

θ ‖2 +

⎛
⎝κ

n∑
j=1

τ∇ηj
θ ,∇ηn

θ

⎞
⎠ ≤ C‖ − ρn + ρ0‖2, (5.18)

and Assumption 4.6 guarantees positive coefficients. Now, note that we have the bound⎛
⎝κ

n∑
j=1

τ∇ηj
θ ,∇ηn

θ

⎞
⎠ =

⎛
⎝κ

n∑
j=1

τ∇ηj
θ , ∂̄t

⎛
⎝ n∑

j=1

τ∇ηj
θ

⎞
⎠
⎞
⎠ ≥ 1

2τ

⎛
⎜⎝
∥∥∥∥∥∥

n∑
j=1

τηj
θ

∥∥∥∥∥∥
2

κ

−

∥∥∥∥∥∥
n−1∑
j=1

τηj
θ

∥∥∥∥∥∥
2

κ

⎞
⎟⎠ ,

with the convention that
∑0

j=1 τηj
θ = 0. Multiplying (5.18) by τ , summing over n, and using (2.11) thus gives

n∑
j=1

τ(‖ηj
u‖2

H1 + ‖ẽj
f,k‖2

H1 + ‖ηj
θ‖2) +

cκ

2

∥∥∥∥∥∥
n∑

j=1

τηj
θ

∥∥∥∥∥∥
2

H1

≤ C

n∑
j=1

τ‖ − ρj + ρ0‖2

≤ C(H + kd/2ξk)2
n∑

j=1

τ‖θ0
h‖2

H1

≤ C(H + kd/2ξk)2tn‖θ0
h‖2

H1 . (5.19)
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Here we have used the Aubin–Nitsche duality argument, Lemma 4.2 and Theorem 3.3 to deduce

‖ρn‖ ≤ ‖ρn
θ ‖ + C‖ρn

u‖H1 ≤ C(H + kd/2ξk)(‖ρn
θ ‖H1 + ‖θn

h‖H1)

≤ C(H + kd/2ξk)‖θn
h‖H1 ≤ C(H + kd/2ξk)‖θ0

h‖H1 , n ≥ 0.

Combining (5.13), (5.14), (5.16), and (5.19) we get

t2n‖ηn
θ ‖2

H1 + tn‖ηn
u‖2

H1 + tn‖ẽn
f,k‖2

H1 ≤ C(H + kd/2ξk)2tn‖θ0
h‖2

H1 ,

which completes the proof. �

Proof of Theorem 5.2. Since the problem is linear we can split the solution

un
h = ūn

h + ûn
h, θn

h = θ̄n
h + θ̂n

h ,

where ūn
h and θ̄n

h solves (3.1) and (3.2) with f = 0 and g = 0 and ûn
h and θ̂n

h solves (3.1) and (3.2) with θ0
h = 0.

The theorem now follows by applying Lemmas 5.3 and 5.4. �

6. Numerical examples

In this section we perform two numerical examples. For a discussion on how to implement the type of
generalized finite element efficiently described in this paper we refer to [10].

The first numerical example models a composite material which is preheated to a fix temperature and at
time t0 = 0 the piece is subject to a cool-down.

The domain is set to be the unit square Ω = [0, 1] × [0, 1] and we assume that the temperature has a
homogeneous Dirichlet boundary condition, that is Γ θ

D = ∂Ω and Γ θ
N = ∅. For the displacement we assume the

bottom boundary to be fix and for the remaining part of the boundary we prescribe a homogeneous Neumann
condition, that is Γ u

D = [0, 1] × 0 and Γ u
N = ∂Ω \ Γ u

D.
The composite is assumed to be built up according to Figure 1. The white part in the figure denotes a

background material and the black parts an insulated material. The black squares are of size 2−5 × 2−5. We
assume that the Lamé coefficients μ and λ take the values μ1 and λ1 on the insulated material, and μ2 and
λ2 on the background material. In this experiment we have set μ1/μ2 = 10 and λ1/λ2 = 50. Similarly, using
subscript 1 for the insulated material and subscript 2 for the background material, we set α1/α2 = 10 and
κ = κi · I, for i = 1, 2, where I is the 2-dimensional identity matrix and κ1/κ2 = 10. Furthermore, we have
chosen to set f = [0, 0]ᵀ (no external body forces) and g = −10.

Figure 1. Composite material on the unit square. One black square is of size 2−5 × 2−5.
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The initial data must be zero on the boundary Γ θ
D, so we have chosen to put θ0 = 500x(1 − x)y(1 − y) and

θ0
h to the L2-projection of θ0 to V 2

h . For the generalized finite element solution we have chosen θ0
ms,k = R2

ms,kθ0
h

and ũ0
ms,k is given by (4.19).

The domain is discretized using a uniform triangulation. The reference solution is computed on a mesh
of h =

√
2 × 2−6 which resolves the fine parts (the black squares) in the material. The generalized finite

element method (GFEM) in (4.16)–(4.18) is computed for five decreasing values of the mesh size, namely,
H =

√
2 × 2−1,

√
2 × 2−2, . . . ,

√
2 × 2−5, with the patch sizes k = 1, 1, 2, 2, 3. For comparison, we also compute

the corresponding classical finite element (FEM) solution on the coarse meshes using continuous piecewise
affine polynomials for both spaces (P1-P1). The solutions satisfies (3.1) and (3.2) with h replaced by H and
are denoted un

H and θn
H respectively for n = 1, . . . , N . When computing these solutions we have evaluated the

integrals exactly to avoid quadrature errors.
We have chosen to set T = 1 and τ = 0.05 for all values of H and for the reference solution. The solutions

are compared at the time point N .
Note that the implementation of the corrections un,K

f,k in (4.18) given by

(σ(un,K
f,k ) : ε(w1)) − (αθn

ms,k,∇ · w1)K = 0, ∀w1 ∈ V 1
f (ωk(K)),

should not be computed explicitly at each time step. It is more efficient to compute xK
y , given by

(σ(xK
y ) : ε(w1)) − (α(λ2

y − R2
f,kλ2

y),∇ · w1)K = 0, ∀w1 ∈ V 1
f (ωk(K)),

where {(·, y) ∈ N : λ2
y − R2

f,kλ2
y} is the basis for V 2

ms,k. Now, since θn
ms,k =

∑
y βn

y (λ2
y − R2

f,kλ2
y), we have the

identity

un
f,k =

∑
K

un,K
f,k =

∑
K

∑
y

βn
y xK

y .

With this approach, we only need to compute xK
y once before solving for the system (4.16) and (4.17) for

n = 1, . . . , N .
The relative errors in the H1-seminorm ‖∇ · ‖ are shown in Figure 2. The left graph shows the relative errors

for the displacement, ‖∇(ũN
ms,k − uN

h )‖/‖∇uN
h ‖ and ‖∇(uN

H − uN
h )‖/‖∇uN

h ‖. The right graph shows the error

10−2 10−1 100
10−3

10−2

10−1

100

H

(a) Displacement u

10−2 10−1 100
10−3

10−2

10−1

100

H

(b) Temperature θ

Figure 2. Relative errors using GFEM (blue ◦) and P1-P1 FEM (red ∗) for the linear ther-
moelasticity problem plotted against the mesh size H . The dashed line is H . (color online)
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Figure 3. A plot of the coefficient α.

10−2 10−1 100
10−3

10−2

10−1

100

H

Figure 4. Relative errors for the displacement u using GFEM with correction for α (blue ◦)
and GFEM without correction for α (black �) for the linear thermoelasticity problem plotted
against the mesh size H . The dashed line is H . (color online)

for the temperature ‖∇(θN
ms,k − θN

h )‖/‖∇θN
h ‖ and ‖∇(θN

H − θN
h )‖/‖∇θN

h ‖. As expected the generalized finite
element shows convergence of optimal order and outperforms the classical finite element.

The second example shows the importance of the additional correction (4.18), which is designed to handle
multiscale behavior in the coefficient α. The computational domain, the spatial and the time discretization, and
the patch sizes remain the same as in the first example. However, we let ΓD = ∂Ω and ΓN = ∅ in this case.

To test the influence of α we let the other coefficients be constants, μ = λ = 1 and κ = I, where the I is
the 2-dimensional identity matrix. The coefficient α takes values between 0.1 and 10 according to Figure 3. The
boxes are of size 2−5 × 2−5 and, hence, the reference mesh of size h =

√
2 · 2−6 is sufficiently small to resolve

the variations in α.
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The initial data is set to θ0 = x(1−x)y(1− y) and θ0
h is the L2-projection of θ0 onto V 2

h . For the generalized
finite element solution we have chosen θ0

ms,k = R2
ms,kθ0

h and ũ0
ms,k is given by (4.19), as in our first example.

Furthermore, we have chosen to set f = [1 1]ᵀ and g = 10.
The generalized finite element method (GFEM) in (4.16)–(4.18) is computed for the five decreasing values

of the mesh size used in the first example. For comparison, we compute the generalized finite element without
the additional correction on un

ms,k. In this case the system (4.16)–(4.18) simplifies to

(σ(un
ms,k) : ε(v1)) − (αθn

ms,k,∇ · v1) = (fn, v1), ∀v1 ∈ V 1
ms,k,

(∂̄tθ
n
ms,k, v2) + (κ∇θn

ms,k,∇v2) + (α∇ · ∂̄tu
n
ms,k, v2) = (gn, v2), ∀v2 ∈ V 2

ms,k.

The relative errors in the H1-seminorm are shown in Figure 2. The graph shows the errors for the displacement
with correction for α, ‖∇(ũN

ms,k−uN
h )‖/‖∇uN

h ‖ and the error without correction for α ‖∇(uN
ms,k−uN

h )‖/‖∇uN
h ‖.

As expected the GFEM with correction for α shows convergence of optimal order and outperforms the GFEM
without correction for α. This is due to the fact that, in the case when the correction for α is neglected, the
constant in (4.13) (and hence also the constant in Thm. 5.2) depends on the variations in α (see Rem. 3.6).
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