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DIVERGENCE FREE VIRTUAL ELEMENTS FOR THE STOKES PROBLEM
ON POLYGONAL MESHES
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Abstract. In the present paper we develop a new family of Virtual Elements for the Stokes problem
on polygonal meshes. By a proper choice of the Virtual space of velocities and the associated degrees
of freedom, we can guarantee that the final discrete velocity is pointwise divergence-free, and not only
in a relaxed (projected) sense, as it happens for more standard elements. Moreover, we show that
the discrete problem is immediately equivalent to a reduced problem with fewer degrees of freedom,
thus yielding a very efficient scheme. We provide a rigorous error analysis of the method and several
numerical tests, including a comparison with a different Virtual Element choice.
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1. Introduction

The last decade has seen an increased interest in developing numerical methods that can make use of
general polygonal and polyhedral meshes, as opposed to more standard triangular/quadrilateral (tetrahe-
dral/hexahedral) grids. Indeed, making use of polygonal meshes brings forth a range of advantages, including
for instance automatic hanging node treatment, more efficient approximation of geometric data features, bet-
ter domain meshing capabilities, more efficient and easier adaptivity, more robustness to mesh deformation,
and others. This interest in the literature is also reflected in commercial codes, such as CD-Adapco, that have
recently included polytopal meshes.

We refer to the recent papers and monographs [6,10,15,17,20,21,24,31,39,41–47,50,51] as a brief representative
sample of the increasing list of technologies that make use of polygonal/polyhedral meshes. We mention here
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510 L. BEIRÃO DA VEIGA ET AL.

in particular the polygonal finite elements, that generalize finite elements to polygons/polyhedrons by making
use of generalized non-polynomial shape functions, and the mimetic discretisation schemes, that combine ideas
from the finite difference and finite element methods.

The Virtual Element Method (in short, VEM) has been recently introduced in [7] as a generalization of
the finite element method to arbitrary element-geometry. The principal idea behind VEM is to use approxi-
mated discrete bilinear forms that require only integration of polynomials on the (polytopal) element in order
to be computed. The resulting discrete solution is conforming and the accuracy granted by such discrete bi-
linear forms turns out to be sufficient to achieve the correct order of convergence. Following this approach,
VEM is able to make use of very general polygonal/polyhedral meshes without the need to integrate com-
plex non-polynomial functions on the elements and without loss of accuracy. Moreover, VEM is not restricted
to low order converge and can be easily applied to three dimensions and use non convex (even non simply
connected) elements. The Virtual Element Method has been developed successfully for a large range of prob-
lems, see for instance [1–4, 7, 8, 12, 14, 19, 22, 34, 40, 49]. A helpful paper for the implementation of the method
is [9].

The focus of this paper is on developing a Virtual Element Method for the Stokes problem. For such a problem,
a few other numerical schemes using polytope meshes have been proposed, see for example [5, 27, 38, 52]. In [8]
the authors presented a family of Virtual Elements for the linear elasticity problem that are locking-free in
the incompressible limit. As a consequence, the scheme in [8] can be immediately extended to the Stokes
problem, thus yielding a stable VEM family that would be comparable to the Crouzeix–Raviart finite element
family.

In the present paper, we develop a new Virtual Element Method for the Stokes problems by exploiting in
a new way the flexibility of the Virtual Element construction. In particular, we define a new Virtual Element
space of velocities carefully designed to solve the Stokes problem. In connection with a suitable pressure space,
the new Virtual Element space leads to an exactly divergence-free discrete velocity, a favorable property when
more complex problems, such as the Navier–Stokes problem, are considered. We highlight that this feature is
not shared by the method defined in [8] or by most of the standard mixed Finite Element methods, where the
divergence-free constraint is imposed only in a weak (relaxed) sense. We however remark that, using different
discretization methodologies, some divergence-free methods have already proposed in the literature (for instance,
see [23, 25, 28, 29, 35, 36]).

In addition to the above feature, the proposed method carries an additional important advantage. By selecting
suitable degrees of freedom (DoFs in the sequel), we obtain an automatic orthogonality condition among many
pressure DoFs and the associated DoFs for the velocities. As a consequence, a large amount of degrees of freedom
can be automatically eliminated from the system and one obtains a new reduced problem with less degrees of
freedom: only one pressure DoF per element and very few internal-to-elements DoFs for the velocities. We finally
note that the proposed problem is new also on triangles and quadrilaterals, allowing for new divergence-free
(Virtual) elements with fewer degrees of freedom.

In brief, the proposed family of Virtual Elements has three advantages: (1) it can be applied to general
polygonal meshes; (2) it yields an exactly divergence-free velocity; (3) it is efficient in terms of number of
degrees of freedom. In the current work, after developing the method, we prove its stability and convergence
properties. Finally, we test the method on some benchmark problems and compare it with the Stokes extension
of [8].

The paper is organized as follows. In Section 2 we introduce the model continuous Stokes problem. In
Section 3 we present its VEM discretisation. In Section 4 we detail the theoretical features and the convergence
analysis of the problem. In Section 5 we describe the reduced problem and its properties, while in Section 6
we show the numerical tests. Finally, in the Appendix we briefly describe the extension of the method to the
three-dimensional case.
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2. The continuous problem

We consider the Stokes problem on a polygon Ω ⊆ R
2 with homogeneous Dirichlet boundary conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

find (u, p) such that
− ν Δu−∇p = f in Ω,

div u = 0 in Ω,
u = 0 on Γ = ∂Ω,

(2.1)

where u and p are the velocity and the pressure fields, respectively. Furthermore, Δ, div, ∇, and ∇ denote the
vector Laplacian, the divergence, the gradient operator for vector fields and the gradient operator for scalar
functions. Finally, f represents the external force, while ν is the viscosity.

Let us consider the spaces

V :=
[
H1

0 (Ω)
]2

, Q := L2
0(Ω) =

{
q ∈ L2(Ω) s.t.

∫
Ω

q dΩ = 0
}

(2.2)

with norms
‖v‖1 := ‖v‖[H1(Ω)]2 , ‖q‖Q := ‖q‖L2(Ω). (2.3)

We assume f ∈ [H−1(Ω)]2, and ν ∈ L∞(Ω) uniformly positive in Ω. Let the bilinear forms a(·, ·) : V×V → R

and b(·, ·) : V × Q → R be defined by:

a(u,v) :=
∫

Ω

ν ∇u : ∇v dΩ, for all u,v ∈ V (2.4)

b(v, q) :=
∫

Ω

div v q dΩ for all v ∈ V, q ∈ Q. (2.5)

Then a standard variational formulation of problem (2.1) is:⎧⎪⎪⎨⎪⎪⎩
find (u, p) ∈ V × Q, such that

a(u,v) + b(v, p) = (f ,v) for all v ∈ V,

b(u, q) = 0 for all q ∈ Q,

(2.6)

where
(f ,v) :=

∫
Ω

f · v dΩ.

It is well-known that (see for instance [16]):
• a(·, ·) and b(·, ·) are continuous, i.e.

|a(u,v)| ≤ ‖a‖‖u‖1‖v‖1 for all u,v ∈ V,

|b(v, q)| ≤ ‖b‖‖v‖1‖q‖Q for all v ∈ V and q ∈ Q;

• a(·, ·) is coercive, i.e. there exists a positive constant α such that

a(v,v) ≥ α‖v‖2
1 for all v ∈ V;

• the bilinear form b(·, ·) satisfies the inf-sup condition, i.e.

∃β > 0 such that sup
v∈Vv �=0

b(u, q)
‖v‖1

≥ β‖q‖Q for all q ∈ Q. (2.7)

Therefore, problem (2.6) has a unique solution (u, p) ∈ V × Q such that

‖u‖1 + ‖p‖Q ≤ C ‖f‖H−1(Ω)

with the constant C depending only on Ω and ν.
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3. Virtual formulation for the Stokes problem

3.1. Decomposition and virtual element spaces

We outline the Virtual Element discretization of problem (2.6). Here and in the rest of the paper the symbol
C will indicate a generic positive constant independent of the mesh size that may change at each occurrence.
Moreover, given any subset ω in R

2 and k ∈ N, we will denote by Pk(ω) the polynomials of total degree at most
k defined on ω, with the extended notation P−1(ω) = ∅. Let { Th }h be a sequence of decompositions of Ω into
general polygonal elements K with

hK := diameter(K), h := sup
K∈Th

hK .

We suppose that for all h, each element K in Th fulfils the following assumptions:

• (A1) K is star-shaped with respect to a ball of radius ≥ γ hK ,
• (A2) the distance between any two vertexes of K is ≥ c hK ,

where γ and c are positive constants. We remark that the hypotheses above, though not too restrictive in many
practical cases, can be further relaxed, as noted in [7].

We also assume that the scalar field ν is piecewise constant with respect to the decomposition Th, i.e. ν is
constant on each polygon K ∈ Th.

The bilinear forms a(·, ·) and b(·, ·), the norms || · ||1 and || · ||Q, can be decomposed into local contributions.
Indeed, using obvious notations, we have

a(u,v) =:
∑

K∈Th

aK(u,v) for all u,v ∈ V (3.1)

b(v, q) =:
∑

K∈Th

bK(v, q) for all v ∈ V and q ∈ Q, (3.2)

and

‖v‖1 =:

( ∑
K∈Th

‖v‖2
1,K

)1/2

for all v ∈ V, ‖q‖Q =:

( ∑
K∈Th

‖q‖2
Q,K

)1/2

for all q ∈ Q. (3.3)

For k ∈ N, let us define the spaces

• Pk(K) the set of polynomials on K of degree ≤ k,
• Bk(K) := {v ∈ C0(∂K) s.t v|e ∈ Pk(e) ∀ edge e ⊂ ∂K},
• Gk(K) := ∇(Pk+1(K)) ⊆ [Pk(K)]2,
• Gk(K)⊥ ⊆ [Pk(K)]2 the L2-orthogonal complement to Gk(K).

On each element K ∈ Th we define, for k ≥ 2, the following finite dimensional local virtual spaces

VK
h :=

{
v ∈ [H1(K)]2 s.t v|∂K ∈ [Bk(∂K)]2 ,

{ − ν Δv −∇s ∈ Gk−2(K)⊥,

div v ∈ Pk−1(K),
for some s ∈ L2(K)

}
(3.4)

and
QK

h := Pk−1(K). (3.5)

We note that all the operators and equations above are to be interpreted in the distributional sense. In particular,
the definition of VK

h above is associated to a Stokes-like variational problem on K.
It is easy to observe that [Pk(K)]2 ⊆ VK

h , and it holds

dim
(
[Bk(∂K)]2

)
= 2nKk, dim

(
Gk−2(K)⊥

)
=

(k − 1)(k − 2)
2

, (3.6)

where nK is the number of edges of the polygon K.
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It is well-known (see for instance [33]) that given

• a polynomial function gb ∈ [Bk(∂K)]2,
• a polynomial function h ∈ Gk−2(K)⊥,
• a polynomial function g ∈ Pk−1(K) satisfying the compatibility condition∫

K

g dΩ =
∫

∂K

gb · n ds, (3.7)

there exists a unique pair (v, s) ∈ VK
h × L2(K)/R such that

v|∂K = gb, div v = g, −ν Δv −∇s = h. (3.8)

Moreover, let us assume that there exist two different data sets

(gb, h, g) and (cb, d, c) ∈ [Bk(∂K)]2 × Gk−2(K)⊥ × Pk−1(K),

both satisfying the compatibility conditions, which correspond respectively to the couples (v, s), (v, t) ∈ VK
h ×

L2(K) (i.e. same velocity and different pressures). Then it is straightforward to see that

gb = cb, g = c and ∇(s − t) = d − h.

Therefore, we get rot(d − h) = 0, where rot is the rotational operator in 2D, i.e. the rotated divergence. Since
rot: Gk−2(K)⊥ → Pk−3(K) is an isomorphism (see [11]), we conclude that d = h. Thus, there is an injective
map (gb, h, g) → v that associates a given compatible data set (gb, h, g) to the velocity field v that solves (3.8).
It follows that the dimension of VK

h is

dim
(
VK

h

)
= dim

(
[Bk(∂K)]2

)
+ dim

(
Gk−2(K)⊥

)
+ (dim(Pk−1(K)) − 1)

= 2nKk +
(k − 1)(k − 2)

2
+

(k + 1)k
2

− 1. (3.9)

For the local space QK
h we have

dim(QK
h ) = dim(Pk−1(K)) =

(k + 1)k
2

· (3.10)

We are now ready to introduce suitable sets of degrees of freedom for the local approximation fields.
Given a function v ∈ VK

h we take the following linear operators DV, split into four subsets (see Fig. 1):

• DV1: the values of v at the vertices of the polygon K,
• DV2: the values of v at k − 1 distinct points of every edge e ∈ ∂K (for example we can take the k − 1

internal points of the (k + 1)-Gauss–Lobatto quadrature rule in e, as suggested in [9]),
• DV3: the moments of v ∫

K

v · g⊥
k−2 dK for all g⊥

k−2 ∈ Gk−2(K)⊥,

• DV4: the moments up to order k − 1 and greater than zero of div v in K, i.e.∫
K

(div v) qk−1 dK for all qk−1 ∈ Pk−1(K)/R.

Furthermore, for the local pressure, given q ∈ QK
h , we consider the linear operators DQ:

• DQ: the moments up to order k − 1 of q, i.e.∫
K

q pk−1 dK for all pk−1 ∈ Pk−1(K).
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Figure 1. Degrees of freedom for k = 2, k = 3. We denote DV1 with the black dots, DV2 with
the red squares, DV3 with the green rectangles, DV4 with the blued dots inside the elements.
(Color online)

Since it is obvious that DQ is unisolvent with respect to QK
h , it only remains to prove the unisolvence of

DV. We first prove the following Lemma; we recall that all the differential operators are to be interpreted in
the weak sense.

Lemma 3.1. Let v ∈ VK
h such that DV1(v) = DV2(v) = DV4(v) = 0. Then

〈∇ϕ,v〉K = 0 for all ϕ ∈ L2(K). (3.11)

where, here and in the following, the brackets 〈, 〉K denote the duality pair between H1
0 (K)2 and its dual H−1(K)2.

Proof. It is clear that DV1(v) = DV2(v) = 0 implies v|∂K ≡ 0. Therefore v ∈ H1
0 (K) and it holds

〈∇ϕ,v〉K = −
∫

K

(div v)ϕdK.

Now, since v ∈ VK
h , there exists pk−1 ∈ Pk−1(K) such that div v = pk−1. Furthermore, by the divergence

Theorem, we infer that pk−1 ∈ Pk−1(K)/R. Since DV4(v) = 0, we get:∫
K

(div v)2 dK =
∫

K

div v pk−1 dK = 0.

Therefore, div v = 0 and (3.11) follows. �

We now prove the following result.

Proposition 3.2. The linear operators DV are a unisolvent set of degrees of freedom for the virtual space VK
h .

Proof. We start noting that the dimension of VK
h equals the number of functionals in DV and thus we only

need to show that if all the values DV(v) vanish for a given v ∈ VK
h , then v = 0. Since DV1(v) = DV2(v) = 0

implies v ≡ 0 on ∂K, we have v ∈ H1
0 (K). Therefore∫

K

ν ∇v : ∇v dK = −ν〈Δv,v〉K .

Moreover, since v ∈ VK
h , there exists a scalar function s ∈ L2(K) and g⊥

k−2 ∈ Gk−2(K)⊥, such that

ν Δv = −∇s − g⊥
k−2 in H−1(K)2.

Then ∫
K

ν ∇v : ∇v dK = 〈∇s,v〉K +
∫

K

g⊥
k−2 · v dK. (3.12)

The first term at the right-hand side is zero from Lemma 3.1, while the second term vanishes because of the
assumption DV3(v) = 0. Then DV(v) = 0 implies v = 0, and the proof is complete. �
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We now define the global virtual element spaces as

Vh := {v ∈ [H1
0 (Ω)]2 s.t v|K ∈ VK

h for all K ∈ Th} (3.13)

and
Qh := {q ∈ L2

0(Ω) s.t. q|K ∈ QK
h for all K ∈ Th}, (3.14)

with the obvious associated sets of global degrees of freedom. A simple computation shows that it holds:

dim(Vh) = nP

(
(k + 1)k

2
− 1 +

(k − 1)(k − 2)
2

)
+ 2(nV + (k − 1)nE) (3.15)

and

dim(Qh) = nP
(k + 1)k

2
− 1, (3.16)

where nP (resp., nE and nV ) is the number of elements (resp., internal edges and vertexes) in Th.
We also remark that

div Vh ⊆ Qh. (3.17)

Remark 3.3. The space Gk−2(K)⊥ that defines the degrees of freedom DV 3 can be replaced by any space
Gk−2(K)⊕ ⊆ [Pk−2(K)]2 that satisfies

[Pk−2(K)]2 = Gk−2(K) ⊕ Gk−2(K)⊕.

An example is given by the space Gk−2(K)⊕ := x⊥[Pk−3(K)]2 with x⊥ := (x2,−x1).

Remark 3.4. We have built a new H1-conforming (vector valued) virtual space for the velocity vector field,
different from the more standard one presented in [8] for the elasticity problem. In fact, the original approach
is to consider the local virtual space

ṼK
h :=

{
v ∈ [H1(K)]2 s.t v|∂K ∈ [Bk(∂K)]2 , ν Δv ∈ [Pk−2(K)]2

}
(3.18)

with local degrees of freedom D̃V:

• D̃V1: the values of v at each vertex of the polygon K,
• D̃V2: the values of v at k − 1 distinct points of every edge e ∈ ∂K,
• D̃V3: the moments of v up to order k − 2, i.e.∫

K

v · qk−2 dK for all qk−2 ∈ [Pk−2(K)]2.

It can be easily checked that, for all k, the dimension of the spaces (3.4) and (3.18) are the same. On the other
hand our local virtual space (3.4) is, in some sense, designed to solve a Stokes-like Problem element-wise, while
the virtual space in (3.18) is designed to solve a classical Laplacian problem. As shown in the following, although
both spaces can be used, the new choice (3.4) is better for the problem under consideration.

3.2. The discrete bilinear forms

We now define discrete versions of the bilinear form a(·, ·) (cf . (2.4)), and of the bilinear form b(·, ·) (cf . (2.5)).
For what concerns b(·, ·), we simply set

b(v, q) =
∑

K∈Th

bK(v, q) =
∑

K∈Th

∫
K

div v q dK for all v ∈ Vh, q ∈ Qh, (3.19)
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i.e. we do not introduce any approximation of the bilinear form. We notice that (3.19) is computable from the
degrees of freedom DV1, DV2 and DV4, since q is polynomial in each element K ∈ Th. The construction of a
computable approximation of the bilinear form a(·, ·) on the virtual space Vh is more involved. First of all, we
observe that ∀qk ∈ [Pk(K)]2 and ∀v ∈ VK

h , the quantity aK(qk,v) is exactly computable. Indeed, we have

aK(qk,v) =
∫

K

ν ∇qk : ∇v dK = −
∫

K

ν Δqk · v dK +
∫

∂K

(ν ∇qk n) · v ds. (3.20)

Since ν Δqk ∈ [Pk−2(K)]2, there exists a unique qk−1 ∈ Pk−1(K)/R and g⊥
k−2 ∈ G⊥

k−2(K), such that

ν Δqk = ∇qk−1 + g⊥
k−2. (3.21)

Therefore, we get

aK(qk,v) = −
∫

K

∇qk−1 · v dK −
∫

K

g⊥
k−2 · v dK +

∫
∂K

(ν ∇qk n) · v ds

=
∫

K

qk−1 div v dK −
∫

K

g⊥
k−2 · v dK +

∫
∂K

(ν ∇qk n − qk−1n) · v ds. (3.22)

The first term in the right-hand side is computable from DV4, the second term from DV3 and the boundary
term from DV1 and DV2. However, for an arbitrary pair (w,v) ∈ VK

h × VK
h , the quantity aK

h (w,v) is not
computable. We now define a computable discrete local bilinear form

aK
h (·, ·) : VK

h × VK
h → R (3.23)

approximating the continuous form aK(·, ·), and satisfying the following properties:

• k-consistency: for all qk ∈ [Pk(K)]2 and vh ∈ VK
h

aK
h (qk,vh) = aK(qk,vh); (3.24)

• stability: there exist two positive constants α∗ and α∗, independent of h and K, such that, for all vh ∈ VK
h ,

it holds
α∗a

K(vh,vh) ≤ aK
h (vh,vh) ≤ α∗aK(vh,vh). (3.25)

For all K ∈ Th, we introduce the energy projection operator Π∇,K
k : VK

h → [Pk(K)]2, defined by⎧⎨⎩ aK(qk,vh − Π∇,K
k vh) = 0 for all qk ∈ [Pk(K)]2,

P 0,K(vh − Π∇,K
k vh) = 0 ,

(3.26)

where P 0,K is the L2-projection operator onto the constant functions defined on K. It is immediate to check
that the energy projection is well defined. Moreover, it clearly holds Π∇,K

k qk = qk for all qk ∈ Pk(K).

Remark 3.5. Since aK(qk,vh) is computable (see Eq. (3.22) and the subsequent discussion), it follows that
the operator Π∇,K

k is computable in terms of the degrees of freedom DV as well.

As usual in the VEM framework, we now introduce a (symmetric) stabilizing bilinear form SK : VK
h ×VK

h →
R, that satisfies

c∗a
K(vh,vh) ≤ SK(vh,vh) ≤ c∗aK(vh,vh) for all vh ∈ Vh such that Π∇,K

k vh = 0. (3.27)

Above, c∗ and c∗ are two positive constants, independent of h and K.
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Then, we can set

aK
h (uh,vh) := aK

(
Π∇,K

k uh, Π∇,K
k vh

)
+ SK

(
(I − Π∇,K

k )uh, (I − Π∇,K
k )vh

)
(3.28)

for all uh,vh ∈ VK
h .

It is easy to see that Definition (3.26) and estimates (3.27) imply the consistency and the stability of the
bilinear form aK

h (·, ·).

Remark 3.6. Condition (3.27) essentially states that the stabilizing term SK(vh,vh) scales as aK(vh,vh).
We briefly sketch an example of this construction, that follows a standard VEM technique (cf . [7, 9] for more
details). Let us denote with v̄h, w̄h ∈ R

NK the vectors containing the values of the NK local degrees of freedom
associated to vh,wh ∈ VK

h . Then, we set

SK(vh,wh) = αK v̄T
h w̄h,

where αK is a suitable positive constant independent of the element size. For example, in the numerical tests
presented in Section 6, we have chosen αK as the mean value of the eigenvalues of the matrix stemming from
the term aK

(
Π∇,K

k vh, Π∇,K
k wh

)
, see (3.28).

Finally we define the global approximated bilinear form ah(·, ·) : Vh ×Vh → R by simply summing the local
contributions:

ah(uh,vh) :=
∑

K∈Th

aK
h (uh,vh) for all uh,vh ∈ Vh. (3.29)

3.3. Load term approximation

The last step consists in constructing a computable approximation of the right-hand side (f ,v) in (2.6). Let
K ∈ Th, and let Π0,K

k−2 : [L2(K)]2 → [Pk−2(K)]2 be the L2(K) projection operator onto the space [Pk−2(K)]2.
Then, we define the approximated load term fh as

fh := Π0,K
k−2f for all K ∈ Th, (3.30)

and consider:

(fh,vh) =
∑

K∈Th

∫
K

fh · vh dK =
∑

K∈Th

∫
K

Π0,K
k−2f · vh dK =

∑
K∈Th

∫
K

f · Π0,K
k−2vh dK. (3.31)

We observe that (3.31) can be exactly computed for all vh ∈ Vh. In fact, Π0,K
k−2vh is computable in terms of the

degrees of freedom DV: for all qk−2 ∈ [Pk−2(K)]2 we have∫
K

Π0,K
k−2vh · qk−2 dK =

∫
K

vh · qk−2 dK =
∫

K

vh · ∇qk−1 dK +
∫

K

vh · g⊥
k−2 dK

for suitable qk−1 ∈ Pk−1(K) and g⊥
k−2 ∈ Gk−2(K)⊥. As a consequence, we get∫

K

Π0,K
k−2vh · qk−2 dK = −

∫
K

div vh qk−1 dK +
∫

∂K

qk−1vh · n ds +
∫

K

vh · g⊥
k−2 dK,

and the right-hand side is directly computable from DV.
Furthermore, the following result concerning a H−1-type norm, can be proved using standard arguments [7].

Lemma 3.7. Let fh be defined as in (3.30), and let us assume f ∈ Hk−1(Ω). Then, for all vh ∈ Vh, it holds

|(fh − f ,vh)| ≤ Chk|f |k−1‖vh‖1.
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3.4. The discrete problem

We are now ready to state the proposed discrete problem. Referring to (3.19), (3.29) and (3.30)–(3.31), we
consider the virtual element problem:⎧⎪⎨⎪⎩

find (uh, ph) ∈ Vh × Qh, such that
ah(uh,vh) + b(vh, ph) = (fh,vh) for all vh ∈ Vh,
b(uh, qh) = 0 for all qh ∈ Qh.

(3.32)

By construction (see (3.25), (3.27) and (3.28)) the discrete bilinear form ah(·, ·) is (uniformly) stable with respect
to the V norm. Therefore, the existence and the uniqueness of the solution to problem (3.32) will follow if a
suitable inf-sup condition is fulfilled, which is the topic of Section 4.1.

We also remark that the second equation of (3.32), along with property (3.17), implies that the discrete
velocity uh ∈ Vh is exactly divergence-free. More generally, introducing the kernels:

Z := {v ∈ V s.t. b(v, q) = 0 for all q ∈ Q} (3.33)

and
Zh := {vh ∈ Vh s.t. b(vh, qh) = 0 for all qh ∈ Qh}, (3.34)

it is immediate to check that
Zh ⊆ Z. (3.35)

Remark 3.8. The method presented in this paper differs from the one studied in [8]. Indeed, the former scheme
leads to a discrete velocity solution which is exactly divergence-free (for every k, and every polytopal mesh),
while the latter leads to a discrete velocity solution which is divergence-free only weakly. Moreover, the numerical
results presented in Section 6 confirm that the two schemes are not equivalent.

Remark 3.9. We remark that our method, when using triangular or quadrilateral meshes, is different from
already-known finite element schemes. Focusing on the case k = 2 and triangular meshes, we now briefly compare
our VEM approach with the mixed finite element scheme employing the approximation couple (VFEM

h , Qh),
where

VFEM
h := {vh ∈ V : vh|K ∈ [P3(K) ∩ B2(∂K)]2, ∀K ∈ Th}. (3.36)

The above choice could be seen as a discontinuous pressure version of the lowest-order Hood–Taylor element,
stabilized by means of cubic bubble functions. We notice that dim(Vh) = dim(VFEM

h ), and that [P2(K)]2 ⊂
Vh∩VFEM

h for every K ∈ Th. Therefore, one could be tempted to infer that the two methods coincide. However,
for the VEM scheme it holds div Vh ⊆ Qh (in fact: div Vh = Qh, cf . (3.8)), while for the FEM scheme it holds
div Vh �⊆ Qh, because the divergence of a cubic bubble function is not a linear polynomial. This argument
shows that the two approaches are indeed different. Similar considerations apply for quadrilateral meshes and
for general k, in connection with the corresponding stabilized Hood–Taylor element using discontinuous pressure.

4. Theoretical results

We begin by proving an approximation result for the virtual local space Vh. First of all, let us recall a classical
result by Brenner–Scott (see [18]).

Lemma 4.1. Let K ∈ Th, then for all u ∈ [Hs+1(K)]2 with 0 ≤ s ≤ k, there exists a polynomial function
uπ ∈ [Pk(K)]2, such that

‖u− uπ‖0,K + hK |u − uπ|1,K ≤ Chs+1
K |u|s+1,K . (4.1)

We have the following proposition.
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Proposition 4.2. Let u ∈ V ∩ [Hs+1(Ω)]2 with 0 ≤ s ≤ k. Under the assumption (A1) and (A2) on the
decomposition Th, there exists uI ∈ Vh such that

‖u− uI‖0,K + hK |u− uI |1,K ≤ Chs+1
K |u|s+1,D(K) (4.2)

where C is a constant independent of h, and D(K) denotes the “diamond” of K, i.e. the union of the polygons
in Th intersecting K.

Proof. The proof follows the guidelines of Proposition 4.2 in [40]. For each polygon K ∈ Th, let us consider the
triangulation T K

h of K obtained by joining each vertex of K with the center of the ball with respect to which
K is star-shaped. Set now T̂h :=

⋃
K∈Th

T K
h , which is a triangular decomposition of the domain Ω.

Let uc be the Clément interpolant of order k of the function u, relative to the triangular decomposition T̂h

(see [26]). Then uc ∈ [H1(Ω)]2 and it holds

‖u− uc‖0,K + hK |u − uc|1,K ≤ Chs+1
K |u|s+1,D(K). (4.3)

Let, for each polygon K, uπ be the polynomial approximation of u as in Lemma 4.1. Then we have:

ν Δuπ = ∇pπ + g⊥
π , (4.4)

for suitable pπ ∈ Pk−1(K) and g⊥
π ∈ Gk−2(K)⊥. Let pc := Π0,K

k−1(div uc) for all K ∈ Th. We introduce the
following local Stokes problem ⎧⎪⎨⎪⎩

− ν ΔuI −∇s = −g⊥
π in K,

div uI = pc in K,
uI = uc on ∂K.

(4.5)

It is straightforward to check that uI ∈ VK
h . Furthermore, since uI = uc on each boundary ∂K, uI ∈ [H1(Ω)]2.

We infer that uI ∈ Vh. We now prove that uI satisfies estimate (4.2). We consider the following auxiliary local
Stokes problem ⎧⎪⎨⎪⎩

− ν Δ ũ−∇s̃ = −g⊥
π in K,

div ũ = div uc in K,
ũ = uc on ∂K.

(4.6)

By (4.6) and (4.4), we get ⎧⎪⎨⎪⎩
− ν Δ(uπ − ũ) −∇(−pπ − s̃) = 0 in K,
div (uπ − ũ) = div (uπ − uc) in K,
uπ − ũ = uπ − uc on ∂K.

(4.7)

Therefore we get

|uπ − ũ|1,K = inf{|z|1,K : z ∈ [H1(K)]2, div z = div (uπ − uc) and z = uπ − uc on ∂K}.

Choosing z = uπ − uc, by Lemma 4.1 and estimates (4.1) and (4.3), we obtain

|uπ − ũ|1,K ≤ |uπ − uc|1,K ≤ |uπ − u|1,K + |u − uc|1,K ≤ C hs
K |u|s+1,D(K). (4.8)

Subtracting (4.5) from (4.6), we have⎧⎪⎨⎪⎩
− ν Δ(ũ − uI) −∇(s̃ − s) = 0 in K,

div (ũ− uI) = div uc − pc in K,
ũ− uI = 0 on ∂K.
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Using the standard theory of saddle point problems (see for instance [16]), we get

|ũ− uI |1,K ≤ 1
β(K)

(
1 +

‖aK‖
αK

)
‖div uc − pc‖0,K

where β(K) is the inf-sup constant on the polygon K (cf . (2.7)) and ‖aK‖ and αK denote respectively the
norm and the coercivity constant of aK(·, ·). It is straightforward to check that

‖aK‖ = ν and αK ≥ ν

1 + h2
K

·

Therefore, recalling that pc := Π0,K
k−1(div uc), using first the triangle inequality, then estimate (4.3) and standard

estimates, we have

|ũ − uI |1,K ≤ 2 + h2
K

β(K)

(∥∥∥(I − Π0,K
k−1) (div u − div uc)

∥∥∥
0,K

+
∥∥∥(I − Π0,K

k−1) div u
∥∥∥

0,K

)
≤ C

β(K)
(‖div(u − uc)‖0,K + hs

K |div u|s,K)

≤ C

β(K)
(|u− uc|1,K + hs

K |u|s+1,K) ≤ C

β(K)
hs

K |u|s+1,D(K).

By assumption (A1) and using the results in [30, 32], the inf-sup constant β(K) is uniformly bounded from
below: there exists c > 0, independent of h, such that β(K) ≥ c for all K ∈ Th. Therefore, it holds

|ũ− uI |1,K ≤ C hs
K |u|s+1,D(K). (4.9)

The triangle inequality together with estimates (4.1), (4.8) and (4.9), give

|u − uI |1,K ≤ |u− uπ|1,K + |uπ − ũ|1,K + |ũ− uI |1,K ≤ Chs
K |u|s+1,D(K) (4.10)

Furthermore, for each polygon K ∈ Th, we have that uI − uc = 0 on ∂K, see (4.5). Hence, it holds

‖uI − uc‖0,K ≤ C hK |uI − uc|1,K .

Therefore, we get

‖u− uI‖0,K ≤ ‖u− uc‖0,K + ‖uc − uI‖0,K ≤ C
(
hs+1

K |u|s+1,D(K) + hK |uI − uc|1,K

)
≤
(
hs+1

K |u|s+1,D(K) + hK |u − uI |1,K + hK |u − uc|1,K

)
≤ C hs+1

K |u|s+1,D(K). (4.11)

From (4.10) and (4.11), we infer estimate (4.2). �

4.1. A stability result: The inf-sup condition

The aim of this section is to prove that the following inf-sup condition holds.

Proposition 4.3. Given the discrete spaces Vh and Qh defined in (3.13) and (3.14), there exists a positive β̃,
independent of h, such that:

sup
vh∈Vh vh �=0

b(vh, qh)
‖vh‖1

≥ β̃‖qh‖Q for all qh ∈ Qh. (4.12)
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Proof. We only sketch the proof, because it essentially follows the guidelines of Theorem 3.1 in [8]. Since the
continuous inf-sup condition (2.7) is fulfilled, it is sufficient to construct a linear operator πh : V → Vh, satisfying
(see [16]): {

b(πhv, qh) = b(v, qh) ∀v ∈ V, ∀ qh ∈ Qh,

‖πhv‖1 ≤ cπ‖v‖1 ∀v ∈ V,
(4.13)

where cπ is a positive h-independent constant. Given v ∈ V, recalling that k ≥ 2 (cf . (3.4)), using arguments
borrowed from [8], and considering the VEM interpolant vI presented in Proposition 4.2, we first construct
v̄h ∈ Vh such that

b(v − v̄h, q̄h) = 0 ∀ q̄h piecewise constant function in Th

and

‖v − v̄h‖1 ≤ C‖v‖1 ∀v ∈ V. (4.14)

Next, we build a “bubble” function ṽh ∈ Vh, locally defined as follows. Given K ∈ Th, we set all the degrees
of freedom DV1, DV2 and DV3 equal to zero, while we set the degrees of freedom DV4 imposing

bK(ṽh, qk) = bK(v − v̄h, qk) ∀ qk ∈ Pk−1(K). (4.15)

It holds:

‖ṽh‖1 ≤ C‖v − v̄h‖1 ≤ C‖v‖1. (4.16)

Now we set

πhv := v̄h + ṽh for all v ∈ V.

By (4.15), we have

b(v − πhv, qh) = b(v − v̄h, qh) − b(ṽh, qh) = 0 for all qh ∈ Qh,

and combining (4.14) and (4.16), we get

‖πhv‖1 = ‖v̄h + ṽh‖1 ≤ ‖v̄h − v‖1 + ‖v‖1 + ‖ṽh‖1 ≤ C‖v‖1. �

An immediate consequence of the previous result is the following Theorem.

Theorem 4.4. Problem (3.32) has a unique solution (uh, ph) ∈ Vh × Qh, verifying the estimate

‖uh‖1 + ‖ph‖Q ≤ C‖f‖0.

Moreover, the inf-sup condition of Proposition 4.3, along with property (3.17), implies that:

div Vh = Qh. (4.17)

Remark 4.5. An analogous result of Proposition 4.3 is shown in [8], where the discrete inf-sup condition is
detailed for the virtual local spaces defined in Remark 3.4. Therefore, as already observed, also the spaces of [8]
could be directly used as a stable pair for the Stokes problem. On the other hand, the choice in [8] would not
satisfy condition (3.35) and thus the discrete solution would not be divergence free. Moreover, such spaces would
not share the interesting property to be equivalent to a suitable reduced problem (cf . Sect. 5).
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4.2. A convergence result

We begin by remarking that, using Proposition 4.2 and classical approximation theory, for v ∈ [Hk+1(Ω)]2

and q ∈ Hk(Ω) it holds
inf

vh∈Vh

‖v − vh‖1 ≤ Chk|v|k+1 (4.18)

and
inf

qh∈Qh

‖q − qh‖Q ≤ Chk|q|k. (4.19)

We now notice that, if u ∈ V is the velocity solution to problem (2.6), then it is the solution to problem (cf .
also (3.33)): {

find u ∈ Z

a(u,v) = (f ,v) for all v ∈ Z.
(4.20)

Analogously, if uh ∈ Vh is the velocity solution to problem (3.32), then it is the solution to Problem (cf .
also (3.34)): {

find uh ∈ Zh

ah(uh,vh) = (fh,vh) for all vh ∈ Zh,
(4.21)

Recalling (3.35), problem (4.21) can be seen as a standard virtual approximation of the elliptic problem (4.20).
Furthermore, given z ∈ Z, the inf-sup condition (4.12) implies (see for instance the book [16], Prop. 5.1.3,
p. 273):

inf
zh∈Zh

||z − zh||1 ≤ C inf
vh∈Vh

||z − vh||1,

which essentially means that Z is approximated by Zh with the same accuracy order of the whole subspace Vh.
As a consequence, usual VEM arguments (for instance, as in [7]) and (4.18) lead to the following result.

Theorem 4.6. Let u ∈ Z be the solution of problem (4.20) and uh ∈ Zh be the solution of problem (4.21).
Then

‖u− uh‖1 ≤ Chk (|f |k−1 + |u|k+1) .

We proceed by analysing the error on the pressure field. We are ready to prove the following error estimates
for the pressure approximation.

Theorem 4.7. Let (u, p) ∈ V × Q be the solution of problem (2.6) and (uh, ph) ∈ Vh × Qh be the solution of
problem (3.32). Then it holds:

‖p− ph‖Q ≤ Chk (|f |k−1 + |u|k+1 + |p|k) . (4.22)

Proof. Let qh ∈ Qh. From the discrete inf-sup condition (4.12), we infer:

β̃‖ph − qh‖Q ≤ sup
vh∈Vh vh �=0

b(vh, ph − qh)
‖vh‖1

= sup
vh∈Vh vh �=0

b(vh, ph − p) + b(vh, p − qh)
‖vh‖1

· (4.23)

Since (u, p) and (uh, ph) are the solution of (2.6) and (3.32), respectively, it follows that

a(u,vh) + b(vh, p) = (f ,vh) for all vh ∈ Vh,

ah(uh,vh) + b(vh, ph) = (fh,vh) for all vh ∈ Vh.

Therefore, we get

b(vh, ph − p) = (fh − f ,vh) + (a(u,vh) − ah(uh,vh)) =: μ1(vh) + μ2(vh) for all vh ∈ Vh. (4.24)
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The term μ1(vh) can be bounded by making use of Lemma 3.7:

|μ1(vh)| ≤ Chk|f |k−1‖vh‖1. (4.25)

For the term μ2(vh), using (3.24) and the continuity of ah(·, ·) and the triangle inequality, we get:

μ2(vh) = a(u,vh) − ah(uh,vh) =
∑

K∈Th

(
aK(u,vh) − aK

h (uh,vh)
)

=
∑

K∈Th

(
aK(u− uπ,vh) + aK

h (uπ − uh,vh)
)

≤
∑

K∈Th

C
(
|u− uπ|1,K + |(uπ − uh)

)
|vh|1,K

≤
∑

K∈Th

C
(
|u− uπ|1,K + |u− uh|1,K

)
|vh|1,K

where uπ is the piecewise polynomial of degree k defined in Lemma 4.1. Then, from estimate (4.1) and Theo-
rem 4.6, we obtain

|μ2(vh)| ≤ Chk (|f |k−1 + |u|k+1) ‖vh‖1. (4.26)

Then, combining (4.25) and (4.26) in (4.24), we get

|b(vh, ph − p)| ≤ Chk (|f |k−1 + |u|k+1) ‖vh‖1. (4.27)

Moreover, we have
|b(vh, p − qh)| ≤ C‖p − qh‖Q‖vh‖1. (4.28)

Then, using (4.27) and (4.28) in (4.23), we infer

‖ph − qh‖Q ≤ Chk (|f |k−1 + |u|k+1) + C‖p − qh‖Q. (4.29)

Finally, using (4.29) and the triangular inequality, we get

‖p − ph‖Q ≤ ‖p− qh‖Q + ‖ph − qh‖Q ≤ Chk (|f |k−1 + |u|k+1) + C‖p − qh‖Q ∀ qh ∈ Qh.

Passing to the infimum with respect to qh ∈ Qh, and using estimate (4.19), we obtain (4.22). �

5. Reduced spaces and reduced problem

In this section we show that problem (3.32) is equivalent to a suitable reduced problem (cf . Prop. 5.1),
involving significantly fewer degrees of freedom, especially for large k. Let us define the reduced local virtual
spaces, for k ≥ 2:

V̂K
h :=

{
v ∈ [H1(K)]2 s.t v|∂K ∈ [Bk(∂K)]2,

{ − ν Δv −∇s ∈ Gk−2(K)⊥,

divv ∈ P0(K),
for some s ∈ H1(K)

}
(5.1)

and
Q̂K

h := P0(K). (5.2)
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Figure 2. Degrees of freedom for k = 2, k = 3. We denote D̂V1 with the black dots, D̂V2
with the red squares, D̂V3 with the green rectangles. (Color online)

Moreover, we have:

dim
(
V̂K

h

)
= dim

(
[Bk(∂K)]2

)
+ dim

(
Gk−2(K)⊥

)
= 2nKk +

(k − 1)(k − 2)
2

, (5.3)

and
dim(Q̂K

h ) = dim(P0(K)) = 1, (5.4)

where nK is the number of edges in ∂K. As sets of degrees of freedom for the reduced spaces, we may consider
the following.

For every function v ∈ V̂K
h we take the following linear operators D̂V, split into three subsets (see Fig. 2):

• D̂V1: the values of v at each vertex of the polygon K,
• D̂V2: the values of v at k − 1 distinct points of every edge e ∈ ∂K,
• D̂V3: the moments of v ∫

K

v · g⊥
k−2 dK for all g⊥

k−2 ∈ Gk−2(K)⊥.

For every q ∈ Q̂h we consider

• D̂Q: the moment ∫
K

q dK.

We define the global reduced virtual element spaces by setting

V̂h := {v ∈ [H1
0 (Ω)]2 s.t v|K ∈ V̂K

h for all K ∈ Th} (5.5)

and
Q̂h := {q ∈ L2

0(Ω) s.t. q|K ∈ Q̂K
h for all K ∈ Th}. (5.6)

It is easy to check that

dim(V̂h) = nP
(k − 1)(k − 2)

2
+ 2(nV + (k − 1)nE) (5.7)

and
dim(Q̂h) = nP − 1 (5.8)

where we recall that nP is the number of elements in Th, nE and nV are respectively the number of internal
edges and internal vertexes in the decomposition.
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The reduced virtual element discretization of the Stokes problem (2.6) is then:⎧⎪⎪⎨⎪⎪⎩
find ûh ∈ V̂h and p̂h ∈ Q̂h, such that

ah(ûh, v̂h) + b(v̂h, p̂h) = (fh, v̂h) for all v̂h ∈ V̂h,

b(ûh, q̂h) = 0 for all q̂h ∈ Q̂h.

(5.9)

Above, the bilinear forms ah(·, ·) and b(·, ·), and the loading term fh are the same as before, see (3.29), (3.19)
and (3.30). It is easily seen that all the terms involved in (5.9) are computable by means of the new reduced
degrees of freedom. For example, to compute (fh, v̂h) one needs to compute Π0,K

k−2v̂h, see (3.31). However, for
any qk−2 ∈ [Pk−2(K)]2 we have:∫

K

Π0,K
k−2v̂h · qk−2 dK =

∫
K

v̂h · qk−2 dK =
∫

K

v̂h · ∇qk−1 dK +
∫

K

v̂h · g⊥
k−2 dK

for suitable qk−1 ∈ Pk−1(K) and g⊥
k−2 ∈ Gk−2(K)⊥. Then, since div v̂h ∈ P0(K), denoting with |K| the area of

K, we get∫
K

Π0,K
k−2v̂h · qk−2 dK = −

∫
K

div v̂h qk−1 dK +
∫

∂K

qk−1v̂h · n ds +
∫

K

v̂h · g⊥
k−2 dK

= −|K|−1

(∫
∂K

v̂h · n ds

)∫
K

qk−1 dK +
∫

∂K

qk−1v̂h · n ds +
∫

K

v̂h · g⊥
k−2 dK

whose right-hand side is directly computable from D̂V.
In addition, using the same techniques of Proposition 4.3 (take πhv = v̄h in the proof), one can prove that

∃ β̂ > 0 such that sup
v̂h∈V̂h v̂h �=0

b(v̂h, q̂h)
‖v̂h‖1

≥ β̂‖q̂h‖Q for all q̂h ∈ Q̂h. (5.10)

The following proposition states the relation between problem (3.32) and the reduced problem (5.9).

Proposition 5.1. Let (uh, ph) ∈ Vh × Qh be the solution of problem (3.32) and (ûh, p̂h) ∈ V̂h × Q̂h be the
solution of problem (5.9). Then

ûh = uh and p̂h|K = Π0,K
0 ph for all K ∈ Th. (5.11)

Proof. Let
Ẑh := {v̂h ∈ V̂h s.t. b(v̂h, q̂h) = 0 for all q̂h ∈ Q̂h}.

Then ûh solves (cf . (4.21)): {
find ûh ∈ Ẑh

ah(ûh, v̂h) = (fh, v̂h) for all v̂h ∈ Ẑh.
(5.12)

We now notice that Ẑh = Zh, see (3.34). Therefore, problem (5.12) is equivalent to problem (4.21) and
ûh = uh.

For the pressure component of the solution, from (3.32) and (5.9), we get

b(vh, ph) = (fh,vh) − ah(uh,vh) for all vh ∈ Vh (5.13)

b(v̂h, p̂h) = (fh, v̂h) − ah(ûh, v̂h) for all v̂h ∈ V̂h. (5.14)
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Table 1. Percentage saving of DoFs in the reduced problem with respect the original one.

k = 2 k = 3 k = 4 k = 5

Vh

h = 1/4 34.408% 43.715% 48.484% 51.494%
h = 1/8 30.260% 39.506% 44.547% 47.863%
h = 1/16 28.460% 37.624% 42.753% 46.185%
h = 1/32 27.634% 36.749% 41.911% 45.392%

Th

h = 1/2 49.230% 56.737% 59.751% 61.369%
h = 1/4 47.761% 55.427% 58.616% 60.377%
h = 1/8 45.937% 53.889% 57.314% 59.253%
h = 1/16 45.171% 53.243% 56.767% 58.780%

Qh

h = 1/4 43.835% 52.287% 56.031% 58.181%
h = 1/8 39.875% 48.706% 52.892% 55.411%
h = 1/16 38.066% 47.041% 51.417% 54.098%
h = 1/32 37.202% 46.238% 50.701% 53.458%

Let ph =: p0 + p⊥, where p0|K = Π0,K
0 ph for all K ∈ Th, and p⊥ := ph − p0 (hence

∫
K p⊥ dK = 0). From (5.13),

we have
b(vh, p0 + p⊥) = (fh,vh) − ah(uh,vh) for all vh ∈ Vh.

Since V̂h ⊆ Vh, we deduce

b(v̂h, p0) + b(v̂h, p⊥) = (fh, v̂h) − ah(uh, v̂h) for all v̂h ∈ V̂h.

Now, b(v̂h, p⊥) = 0 because div v̂h is constant on each polygon K. We conclude that

b(v̂h, p0) = (fh, v̂h) − ah(uh, v̂h) for all v̂h ∈ V̂h. (5.15)

From (5.15) and recalling that uh = ûh, we get that (ûh, p0) ∈ V̂h × Q̂h solves problem (5.9). Uniqueness of
the solution of problem (5.9) then implies p̂h|K = p0|K for every K, and (5.11) is proved. �

Remark 5.2. Proposition 5.1 allows us to solve the Stokes problem (2.6) directly by making use of the reduced
problem (5.9), saving nP ((k+1)k−2) degrees of freedom, see (3.15), (3.16), (5.7) and (5.8). In Table 1 we display
this quantity (with respect the total amount of the original DoFs) for the sequences of meshes introduced in
Section 6 with k = 2, 3, 4, 5 in order to have an estimate of the saving in the reduced linear system with respect
its original size.

In addition, we remark that Proposition 5.1 holds not only when homogeneous Dirichlet conditions are applied
on the whole boundary, but also for other (possibly non-homogeneous) boundary conditions, as numerically
shown in Section 6. We finally note that another method with high order precision but piecewise constant
pressure can be found in [37].

Remark 5.3. It is possible to give an alternative proof of Proposition 5.1 directly in terms of the associated
linear system (see [13]). Furthermore, it is also possible to implement the “reduced” problem (5.9) by coding the
“complete” Stokes problem (3.32) and locally removing the rows and the columns relative to the extra degrees
of freedom.

Remark 5.4. Given the solution of (5.9), if one is interested in a more accurate pressure, the discrete scalar
field ph can be recovered by an element-wise post-processing procedure. Such local problems can be, for instance,
immediately extracted from the removed rows and columns mentioned in Remark 5.3.
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Figure 3. Example of polygonal meshes: V1/32, T1/16, Q1/32, W1/20.

6. Numerical tests

In this section we present two numerical experiments to test the actual performance of the method. In the first
test we compare the reduced method introduced in Section 5 with the method presented in [8] (cf . Rem. 3.4).
In the second experiment we investigate numerically the equivalence proved in Proposition 5.1, considering the
more general case of non-homogeneous boundary conditions.

Before proceeding, we first recall that the VEM solution uh is not explicitly known point-wise inside the
elements. Therefore, the method error is not computable even when the analytical solution u is available. As
usual in the VEM framework, we then compute the method error comparing u with a suitable polynomial
projection of uh. To this end, for a given element K ∈ Th and k ≥ 2, we now introduce the tensor-valued
L2-projection operator Π0,K

k−1 : [L2(K)]2×2 → [Pk−1(K)]2×2, defined by∫
K

(
A− Π0,K

k−1A
)

: Pk−1 dx = 0 for all A ∈ [L2(Ω)]2×2 and Pk−1 ∈ [Pk−1(K)]2×2. (6.1)

Following a similar argument as in Section 3.2, it is easy to derive that for every vh in Vh (resp. in
V̂h), Π0,K

k−1 ∇vh is exactly computable using the DoFs DV (resp. D̂V). Similar arguments allow to compute
Π0,K

k−1 ∇vh for all vh in the virtual space Ṽh using the DoFs D̃V (see Rem. 3.4).
Regarding the computational domain, in our tests we always take the square domain Ω = [0, 1]2, which is

partitioned using the following sequences of polygonal meshes:

• {Vh}h: sequence of Voronoi meshes with h = 1/4, 1/8, 1/16, 1/32,
• {Th}h: sequence of triangular meshes with h = 1/2, 1/4, 1/8, 1/16,
• {Qh}h: sequence of square meshes with h = 1/4, 1/8, 1/16, 1/32.
• {Wb}h: sequence of WEB-like meshes with h = 4/10, 2/10, 1/10, 1/20.

An example of the adopted meshes is shown in Figure 3. For the generation of the Voronoi meshes we used the
code Polymesher [48]. The WEB-like meshes are composed by hexagons, generated starting from the triangular
meshes {Th}h and randomly displacing the midpoint of each (non boundary) edge. In the tests we set ν = 1.

Test 6.1. In this example, we apply homogeneous boundary conditions on the whole ∂Ω, and we choose the
load term f in such a way that the analytical solution is

u(x, y) =

(
− 1

2 cos2(x) cos(y) sin(y)
1
2 cos2(y) cos(x) sin(x)

)
p(x, y) = sin(x) − sin(y).

We make use of the projection operator in (6.1) and consider the error quantities:

δ(u) :=

( ∑
K∈Th

∥∥∥∇u − Π0,K
k−1(∇ uh)

∥∥∥2

0,K

)1/2

and δ(p) := ‖p− ph‖0. (6.2)
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Figure 4. Test 6.1: Behaviour of δ(u) and δ(p) for the sequence of meshes Vh with k = 2.
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Figure 5. Test 6.1: Behaviour of δ(u) and δ(p) for the sequence of meshes Vh with k = 3.

We compare two different methods, by studying δ(u) and δ(p) versus the total number of degrees of freedom
NDoFs. The first method is the reduced scheme of Section 5 (labeled as “new”), with the post-processed pressure
of Remark 5.4. The second method is the scheme of [8] extended to the Stokes problem (see Rems. 3.4 and 4.5),
labeled as “classic”. In both cases we consider polynomial degrees k = 2, 3.

In Figures 4 and 5, we display the results for the sequence of Voronoi meshes Vh. In Figures 6 and 7, we
show the results for the sequence of meshes Th, while in Figures 8 and 9 we plot the results for the sequence of
meshes Qh, finally in Figures 10 and 11 we exhibit the results for the sequence of meshes Wh.

We notice that the theoretical predictions of Sections 4 and 5 are confirmed (noticed that the method error and
Ndof behave like hk and h−2, respectively). Moreover, we observe that the reduced method exhibit significant
smaller errors than the standard method, at least for this example and with the adopted meshes.
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Figure 6. Test 6.1: Behaviour of δ(u) and δ(p) for the sequence of meshes Th with k = 2.
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Figure 7. Test 6.1: Behaviour of δ(u) and δ(p) for the sequence of meshes Th with k = 3.

Test 6.2. In this example we choose the load term f and the non-homogeneous polynomial Dirichlet boundary
conditions in such a way that the analytical solution is

u(x, y) =
(

y4 + 1
x4 + 2

)
p(x, y) = x3 − y3.

The aim of this test is to check numerically the results of Proposition 5.1; in order to be more general, we
consider the case of non-homogeneous boundary conditions. Let (uh, ph) be the solution of problem (3.32) and
(ûh, p̂h) be the solution of problem (5.9). As a measure of discrepancy between the two solutions, we introduce
the error quantities

ε(u) :=

( ∑
K∈Th

∥∥∥Π0,K
k−1∇(uh − ûh)

∥∥∥2

0,K

)1/2

ε(p) :=

( ∑
K∈Th

∥∥∥Π0,K
0 ph − p̂h

∥∥∥2

0,K

)1/2

.

In Table 2 we display the values of ε(u) and ε(p) for the family of meshes Vh, Th and Qh, choosing k = 2, 3.



530 L. BEIRÃO DA VEIGA ET AL.

10
2

10
3

10
4

10
−4

10
−3

10
−2

N
DoFs

δ(
u)

 

 

10
2

10
3

10
4

10
−4

10
−3

10
−2

N
DoFs

δ(
p)

 

 

new
classic

new
classic

1

1

1

1

Figure 8. Test 6.1: Behaviour of δ(u) and δ(p) for the sequence of meshes Qh with k = 2.
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Figure 9. Test 6.1: Behaviour of δ(u) and δ(p) for the sequence of meshes Qh with k = 3.
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Figure 10. Test 6.1: Behaviour of δ(u) and δ(p) for the sequence of meshes Wh with k = 2.
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Figure 11. Test 6.1: Behaviour of δ(u) and δ(p) for the sequence of meshes Wh with k = 3.

Table 2. Test 6.2: ε(u) and ε(p) for the meshes Vh, Th, Qh, Wh with k = 2, 3.

k = 2 k = 3

ε(u) ε(p) ε(u) ε(p)

Vh

h = 1/4 1.8366063e−13 1.2397027e−13 9.9584405e−12 9.5750683e−13

h = 1/8 5.6291757e−13 1.7037760e−13 1.0257081e−11 6.4888535e−13

h = 1/16 1.5395183e−12 5.3823612e−13 1.2017070e−11 1.5761308e−12

h = 1/32 3.5162644e−12 5.2896229e−13 2.7289064e−11 9.7059278e−12

Th

h = 1/2 1.6148091e−13 2.7158830e−14 5.3139688e−12 9.5716694e−13

h = 1/4 4.1349069e−13 6.9691214e−14 9.1204063e−11 4.8537564e−13

h = 1/8 1.3353440e−12 1.0109968e−13 2.7989324e−11 8.0028046e−12

h = 1/16 3.1038037e−12 2.3636051e−13 2.4258164e−11 1.4188633e−11

Qh

h = 1/4 1.6747387e−13 8.0270859e−14 8.0510701e−12 2.1761282e−13

h = 1/8 4.3127288e−13 1.7217954e−13 2.9673107e−12 1.5735525e−13

h = 1/16 1.0294053e−12 2.2290502e−13 4.2024937e−12 7.9220732e−13

h = 1/32 2.4711285e−12 2.4074145e−13 7.6167571e−12 5.9492426e−13

Wh

h = 4/10 9.1587957e−13 7.5286364e−14 1.6072996e−11 1.0673512e−13

h = 2/10 1.3107628e−12 1.1154735e−13 1.2916868e−11 2.8184370e−13

h = 1/10 4.0885427e−12 3.8760675e−13 5.2532025e−11 7.5670394e−13

h = 1/20 7.2877771e−12 6.6196792e−13 8.4382876e−11 1.6915676e−12

Since the values of ε(u) and ε(p) are numerically negligible, we infer that the results of Proposition 5.1 are
satisfied also in this case of non-homogeneous Dirichlet boundary conditions. Moreover we have also checked
the maximum velocity error at all nodes of the mesh skeleton

max
v∈Vh

‖uh(v) − ûh(v)‖,

obtaining extremely small errors as well.
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Appendix. The three-dimensional case

The aim of this section is to present a brief discussion about the extension of the proposed method to the
three-dimensional case, taking advantage of the ideas developed for the two dimensional case combined with
the construction in [1].

Let { Th }h be a sequence of decompositions of Ω into general polyhedral elements K. We assume that for all
h, each element K ∈ Th fulfills the following assumptions. There exists a positive constant γ such that:

• (A13D) K is star-shaped with respect to a sphere of radius ≥ γ hK , and every face f of K is star-shaped
with respect to a ball of radius ≥ γ hf ,

• (A23D) for every face f of K and for every edge e of f , it holds that

he ≥ γ hf ≥ γ2 hK ,

where hf (resp. he) denotes the diameter of the face f (resp. the length of the edge e).
Let K in Th. For every face f ∈ ∂K we define the augmented virtual local-face space W̃f

h

W̃f
h =

{
w ∈ [H1(f)]3 s.t. w|∂f ∈ [Bk(∂f)]3, Δw ∈ [Pk(f)]3

}
.

We now define the enhanced Virtual Element-face space Wf
h as

Wf
h :=

{
w ∈ W̃f

h s.t.
(
w − Π∇,f

k w, q
)

L2(f)
= 0 for all q ∈ [Pk(f)/Pk−2(f)]3

}
. (A.1)

Above, Pk(f)/Pk−2(f) denotes the polynomials of degree ≤ k defined on f , that are L2(f)−orthogonal to all
the polynomials of degree ≤ k − 2. Furthermore, Π∇,f

k is the (face) energy projection operator analog to the
one defined in (3.26). We also define the Virtual Element-boundary space Wh(∂K) as

Wh(∂K) :=
{
w ∈ [C0(∂K)]3 s.t. w|f ∈ Wf

h for all face f ∈ ∂K
}

. (A.2)

The boundary space above is the vector-valued analog of the scalar-valued space introduced in [1] (more precisely,
equation (26) of [1]). The present space is instead different inside the element, as shown below. We define the
following finite dimensional local virtual spaces:

VK
h :=

{
v ∈ [H1(K)]3 s.t v|∂K ∈ Wh(∂K),

{ − ν Δv −∇s ∈ Gk−2(K)⊥,

div v ∈ Pk−1(K),
for some s ∈ L2(K)

}
.

(A.3)

Above, Gk−2(K)⊥ is the 3D analog of the corresponding space introduced in Section 3.1. Given a function
v ∈ VK

h we take the following linear operators DV
3D, collected into five subsets:

• DV13D: the values of v at the vertices of the polygon K,
• DV23D: the values of v at k − 1 distinct points of every edge e in K,
• DV33D: the moments up to order k − 2 of v of every face f in K, i.e.∫

f

v · qk−2 df for all qk−2 ∈ [Pk−2(f)]3,

• DV43D: the moments of v ∫
K

v · g⊥
k−2 dK for all g⊥

k−2 ∈ Gk−2(K)⊥,
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• DV53D: the moments up to order k − 1 and greater than zero of div v in K, i.e.∫
K

(div v) qk−1 dK for all qk−1 ∈ Pk−1(K)/R.

Combining the arguments in [1] and the results of Section 3 concerning the bi-dimensional case, it can be proved
that:

• (P1): the linear operators DV
3D are a set of degrees of freedom for the space Vk

h,
• (P2): the linear operators DV13D, DV23D, DV33D allow to compute∫

f

v · qk df

for all qk ∈ [Pk(f)]3, for all v ∈ VK
h , and for all face f ∈ ∂K.

For the pressure field, we take the three-dimensional analog to the space and DoFs of the bi-dimensional case
(polynomials of degree k − 1 inside the element).

Once the above spaces have been selected, the method design in the 3D setting follows the lines of
Sections 3.2–3.4 verbatim. The divergence-free property of the discrete solution and, more generally, prop-
erty (3.35), still hold true.

As far as the inf-sup condition is concerned, the same arguments in the proof of Proposition 4.3 can be
applied for the three-dimensional case, as well. Indeed, recalling that k ≥ 2, we observe that the 3D velocity
approximation space has enough degrees of freedom on each face and in the interior of the polyhedra, to perform
the construction of the operator πh introduced in Proposition 4.3. It is beyond the scope of the present paper
to show the details of such construction.
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