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MIXED FINITE ELEMENT METHODS FOR LINEAR ELASTICITY
AND THE STOKES EQUATIONS BASED ON THE HELMHOLTZ

DECOMPOSITION ∗

Mira Schedensack1

Abstract. This paper introduces new mixed finite element methods (FEMs) of degree ≥1 for the
equations of linear elasticity and the Stokes equations based on Helmholtz decompositions. These
FEMs are robust with respect to the incompressible limit and also allow for mixed boundary conditions.
Adaptive algorithms driven by efficient and reliable residual-based error estimators are introduced and
proved to converge with optimal rate in the case of the Stokes equations with pure Dirichlet boundary.
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1. Introduction

Given the simply connected, bounded, polygonal Lipschitz domain Ω ⊆ R2 with closed Dirichlet boundary
ΓD and Neumann boundary ΓN = ∂Ω \ ΓD and the volume force f ∈ L2(Ω; R2), the Navier−Lamé equations
of linear elasticity seek the displacement u ∈ H1(Ω; R2) and the stress σ ∈ H(div, Ω; R2×2) with

− div σ = f in Ω,
σ = Cε(u) in Ω,

(σν)|ΓN = 0 on ΓN ,

u = 0 on ΓD.

(1.1)

The linear Green strain is defined by ε(u) := (Du+Du�)/2 and the fourth-order elasticity tensor acts as CA =
2μA + λtr(A)I2×2 for Lamé parameters μ > 0 and λ > 0. In contrast to the Poisson problem, discretizations
of these equations have to deal with two difficulties. First, for almost incompressible materials, i.e., λ → ∞,
standard primal low order conforming finite element methods (FEMs) exhibit the so-called locking behaviour,
i.e., the approximation properties in the energy norm suffer from a large preasymptotic regime. Second, the
symmetry of the stress excludes low order ansatz spaces for mixed FEMs and leads to ansatz spaces in the
Arnold–Winther FEM [2, 4] of polynomial degree ≥3 in two dimensions and ≥4 in three space dimensions,
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while the approach in the PEERS FEM [1] is to enforce the symmetry in a week sense. The symmetry of the
stress also restricts the non-conforming FEM of [12] based on the Crouzeix–Raviart finite element space [22] to
Dirichlet boundary conditions due to the absence of a discrete version of Korn’s inequality.

This paper introduces a new formulation and its discretizations for the Navier−Lamé equations based on a
Helmholtz decomposition of [16]. The discretizations are proved to be robust in the incompressible limit λ→ ∞.
The formulation of this paper incorporates the symmetry of the stress through a saddle-point formulation and
thus also allows for mixed boundary conditions. A reliable and efficient residual based error estimator is suggested
for an adaptive algorithm. Numerical experiments show its quasi-optimal convergence. The discretizations also
include a generalization of the non-conforming FEM of Kouhia and Stenberg [29] to higher polynomial degrees.

For the Poisson problem, a similar approach generalizes the non-conforming FEMs of Crouzeix–Raviart [22]
and Morley [31] to higher polynomial degrees [34–36]. The discretization proposed in this paper does not
generalize the non-conforming FEM of [12]. In fact, the discretization of this paper also allows for Neumann
boundary conditions, while the non-conforming FEM of [12] is only suitable for the pure Dirichlet problem.

The formal limit for λ→ ∞ of the equations of linear elasticity are the Stokes equations

− div ε(u) + ∇p = f and div u = 0 in Ω.

The new discretizations for linear elasticity carry over to these equations and lead to approximations of ε(u)
with local mass conservation. For the pure Dirichlet problem, the Stokes equations simplify to

−Δu+ ∇p = f and div u = 0 in Ω.

A discretization for these equations based on a Helmholtz decomposition generalizes the non-conforming FEM
of Crouzeix and Raviart [22] to higher polynomial degrees with local mass conservation. An adaptive algorithm
suggested in Section 8 converges with optimal rates. This is the first proof of optimal convergence rates for
a higher-order FEM for the Stokes equations. Indeed the existing proofs are restricted to the first-order non-
conforming FEM of Crouzeix and Raviart [6, 20, 28, 30] and to a mixed Pseudostress approach [19].

The idea of the new method is as follows. The paper assumes that a function ϕ ∈ H(div, Ω; R2×2) is at hand
which satisfies − divϕ = f (plus some boundary conditions for the Neumann problem and symmetry for the
linear elasticity problem and the Stokes equations with symmetric gradient). At least for the pure Dirichlet
problem, this function can be defined by a pure integration. A Helmholtz-type decomposition then decomposes
ϕ in an admissible stress part and a Curl part,

ϕ = Cε(ũ) + Curlα.

Since − div Curlα = 0, the stress σ = Cε(ũ) also satisfies the equilibrium equation and, hence, (ũ, σ) is the
solution of (1.1). While σ is determined by f only, the function α depends on the particular choice of ϕ.

After some preliminary notation and remarks in Section 2, Sections 3 and 4 introduce the novel weak for-
mulation for the Navier−Lamé equations based on a Helmholtz decomposition from [16] and its discretizations.
Section 5 is devoted to the a posteriori error analysis of the discretizations. Section 6 discusses the approxima-
tion of the symmetric part of the gradient in the Stokes problem with Neumann boundary conditions. Section 7
introduces the new approximation of the Stokes equations with pure Dirichlet boundary conditions, and Sec-
tion 8 introduces an adaptive algorithm and discusses its optimal convergence rates. Section 9 concludes the
paper with numerical experiments.

2. Preliminaries

Notation. Throughout this paper Ω ⊆ R2 is a simply connected, bounded, polygonal Lipschitz domain. Stan-
dard notation on Lebesgue and Sobolev spaces and their norms is employed with L2 scalar product (•, •)L2(Ω).
Given a Hilbert space X , let L2(Ω;X) resp. Hk(Ω;X) denote the space of functions with values in X whose
components are in L2(Ω) resp. Hk(Ω) and let L2

0(Ω) denote the subset of L2(Ω) of functions with vanishing
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integral mean. Let H1
Γ (Ω;X) denote the subspace of H1(Ω;X) of functions with vanishing trace on Γ ⊆ ∂Ω

and let H1
0 (Ω;X) := H1

∂Ω(Ω;X) and H1
Γ (Ω) := H1

Γ (Ω; R) and H1
0 (Ω) := H1

0 (Ω; R). The space of L2 functions
whose weak divergence exists and is in L2 is denoted with H(div, Ω) and H(div, Ω;X) is the space of functions
with values in X , whose rows are in H(div, Ω). The space of infinitely differentiable functions reads C∞(Ω)
and the subspace of functions with compact support in Ω is denoted with C∞

c (Ω). The piecewise action of
differential operators is denoted with a subscript NC. The formulae A � B and B � A represent an inequality
A ≤ CB for some mesh-size independent, positive generic constant C; A ≈ B abbreviates A � B � A. By
convention, all generic constants C ≈ 1 do neither depend on the mesh-size nor on the level of a triangulation
nor on the Lamé parameter λ � 1 but may depend on the fixed coarse triangulation T0 and its interior angles.
The Curl operator in two dimensions is defined by Curlβ := (∂β/∂x2,−∂β/∂x1) for sufficiently smooth β, while
curlβ := −∂β1/∂x2 + ∂β2/∂x1 for β : Ω → R2.

A shape-regular triangulation T of Ω ⊆ R2 is a set of closed triangles T ∈ T such that Ω =
⋃
T and any

two distinct triangles are either disjoint or share exactly one common edge or one vertex. Let E(T ) denote the
edges of a triangle T and E := E(T ) :=

⋃
T∈T E(T ) the set of edges in T . Any edge E ∈ E is associated with a

fixed orientation of the unit normal νE on E (and τE = (0,−1; 1, 0)νE denotes the unit tangent on E). On the
boundary, νE is the outer unit normal of Ω, while for interior edges E 
⊆ ∂Ω, the orientation is fixed through
the choice of the triangles T+ ∈ T and T− ∈ T with E = T+ ∩ T− and νE := νT+ |E is then the outer normal
of T+ on E. In this situation, [v]E := v|T+ − v|T− denotes the jump across E. For an edge E ⊆ ∂Ω on the
boundary, the jump across E reads [v]E := v. For T ∈ T and X ⊆ Rn, let

Pk(T ;X) :=
{
v : T → X

∣∣∣∣ each component of v is a polynomial
of total degree ≤ k

}
;

Pk(T ;X) := {v : Ω → X | ∀T ∈ T : v|T ∈ Pk(T ;X)}

denote the set of piecewise polynomials and Pk(T ) := Pk(T ; R). Given a subspace X ⊆ L2(Ω; Rn), let ΠX :
L2(Ω; Rn) → X denote the L2 projection onto X and let Πk abbreviate ΠPk(T ;Rn). Given a triangle T ∈ T , let
hT := (meas2(T ))1/2 denote the square root of the area of T and let hT ∈ P0(T ) denote the piecewise constant
mesh-size with hT |T := hT for all T ∈ T . For a set of triangles M ⊆ T , let ‖ • ‖M abbreviate

‖ • ‖M :=
√∑

T∈M
‖ • ‖2

L2(T ).

Given an initial triangulation T0, an admissible triangulation is a regular triangulation which can be created
from T0 by newest-vertex bisection [38]. The set of admissible triangulations is denoted by T.

Let R
2×2
dev denote the 2 × 2 matrices with vanishing trace, i.e.,

R
2×2
dev := {A ∈ R

2×2 | tr(A) = 0} (2.1)

and define the deviatoric part devA of A ∈ R2×2 as devA = A − (1/2)tr(A)I2×2. The following proposition
proves a lower bound for the L2 norm of the deviatoric part of Curls.

Proposition 2.1. Any β ∈ H1(Ω; R2) with
�

Ω β dx = 0 and
�

Ω curlβ dx = 0 satisfies

‖Curlβ‖L2(Ω) � ‖dev Curlβ‖L2(Ω) .

Proof. Since �
Ω

tr(Curlβ) dx =
�

Ω

curlβ dx = 0,

the tr-dev-div lemma ([14], Prop. 3.1 in Sect. IV.3) leads to

‖tr(Curlβ)‖L2(Ω) � ‖dev Curlβ‖L2(Ω) + ‖div Curlβ‖L2(Ω) .

The orthogonality ∇H1
0 (Ω)⊥L2(Ω) CurlH1(Ω) implies div Curlβ = 0. �
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3. Weak formulation

For the ease of reading, this and the following two sections consider the pure Dirichlet problem. Remark 3.5
explains how Neumann boundary conditions enter in the new formulation.

Let S := {A ∈ R2×2 | A = A�} denote the set of symmetric 2 × 2 matrices and define the spaces

Σ := L2(Ω; R2×2),

X :=
{
v ∈ H1(Ω; R2)

∣∣∣∣�
Ω

v dx = 0 and
�

Ω

curl v dx = 0
}
,

Z := {v ∈ X | Curl v ∈ L2(Ω; S)} = {v ∈ X | div v = 0},

L2(Ω; S)/R :=
{
τ ∈ L2(Ω; S)

∣∣∣∣�
Ω

tr(τ) dx = 0
} (3.1)

and the scalar product (σ, τ)C−1/2 := (σ,C−1τ)L2(Ω) for σ, τ ∈ Σ. Note that Curl v is symmetric if and only if
div v = 0.

The following theorem states a Helmholtz decomposition for symmetric vector fields and is proved by [16].
Recall that Ω ⊆ R2 is a simply connected, bounded, polygonal Lipschitz domain.

Theorem 3.1 (Helmholtz decomposition for symmetric vector fields). It holds that

L2(Ω; S)/R = ε(H1
0 (Ω; R2)) ⊕ CurlZ (3.2)

and the sum is orthogonal with respect to the L2 scalar product, or, equivalently,

L2(Ω; S)/R = Cε(H1
0 (Ω; R2)) ⊕ CurlZ

and the sum is orthogonal with respect to (•, •)C−1/2.

A conforming discretization of Z with piecewise smooth functions would involve the restriction div • = 0
pointwise. This leads to complicated finite element methods as in [27, 37]. Therefore, it seems useful to include
the divergence-free constraint in the mixed formulation. To this end, define the space

Y := L2
0(Ω),

the bilinear forms
a(τ, σ) := (C−1τ, σ)L2(Ω) for all τ, σ ∈ Σ,

b(τ, β) := (C−1τ,Curlβ)L2(Ω) for all τ ∈ Σ, β ∈ X,

c(ξ, β) := (ξ, div β)L2(Ω) for all ξ ∈ Y, β ∈ X,

(3.3)

and the norm ‖ • ‖C−1/2 :=
√
a(•, •). Let ϕ ∈ H(div, Ω; S) with

�
Ω

trϕdx = 0 and − divϕ = f . Note that
the constants hidden in � (in particular those in the a priori and a posteriori analysis) do not depend on ϕ.
Consider the problem: Seek (σ, α, χ) ∈ Σ ×X × Y with

a(τ, σ) + b(τ, α) = (ϕ,C−1τ) for all τ ∈ Σ,

b(σ, β) + c(χ, β) = 0 for all β ∈ X,

c(ξ, α) = 0 for all ξ ∈ Y.

(3.4)

Since ‖Curlβ‖L2(Ω) = ‖Dβ‖L2(Ω), the inf-sup condition for c,

‖ξ‖L2(Ω) � sup
β∈X\{0}

c(ξ, β)
‖Curlβ‖L2(Ω)

for all ξ ∈ Y (3.5)

is the standard inf-sup condition for the Stokes equations [26].
The following lemma proves an inf-sup condition for b.
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Lemma 3.2 (Inf-sup condition for b). Any β ∈ X satisfies

‖Curlβ‖L2(Ω) � sup
τ∈Σ\{0}

b(τ, β)
‖τ‖C−1/2

· (3.6)

Proof. The crucial point in this inf-sup condition is that the constant hidden in � is independent of the Lamé
parameter λ. Let β ∈ X . Proposition 2.1 proves

‖Curlβ‖L2(Ω) � ‖dev(Curlβ)‖L2(Ω) .

A computation reveals

C
−1A = dev(A)/(2μ) + tr(A)I2×2/(4(λ+ μ)). (3.7)

This implies

‖Curlβ‖L2(Ω) � ‖Curlβ‖
C−1/2 . (3.8)

With the choice τ := Curlβ, this proves the stated inf-sup condition. �

The following theorem proves the existence of a unique solution to (3.4) and its equivalence with (1.1).

Theorem 3.3. Problem (3.4) has a unique solution (σ, α, χ) ∈ Σ ×X × Y and it holds that σ = Cε(u) for the
solution u ∈ H1

0 (Ω; R2) of (1.1).

Proof. The inf-sup conditions (3.6) and (3.5), the ellipticity of a (with respect to ‖•‖
C−1/2), the continuity

of a, b, and c and a recursive application of Brezzi’s splitting lemma [13] proves the unique existence of a
solution (σ, α, χ) ∈ Σ × X × Y to (3.4). Since the first equation of (3.4) is tested with all L2 functions, it
holds in fact σ + Curlα = ϕ. The third equation of (3.4) yields divα = 0, and therefore α ∈ L2(Ω; S). Hence,�

Ω
tr(Curlα) dx =

�
Ω

curlα dx = 0 implies Curlα ∈ L2(Ω; S)/R. The assumption ϕ ∈ L2(Ω; S)/R then leads
to σ ∈ L2(Ω; S)/R. The Helmholtz decomposition from Theorem 3.1 therefore yield a decomposition of σ in

σ = Cε(ũ) + Curl γ

for some ũ ∈ H1
0 (Ω; R2) and some γ ∈ Z. However, the orthogonality b(σ, β) = 0 for all β ∈ Z implies γ = 0.

Therefore, (3.4), the symmetry of ϕ and Curlα and − divϕ = f imply for all v ∈ H1
0 (Ω; R2) and τ = Cε(v)

that

(ε(v),Cε(ũ))L2(Ω) = a(τ, σ) = (ϕ,C−1τ)L2(Ω) − b(τ, α)
= (ϕ, ε(v))L2(Ω) − (ε(v),Curlα)L2(Ω)

= (f, v)L2(Ω) − (Dv,Curlα)L2(Ω) = (f, v)L2(Ω)

and, hence, ũ solves (1.1). �

Remark 3.4. The meaning of the variable χ is that χ = curlu/2 for the solution u ∈ H1
0 (Ω; R2) to (1.1): Since

div β determines the antisymmetric part of Curlβ, the second equality of (3.4) reads(
C

−1σ + χ

(
0 1
−1 0

)
,Curlβ

)
= 0 for all β ∈ X,

which is equivalent to the fact that C−1σ + χ(0, 1;−1, 0) is a derivative and χ determines its antisymmetric
part.
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Remark 3.5 (More general boundary conditions). Let ∂Ω = ΓD ∪ ΓN with closed Dirichlet boundary ΓD 
= ∅
and Neumann boundary ΓN = ∂Ω \ ΓD 
= ∅. Define

XΓN := {v ∈ H1(Ω; R2) | v is constant on each connectivity component of ΓN},
ZΓN := {v ∈ XΓN | div v = 0}.

Then the Helmholtz decomposition with mixed boundary conditions [16] reads

L2(Ω; R2) = CεH1
ΓD

(Ω; R2) ⊕ CurlZΓN .

Let ϕ ∈ H(div, Ω; S) with − divϕ = f additionally fulfil (ϕν)|ΓN = g. Then the linear elasticity problem with
mixed boundary conditions is equivalent to

a(τ, σ) + b(τ, α) = (ϕ,C−1τ)L2(Ω) for all τ ∈ Σ,

b(σ, β) + c(χ, β) = (DuD,Curlβ)L2(Ω) for all β ∈ XΓN ,

c(ξ, α) = 0 for all ξ ∈ Y.

4. Discretizations

This section introduces robust discretizations of (3.4). Since the discrete inf-sup condition for the bilinear
form c of (3.3) is the same as for a standard Stokes discretization, the following discretizations of X and Y
employ well-known Stokes finite elements [9], namely the Mini FEM in Section 4.2, the Taylor−Hood FEM in
Section 4.3, and the P2 P0 FEM in Section 4.4. Section 4.5 discusses and generalizes the non-conforming FEM
of Kouhia and Stenberg [29] in this context.

4.1. Abstract discretizations

Recall the bilinear forms a, b, c from (3.3). Let Σh(T ) ⊆ Σ, Xh(T ) ⊆ X , and Yh(T ) ⊆ Y be some (finite
dimensional) closed subspaces of Σ,X, Y . Then the discretization of (3.4) seeks (σh, αh, χh) ∈ Σh(T )×Xh(T )×
Yh(T ) such that

a(τh, σh) + b(τh, αh) = (ϕ,C−1τh)L2(Ω) for all τh ∈ Σh(T ),
b(σh, βh) + c(χh, βh) = 0 for all βh ∈ Xh(T ),

c(ξh, αh) = 0 for all ξh ∈ Yh(T ).

(4.1)

Assume now that CurlXh(T ) ⊆ Σh(T ) and that Xh(T ) and Yh(T ) fulfil the discrete inf-sup condition

‖ξh‖L2(Ω) � sup
βh∈Xh(T )\{0}

c(ξh, βh)
‖Curlβh‖L2(Ω)

for all ξh ∈ Yh(T ). (4.2)

Theorem 4.1 (A priori error estimate). Problem (4.1) has a unique solution (σh, αh, ξh) ∈ Σh(T )×Xh(T ) ×
Yh(T ) and it satisfies

‖σ − σh‖C−1/2 + ‖Curl(α− αh)‖L2(Ω) + ‖χ− χh‖L2(Ω)

� inf
τh∈Σh(T ),
βh∈Xh(T ),
ξh∈Yh(T )

(
‖σ − τh‖C−1/2 + ‖Curl(α− βh)‖L2(Ω) + ‖χ− ξh‖L2(Ω)

)
. (4.3)

Proof. The bilinear form a is continuous and elliptic with respect to ‖ • ‖C−1/2. The Cauchy inequality and A :
C−1A � A : A for all A ∈ R2×2 (cf. (3.7)) prove the continuity of b with respect to ‖•‖C−1/2 and ‖Curl •‖L2(Ω).
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For given βh ∈ Xh(T ) \ {0}, define τh := Curlβh. Since CurlXh(T ) ⊆ Σh(T ), this defines an element in Σh(T )
and

b(τh, βh)/‖τh‖C−1/2 = ‖Curlβh‖C−1/2 .

Proposition 2.1 and A: devA � A : C−1A for all A ∈ R2×2 prove

‖Curlβh‖L2(Ω) � ‖dev Curlβh‖L2(Ω) � ‖Curlβh‖C−1/2 .

This proves the discrete inf-sup condition for b with a constant independent of λ. The Cauchy inequality reveals
the continuity of the bilinear form c. This, the inf-sup condition (4.2), and a recursive application of Brezzi’s
splitting lemma [13] yield the unique existence of a solution of (4.1). Standard arguments for conforming mixed
FEMs lead to the a priori error estimate. �

4.2. Mini or stabilized discretization

Define the space of (cubic) bubble functions

B(T ; R2) :=
{
ψ ∈ P3(T ; R2) ∩H1

0 (Ω; R2) | ∀T ∈ T : ψ|T ∈ H1
0 (T ) ∩ P3(T )

}
and

Σh(T ) := P0(T ; R2×2) + Curl(B(T ; R2)),
Xh(T ) := VMini(T ) := (P1(T ; R2) + B(T ; R2)) ∩X,
Yh(T ) := P1(T ) ∩H1(Ω) ∩ L2

0(Ω).

The Mini finite element discretization of (3.4) seeks (σh, αh, χh) ∈ Σh(T ) × Xh(T ) × Yh(T ) with (4.1). The
inf-sup condition (4.2) for the bilinear form c from (3.3) is the same as the inf-sup condition for the Stokes
equations and is proved in [3]. Since CurlXh(T ) ⊆ Σh(T ) by definition, Theorem 4.1 leads to the unique
existence of solutions and the a priori error estimate (4.3).

4.3. Taylor−Hood discretization

The Taylor−Hood discretization of (3.4) employs the discrete spaces

Σh(T ) := Pk(T ; R2×2),
Xh(T ) := Pk+1(T ; R2) ∩X,
Yh(T ) := Pk(T ) ∩H1(Ω) ∩ L2

0(Ω)

and seeks (σh, αh, χh) ∈ Σh(T ) × Xh(T ) × Yh(T ) with (4.1). The inf-sup condition (4.2) for the bilinear
form c from (3.3) is the same as the inf-sup condition for the Stokes equations and is proved in [9]. Since
CurlXh(T ) ⊆ Σh(T ), Theorem 4.1 yields the existence of unique solutions and the a priori error estimate (4.3).

4.4. P2 P0 method

The P2 P0 discretization of (3.4) considers the discrete spaces

Σh(T ) := P1(T ; R2×2),
Xh(T ) := P2(T ; R2) ∩X,
Yh(T ) := P0(T ) ∩ L2

0(Ω)

and seeks (σh, αh, χh) ∈ Σh(T ) × Xh(T ) × Yh(T ) with (4.1). The inf-sup condition (4.2) for the bilinear
form c from (3.3) is the same as the inf-sup condition for the Stokes equations and is proved in [9]. Since
CurlXh(T ) ⊆ Σh(T ), Theorem 4.1 proves the unique existence of discrete solutions and the a priori error
estimate (4.3).
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4.5. The non-conforming FEM of Kouhia and Stenberg

The non-conforming finite element space of Kouhia and Stenberg [29] reads

VKS(T ) := (P1(T ) ∩H1
0 (T )) × CR1

0(T )

with CR1
0(T ) defined by

CR1
0(T ) :=

{
vCR ∈ P1(T )

∣∣∣∣ vCR is continuous at midpoints of interior edges
and vanishes at midpoints of boundary edges

}
.

Let εNC and CurlNC denote the piecewise versions of ε and Curl. The finite element method of Kouhia and
Stenberg seeks uKS ∈ VKS(T ) such that

(εNC(vKS),CεNC(uKS))L2(Ω) = (f, vKS)L2(Ω) for all vKS ∈ VKS(T ). (4.4)

Define

CR1(T ) := {vh ∈ P1(T ) | vh is continuous at midpoints of interior edges} ,
ṼKS(T ) := (CR1(T ) ∩ L2

0(Ω)) × (P1(T ) ∩H1(Ω) ∩ L2
0(Ω)),

ZKS(T ) := {vKS ∈ ṼKS(T ) | CurlNC vKS ∈ P0(T ; S)}.

Then, the discrete Helmholtz decomposition

P0(T ; S) = CεNC(VKS(T )) ⊕ CurlNC(ZKS(T ))

holds [18] and the sum is orthogonal with respect to (•, •)C−1/2 . If ϕ ∈ H(div, Ω; R2×2) additionally allows for
an integration by parts with Kouhia−Stenberg functions, i.e.,

(ϕ,DNCvKS)L2(Ω) = (f, vKS)L2(Ω) for all vKS ∈ VKS(T )

(e.g., ϕ is a lowest-order Raviart−Thomas function [33]), then this implies that (4.4) is equivalent to the problem:
Seek (σh, αh) ∈ P0(T ; S) × ZKS(T ) such that, for all τh ∈ P0(T ; S) and all βh ∈ ZKS(T )

(C−1τh, σh)L2(Ω) + (C−1τh,CurlNC αh)L2(Ω) = (ϕ,C−1τh)L2(Ω),

(C−1σh,CurlNC βh)L2(Ω) = 0.

In contrast to the discretizations of Sections 4.2–4.4, this discretizes the space Z from (3.1) directly and the
symmetry of σh is fulfilled pointwise. However, since ZKS(T ) 
⊆ X , the approximation is non-conforming and
Theorem 4.1 is not applicable; the a priori analysis requires techniques in the spirit of the Strang−Fix lemma [11]
and is not further discussed here.

The Kouhia−Stenberg FEM can also be regarded as a conforming mixed FEM if the Helmholtz decomposition
is applied in one component only. This allows the generalization to higher polynomial degrees. Define the spaces

ΣKS,k(T ) :=
{

C sym(q) ∈ Pk(T , S)
∣∣∣∣ q ∈ Pk(T ; R2×2), ∃vh ∈ Pk+1(T ) ∩H1

0 (Ω)
such that q1,• = ∇vh

}
,

where qj,• = (qj,1, qj,2) denotes the jth row of q. The Helmholtz decomposition leads to the discretization: Seek
(σh, αh) ∈ ΣKS,k(T )×(Pk+1(T )∩H1(Ω)/R) such that, for all τh ∈ ΣKS,k(T ) and all βh ∈ (Pk+1(T )∩H1(Ω)/R)

(C−1τh, σh)L2(Ω) + ((C−1τh)2,•,Curlαh)L2(Ω) = (ϕ,C−1τh),

((C−1σh)2,•,Curlβh)L2(Ω) = 0.

This generalizes the Kouhia−Stenberg FEM of (4.4) to higher polynomial degrees.
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5. A posteriori error analysis

This section introduces an error estimator and proves its efficiency and reliability. The results apply to all of
the discretizations from Sections 4.2–4.4.

Let T	 ∈ T be some regular triangulation. Given T ∈ T	, let ‖ • ‖C−1/2,T :=
√

(•,C−1•)L2(T ) denote the
C−1/2-norm on T . Define for T ∈ T	 the local error estimator contributions

μ2(T ) := ‖ϕ−ΠΣh(T )ϕ‖2
C−1/2,T ,

y2(T , T ) := h2
T

∥∥curlNC C
−1σh + ∇NCχh

∥∥2

L2(T )
+ ‖divαh‖2

L2(T )

+ hT

∑
E∈E(T )

∥∥∥∥[C−1σh + χh

(
0 1
−1 0

)]
E

τE

∥∥∥∥2

L2(E)

. (5.1)

Furthermore, define

y2
	 := y2(T	, T	) with y2(T	,M) :=

∑
T∈M

y2(T	, T ) for any M ⊆ T	,

μ2
	 := μ2(T	) with μ2(M) :=

∑
T∈M

μ2(T ) for any M ⊆ T	,

η2
	 := y2

	 + μ2
	 .

(5.2)

Theorem 5.1 (Efficiency and reliability). The estimator η	 is reliable and efficient in the sense that

η	 ≈ ‖σ − σh‖C−1/2 + ‖Curl(α− αh)‖L2(Ω) + ‖χ− χh‖L2(Ω).

Proof. The proof is split into four steps.
Step 1. (Equivalence to residuals). Define for all τ ∈ Σ, β ∈ X , and ξ ∈ Y the residuals

Res1(σh, αh; τ) := a(τ, σh) + b(τ, αh) − (ϕ,C−1τ)L2(Ω),

Res2(σh, χh;β) := b(σh, β) + c(χh, β),
Res3(αh; ξ) := c(ξ, αh).

The abstract theory of [15] proves the (λ independent) equivalence

‖σ − σh‖C−1/2 + ‖Curl(α− αh)‖L2(Ω) + ‖χ− χh‖L2(Ω)

≈ ‖Res1(σh, αh; •)‖Σ� + ‖Res2(σh, χh; •)‖X� + ‖Res3(αh; •)‖Y � ,

where ‖ • ‖Σ� denotes the dual norm with respect to ‖ • ‖C−1/2 , i.e.,

‖Res1(σh, αh; •)‖Σ� := sup
τ∈Σ\{0}

Res1(σh, αh; τ)
‖τ‖C−1/2

·

Step 2. (Efficiency and reliability of Res1). Since

Res1(σh, αh; τ) = (ΠΣh(T )ϕ− ϕ,C−1τ)L2(Ω) for all τ ∈ Σ,

the Cauchy inequality implies

‖Res1(σh, αh; •)‖Σ� = ‖ϕ−ΠΣh(T )ϕ‖C−1/2 .
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Step 3. (Efficiency and reliability of Res2). Let Ih denote a quasi interpolant [21] with approximation and
stability properties

‖h−1
T (β − Ihβ)‖L2(Ω) + ‖Curl(β − Ihβ)‖L2(Ω) � ‖Curlβ‖L2(Ω) . (5.3)

Since P1(T ; R2) ∩H1(Ω; R2) ⊆ Xh(T ) for all discretizations from Section 4.2–4.4, the discrete problem (4.1)
and a piecewise integration by parts lead for all β ∈ X to

Res2(σh, χh;β) = (C−1σh,Curl(β − Ihβ))L2(Ω) + (χh, div(β − Ihβ))L2(Ω)

= (curlNC C
−1σh + ∇NCχh, β − Ihβ)L2(Ω)

+
∑
E∈E

�
E

(β − Ihβ) ·
([

C
−1σh + χh

(
0 1
−1 0

)]
E

τE

)
ds.

The Cauchy and the trace inequality and the approximation properties of the quasi-interpolation (5.3) yield

Res2(σh, χh;β) �
(
‖hT (curlNC C

−1σh + ∇NCχh)‖L2(Ω)

+

√√√√∑
E∈E

hT

∥∥∥∥[C−1σh + χh

(
0 1
−1 0

)]
E

τE

∥∥∥∥2

L2(E)

)
‖Curlβ‖L2(Ω) .

The efficiency follows with the standard bubble function technique of [40].

Step 4. (Efficiency and reliability of Res3). The Cauchy inequality implies

Res3(αh, ξ) = (ξ, div αh)L2(Ω) ≤ ‖ξ‖L2(Ω) ‖divαh‖L2(Ω) .

This and divXh(T ) ⊆ Y yield
‖Res3(αh, ξ)‖Y � = ‖divαh‖L2(Ω) . �

6. Stokes equations with symmetric gradient

The Stokes equations can be interpreted as the incompressible limit λ→ ∞ of (1.1). The symmetric formu-
lation is favourable for the discretization of Neumann boundary conditions (cf. [9], Rem. 8.1.3 and Remark 6.1
below). Let Ω ⊆ R2 with closed Dirichlet boundary ∅ 
= ΓD ⊆ ∂Ω and Neumann boundary ΓN = ∂Ω \ ΓD 
= ∅.
The Stokes problem with Neumann boundary conditions then seeks (u, p) ∈ H1

ΓD
(Ω; R2) × L2(Ω) with

− div ε(u) + ∇p = f
div u = 0

}
in Ω and (ε(u) + pI2×2)|ΓN ν = 0. (6.1)

In the presence of these boundary conditions, a weak formulation has to involve the symmetric part of the
gradient ε(u) (see Rem. 6.1 below).

6.1. Weak formulation

The classical weak formulation of (6.1) seeks (u, p) ∈ H1
ΓD

(Ω; R2)×L2(Ω) such that, for all v ∈ H1
ΓD

(Ω; R2)
and for all q ∈ L2(Ω),

(ε(v), ε(u))L2(Ω) − (p, div v)L2(Ω) = (f, v)L2(Ω),

(q, div u)L2(Ω) = 0.
(6.2)
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Remark 6.1 (Symmetric vs. non-symmetric approximation). For the pure Dirichlet problem, an integration
by parts proves for all u, v ∈ {w ∈ H1

0 (Ω; R2) | divw = 0} that

2(ε(u), ε(v))L2(Ω) = (Du,Dv)L2(Ω) + (div u, div v)L2(Ω) = (Du,Dv)L2(Ω).

This shows equivalence of (6.2) and the Stokes problem without symmetric gradient (7.2) below. However,
this equivalence does no longer hold if ΓD 
= ∂Ω. Problem (6.2) covers also the Neumann boundary condition
(ε(u) + pI2×2)|ΓN ν = 0.

Define R
2×2
dev,sym := R

2×2
dev ∩ S with R

2×2
dev from (2.1) and the spaces

ΣN := L2(Ω; R2×2
dev ),

Zs := {v ∈ H1
ΓD

(Ω; R2) | div v = 0},
XN :=

{
β ∈ H1(Ω; R2) | β is constant on each connectivity component of ΓN

}
,

Xs :=
{
β ∈ XN

∣∣ Curlβ ∈ L2(Ω; S)
}
,

Y N := L2(Ω)

and bilinear forms a : ΣN ×ΣN → R and b : ΣN ×XN → R by

a(σ, τ) := (σ, τ)L2(Ω) for all σ, τ ∈ ΣN ,

b(τ, α) := (τ, dev Curlα)L2(Ω) for all τ ∈ ΣN , α ∈ XN
(6.3)

and recall c from (3.3). A computation reveals for Ω ⊆ R2

Xs =
{
β ∈ XN | div β = 0} .

Theorem 6.2 (Helmholtz decomposition for deviatoric and symmetric functions). It holds

L2(Ω; R2×2
dev,sym) = ε(Zs) ⊕ dev(CurlXs)

and the sum is L2 orthogonal.

Proof. Let φ ∈ L2(Ω; R2×2
dev,sym). Korn’s inequality [10], the inf-sup condition for the bilinear form (•, div •)L2(Ω)

on L2(Ω) × H1
ΓD

(Ω; R2) [26], and Brezzi’s splitting lemma [13] guarantee the existence of a solution (u, p) ∈
H1

ΓD
(Ω; R2) × L2(Ω) of

(ε(v), ε(u))L2(Ω) − (p, div v)L2(Ω) = (φ, ε(v))L2(Ω) for all v ∈ H1
ΓD

(Ω; R2),

(q, div u)L2(Ω) = 0 for all q ∈ L2(Ω).

This implies u ∈ Zs and (φ − ε(u) − pI2×2)⊥L2(Ω)∇H1
ΓD

(Ω; R2). The Helmholtz decomposition L2(Ω; R2) =
∇H1

ΓD
(Ω) ⊕ Curl{β ∈ H1(Ω) | β is constant on each connectivity component of ΓN} (applied row-wise) yields

the existence of α ∈ XN with φ− ε(u) − pI2×2 = Curlα. Since u ∈ Zs, this implies

dev Curlα = dev(φ− ε(u) − pI2×2) = φ− ε(u).

Any A ∈ R2×2 is symmetric if and only if devA is symmetric. Since φ− ε(u) ∈ L2(Ω; S) is symmetric, it follows
α ∈ Xs. �

Let ϕ ∈ H(div, Ω; S) with − divϕ = f and ϕ|ΓN ν = 0. Consider the problem: Seek (σ, α, χ) ∈ ΣN ×XN ×Y N

such that, for all (τ, β, ξ) ∈ ΣN ×XN × Y N ,

a(σ, τ) + b(τ, α) = (ϕ, τ)L2(Ω),

b(σ, β) + c(χ, β) = 0,
c(ξ, α) = 0.

(6.4)
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Lemma 6.3 (Inf-sup condition). Any β ∈ XN satisfies

‖Curlβ‖L2(Ω) � sup
τ∈Σ\{0}

b(τ, β)
‖τ‖L2(Ω)

·

Proof. Given β ∈ XN , the choice of τ := dev Curlβ leads to

b(τ, β) = ‖dev Curlβ‖2
L2(Ω).

The boundary conditions for XN lead to (Curlβ)|ΓN ν = 0. Since div Curlβ = 0, this and the tr-dev-div lemma
([16], Lem. 4.1) prove

‖Curlβ‖L2(Ω) � ‖dev Curlβ‖L2(Ω). (6.5)

This yields the assertion. �
Proposition 6.4. Problem (6.4) has a unique solution (σ, α, χ) ∈ Σ ×Xs × Y N . The solution u ∈ Zs to (6.2)
satisfies σ = ε(u).

Proof. The existence of a unique solution follows from a recursive application of Brezzi’s splitting lemma [13]
and the inf-sup conditions from Lemmas 6.3 and (3.5) as in the proof of Theorem 3.3. The second equation
of (6.4) and the Helmholtz decomposition of Theorem 6.2 guarantee the existence of ũ ∈ Zs with σ = ε(ũ). Let
v ∈ Zs. Then, (6.4) and an integration by parts imply

(Dũ,Dv)L2(Ω) = (ϕ,Dv)L2(Ω) − (Dv, dev Curlα)L2(Ω) = (f, v)L2(Ω).

This yields ũ = u. �
Remark 6.5 (Pressure). Define p := −tr(ϕ − Curlα)/2. Since σ + dev Curlα = devϕ and
Curlα⊥L2(Ω)D

(
H1

ΓD
(Ω; R2)

)
, the function p satisfies for all v ∈ H1

ΓD
(Ω; R2) that

(p, div v)L2(Ω) = (pI2×2, Dv)L2(Ω) = (σ, ε(v))L2(Ω) − (ϕ,Dv)L2(Ω).

This, an integration by parts and ϕ|ΓN ν = 0 lead to

−(p, div v)L2(Ω) = (f, v)L2(Ω) +
�

ΓN

ϕν · v ds− (σ, ε(v))L2(Ω)

= (f, v)L2(Ω) − (σ, ε(v))L2(Ω).

This implies that p is the pressure from (6.2).

6.2. Discretization

Let ΣN
h (T ), Xh(T ) ∩ XN ⊆ XN , and Y N

h (T ) ⊆ Y N be one of the choices of discrete spaces from
Sections 4.2–4.4 without the respective conditions

�
Ω tr(τh) dx = 0,

�
Ω βh dx = 0,

�
Ω curlβh dx = 0 and�

Ω
ξh dx = 0, and define

Σdev
h (T ) := devΣN

h (T ) ⊆ ΣN and XN
h (T ) := Xh(T ) ∩XN .

Recall the bilinear forms a, b from (6.3) and c from (3.3). Then the discretization of (6.4) seeks (σh, αh, ξh) ∈
Σdev

h (T ) ×XN
h (T ) × Y N

h (T ) such that

a(τh, σh) + b(τh, αh) = (ϕ, τh)L2(Ω) for all τh ∈ Σdev
h (T ),

b(σh, βh) + c(χh, βh) = 0 for all βh ∈ XN
h (T ),

c(ξh, αh) = 0 for all ξh ∈ Y N
h (T ).

(6.6)

The following theorem proves an a priori error estimate similar to Theorem 4.1.
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Theorem 6.6 (Best-approximation). The discrete problem (6.6) has a unique solution (σh, αh, χh) ∈ Σdev
h (T )×

XN
h (T ) × Y N

h (T ), which satisfies

‖σ − σh‖L2(Ω) + ‖Curl(α− αh)‖L2(Ω) + ‖χ− χh‖L2(Ω)

� inf
τh∈Σdev

h (T )

βh∈XN
h (T )

ξh∈Y N
h (T )

(
‖σ − τh‖L2(Ω) + ‖Curl(α − βh)‖L2(Ω) + ‖χ− ξh‖L2(Ω)

)
.

Proof. The bilinear form a is continuous and elliptic with respect to ‖ • ‖L2(Ω). The Cauchy inequality implies
that the bilinear forms b and c are continuous with respect to ‖•‖L2(Ω) and ‖Curl •‖L2(Ω). The inf-sup condition

‖Curlβh‖L2(Ω) � sup
τh∈Σdev

h (T )\{0}

b(τh, βh)
‖τh‖L2(Ω)

for all βh ∈ XN
h (T )

follows from dev CurlXN
h (T ) ⊆ Σdev

h (T ) and (6.5). The discrete inf-sup conditions for c for the choices of
XN

h (T ) and Y N
h (T ) from above are proved in [3,9]. A recursive application of Brezzi’s splitting lemma [13] and

standard arguments for conforming mixed FEMs lead to the assertion. �
Remark 6.7 (Non-conforming approximation). Since (εNC•, εNC•) for the piecewise symmetric gradient εNC is
not positive definite on CR1

0(T ), there is no obvious non-conforming approximation of the Stokes problem (6.2)
and so no non-conforming approximation for the Neumann problem of the form (6.1).

6.3. A posteriori error analysis

Let E(ΓN ) := {E ∈ E | E ⊆ ΓN} denote the edges on the Neumann boundary. Given a triangulation T	,
define for all T ∈ T	 the local error estimator contributions by

y2(T	, T ) := ‖hT (curlNC σh + ∇NCχh)‖2
L2(T ) + ‖divαh‖2

L2(T )

+ hT

∑
E∈E(T )\E(ΓN)

∥∥∥∥[σh + χh

(
0 1
−1 0

)]
E

τE

∥∥∥∥2

L2(E)

μ2(T ) := ‖dev(ϕ−ΠΣdev
h (T )ϕ)‖2

L2(T )

(6.7)

and the global error estimators by the formulae (5.2). The following theorem states efficiency and reliability
of η	. The proof is similar to the proof of Theorem 5.1 and therefore omitted.

Theorem 6.8 (Efficiency, reliability). The error estimator η	 is reliable and efficient in the sense that

η2
	 ≈ ‖σ − σh‖2

L2(Ω) + ‖Curl(α− αh)‖2
L2(Ω) + ‖χ− χh‖2

L2(Ω). ��

7. Stokes equations without symmetric gradient

This section considers the Stokes problem

−Δu+ ∇p = f and div u = 0 in Ω (7.1)

with homogeneous Dirichlet boundary conditions, so that the weak form

(Du,Dv)L2(Ω) − (p, div v)L2(Ω) = (f, v)L2(Ω) for all v ∈ H1
0 (Ω; R2),

(q, div u)L2(Ω) = 0 for all q ∈ L2
0(Ω)

(7.2)

is suitable (see Rem. 6.1). Standard low-order conforming methods fulfil div u = 0 in some weak sense only. In
contrast, the non-conforming method of [22] allows piecewise divergence free approximations. In Sections 7.1
and 7.2 that method of [22] is generalized to higher polynomial degrees with deviatoric ansatz spaces for the
approximation of Du. Section 7.3 defines an a posteriori error estimator and proves its efficiency and reliability.
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7.1. Weak formulation

This section introduces the new weak formulation based on the Helmholtz decomposition from Theorem 7.1
below.

Recall the definition of dev and R
2×2
dev from Section 2. Furthermore, define

Z := {v ∈ H1
0 (Ω; R2) | div v = 0},

X :=
{
v ∈ H1(Ω; R2)

∣∣�
Ω
v dx = 0 and

�
Ω

curl v dx = 0
}
,

Σ := L2(Ω; R2×2
dev ).

(7.3)

Proposition 2.1 proves that ‖dev Curl •‖L2(Ω) defines a norm on X . The following Helmholtz decomposition is
a continuous version of the discrete Helmholtz decomposition of [20].

Theorem 7.1 (Helmholtz decomposition for deviatoric functions). It holds

Σ = DZ ⊕ dev CurlX

and the sum is L2-orthogonal.

Proof. The L2-orthogonality follows from the L2-orthogonality of ∇H1
0 (Ω) and CurlH1(Ω). Proposition 2.1

implies that (dev Curl •, dev Curl •)L2(Ω) defines a scalar product on the complete space X . Given τ ∈ Σ, this
implies that there exists a unique solution β ∈ X of

(dev Curlβ, dev Curl γ)L2(Ω) = (τ, dev Curl γ)L2(Ω) for all γ ∈ X.

Let γ̂ ∈ H1(Ω; R2)/R2 be defined by γ̂(y) := (1/2)(−y2, y1) −
�

Ω(1/2)(−x2, x1) dx. Then curl γ̂ = 1. Given
γ ∈ H1(Ω; R2) with

�
Ω γ dx = 0, define γ̃ ∈ X by γ̃ := γ −

�
Ω curlγ dxγ̂. Since tr(τ) = 0 and dev Curl γ =

dev Curl γ̃, the definition of β implies

(τ − dev Curlβ,Curl γ)L2(Ω) = (τ − dev Curlβ, dev Curl γ̃)L2(Ω) = 0.

Thus, the Helmholtz decomposition L2(Ω; R2) = ∇H1
0 (Ω)⊕CurlH1(Ω) (applied row-wise) implies the existence

of u ∈ H1
0 (Ω; R2) with τ − dev Curlβ = Du. Then, div u = tr(τ − dev Curlβ) = 0 leads to u ∈ Z and concludes

the proof. �

Let ϕ ∈ H(div, Ω; R2×2) with
�

Ω tr(ϕ) dx = 0 and − divϕ = f and seek (σ, α) ∈ Σ ×X with

(σ, τ)L2(Ω) + (τ, dev Curlα)L2(Ω) = (ϕ, τ)L2(Ω) for all τ ∈ Σ,

(σ, dev Curlβ)L2(Ω) = 0 for all β ∈ X.
(7.4)

Define the bilinear forms a : Σ ×Σ → R and b : Σ ×X → R by

a(σ, τ) := (σ, τ)L2(Ω) for all σ, τ ∈ Σ,

b(τ, α) := (τ, dev Curlα)L2(Ω) for all τ ∈ Σ,α ∈ X.

The following inf-sup condition is employed in the proof of the existence and uniqueness of solutions from
Proposition 7.3.

Lemma 7.2 (Inf-sup condition). Any β ∈ X satisfies

‖Curlβ‖L2(Ω) � sup
τ∈Σ\{0}

b(τ, β)
‖τ‖L2(Ω)

·
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Proof. The choice of τ := dev Curlβ leads to b(τ, β) = ‖dev Curlβ‖2
L2(Ω). Proposition 2.1 then yields the

assertion. �

Proposition 7.3. Problem (7.4) admits a unique solution (σ, α) ∈ Σ×X and it holds σ = Du for the solution
u ∈ Z of (7.2).

Proof. The existence of a unique solution follows from Brezzi’s splitting lemma [13] and Lemma 7.2. The second
equation of (7.4) and the Helmholtz decomposition of Theorem 7.1 guarantees the existence of ũ ∈ Z with
σ = Dũ. Then, (7.4), − divϕ = f and the orthogonality DH1

0 (Ω; R2)⊥L2(Ω) CurlX imply

(Dũ,Dv)L2(Ω) = (ϕ,Dv)L2(Ω) − (Dv, dev Curlα)L2(Ω)

= (f, v)L2(Ω) − (Dv,Curlα) = (f, v)L2(Ω)

for all v ∈ Z. This yields ũ = u. �

Remark 7.4 (Pressure). Define p := −(1/2)tr(ϕ− Curlα) ∈ L2
0(Ω). Since dev(ϕ− Curlα) = σ, it follows

(p, div v)L2(Ω) = (Dv, pI2×2)L2(Ω)

= (Dv, dev(ϕ− Curlα))L2(Ω) − (Dv,ϕ− Curlα)L2(Ω)

= (σ,Dv)L2(Ω) − (f, v)L2(Ω).

Proposition 7.3 implies that σ = Du for the solution u ∈ Z of (7.2) and, hence, (u, p) ∈ Z ×L2
0(Ω) fulfils (7.2).

7.2. Discretization

For k ≥ 0, define

Σh(T ) := Pk(T ; R2×2
dev ) ⊆ Σ,

Xh(T ) := Pk+1(T ; R2) ∩X ⊆ X.

The discrete problem seeks (σh, αh) ∈ Σh(T ) ×Xh(T ) with

(σh, τh)L2(Ω) + (τh, dev Curlαh)L2(Ω) = (ϕ, τh)L2(Ω) for all τh ∈ Σh(T ),
(σh, dev Curlβh)L2(Ω) = 0 for all βh ∈ Xh(T ).

(7.5)

The following lemma proves a discrete inf-sup condition.

Lemma 7.5 (Discrete inf-sup condition). Any βh ∈ Xh(T ) satisfies

‖Curlβh‖L2(Ω) � sup
τh∈Σh(T )\{0}

b(τh, βh)
‖τh‖L2(Ω)

·

Proof. As in the proof of Lemma 7.2, the choice τh := dev Curlβh ∈ Xh(T ) and Proposition 2.1 yield the
assertion. �

The following corollary is a consequence of Brezzi’s splitting lemma [13], Lemma 7.5, and the standard theory
of mixed FEMs [9].

Corollary 7.6 (A priori error estimate). The discrete problem (7.5) has a unique solution (σh, αh) ∈ Σh(T )×
Xh(T ) and it satisfies

‖σ − σh‖L2(Ω) + ‖Curl(α − αh)‖L2(Ω) � min
τh∈Σh(T )

‖σ − τh‖L2(Ω) + min
βh∈Xh(T )

‖Curl(α− βh)‖L2(Ω) . ��
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Define

Wh(T ) := {τh ∈ Σh(T ) | ∀βh ∈ Xh(T ) : (τh, dev Curlβh)L2(Ω) = 0}. (7.6)

The following lemma proves a projection property for Wh(T ). This is the key argument in the a posteriori and
optimality analysis in Sections 7.3 and 8.

Lemma 7.7 (Projection property). Let τ ∈ Σ with (τ, dev Curlβ)L2(Ω) = 0 for all β ∈ X (that means that there
exists v ∈ Z with τ = Dv). Then ΠΣh(T )τ ∈ Wh(T ). If T
 is an admissible refinement of T and τ
 ∈ Wh(T
),
then ΠΣh(T )τ
 ∈Wh(T ).

Proof. This follows from dev CurlXh(T ) ⊆ Σh(T ) and Xh(T ) ⊆ Xh(T
) ⊆ X . �

Remark 7.8 (Equivalence with Crouzeix–Raviart FEM for k = 0). The discrete Helmholtz decomposition
of [20] proves

P0(T ; R2×2
dev ) = DNCZCR(T ) ⊕ dev Curl(P1(T ; R2) ∩H1(Ω; R2))

for

ZCR(T ) := {vh ∈ CR1
0(T ) × CR1

0(T ) | divNC vh = 0}.

If k = 0, this proves σh = DNCũCR for the solution σh ∈ Σh(T ) of (7.5) and some ũCR ∈ ZCR(T ). If the right-
hand side ϕ is a Raviart−Thomas vector field [33], a piecewise integration by parts proves, for all vCR ∈ ZCR(T ),

(DNCũCR, DNCvCR)L2(Ω) = (ϕ,DNCvCR)L2(Ω) = (f, vCR)L2(Ω)

and hence ũCR is the solution of the P1 non-conforming FEM of [22].
Let E(Ω) (resp. N (Ω)) denote the interior edges (resp. nodes) of T . A computation reveals

dim(Wh(T )) = 3 card(E(Ω)) + card(N (Ω)) for k = 1,
dim(Wh(T )) = 6 card(E(Ω)) + 1 for k = 2,

while the non-conforming piecewise quadratic finite element space with vanishing divergence of [24] has dimen-
sion 3 card(N (Ω)) + card(E(Ω)) and the non-conforming piecewise cubic finite element space with vanishing
divergence of [23] has dimension card(N )+7 card(E(Ω))+1. Therefore, these non-conforming FEMs are different
from the discretization (7.5).

7.3. A posteriori error analysis

Given a triangulation T	, define for all T ∈ T	 the local error estimator contributions by

y2(T	, T ) := ‖hT curlNC σh‖2
L2(T ) + hT

∑
E∈E(T )

‖[σhτE ]E‖2
L2(E),

μ2(T ) := ‖dev(ϕ−ΠΣh(T )ϕ)‖2
L2(T )

(7.7)

and the global error estimators by the formulae (5.2). The following theorem states efficiency and reliability
of η.

Theorem 7.9 (Efficiency, reliability). There exist constants Ceff , Crel > 0 with

C−2
eff η

2
	 ≤ ‖σ − σh‖2

L2(Ω) + ‖Curl(α− αh)‖2
L2(Ω) ≤ C2

relη
2
	

Proof. The proof is similar to that of Theorem 5.1 and therefore omitted. �
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8. Adaptive algorithm

This section defines an adaptive algorithm in Section 8.1 for the linear elasticity problem (1.1) and the
Stokes equations (6.1) and (7.1) and proves its optimal convergence rates for the Stokes equations (7.1) without
symmetric gradient.

8.1. Adaptive algorithm

Let y and μ denote the error estimators for linear elasticity from Section 5, for the Stokes equations with
symmetric gradient from Section 6.3, or for the Stokes equations without symmetric gradient from Section 7.3.
The adaptive algorithm is driven by these two error estimators and runs the following loop.

Algorithm 8.1 (AFEM).

Input: Initial triangulation T0, parameters 0 < θA ≤ 1, 0 < ρB < 1, 0 < κ.
for � = 0, 1, 2, . . . do

Solve. Compute solution of (4.1), (6.6), or (7.5) with respect to T	.
Estimate. Compute local contributions of the error estimators

(
y2(T	, T )

)
T∈T�

and
(
μ2(T	, T )

)
T∈T�

.
if μ2

	 ≤ κy2
	 then

Mark. The Dörfler marking chooses a minimal subset M	 ⊆ T	 such that
θAy2

	 ≤ y2
	 (T	,M	).

Refine. Generate the smallest admissible refinement T	+1 of T	 in which
at least all triangles in M	 are refined.

else
Mark. Compute a triangulation T ∈ T with μ2(T ) ≤ ρBμ

2
	 .

Refine. Generate the overlay T	+1 of T	 and T .
end if

end for
Output: Sequences of triangulations (T	)	∈N0

, discrete solutions and error estimators (y	)	∈N0 and (μ	)	∈N0 . �

8.2. Remark on optimal convergence rates for the Stokes equations without symmetric
gradient

Given an initial triangulation T0, recall the set of admissible triangulations T from Section 2. Let T(N)
denote the subset of all admissible triangulations with at most card(T0)+N triangles. For s > 0 and (σ, α, ϕ) ∈
Σ ×X ×H(div, Ω; R2×2) define the seminorm

|(σ, α, ϕ)|As
:= sup

N∈N0

Ns inf
T ∈T(N)

(
‖σ −ΠΣh(T )σ‖L2(Ω)

+ inf
βT ∈Xh(T )

‖Curl(α− βT )‖L2(Ω) + ‖dev(ϕ−ΠΣh(T )ϕ)‖L2(Ω)

)
.

(8.1)

Remark 8.2 (Pure local approximation class). The result ([39], Thm. 2) proves

min
vh∈Pk+1(T )∩H1(Ω)

‖∇(v − vh)‖L2(Ω) ≈ ‖∇v −ΠPk(T ;R2)∇v‖L2(Ω) for all v ∈ H1(Ω)

and therefore the term

inf
βT ∈Xh(T )

‖Curl(α− βT )‖L2(Ω)
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in (8.1) can be replaced by the local term∥∥Curlα−ΠΣh(T ) Curlα
∥∥

L2(Ω)
. �

We assume that the algorithm used in the marking step for μ2
	 > κλ2

	 is the algorithm Approx from [8, 17],
i.e., the thresholding second algorithm [7] followed by a completion algorithm. This ensures quasi optimal data
approximation (axiom (B1) of [17]).

The following theorem states optimal convergence rates of Algorithm 8.1.

Theorem 8.3 (Optimal convergence rates of AFEM). Let s > 0. For 0 < ρB < 1 and sufficiently small 0 < κ
and 0 < θ < 1, Algorithm 8.1 for the Stokes problem (7.4) without symmetric gradient computes sequences of
triangulations (T	)	∈N and discrete solutions (σ	, α	)	∈N for the right-hand side ϕ of optimal rate of convergence
in the sense that

(card(T	) − card(T0))s
(
‖σ − σ	‖L2(Ω) + ‖Curl(α− α	)‖L2(Ω)

)
� |(σ, α, ϕ)|As

.

The proof follows from the abstract framework of [17] (see also [32]) as in [35, 36] for the Poisson problem
and is therefore omitted. Details can be found in [34].

8.3. Remark on optimal convergence rates for an adaptive algorithm for linear elasticity
and the Stokes equations with symmetric gradient

Optimal convergence rates of the adaptive algorithm 8.1 for linear elasticity or the Stokes equations with
symmetric gradient do not follow from the abstract framework of [17] for two reasons. First, the local error
estimator term ‖divαh‖L2(T ) does not involve the local mesh-size, and, hence, the reduction property does not
follow in the usual way. On the one hand, this term can be bounded by [5]

hT

∑
E∈E(T )\E(∂Ω)

‖[∇αh] · νE‖2
L2(E) (8.2)

for the Taylor−Hood discretization from 4.3 for boundary edges E(∂Ω) := {E ∈ E | E ⊆ ∂Ω}. On the other
hand, (8.2) is only efficient for ϕ− σ ∈ H(curl, Ω) and only up to oscillations of curl Curlα.

Second, since the spaces

Zh(T ) := {βh ∈ Xh(T ) | ∀ξh ∈ Yh(T ) : (ξh, div βh)L2(Ω) = 0}

are not nested for nested triangulations, the discretizations of Section 4 lack a projection property. This disables
the proof of the axiom (A3) quasi-orthogonality of [17] and, thus, the proof of optimal convergence rates of
an adaptive algorithm. The same difficulties also arise for the approximation of the Stokes equations with
Taylor−Hood FEMs: The work [25] states the quasi-orthogonality as an assumption without proof.

9. Numerical experiments

This section is devoted to numerical experiments for the Taylor−Hood discretization from Section 4.3 for
k = 1 for linear elasticity in Sections 9.1 and 9.2 and the discretization (7.5) for the Stokes equations for
k = 0, 1 in Sections 9.3 and 9.4. The experiments compare the errors and error estimators on a sequence
of uniformly red-refined triangulations (that is, the midpoints of the edges of a triangle are connected; this
generates four new triangles) with the errors and error estimators on a sequence of triangulations created by
the adaptive algorithm 8.1. Furthermore, for linear elasticity the robustness of the method with respect to
λ → ∞ is compared with the conforming P1 FEM defined in Section 9.1 below. The convergence history plots
are logarithmically scaled and display the error ‖σ − σh‖L2(Ω) against the number of degrees of freedom of the
resulting linear system for the Schur complement.
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(0, 0)

(−1,−1)

(0,−2)

(2, 0)

(0, 2)

(−1, 1)

Figure 1. Initial triangulation of the L-shaped domain from Section 9.1.

9.1. Rotated L-shaped domain

Let Ω := conv{(−1,−1), (0,−2), (2, 0), (1, 1)} ∪ conv{(0, 2), (−1, 1), (0, 0), (1, 1)} be the rotated L-shaped
domain from Figure 1. The considered exact solution in radial components for the right-hand side f = 0 reads

ur(r, ϕ) =
rα

2μ
(−(α+ 1) cos((α+ 1)ϕ) + (C2 − α− 1)C1 cos((α− 1)ϕ)),

uϕ(r, ϕ) =
rα

2μ
((α+ 1) sin((α+ 1)ϕ) + (C2 + α− 1)C1 sin((α− 1)ϕ))

with

C1 :=
− cos((α+ 1)ω)
cos((α− 1)ω)

, C2 :=
2 (λ+ 2μ)
λ+ μ

,

and the positive solution α ≈ 0.544483736782 to

α sin(2ω) + sin(2ωα) = 0 with ω = 3π/4.

Dirichlet boundary conditions are applied on

ΓD := conv{(−1,−1), (0,−2)} ∪ conv{(0,−2), (2, 0)}
∪ conv{(2, 0), (0, 2)} ∪ conv{(0, 2), (−1, 1)},

while (σν)|ΓN = g := 0 on the Neumann boundary ΓN := ∂Ω\ΓD (see Rem. 3.5 for mixed boundary conditions).
Let ϕ := 0 ∈ H(div, Ω; S) and define uD := qu with

q(r, θ) :=

⎧⎪⎨⎪⎩
0 if r ≤ 1/2,
16r4 − 64r3 + 88r2 − 48r + 9 if 1/2 ≤ r ≤ 1,
1 if r ≥ 1.

Then uD ∈ H2(Ω; R2) and uD|ΓD = u|ΓD .
The error estimator μ defined by (5.1) and (5.2) for non-homogeneous Dirichlet data is modified as

μ2(T ) :=
∥∥(ϕ− CDuD) −ΠΣh(T )(ϕ− CDuD)

∥∥2

C−1/2,T
.
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η for ν = 0.4, uniform

‖σ − σh‖
L2(Ω) for ν = 0.4, uniform
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η for ν = 0.499, uniform
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L2(Ω) for ν = 0.499, uniform

η for ν = 0.499, adaptive
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L2(Ω) for ν = 0.499, adaptive

η for ν = 0.4999, uniform

‖σ − σh‖
L2(Ω) for ν = 0.4999, uniform

η for ν = 0.4999, adaptive

‖σ − σh‖
L2(Ω) for ν = 0.4999, adaptive

‖σ − σh‖
L2(Ω) for ν = 0.4 for CFEM, uniform

‖σ − σh‖
L2(Ω) for ν = 0.4999 for CFEM, uniform

Figure 2. Errors and error estimators for the experiment on the rotated L-shaped domain
from Section 9.1.

For edges on the Dirichlet boundary E ∈ E , E ⊆ ΓD, with the one adjacent triangle T+, the jump reads[
C

−1σh + χh

(
0 1
−1 0

)]
E

:=
(

C
−1σh + χh

(
0 1
−1 0

))∣∣∣∣
T+

−DuD.

The sum in the definition of the error estimator y in (5.1) runs only over edges that do not lie on the Neumann
boundary ΓN .

Let E denote Young’s modulus and ν the Poisson ratio, i.e.,

λ =
Eν

(1 + ν)(1 − 2ν)
and μ =

E

2(1 + ν)

with λ→ ∞ if ν → 1/2.
The stress errors ‖σ − σh‖L2(Ω) and the error estimators η :=

√
μ2 + y2 are computed on a sequence of

uniformly red-refined triangulations and on a sequence of triangulations created by Algorithm 8.1 for Young’s
modulus E = 105 and Poisson ratios ν = 0.4, 0.49, 0.499, and 0.4999. They are plotted against the number
of degrees of freedom in Figure 2. For uniformly refined meshes, the convergence rates of h2/3 ≈ ndof−1/3 are
suboptimal, while Algorithm 8.1 reveals the optimal convergence rate of ndof−1.

In contrast to standard conforming low-order FEMs, the discretization (4.1), as predicted by Theorem 4.1,
does not show a locking behaviour for λ→ ∞. To illustrate this, the errors ‖σ − Cε(uC)‖L2(Ω) for the solution
uC of the conforming P1 FEM are included in Figure 2 for comparison for Poisson ratios ν = 0.4 and ν = 0.4999
on a sequence of uniformly red-refined triangulations. While the size of the error of the conforming P1 FEM has
a strong dependence on λ, the errors of the discretization (4.1) are of the same size for all considered Poisson
ratios.

Figure 3 depicts triangulations created by Algorithm 8.1 for Poisson ratios ν = 0.4 and ν = 0.4999 with
approximately 1500 degrees of freedom. The singularity at (0, 0) leads to a strong refinement towards the re-
entrant corner. For ν = 0.4 and ν = 0.49 all marking steps in Algorithm 8.1 used the Dörfler marking (μ2

	 ≤ κy2
	 ),
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Figure 3. Adaptively refined triangulations for ν = 0.4 and ν = 0.4999 for the experiment on
the rotated L-shaped domain from Section 9.1.

while for ν = 0.499 the marking with respect to the data-approximation (μ2
	 > κy2

	 in Algorithm 8.1) was applied
at level 54 (55 696 dofs) and level 62 (118 732 dofs) and for ν = 0.4999 from level 11 onwards at approximately
every third refinement.

9.2. L-shaped domain with piecewise constant f

This example considers the L-shaped domain Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]) with pure Dirichlet boundary
ΓD := ∂Ω. Define the piecewise constant volume force f ∈ L2(Ω; R2) by

f(x, y) :=

⎧⎪⎨⎪⎩
(0, 0) if x ≤ 0 and y ≥ 0,
(0, 1) if x, y ≥ 0,
(1, 0) if x, y ≤ 0.

Define ϕ = (ϕ11, ϕ12;ϕ21, ϕ22) ∈ H(div, Ω; S) with − divϕ = f by

ϕ11 :=

{
−x if y ≤ 0,
0 else,

ϕ12 := ϕ21 := 0,

ϕ22 :=

{
−y if x ≥ 0,
0 else

and let uD = 0.
The error estimators η :=

√
μ2 + y2 are plotted in Figure 4 on a sequence of uniformly red-refined trian-

gulations and on a sequence of triangulations created by Algorithm 8.1 for Young’s modulus E = 105 and
Poisson ratios ν = 0.4, 0.49, 0.499, and 0.4999. Uniform refinement yields a suboptimal convergence rate of
h2/3 ≈ ndof−1/3, while Algorithm 8.1 recovers the optimal convergence rates of ndof−1. For a comparison,
the P1 conforming FEM is computed. Since the exact solution is not known for this example, the efficient and
reliable error estimator ηC = ηC(T ) (with efficiency and reliability constants that are independent of the Lamé
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Figure 4. Error estimators for the experiment on the L-shaped domain from Section 9.2.

parameter λ [15]), defined by

η2
C(T , T ) := ‖hT f‖2

L2(T ) + hT

∑
E∈E(T )\E(ΓD)

‖[Cε(uC)]EνE‖2
L2(E) for all T ∈ T ,

ηC(T ) :=
√∑

T∈T
η2
C(T , T )

for E(ΓD) := {E ∈ E | E ⊆ ΓD} the set of edges that lie on the Dirichlet boundary, is plotted in Figure 4.
These error estimators are approximately 250 times larger for the Poisson ratio ν = 0.4999 in comparison with
the Poisson ratio ν = 0.4 on a triangulation with 391170 dofs. The error estimators for the discretization from
Section 4.3 are almost of the same size for all considered Poisson ratios. Figure 5 depicts triangulations created
by Algorithm 8.1 with approximately 1500 degrees of freedom for Poisson ratios ν = 0.4 and ν = 0.4999. The
strong refinement towards the singularity at the re-entrant corner is clearly visible. Since ϕ is piecewise affine,
the error estimator μ with respect to the data approximation vanishes and only the Dörfler marking (μ2

	 ≤ κy2
	 )

was applied in Algorithm 8.1.

9.3. L-shaped domain for the Stokes equations

This subsection considers the Stokes problem (7.4) on the L-shaped domain Ω = ((−1, 1)× (−1, 1))\ ([0, 1]×
[−1, 0]). The exact solution for the right-hand side f = 0 and corresponding Dirichlet boundary conditions reads

u(r, ϑ) =
(
rα((1 + α) sin(ϑ)w(ϑ) + cos(ϑ)wϑ(ϑ))
rα(−(1 + α) cos(ϑ)w(ϑ) + sin(ϑ)wϑ(ϑ))

)
in polar coordinates with α = 0.54448373 and

w(ϑ) =(sin((1 + α)ϑ) cos(αω))/(1 + α) − cos((1 + α)ϑ)
− (sin((1 − α)ϑ) cos(αω))/(1 − α) + cos((1 − α)ϑ).
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Figure 5. Adaptively refined triangulations for ν = 0.4 and ν = 0.4999 for the experiment on
the L-shaped domain from Section 9.2.
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Figure 6. Errors and error estimators for the experiment on the L-shaped domain from
Section 9.3.

Define

uD(x, y) =
(
1 − x(x− 1)(x+ 1)y(y − 1)(y + 1)

)
u(x, y)

and ϕ = 0. Then uD|∂Ω = u|∂Ω.
The errors and error estimators for k = 0, 1 are plotted in Figure 6 against the number of degrees of freedom.

For uniform refinement, the errors and error estimators show a convergence rate of h1/2 ≈ ndof1/4. The error
‖σ− σh‖L2(Ω) for k = 1 lies even above the error ‖σ− σh‖L2(Ω) for k = 0. Note that the saddle-point structure
implies that this does not contradict the conformity of the method. The adaptive algorithm 8.1 with bulk
parameter θ = 0.1 and κ = 0.5 and ρ = 0.75 leads to an optimal convergence rate of ndof(k+1)/2. Figure 7
depicts triangulations with approximately 1500 degrees of freedom created by the adaptive algorithm for k = 0, 1.
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Figure 7. Adaptively refined triangulations for k = 0 and for k = 1 for the numerical experi-
ment on the L-shaped domain from Section 9.3.

(0, 0)

(0,−1) (8,−1)

(8, 1)(−2, 1)

(−2, 0)

Figure 8. Initial mesh of the backward-facing step from Section 9.4.

The singularity of u leads to a strong refinement towards the re-entrant corner. The marking with respect to
the data-approximation (μ2

	 > κλ2
	 in Algorithm 8.1) is only applied at the first three refinements for k = 0. All

other marking steps for k = 0, 1 used the Dörfler marking (μ2
	 ≤ κλ2

	 ).

9.4. Backward-facing step

This benchmark example considers the domain Ω = ((−2, 8)× (−1, 1)) \ ([−2, 0]× [−1, 0]) with initial mesh
from Figure 8 with volume force f = 0 and Dirichlet data uD defined by

uD|∂Ω(x, y) =

⎧⎪⎨⎪⎩
(0, 0) if − 2 < x < 8,
(−y(y − 1)/10, 0) if x = −2,
(−(y + 1)(y − 1)/80, 0) if x = 8.

The extension

uD(x, y) =

{
(−x2y(y − 1)/40, 0) if x < 0,
(−x2(y + 1)(y − 1)/5120, 0) if x > 0

of uD to Ω and ϕ = 0 are chosen for the numerical computations.
The error estimators for k = 0, 1 are plotted in Figure 9 against the number of degrees of freedom. For uniform

refinement and k = 0, the error estimator η shows a convergence rate of h4/5 ≈ ndof2/5. The error estimator
for k = 1 shows a convergence rate of h2/3 ≈ ndof1/3 for uniform refinements. Since this is the expected
convergence rate for the interior angle of 3π/2 at the re-entrant corner for k = 0, 1, the better convergence rate
for k = 0 is possibly a preasymptotic effect. This convergence rate for a first-order method was also observed
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Figure 9. Error estimators for the backward facing step experiment from Section 9.4.

Figure 10. Adaptively refined triangulations for k = 0 and k = 1 for the numerical experiment
for the backward-facing step from Section 9.4.

for a pseudostress approach in [19]. The adaptive refinement leads to optimal convergence rates of ndof(k+1)/2.
Figure 10 depicts triangulations with approximately 1500 degrees of freedom created by the adaptive algorithm
for k = 0, 1. The singularity of u leads to a strong refinement towards the re-entrant corner. The marking with
respect to the data-approximation (μ2

	 > κλ2
	 in Algorithm 8.1) is applied at the levels 25, 31, 37, 41, 47, 52,

58, 64, 69, 75, 80, and 85 for k = 1. All other marking steps for k = 0, 1 used the Dörfler marking (μ2
	 ≤ κλ2

	 ).
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