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Abstract. We derive an a priori error estimate for the numerical solution obtained by time and space
discretization by the finite volume/finite element method of the barotropic Navier—Stokes equations.
The numerical solution on a convenient polyhedral domain approximating a sufficiently smooth bounded
domain is compared with an exact solution of the barotropic Navier—Stokes equations with a bounded
density. The result is unconditional in the sense that there are no assumed bounds on the numerical
solution. It is obtained by the combination of discrete relative energy inequality derived in [T. Gallouét,
R. Herbin, D. Maltese and A. Novotny, IMA J. Numer. Anal. 36 (2016) 543-592.] and several recent
results in the theory of compressible Navier—Stokes equations concerning blow up criterion established
in [Y. Sun, C. Wang and Z. Zhang, J. Math. Pures Appl. 95 (2011) 36-47] and weak strong uniqueness
principle established in [E. Feireisl, B.J. Jin and A. Novotny, J. Math. Fluid Mech. 14 (2012) 717-730].
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1. INTRODUCTION

We consider the compressible Navier—Stokes equations in the barotropic regime in a space-time cylinder
Qr = (0,T) x §2, where T > 0 is arbitrarily large and 2 C R? is a bounded domain:

0o + divy(ou) =0, (1.1)
O(ou) + divy(ou ®@ u) + V,p(e) = div,S(V u). (1.2)

In equations (1.1) and (1.2) o = o(t,z) > 0 and u = u(t,z) € R3¢t € [0,T), x € 2 are the unknown density
and velocity fields, while S and p are the viscous stress and pressure characterizing the fluid via the constitutive
relations

2
S(Vyu) = <Vzu +Viu— gdivmuﬂ> , >0, (1.3)
2 1 / . p'o)
p € C*(0,00)NC[0,00), p(0) =0, p'(p) >0 for all p >0, lim S = Do > 0, (1.4)
00— 0
where v > 1.
The assumption p’(0) > 0 in (1.4) excludes the constitutive laws for pressure behaving as ¢” as ¢ — 07. The
error estimates stated in Theorem 3.2 however still hold in the case lim,_,o+ Z W(_QB = 0, in particular for the

isentropic pressure laws p(9) = 7. The proof contains some additional technical difficulties, see also Remark 3.2.
Equations (1.1) and (1.2) are completed with the no-slip boundary conditions

u‘ag = 0, (1.5)

and initial conditions
0(0,+) = 00, u(0,-) = ug, go > 0in £2. (1.6)

We notice that under assumption (1.3), we may write
div,S(Vyu) = pAu + gvzdivzu. (1.7)

The results on error estimates for numerical schemes for the compressible Navier—Stokes equations are in the
mathematical literature on short supply. We refer the reader to papers of Liu [39,40], Jovanovi¢ [28], Gallouet
et al. [22].

In [22] the authors have developed a methodology of deriving unconditional error estimates for the nu-
merical schemes to the compressible Navier—-Stokes equations (1.1)—(1.6) and applied it to the numerical
scheme (3.5)—(3.7) discretizing the system on polyhedral domains. They have obtained error estimates for
the discrete solution with respect to a classical solution of the system on the same (polyhedral) domain. In
spite of the fact that [22] provides the first and to the best of our knowledge so far the sole error estimate for
discrete solutions of a finite volume/finite element approximation to a model of compressible fluids that does not
need any assumed bounds on the numerical solution itself, it has two weak points: 1) The existence of classical
solutions on at least a short time interval to the compressible Navier-Stokes equations is known for smooth C?
domains (see [43] or [4]) but may not be in general true on the polyhedral domains. 2) The numerical solutions
are compared with the classical exact solutions (as is usual in any previous existing mathematical literature).
In this paper we address both points raised above and to a certain extent remove the limitations of the theory
presented in [22].

More precisely, we generalize the result of Gallouet et al. ([22], Thm. 3.1) in two directions:

(1) The physical domain {? filled by the fluid and the numerical domain §2;,, h > 0 approximating the physical
domain do not need to coincide.
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(2) If the physical domain is sufficiently smooth (at least of class C?) and the C3-initial data satisfy natural
compatibility conditions, we are able to obtain the unconditional error estimates with respect to any weak
exact solution with bounded density.

As in [22], and in contrast with any other literature dealing with finite volume or mixed finite volume/finite
element methods for compressible fluids [3, 10, 16-19, 23-25, 28,29, 32-35,44] and others) this result does not
require any assumed bounds on the discrete solution: the sole bounds needed for the result are those provided by
the numerical scheme. Moreover, in contrast with [22] and with all above mentioned papers, the exact solution is
solely weak solution with bounded density. This seemingly weak hypothesis is compensated by the regularity and
compatibility conditions imposed on initial data that make possible a (sophisticated) bootstrapping argument
showing that weak solutions with bounded density are in fact strong solutions in the class investigated in [22].
These results are achieved by using the following tools:

(1) The technique introduced in [22] modified in order to accommodate non-zero velocity of the exact sample
solution on the boundary of the numerical domain.
(2) Three fundamental recent results from the theory of compressible Navier—Stokes equations, namely
e Local in time existence of strong solutions in class (2.11) and (2.12) by Cho et al. [4].
e Weak strong uniqueness principle proved in [13] (see also [14]).
e Blow up criterion for strong solutions in the class (2.11) and (2.12) by Sun et al. [41].
The three above mentioned items allow to show that the weak solution with bounded density emanating
from the sufficiently smooth initial data is in fact a strong solution defined on the large time interval [0, T').
(3) Bootstrapping argument using recent results on maximal regularity for parabolic systems by Danchin [8],
Denk et al. [5] and Krylov [36]. The last item allows to bootstrap the strong solution in the class Cho
et al. [4] to the class needed for the error estimates in [22], provided a certain compatibility condition for
the initial data is satisfied.

2. PRELIMINARIES

2.1. Weak and strong solutions to the Navier—Stokes system
We introduce the notion of the weak solution to system (1.1)—(1.4):
Definition 2.1 (Weak solutions). Let oo : 2 — [0,400) and ug : 2 — R3 with finite energy Ey =

Jo(300luol® + H(oo))dz and finite mass 0 < My = [, 00dz. We shall say that the pair (o,u) is a weak
solution to the problem (1.1)~(1.6) emanating from the initial data (0o, uo) if:

(a) 0 € Cueax([0,T); L)), for a certain a > 1, 0 >0 a.e. in (0,T), and u € L*(0,T; WOI’Q((Z;RS)).
(b) the continuity equation (1.1) is satisfied in the following weak sense

/ opdx
2

(¢) ou € Cyear ([0, T]; LP(£2;R3)), for a certain b > 1, and the momentum equation (1.2) is satisfied in the weak
sense,

/ ou - pdr
Q

— / / (uVu : Ve drdt +(u + Ndivudive) dzdt, V7 € [0,T], Yo € C°([0,T] x §2;R3).  (2.2)
0o Jo

; - / / (00rp + ou - Vo) dadt, V7 € [0,T], Vo € C2([0,T] x 2). (2.1)
0o Jao

0:/ /(Qu'3t<P+Qu®u:Vgo—l—p(g)divgo)dazdt
0o Ja
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(d) The following energy inequality is satisfied

1 T T
/ (§g|u|2 + H(g)) dx‘o —|—/ / (1|Vul? + (u+ A)|divel?) dzdt <0, for a.a. 7€ (0,T), (2.3)
Q 0 Jo

with H(p) = Q/lg ]%dz. (2.4)

Here and hereafter the symbol / gdx |§ is meant for/
0

Qg(T,x)dx—/ng(x)dw.

In the above definition, we tacitly assume that all the integrals in the formulas (2.1)—(2.3) are defined and we
recall that Cieax ([0, T]; L%(£2)) is the space of functions of L>([0,T]; L*(£2)) which are continuous as functions
of time in the weak topology of the space L*({2).

We notice that the function ¢ — H(p) is a solution of the ordinary differential equation oH'(0) — H(0) = p(0)
with the constant of integration fixed such that H(1) = 0.

Note that the existence of weak solutions emanating from the finite energy initial data is well-known on
bounded Lipschitz domains provided v > 3/2, see Lions [38] for ‘large’ values of ~y, Feireisl and coauthors [12]
for v > 3/2.

Proposition 2.2. Suppose the 2 C R? is a bounded domain of class C3. Let v, V be a weak solution to
problem (1.1)~(1.6) in (0,T) x {2, originating from the initial data

ro € C3(02), 1o > 0 in 02, (2.5)
Vo € C3(2; R?), (2.6)
satisfying the compatibility conditions
Volon =0, Vap(ro)|on = diveS(V.Vo)l|an, (2.7)
and such that
0<r<F aua in (0,T) x £2. (2.8)

Then r, V is a classical solution satisfying the bounds:

11/l oqo.01x3) + 1Tl o1 o.myx) + 10V arlloqo.ry:Le:rsy) + 107 ¢l e ooy < D, (2.9)

IVlloro.ryxare) + IVl oqo.r1:02 @189y + 1196V Vloqo,rpLeirsxs)y) + 107 Viiceo,rize(0)) < D, (2:10)
where D depends on 2, T, T, and the initial data o, Vo (via [|(ro, Vo)lls (g, gsy and min, g ro(z)).

Proof. The proof will be carried over in several steps.

Step 1.
According to Cho et al. [4], problem (1.1)—(1.6) admits a strong solution unique in the class

r € C([0,Ta); WH8(02)), 9y € C([0,Tar); L(£2)), 1/r € L=(Qr), (2.11)

V e C([0, Tar); W22(£2; R?)) N L2(0, Tag; W20(82; R%)), 9,V € L*(0, Tar; Wy °(82; R®)). (2.12)
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defined on a time interval [0, Ts), where T > 0 is finite or infinite and depends on the initial data. Moreover,
for any T3, < Tar, there is a constant ¢ = ¢(T;;) such that

(7l o 0,7z, w6 (2)) + [10¢7 (| Lo 0,75, (2)) + I11/7 [ Lo (@) (2.13)
HIVIiL=,75w22 im0 + IVIiL20mw2e@5m0) + 100V L20mm12(0))

< ¢ (lrollwrsc2) + [ Vollwzz2()) -

Step 2.

By virtue of the weak-strong uniqueness result stated in ([13], Thm. 4.1) (see also [14], Thm. 4.6), the weak
solution 7, V coincides on the time interval [0, Ths) with the strong solution, the existence of which is claimed
in the previous step. According to Sun et al. ([41], Thm. 1.3) if Ty < oo then

limsup [r(t)[| Lo () = o0.
t—Th —

Since (2.8) holds, we infer that Thy = T'. At this point we conclude that couple (r, V) possesses regularity (2.11)
and (2.12) and that that the bound (2.13) holds with ¢ dependent solely on T'.

Step 3.
Since the initial data enjoy the regularity and compatibility conditions stated in (2.5)—(2.7), a straightforward
bootstrap argument gives rise to better bounds, specifically, the solution belongs to the Valli-Zajaczkowski
(see [43], Thm. 2.5) class

r e C([0,T]; W32(12)), dyr € L*(0,T; W22(02)), (2.14)

V € C([0,T]; W2(02)) N L*(0, T; W2(02; R?)), 0,V € L*(0,T; W??(£2; R?)), (2.15)
where, similarly to the previous step, the norms depend only on the initial data, 7, and T
Step 4.
We write equation (1.2) in the form

1 1
OV — ~diviS(VaV) = =V - VoV + ~Vop(r), (2.16)

where, by virtue of (2.15) and a simple interpolation argument, V € CHv([0,T] x §2; R3*3), and, by the same
token r € C17([0, T]x £2) for some v > 0. Consequently, by means of the standard theory of parabolic equations,
see for instance Ladyzhenskaya et al. [37], we may infer that r, V is a classical solution,

9V, V2V Hélder continuous in [0,T] x 2. (2.17)
and, going back to (1.1),
dyr Holder continuous in [0, 7] x {2. (2.18)
Step 5.
We write

Vooir = =V,V -Vur —V.V2r - V,yrdiv,V — rV,div, V;
whence, by virtue (2.14), (2.17), (2.18), and the Sobolev embedding W12 < L6

oy € C([0,T); WhH(12)). (2.19)
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Next, we differentiate (2.16) with respect to ¢. Denoting Z = 0,V we therefore obtain
L. 1y .. 1
Ol — ;dlva(VxZ) +V . -V,Z =0 (;) div,S(V,V) =V -V, V + 0 (;pr(r)) , (2.20)

where, in view of (2.19) and the previously established estimates, the expression on the right-hand side is
bounded in C([0,7]; L°(£2; R?)). Thus using the LP-maximal regularity (see Denk et al. [5], Krylov [36] or
Danchin [8], Thm. 2.2), we deduce that

O}V =0,Z € L*(0,T; L°(12; R?)), 8,V =Z € C([0, T}; W"(£2; R?)). (2.21)

Finally, writing
O yr = =0V - Vur = V- 0, V,r — 9yrdiv, V — roydiv, V,

and using (2.19), (2.21), we obtain the desired conclusion
97, € C([0,T7; LS (12)). O

Here and hereafter, we shall use notation a S band a ~ b. the symbol «a < b means that there exists
c=c(2,T, p,v) > 0 such that a < ¢b; a = b means a<band b X a.
2.2. Extension lemma

Lemma 2.3. Under the hypotheses of Proposition 2.2, the functions r and V can be extended outside {2 in
such a way that:

(1) The extended functions (still denoted by r and V) are such that V is compactly supported in [0,T] x R3 and
r>r>0.

(2)

IVlieromxrsirs) + I VIieo, ez msrsy + 10:V e ViieqoryLorsirsxsy + 107 V2o rizomsy)  (2-22)

<
S Vlergorixaasy + I Vileqoricz@rsy + 10:VaViieqorooirs<sy + 1107Vl L2005 (2));

7l qo,m1x r3y + 10:Varlloqo, 10 (rs;rey) + 9% ¢rlleo,my:Lo(r9) (2:23)
<
~ N7l oy + 10:Varloqoyizesre) + 10747 oo ryizeen+

HVHCI([O,T]xﬁ;RS) + HVHC([O,T];C?@;RS))” + 3tvwv‘|C([0,T];L6(Q;R3X3)) + ||at2,tv||L2(0,T;L6(Q));

(4)
Oyr + div, (rV) =0 in (0,T) x R®. (2.24)

Proof. We first construct the extension of the vector field V. To this end, we follow the standard construction in
the flat domain, see Adams ([1], Chap. 5, Thm. 5.22) and combine it with the standard procedure of ‘flattening’
of the boundary and the partition of unity technique, we get (2.22) Once this is done, we solve on the whole
space the transport equation (2.24). It is easy to show that the unique solution r of this equation possesses
regularity and estimates stated in (2.23). O
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Remark 2.4. Here and hereafter, we denote X7 (R?) a subset of L2((0,T) x R3) of couples (r, V), 7 > 0 with
finite norm

10, V)l xr @) = Irllerqom1xrsy + 10:Varlleqoryizersimsy) + 1077l e oo rs)) (2.25)

IVliorqompersn + [Vileomyoamom) + 10:VaViioqorizemrexs)) + 105 Vilzao.rizom))
We notice that if r, V are interrelated through (2.7), then the first component of the couple belonging to
X1 (R3) is always strictly positive on [0, 7] x R®. We set

0 <r=ming ,)corxr:r(t2), T =maxg e rxre"(lz) <00 (2.26)

2.3. Physical domain, mesh approximation

The physical space is represented by a bounded domain 2 C R? of class C%. The numerical domains {2;, are
polyhedral domains, o
2, = Uker K, (2.27)

where 7 is a set of tetrahedra which have the following property: If K N L # (), K # L, then K N L is either a
common face, or a common edge, or a common vertex. By £(K), we denote the set of the faces o of the element
K € 7. The set of all faces of the mesh is denoted by &; the set of faces included in the boundary 02, of {2}, is
denoted by Eext and the set of internal faces (i.e. £\ Eext) is denoted by Eing.
Further, we ask
Vi € 02, a vertex = V), € 0f2. (2.28)

Furthermore, we suppose that each K is a tetrahedron such that
¢[K] =~ diam[K] =~ h, (2.29)

where [K] is the radius of the largest ball contained in K.
The properties of this mesh needed in the sequel are formulated in the following lemma, whose proof is left
to the reader, see Johnson and Nedelec [27] for the 2D case, and [26] for the general 3D case.

Lemma 2.5. There exists a positive constant dg depending solely on the geometric properties of 052 such that
dist[z, 002] < doh?,

for any x € 082;,. Moreover,
(20 \ 2) U (2\ 20)| < 2.

We find important to emphasize that 2, ¢ {2, in general.

2.4. Numerical spaces

We denote by Qp,(£2;,) the space of piecewise constant functions:
Qn(2n) ={qe L*(12,)| VK €T, qi € R}. (2.30)

For a function v in C(£2;,), we set

1
Vg = —/ vdzx for K € T and H}?v(ac) = Z v lg(x), x € . (2.31)
K| Jx =

Here and in what follows, 1 is the characteristic function of K.
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We define the Crouzeix—Raviart space with ‘zero traces’

Vh,O(Qh) = {U S L2(Qh), VK € T, V| K c ]Pl(K), (232)

Vo € Ent, 0 = K|L, /U|KdS=/’U‘LdS, Vo' € Eoxts /vdSzo}7

and ‘with general traces’
Vh(Qh) = {’U € LQ(Q), VK € T, V| K S P1(K), Yo € 5int> o= K|L, /’U|K ds = / UL dS} (233)

We denote by I1) the standard Crouzeix—Raviart projection, and IT ;‘L/ o the Crouzeix-Raviart projection with
‘zero trace’, specifically,

)y - O(2y) — Vi(2), /Hhv[gﬂ ds, = / ¢ dS, forall o € &,

H,KO 2 C(21) — Vio(21), /H;‘L/,O[gb] ds, = / ¢ dS, for all o € Epy, (2.34)

/ H}‘{,o [¢] dS; = 0 whenever g € Eext.

If v € WHL(£2y,), we set
Vg = |1—‘ / vdS for o € £. (2.35)
a (e

(See e.g. [9], Sect. 4.3) for the definition of traces of functions in W11
Each element v € V3({2),) can be written in the form

U(l‘) = Z UU‘PU(-T)v HARS th (236)
o€e&

where the set {ps}res C Vi (£2,) is the classical Crouzeix—Raviart basis determined by
1
Y(o,0') € £2, m/ 0o dS =650 (2.37)
g o!

Similarly, each element v € V}, ¢(£2,) can be written in the form

v(z) = Z Voo (T), X € (2. (2.38)

o€

We first recall in Lemmas 2.6)—(2.10 the standard properties of the projection IT}. The collection of their
proofs in the requested generality can be found in the Appendix of [22] with exception of Lemma 2.11 and its
Corollary 2.12. We refer to the monograph of Brezzi and Fortin [2], the Crouzeix’s and Raviart’s paper [6],
Gallouet et al. [21] for the original versions of some of these proofs. We present the proof of Lemma 2.11 dealing
with the comparison of projections IT ,‘l/ and IT X o that we did not find in the literature.

Lemma 2.6. The following estimates hold true:

LY [l o (1) + IR o[ | e () S Bl oe 5y (2.39)
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forall K € T and ¢ € C(K);

16— 12 6l o sy = DIVl o seeys 8 = 1,2, 1< p < o0, (2.40)

and
IV(¢ = I (8D Lo (erty < €h* IV Dl o repesys 5= 1,2, 1 <p < oo, (2.41)

forall K € T and ¢ € C*°(K).

Lemma 2.7. Let 1 < p < oo. Then

> lolhlvs|” = [V}, 0, (2.42)
(£2r)
ce€

with any v € Vi (£24).

Lemma 2.8. The following Sobolev-type inequality holds true:

1olls gy < D /K|vxv\2dx, (2.43)
KeT
with any v € Vi, 0(£2p,).
Lemma 2.9. There holds:
Z / q div 1) [v] dx:/ q divodz, (2.44)
K o}

KeT

for all v € CY(2,,RY) and all ¢ € Qn(24).

Lemma 2.10 (Jumps over faces in the Crouzeix-Raviart space). For all v € V3, 0(£21) there holds

Z% [v]2,,. dS < Z/ IV z0|?dz, (2.45)
K

oel g KeT

where [V]ym, s a jump of v with respect to a normal n, to the face o,

_ : _J k(@) —v[L(z) if ng = no
ve € o=KL E b, [tlon, (2) = {vmx) —lx (@) if my = no,

(no, Kk is the normal of o, that is outer w.r. to element K) and
Vo €0 € exty  [V]on, (x) =v(z), with n, an exterior normal to Of2.

We will need to compare the projections II X and 17 ,‘l/ o- Clearly they coincide on ‘interior’ elements meaning
K € T, KNdN, = 0. We have the following lemma for the tetrahedra with non void intersection with the
boundary.

Lemma 2.11. We have
1LY [@] = I o [0l oo (1) + RV (I1) [6] — ITY o[ @) ]| Lo (16 m%) ~ sup |olloe(oy if K €T, KNO2y #0,
h

" (2.46)
for any ¢ € C(K).
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Proof. We recall the Crouzeix-Raviart basis (2.37) and the fact that IT) and II ,‘l/ o differ only in basis functions
corresponding to o € Eqxt. We have

1
122, (6] — I} o @]l oo (i) < > %H/@i’ds Sce(K)- sup  |[@llLe(o), (2.47)

oc€&(K)NEext Lo (K) c€E(K)NEext

and

1
RV (I [@] = Y o[@)) L) < B || VWUH/MS

c€E(K)NEext

Lo (K)
<ch s ol | Y. Vs
cCKNoRy, oc€&E(K)NEext L>(K)
The proof is completed by || Zaes(K)ngext Vol Lo (k) < c(K)h~t. O

In fact, in the derivation of the error estimates we will use the consequence of the above observations formu-
lated in the following two corollaries.

Corollary 2.12. Let ¢ € C1(R3) such that ¢|lpn = 0. Then we have,

11 (@) = 1Ty o[l e (i) = 0 if K € T, K N g, =1, (2.48)

1T (@] — T o) 1< (1) + R Vo (T [¢] = T o[ @) | e (1c:m) ~ B2 (| V@l oo (33, (2.49)
ifKeTy, KNoRy #0, 0K ¢ 012.
Proof. Relation (2.48) follows immediately from (2.46), as there is an empty sum on the right hand side for

‘interior’ elements (K N 902, = 0).
For any = € (2, there exists y € 92 (and thus ¢(y) = 0) such that

6(@)] < distl, o] [Vl e sty = W2 Vb o sy, (2.50)
where we used Lemma 2.5 for the latter inequality. The proof is completed by taking supremum over K € 7;, and
combining with (2.50). Note that the mesh regularity property (2.29) supplies a uniform estimate of constants
¢(K) from the previous lemma, which enables to write the latter inequality in (2.50). O
Corollary 2.13. For any ¢ € C(R?),

12 (6] = I [ Loy ~ PP IIS Nl Lo, 1 < p < oo, (2.51)

Proof. Apply inverse estimates (see e.g. [31], Lem. 2.9) to (2.46). O

We will frequently use the Poincaré, Sobolev and interpolation inequalities on tetrahedra reported in the
following lemma.
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Lemma 2.14.

(1) We have,
v = vicll Loy = RVl Lo x0), (2.52)

Vo € E(K), ||v—vollLr(k) S hIVollLe ), (2.53)

for any v € WHP(K), where 1 < p < oo.
(2) There holds

lo = vl oz ~ V0| oy (2.54)
Vo € E(K), [[v = voll o i) ~ V0l Lo (), (2.55)
for any v € WYP(K), 1 < p < d, where p* = dd—z).
(3) We have,
v = vk llpax) < ChﬁHV”HLp(K;Rd)» (2.56)
o = vologaer < B2 IV0l ey (2.57)

for anyv e WHP(K), 1 <p<d, where%zg—l—lpiﬁ,pgqu*.

We finish the section of preliminaries by recalling two algebraic inequalities: the ‘imbedding’ inequality

L 1/p L 1/q
(Zaiv’) §<Z|aﬂ> , (2.58)

for all @ = (a1,...,ar) € R*, 1 < ¢ < p < co and the discrete Holder inequality

1/p

L L YVa ,p,
> laalbi| < (Z ail"> (Z Ia#’> , (2.59)
i1 i1 im1

for all a = (a1,...,ar) € R, b= (by,...,br) € RE, %—i—%zl.
3. MAIN RESULT

Here and hereafter we systematically use the following abbreviated notation:
6 =11216], én=11}[6], dno=II},[d), (3.1)

where projections HhQ, 1) and H,KO are defined in (2.31) and (2.34). For a function v € C([0,7T], L*(£2)) we
set
V(@) = vltn, ), (3.2)

where to = 0 < {1 < ... <tlp_1 <tp <tpp1 < ...ty = T is a partition of the interval [0,T]. Finally, for a
function v € V},(§25) we denote

Viv(z) = Y Vau(z)lg(z), divpv(z) =Y divev(z)lx(z). (3.3)

KeT KeT
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In order to ensure the positivity of the approximate densities, we shall use an upwinding technique for the
density in the mass equation. For ¢ € Qp,(£2;) and u € V}, o(2;,; R?), the upwinding of ¢ with respect to u is
defined, for 0 = K|L € &t by:
up _ {qK if ug -no x>0 (3.4)

qL if Us - na’,Kgov

and we denote

UpK(qa ll) = Z qupuo N, K = Z (QK[UU : no’,K]Jr + QL[UU : na,K}i) »
o€E(K)eNEint o €E(K)NEine
where a™ = max(a,0), a~ = min(a, 0).

3.1. Numerical scheme

We consider a couple (o™, u™) = (o™ (At (ALY of (numerical) solutions of the following algebraic system
(numerical scheme):

0" € Qn(f2), 0" >0, u" € Vio(2u; R?), n=0,1,...,N, (3.5)

Z|K|QK o OK —|—Z Z lolon P (ul - g x)px =0 for any ¢ € Qp(2n) andn=1,...,N, (3.6)

KeT KeT oce&(K)

K " n—1L~Amn S
> |At| (oktfe — of taf ) ok + Y Y lolo At ul - o k] - vie (3.7)
KeT KET 0e&(K)
- Z p(ok) Z lofve ok + 1 Z / Vu" : Vo dx
KeT oeE(K) KeT
—|— / divu"dive dz = 0, for any v € Vi, o(£2; R*) and n=1,...,N.
KET

The numerical solutions depend on the size h of the space discretization and on the time step At. For the
sake of clarity and in order to simplify notation we will always systematically write in all formulas (0", u™)
instead of (o™ (At (ALY,

The numerical method (3.5)—(3.7) has been suggested in ([31], Def. 3.1); it is strongly nonlinear and implicit.
It is therefore not a trivial question whether this (finite dimensional) problem admits a solution. The problem
of the well posedness of this numerical scheme is investigated in Karper ([31], Prop. 3.3). Karper’s result states
that:

For each fized h > 0, At > 0, problem (3.5)(3.7) admits a solution (o}, uj):

QZ € Qh(Qh), uZ € Vh,O(Qh; RS), n=0,1,..., N,
and oF >0, n=1,...,N, provided ¢ > 0.
The proof uses topological degree theory in the spirit suggested in [20]. All its details are available in Section 11

of [31]. Notice that the above result does not guarantee the uniqueness of numerical solutions.

Remark 3.1. Throughout the paper, ¢2P is defined in (3.4), where u is the numerical solution constructed
n (3.5)-(3.7).
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3.2. Error estimates
The main result of this paper is announced in the following theorem:

Theorem 3.2. Let 2 C R? be a bounded domain of class C* and let the pressure satisfy (1.4) with v > 3/2.
Let {0",u" }o<n<n be a family of numerical solutions resulting from the scheme (3.5)—(3.7). Moreover, suppose
there are initial data [ro, Vo] belonging to the regularity class specified in Proposition 2.2 and giving rise to a
weak solution [r, V] to the initial-boundary value problem (1.1)~(1.6) in (0,T") x £2 satisfying

0<r(t,z)<T a.a. in (0,T) x {2.
Then [r, V] is reqular and there exists a positive number

C=C (MO,EO,E, 7 |t [0, V1, V, 0V, YV V2 V) | L 0 85,

H8t2THL1(O,T;L“f/(_Q))7 ||8tVTHL2(O,T;L57/5W*5(Q;R3))’ H@fV, 5’tVV||L?(O,T;LG/S(Q;R”))a)

such that
1 ionm B :
sup / {§Q”|u — V{tn, )2+ H(0") — H'(r(tn, ) (0" — r(tn, ")) — H(r(tn))} da (3.8)
1<n<N J 2Ny,
AL D / Vau" = VaV(tn,)* da
1<n<N 02N82y,
1
<C (\/At + h +/ |:§Q0|f10 _ V0‘2 + H(QO) _ H/(TO)(QO ~ o) — H(ro))] dx) 7
N0,
where , \ 1
a= 77— Zf% <v<2 a= 5 otherwise. (3.9)

Note that for v = 3/2 Theorem 3.2 gives only uniform bounds on the difference of exact and numerical
solution, not the convergence.

Remark 3.3. The constitutive assumptions for the pressure (1.4) in Theorem 3.2 require, in particular,
p’'(0) > 0. This condition excludes the isentropic pressure laws

plo) = 0", v> 1. (3.10)

Nevertheless, Theorem 3.2 holds under the same assumptions also for the isentropic pressure laws (3.10). Here,
we have adopted the more restrictive condition (1.4) (in particular p’(0) > 0) only for the sake of simplicity and
clarity, in order to avoid some unnecessary technical difficulties. It allows to simplify proofs of some estimates:
for example estimates (4.7), (4.10) are in this case immediate consequences of the energy inequality (4.2), while
in the general case of pressure laws vanishing at 0, the derivation of the same estimates requires more effort
(see [22], Cor. 4.1 and Lem. 4.2), where the proofs of these estimates are performed in the general case.

4. UNIFORM ESTIMATES
If we take ¢ = 1 in formula (3.6) we get immediately the conservation of mass:

Vn=1,...N, Qndx:/ o’ dx. (4.1)
2 2

The next Lemma reports the standard energy estimates for the numerical scheme (3.5)—(3.7). The reader can
consult Section 4.1 in Gallouet et al. ([22], Lem. 4.1) for its laborious but straightforward proof.
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Lemma 4.1. Let (o™, u") be a solution of the discrete problem (3.5)~(3.7) with the pressure p satisfying (1.4).
Then there exist

O € [min(ok, 07 ), max(0k, 07)], 0 = K|L € &ng, n=1,..., N,

of 1" € (min(ol !, o), max(ol !, o)), K €T, n=1,...,N,
such that
S 11 (Gl + (e ) - Y 1K (peklul + Hlck))
KeT KeT
+Atz Z < / qu"2dw+§/K|divu"2dw>
n=1KeT

+ (DA prlael y prvlaul  prelde] — o (4.2)

time time space space

forallm=1,... N, where

m|Au\ S Ko™ 1‘uK_uTIL(71|2 4
tlme Z Z ‘ ‘ 2 ) ( 3&)
m n—12
m|AQ\ 7 —n 1,n ‘QK_QK ‘
tlme Z:: g K|H ) D) i (43b)
m
u R (un - un)2
Diac]=Aty, 32 lolep™ == Jug - no (4.30)
n=1c=K|LEEint
|4l - (0% — o})?
m, 1 (=n n
[Dspaceg = At Z Z ‘O-|H (Qa) 2 ‘uo’ ' nU,K" (43d)

n=1 U:KlLegint
We have the following corollary of Lemma 4.1.

Corollary 4.2. Under assumptions of Lemma 4.1, we have:

(1) There ezists ¢ = c¢(My, Eyg) > 0 (independent of n, h and At) such that

N

k Z/ Vou"[dz < ¢, (4.4)

n=1"K

N
k Z ”unHiG(Qh;RS) <gc, (45)
n=1
Supn:O,...N”Qn‘anFHLl(Qh,) <ec (46)
(2)

sup,—o, . .nll0" L (2,) < ¢ (4.7)

(3) If the pair (r,U) belongs to the class (2.25) there is ¢ = c¢(Mo, Eo, 1,7, U, VU|| o (gpr12)) > 0 such that
foralln=1,... N,

supn:O,mNE(g”, a7 (t,), U(tn)) <c, (4.8)
where

5(@,UIZ»V)=/Q (olu = v[* + E(el2)) dz, E(e|2) = H(e) — H'(2)(0 — 2) — H(2). (4.9)
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(4) There exists ¢ = c¢(Mo, Eo, 1, |p'|c1y 7)) > 0 such that

m 1o
Aty D lollok - 02)2[[ (a2l

max — { n<1 |l!n Ny K| <4 C
2 05;< } o s
n= 10-_—K“ eeint {QK,QL}] R

ifyell,2), (4.10)

Ay Y ol(ek — ep)” lul

a'nU7K|SC ZfVZQ
n=1c=K|LEEint

Items (1)—(3) of Corollary 4.2 are direct consequences of Lemma 4.1. Item (4) represents the convenient expres-

sion for the numerical dissipation (4.3d). The interested reader can consult Section 4.2 in (Gallouet et al. |
Cor. 4.1, Lem. 4.2) for the detailed proofs of these estimates

22],
5. DISCRETE RELATIVE ENERGY INEQUALITY
The starting point of our error analysis is the discrete relative energy inequality for the numerical
scheme (3.5)—(3.7) formulated in the following lemma
Lemma 5.1. Let (o™, u") be a solution of the discrete problem (3.5)—~(3.7) with the pressure p satisfying (1.4)
Then there holds for allm=1,... N

7

1
> Il (gktluk — UR[* = okluf — Uk[?)

- + > IK[(E(oRIr®) — E(dk|rk))
KeT KeT
;KEG:T( / 3 /K‘ ) ) Z (

for any 0 < 1™ € Qun(21), U™ € Vio(2n;R3), n=1,..., N, where

T = AtZ:IKZ:T< /VU"-
n S

(U™ —u™)da + %/ divU"div(U™ — u™) dx) ,
K

L U U"1 Ut un o
AtZZ|K| 1-K ( K K 1)7

D) K
n=1KeT

L-—ay Y Y |og”up(UK+UL—a"“p) Ul no i)

n=1KeT ce&(K)

o=K|L
(5.2)
= —Atz SN lolp(ei)Ug - mo k],
n=1KeT ce&(K)
o=K|L
— A |K| n T\ 1, n—1
tz Z - 0%) (H (rk) —H (TK )),
n= IKET

TG_AtZZ Z lo| o " H' (r';

n=1KeT ce&(K)
oc=K|L

g 10k

Proof. Lemma 5.1 is proved in Section 5 in (Gallouet et al. [22], Thm. 5.1). We provide here the proof for the
sake of completeness.
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First, noting that the numerical diffusion represented by terms (4.3a)-(4.3d) in the energy identity (4.2) is

positive, we infer
I +1,+ 13 <0, (5.3)

with

11K § Kl .. )
3 515 (RIRT o i) = 30 ek HeR ).
KeT
I3 = Z ( / |V u™?de + 3/ divu"|2dx>.
K

KeT

Next, we consider the discrete continuity equation (3.6) with ¢ = %|ﬂ"|2 as test function in order to obtain

o LK] 5 . .

I, = Z 2 At (Q ‘UK‘ Z Z ‘0’|Q Pu 'na,K”UK| = Ji. (5.4)
KeT KeT oe&( K)
oc=K]|L

In the next step, taking —U™ as test function v in the discrete momentum equation (3.7) one gets

K
Is =— Z |At| (oful — o ) - Up = Jo + J5 + Ju,
KeT

with

=3 Jolerant - U [ul - ng k),

KeT 0e&(K)
o=K|L
Js=p >y / Vur: VU™ da + o Z / divudivU™ d
KeT KGT
and
=2 2 lelp(ei) U - nox].
KeT oe€(K)
oc=K|L

We then consider the discrete continuity equation (3.6) with a test function ¢ = H'(r" ') and obtain

K
- B o = YD el Pl me s (5.

KeT KET océ(K)
o=K|L

Observing that o H'(r) — o "H'(rie ') = o (H'(r’y) — H'(rg ") + (0% — o ) H'(r "), we rewrite the
last identity in the form

K _ _
Is = — Z % (o H' (1) — o "H' (rh) = Js + Je
KeT
with J; = — > @gn (H'(re) = H'(rie ")) and Js = Y > |olop™[ul - no x| H' (ri ). (5:5)
o At K K K o o g, K
KeT KeT oe&(K)

o=K|L
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Finally, thanks to the convexity of the function H, we have

= S B g o) — HO0) — (5 05 - )|

KeT

=2 %THK (H'(rf) = H'(ri) = > ft' (Hr3) — (5 — i DH ) —HORY)  (5.6)
KeT KeT

< Z %T}‘( (H’(T}L() — H'(r?(_l)) = Jr.
KeT

Now, we gather the expressions (5.3)—(5.6); this is performed in several steps.

Step 1: Term I + Iy + I5. We obtain by direct calculation,

Lh+1Ii+ 15 = Z 3 At (Oklufe = UR® — o Huji = U )
KeT
. U”» _Un—l Un—1+Un -
_Z‘K‘QKI KAtK ( K2 K_uK1>. (5.7)
KeT

Step 2: Term Jy + J2. Employing the definition (3.4) of the upwinding, one gets

Uy + U7}
Siklh==> Ioe”“p<@—a2”>-U}é[u?na,K]. (5.8)

2
KeT o=K|Le&(K)

Step 3: Term I3 — Js. This term can be written in the form

Iy — J3 = ( /|v U”)de+3/ |div(u" —U”)|2dx>

KeT (5.9)
-> / (vm- U" - ")+§/ divU™div(U™ —u”)).
KeT K
Step 4: Term Iy + Ig + I7. By virtue of (5.3), (5.5) and (5.6), we easily find that
I+ I+ I; = @E""—E”*1 n-l 5.10
2+ 1+ 7_2At( (ok %) (% i), (5.10)
KeT
where the function E is defined in (4.9).
Step 5: Term Js + Js + J7. Coming back to (5.5) and (5.6), we deduce that
|K| R n—1
Js+Jo+Jr=> Ty Uk — Ck) (H'(ry) — + 30 ) ol Plul e k] H (rf Y. (5.11)
KeT KeT oc&(K)
oc=K|L

Step 6: Conclusion
According to (5.3)—(5.6), we have
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whence, writing this inequality by using expressions (5.7)—(5.11) calculated in steps 1-5, we get

1 K] n _pm - KL g gnpen —1yn—
D 5y (eklufe —URP = o Mui ' = URT' ) + 3 0 (Bleklri) — Bleg i)
KeT KeT

+ ZT (“/K Vo (u" — UM dz + %/K div(u” — U”)zda:)

( / VLU Vo —u”)dx+§/ divU"div(U™ —u")dx)

K
+ Y Ko WUp —Ug ' (U + U ! (5.12)
= At 2 K

Ul +U7?
DD S e R
)

KeT o=K|Le&(K

Y Y e noxd ¢ Y g o) (805) - B

KeT o=K|Le&(K) KeT

+3 S ol H (Yl - o )

KeT O'ZK‘LE?:K

We obtain formula (5.1) by summing (5.12)" from n = 1 to n = m and multiplying the resulting inequality
by At. O

6. APPROXIMATE DISCRETE RELATIVE ENERGY INEQUALITY

In this section, we transform the right hand side of the relative energy inequality (5.1) to a form that is more
convenient for the comparison with the strong solution. This transformation is given in the following lemma.

Lemma 6.1 (Approximate relative energy inequality). Let (o™, u™) be a solution of the discrete problem (3.5)-
(3.7), where the pressure satisfies (1.4) with v > 3/2. Then there exists

c=c (MO, Eo.r. 7|0 |cnprt, |07, Vi, VL0V, YV e i)
HatQTHLl(O,T;LW’(Q))a \|3tV7"‘|L2(0,T;L67/5~—6(Q;R3))) >0,

such that for allm=1,..., N, we have:

/ (emfam = Vi + B(e™ ™) ) do - / (10 = V02 + B("]*)) da
2 2n

6
+Atz Z( /\v —Vh70)\2dx+§/K|d1v(u —V,w)?dx) <) Si+ Ry A +G™,

n=1KeT =1

(6.1)
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for any couple (r, V) belonging to the class (2.25), where

Sy = Atz > ( /v Vil'o : VoVl — u” )dx+3/ divVodiv(Vyy — u” )dx),
n=1KeT
n—1

Vv,
AtZZ‘K‘ L}W('(VI{?O,K_U’”K)’
n=1KeT

n,up (Y7n.up _ smn,up) | n _yn [ 7n,up
= At E E E ooy (Vh,O,a U, ) (Vh,O,a Vh,O,K) Vh,O,a No.K,
n=1 KETG’EE(K

(6.2)
= —At Z / ™) div V™ de,
S5 = Atz / )[afr}
Sg = —At Z/ ?np'(f”)u" -Vr'da,
n=1"n "
and
G < c ALY E(e, A", V™), Ry ol < c(VAL+ 1), (6.3)

n=1

with the power a defined in (3.9) and with the functional € introduced in (4.9). (Recall that in agreement
with the notation (2.35), (3.1)—(3.3), ho = HhO[V(tn)], Viokx = H}?H}‘L/:Ov(t"”K’VZL,O,U ‘0_‘ f Vi o

= H,? [r(tn)], where the projections 119, ITV are defined in (2.31)) and (2.34).)

Proof. We take as test functions U" = V3o and v = 7" in the discrete relative energy inequality (5.1). We
keep the left hand side and the first term (term T7) at the right hand side as they stay. The transformation of
the remaining terms at the right hand side (terms T — T§) is performed in the following steps:

Step 1: Term T5. We have

m v _ Vn—l
Ty =Toy+ Roq + Rop, with Toy = At Y |K|g;;—1w (Vi —ulk), (6.4)
t Uy
n=1KeT
and
Ry —Atz > Ry, Ryp=AtY Rp,,
n=1KeT n=1
where
n n—1 n n—
gt _ KL Vo = Vilow)® K| oy (V"= V" nox)
21 9 OK At o K At ’
and
h K Vi'o. ;
n 0, h,0,K _ n
o= 3 IKlgg SRR 1 ),

KeT
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We may write by virtue of the first order Taylor formula applied to function ¢ — V (¢, x),

‘[V anhOK‘ ‘|K|/ At tﬂlat (zx)dz} }dx‘

At ;

_‘IKI/ At/ . OV (2)], (@] da] < IBV ol o riaeqomon < IOV oo

where we have used the property (2.39) of the projection IT X o on the space Vj, o(£25). Therefore, thanks to the
mass conservation (4.1), we get

n MO
[R3A) < P KIA OV w0 1,1 2%y (65)

To treat term R%, we use the discrete Holder inequality and identity (4.1) in order to get

1/2
1/2 ne11 n—
|R5L,2| < At CMOHatVHioo(o,T;wl‘oo(Q;R% + CMO/ (Z | K| 0% 1|UK 1 UTIL(|2> HatV||Loc(o,T;Loo(Q;R3))§
KeT

whence, by virtue of estimate (4.2) for the upwind dissipation term (4.3a), one obtains

‘Rzg‘ < Vv At C(]\fo,E‘()7 ||8tV||L°C(QT;R3))' (66)

Step 2: Term T5. Employing the definition (3.4) of upwind quantities, we easily establish that

T3 =131+ R3 1,
m
with Ty =AY Y S folen (@ = Vi) - Vil s - moie, Raa = Aty > RS,
n=1KeT cc&(K) n=10€&n;

VhOK\2
2

|th K_th L|2 ‘ h L
and Ry { = |o]of —5 5 [ - mou]* + ol —

[u no.L] s VU:K|L€51nt.
Writing

Vitok = Vior=Vao —Vi'lk + Vi'xk =V,  + V' =V,

Vi = Vi + V' = Vil + [V = Vilole, 0 = K|L € &g,
and employing estimates (2.48) (if K N 912, = 0), (2.49) (if K N2y, # 0) to evaluate the L°>°-norm of the first
term, (2.52) then (2.41),—=1 and (2.53) after (2.41)5=1 to evaluate the L°-norm of the second and third terms,
and performing the same tasks at the second line, we get

HVhTfO,K - VhT,LO,LHLOO(KUL;R?’) < ChHVVHLoo(KUL;Rg)§ (6.7)
consequently
RS < 02 VVIE < 00y ey |00 + 0Dl Vo = KL € e,
whence
5/6
[Roal ShellVVITwomwann | D2 Do hlolldi + i)
KeT o=K|Le&(K)
137 1/2 (6.8)
) 1A (YT DT hloflugl < h (Mo, Eo, [VV | L (q.r9)),

n=1 \Ke7T ce&(K)
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provided v > 6/5, thanks to the discrete Holder inequality, the equivalence relation (2.29), the equivalence of
norms (2.42) and energy bounds listed in Corollary 4.2.
Clearly, for each face 0 = K|L € &int, Ul - no x + ul - 0y 1, = 0; whence, finally

B Y S el (V) ok Vom0
n=1KeT oc&(K)
Before the next transformation of term 7% ;, we realize that
hok — Voo = Vio— Vilk + Vi xk = Vi + Vi = Vi o + [V = Vi olos
whence by virtue of (2.48) and (2.49), (2.52) and (2.53) and (2.41)s=;, similarly as in (6.7),
[Vito.x = Voo

Let us now decompose the term T3 1 as

(KiR3) < ch||V V| Loo 0,11 (2:R8)), 0 C K. (6.10)

T51="T32+ R3 2, with B35 = At Z R,

n=1

n,up [ Y/ n,up ~m,up n n ~n,up
T30 = At E > > ooy (Vh,o,a — U, ) (Vilo.o = Vo) @57 - mo i, and
n=1KeT sc€(K)

Ri, =Y > lolep™ ( Vi = ﬂg’up) (Voo = Vilo i) (g — 45™) - mo <.
KeT oe€(K)

By virtue of discrete Holder’s inequality and estimate (6.10), we get

1/2
2
[Riol < el VVipmqommey [ D D hlolep™|ag™™ = Vi
KeT 0e&(K)
1/(270) 1/q
XX Hlelezere > X whelfup—azl)
KeT oe&(K) KeT 0e&(K)

where % + ﬁ + % =1, 790 = min{~, 2} and v > 3/2. For the sum in the last term of the above product, we have

S > holfur—aze| <e 30 ST hloliug — uil

KeT 0c&(K) KeT 0e&(K)

q/2
cl Y <||ug—u”|LqKR3 + ) flun —uK||Lq(KR3> <ch B (Z [V u™ ||L2(KR9> :

KeT oe&(K) KeT KeT

where we have used the definition (3.4), the discrete Minkowski inequality, interpolation inequalities (2.56)
and (2.57) and the discrete ‘imbedding’ inequality (2.58). Now we can go back to the estimate of Rj, taking
into account the upper bounds (4.4), (4.7) and (4.8), in order to get

Ry 2] < 1 ¢ (Mo, Bo, IV V| g ) (6.11)

provided v > 3/2, where a is given in (6.3).
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Finally, we rewrite term 73 o as

T3’2 = T3,3 + R3’3, with R3’3 = At Z Rg’g,

n=1

n,u {71, up ~n,u n n Crm,up
T35 =At E E E o]op P (Vh,O,o — U, p) : (Vh,O,a - Vh,O,K) Vh,o,a ‘Mg Kk, and
n=1Ke7T occ&(K)

n n,up n,up _ sn,up) n _yn ~n,up _ Y/nup | | .
3,3 — § E lo|oy (Vh,o,(7 U, ) (Vh,O,a Vh,O,K) (ua Vh,,070> No, K
KeT oe&(K)

whence .
R3] < c(IVV | oo (r ro)) At Z E(e", A" |7, V).

n=1

Step 3: Term Ty. Integration by parts over each K € 7 gives

— —Atz Z / (0% dlvthde

n=1KeT

We may write
[dive (Voln — Vi)l (r) < chl|Va V| poo 0,00 (2%

where we have used (2.48)—(2.49). Therefore, employing identity (2.44) we obtain

T4—T41—|-R41, T41——AtZZ/ QK lexV dz,

n=1KeT

R41——At22/ (0 )dive (V3o — V") da.

n=1KeT

(6.12)

(6.13)

(6.14)

(6.15)

Due to (1.4) and (4.7), p(0") is bounded uniformly in L>(L!(£2)); employing this fact and (6.14) we immediately

get
|Ra1| < h e(Eo, Mo, |[VV||Le0,1:0 (2:r9)))- (6.16)
Step 4: Term T5. Using the Taylor formula, we get
1
H'(ri) = H'(ri ) = H' () (e =151 — SH" Rk =i D2,
where 7 € [min(rf !, v ), max(riy 7 )]. We infer
n n—1 m
Ty =Ty, 4 R, with Toy = &S0 S [KJ0 — o) PR R TR S S R and
5 5, ) 5 n At ) 5, 5,1 »
n=1KeT "K n=1KeT
_an—1\2
R \K\H"%—”)%(gx—rm

Consequently, by the first order Taylor formula applied to function ¢ — r(t,z) on the interval (¢,—1,t¢,) and

thanks to the mass conservation (4.1)

|Rs.1| < At (Mo, r, 7, |p'| o1 (1r,7: 1047 Lo (0))-

(6.17)
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Let us now decompose 15 ; as follows:

T5,1:T5’2+R ,25 Wltth,g—AtZ Z/ —QK )[atr} "dx, R52—AtZZR52,

n=1KeT n=1KeT

n, n n p/ % TR — TR ! n
R5,2K:/ (rk — 0k) (nK) ( L AtK — [0r] )dgﬁ
K

Tk

(6.18)
In accordance with (3.2), here and in the sequel, [0yr]"(z) = O¢r(tn, ). We write using twice the Taylor formula
in the integral form and the Fubini theorem,

. 1 tn ptn
RSy | = At '(rg)rk (ok — k) / / Ofr(z)dzdsdx
tn 1 S
/ n
< Zk) / / % r(2)|dadzds
Tk St
P'(rg) o
< 0" — 7" || L~ (k) 1057 (2)| L (1) d2ds.
TK tn—1
Therefore, by virtue of Corollary 4.2, we have estimate
|Rs,a| < At o(Mo, Eo, 1,7 [P |cr (1.1 10771 11 0,10 () (6.19)

Step 5: Term Tg. We decompose this term as follows:

T@—T61+R61, RGl—AtZZ Z Rno—K’ with

n=1KeT occ&(K)

To1 = At Z Z Z lo| o (H'(r?(_l) — H/(rgfl)) uy - Ny i, and

n=1KeT o=K|LeE(K)
Rg’f’K = |o| (o™ — o’%) (H’(r?{l) — H’(r?‘l)) ull - ng , for o = K|L € .

We will now estimate the term Rglg K We shall treat separately the cases v < 2 and v > 2. The ‘simple’ case

v > 2 is left to the reader. The more complicated case v < 2 will be treated as follows: We first write

1ign
n,o,K / , {o5>1} n
BT | < VRIVH ()]l g msylollon™ — k] [[max{% ooy 1{@2«}} Vg mo x|

X | Lgn>1y[max{or, or /2 4 1{§g<1}} Vhy/|u2  ne
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where we have employed the first order Taylor formula applied to function z — H'(r(t,_1,z). Consequently,
the application of the discrete Holder and Young inequalities yield

|Re 1| < \/ECHVH/(T)”LN(QT?]RS)
1/2

m
ALY DT Y olh [Lgnsnymax{ox, oL }1* 77 + Ligneaty] |uf - mo k|
n=1 \KeT ce&(K)

n,u n 1 op 21 n
X Z Z ‘0’|h( P QK)2 |:[ tes=l) ]2_7 +1{g;‘<1}:| ‘uo’ 'no',K‘

KeT o=K|LeE(K) max{ox, or}

1/2

< \/ECHVH/(T)||L°C(QT;R3)

m 8 E
X Atz |(2h|6 + (Z lo|h(0'k % (2- 7)> Z Z lo|h|ul - ng k|°
n=1

KeT KeT ce€(K)

1/2

. Lign>1
R S e R e LR

KeT o=K|LeE(K) max{ox, or}]

3 1/6
< V| VH (1) o (g me) Atz 12]% + (Z lo|h(o} <M>> (Z Iahlu26>

KeT oeé

m
. Lign>1
FAS LY S ol - g | TR 1| k]

n=1 | KET 6=K|Lc&(K) max{ox, or}
< Vh (Mo, Bo, 1,7, [P lo(im V7l L (0rr?)):

where, in order to get the last line, we have used the estimate (4.10) of the numerical dissipation to evaluate
the second term, and finally equivalence of norms (2.42),—¢ together with (4.5) and (4.7), under assumption
v > 12/11, to evaluate the first term.

Let us now decompose the term Tg 1 as

m
Ty =Too+ Reo, with Too=At> > > ook H'(r ) (ri ! = r Yl - ng k],
n=1KeT o=K|LcE(K)

RGQ—AtZ > > RgSE an

n=1KeKoe&(K)

Rgs™ = lolog (H' (i) — H'(r ') = H' (g ) =57 Y) [l - mo i)

o

Therefore, by virtue of the second order Taylor formula applied to function H’, the Holder inequality, (2.42),
and (4.5), (4.7) in Corollary 4.2, we have, provided v > 6/5,

m
R 2| < he (1H o + TH” lo@em) IV7 | L orry At Y 10" zrviem 1u | s (0, 2

n=1

<h C(Mo, FEo,r,T, ‘p/‘Cl([KT])’ HVTHLN(QT;]RS))’ (6.20)
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Let us now deal with the term 7§ 2. Noting that / vrtlde = Z lo|(r2=t — 2 Nn, k, we may write
K c€E(K)
T6,2 = T6,3 + R6,3, with

T63——AtZZ/QKH” Yu™ - vVt da,

n=1KeT

Re3 = Atz > / o H" (P (u — uh) - Vit de

n=1KeT

+ At Z Yo > lolekH (i ri = v )y — uk) - mo
n=1 KeT o0& (K)
Consequently, by virtue of Hélder’s inequality, interpolation inequality (2.56) (to estimate [[u" — u |, .4 (K:R®)
by h(570_6)/(27°)Hun”HL?(K;Rg), Y0 = min{v,2}) in the first term, and by the Taylor formula applied to
function x — r(tp—1,2), then Holder’s inequality and (2.56)—(2.57) (to estimate |ul} — u%|| by

h(570—6)/(270) |V um ”L?(K;RQ))’ we get

L0 (K;R?)

5’}/0 —6
2%

R3] < h* ¢(Mo, Eo,r, T, [P'| o1 (iri) I V7|l oo (0rR?))s 0= (6.21)

provided v > 6/5, where we have used at the end the discrete imbedding and Hélder inequalities (2.58) and (2.59)
and finally estimates (4.4) and (4.7).

Finally we write T3 = T6 4 + R4, with

T64——AtZZ/ V’I" d.T

n=1KeT

(6.22)
Rea = Atz > / (H" () V™ — H' (i Ve 1) ™ da,
n=1KeT
where by the same token as in (6.19),
|Ro.a| < At ¢(Mo, Eo,r, 7, P01 (2.7): V75 06|l oo (@ k%) 195V 120, 7,167/ 57— (282 (6.23)

provided v > 6/5.

We are now in position to conclude the proof of Lemma 6.1: we obtain the inequality (6.1) by
gathering the principal terms (6.4), (6.12), (6.15), (6.18), (6.22) and the residual terms estimated
n (6.5), (6.6), (6.8), (6.11), (6.13), (6.17), (6.19), (6.20), (6.21), (6.23) at the right hand side Z?:1 T; of
the discrete relative energy inequality (5.1). O

7. A DISCRETE IDENTITY SATISFIED BY THE STRONG SOLUTION

This section is devoted to the proof of a discrete identity satisfied by any strong solution of problem (1.1)—
(1.6) in the class (2.9)—(2.10) extended eventually to R?® according to Lemma 2.3. This identity is stated in
Lemma 7.1 below. It will be used in combination with the approximate relative energy inequality stated in
Lemma 6.1 to deduce the convenient form of the relative energy inequality verified by any function being a
strong solution to the compressible Navier—Stokes system. This last step is performed in the next section.
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Lemma 7.1 (A discrete identity for strong solutions). Let (0", u™) be a solution of the discrete prob-
lem (3.5)—(3.7) with the pressure satisfying (1.4), where v > 3/2. There exists

c=c (MO, Eo, 1,7, 9| 1o | (0er, Vi, V8V, YV V2 V)| 0 05

H8t27“||L1(0,T;m’(Q HatVTHm(OTLGw/Sw 6(2;R3)) H82V XVV |- (0,T;L6/5($2; R”))) >0,

such that for allm=1,..., N, we have:

ZS + Riar = (7.1)
where
S = AtZZ( /vvhO (Vg —u")da + /dlvVhOdlv(VhO—u)dx>,
n=1KeT 3
anl
AtZZ K| M'(Viﬁox—un}()v
n=1KeT
S= Y Y o (Vi = @) - (Voo = Vito.se) Vi - o
n=1KeT ce&(K)
= —AtZ/ ™) div V" de,
S5 =0,
= —AtZ/ -Vr'de,
and

Ryt il < e (B0 + At),

for any couple (r, V) belonging to (2.25) and satisfying the continuity equation (1.1) on (0,T)x R3 and momen-
tum equation (1.2) with boundary conditions (1.5) on (0,T') x §2 in the classical sense. (Recall that in agreement
with notation (2.35), (3.1)~(3.3), Vi o = I/ o[V(tn)], Vi x = [Violx, Viies = [Viigle, 7" = H,?[r(tn)],
where projections 119, ITV are defined in (2.31) and (2.34)).

Before starting the proof we recall an auxiliary algebraic inequality whose straightforward proof is left to the
reader, and introduce some notations.

Lemma 7.2. Let p satisfies assumptions (1.4). Let 0 < a < b < co. Then there exists ¢ = c¢(a,b) > 0 such that
for all p € [0,00) and r € [a,b] there holds

E(olr) = c(a,b) (1r,\(a/2,26(0) + 07 1R \[ay2,20) (0) + (0 — 7)*1[a/2,201(0)) »

where E(p|r) is defined in (4.9).

If we consider Lemma 7.2 with o = o™ (x), r = #"(z), a = r, b =T (where r is a function belonging to class (2.25)
and r, T are its lower and upper bounds, respectively), we obtain

B(o" ()| () > e(r,T) (Lry\[/2.27 (" (2)) + (") (@) Lo\ (/2,27 (" (%)) + (0" () — 72"(w))zl[g/z,zr](9"(95();) -)
2
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Now, for fixed numbers r and 7 and fixed functions ", n = 0,..., N, we introduce the residual and essential
subsets of 2 (relative to o™) as follows:

ess

1
Nn —{l‘EQ EESQ()<2T} res_‘Q\ ess7 (73)

and we set
[Gless(2) = g(2)Inn_(2), [glres(z) = g(x)1np_(2), x € 2, g€ L' ().

Integrating inequality (7.2) we deduce

w3 [ ([ lr] s e )aesewacrvn

for any pair (r, V') belonging to the class (2.25) and any o" € Qn(§2), o™ > 0.
We are now ready to proceed to the proof of Lemma 7.1.

Proof. Since (r, V') satisfies (1.1) on (0,7T") x {2 and belongs to the class (2.25), equation (1.2) can be rewritten
in the form

roV +rV -VV + Vp(r) — pAV — u/3VdivV =0 in (0,7T) x £2.

From this fact, we deduce the identity
> T =R, (7.5)
i=1

where

RO:—AtZ/Qh\Q (r V] 1V TV £ Vp(r") — pAV" — EV div V )-(tho—u )dz,

S n M M n n n
Tl:_AtZ/Qh('“AV +§Vd1VV)~(Vh70—u)dx, T = AtZ/ -(Vi'o —u™) da,
%:AtZ/ VYV (Vi — u") da, ﬂ_AtZ ) - Vit da,
Qh
T =0, :—Atz -u” dx.

In the steps below, we deal with each of the terms Ry and 7;

Step 0: Term Ry. By the Holder inequality

m
[Rol < 120\ 2P7° e(F, 1t leges @1, V1, V. YV, V2V e g iy At D (10" [ Loy + [ Violzogen))
n=1
< W (Mo, Eo, 7, ' o 71, [ (8er, V1, VYV VEV) | L misy s (7.6)

where we have used (4.5), (2.48), (2.49) and (2.39).
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Step 1: Term 7;. Integrating by parts, we get:
Ti=T1+Ri,

with Ty,1 = At Z Z / (MVVh,T,Lo :V(Vilo —u") + %diV Vilo div(Vyy'o — Un)) dw,
n=1KeT 'K

and Rl,l =11 + I5, with

G n n n n lLl/ : n n s n n
L=ay % /K (W(V = Vilo) s V(Vilp = u") 4 S div(V" = Vi) div(Vil — u )) de, (7.7)
n=1KeT

I = _Atz Z Z / (/“mff’K VYV (Vi —u) + gdiv Vi (Vo —u") ‘n"’K) 5

n=1KeT oc&(K)" 7

|

n=1 oc€“9

+ g div V™ [V,{fo - u”}

0-5n€7 Oanﬂ

(,uno. Vv [Vh% — u"} . ng> ds,

where in the last line n, is the unit normal to the face o and [|, n, is the jump over sigma (with respect to n,)

defined in Lemma 2.10.
To estimate I;, we use the Cauchy—Schwartz inequality, decompose V™ — Vio=V"'=Vp+Vp Vi,
and employ estimates (2.41)s=2, (2.48)-(2.49) to evaluate the norms involving V(V" — V1), and decompose
ho= Vio— Vi + V} use (2.48)(2.49), (2.40)5=1, (4.4), the Minkowski inequality to estimate the norms
involving V(Vj, ; —u™). We get

1| < h (Mo, Eo, |[VV, VQVHLOO(O,T;LN(Q;RSS)))’

Since the integral over any face o € Eipt of the jump of a function from V}, 0(§25) is zero, we may write

I = At i > / (,uno— A(VV™ = (VV")s)- [un - Vhrfo}

ong
n=1 0€&n "’ ? ’

—|—g (divV™ — (divV"),) {Un - Vh,T,lO]

o,ng

-no—> ds;

whence by using the first order Taylor formula applied to functions x — VV"(z) to evaluate the differences
VV"™ —(VV"),, divV"™ — [div V"],, and Hoélder’s inequality,
L2 (U;R3)>

e 1
L] < Ath e | V2V peorzen, Y S VIolVa (EH[M—VQO]MU

n=10€Ent
m 1 2
S AthCHVQVHLN(QT;RW)Z Z (|Jh+ﬁ H|:un_‘/h730:| L2 3 ) ’
o,Ng (U§R )
n=10€Ent
Therefore,
‘Rl,l‘ S h C(M07 E07 ||V7 VV’ V2VHL°°(QT,R39))7 (78)

where we have employed Lemma 2.10, (4.4) and (2.48)—(2.49), (2.40).
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Step 2: Term 75. Let us now decompose the term 75 as

To =721+ Ra,

" vyt S K
with T, = At > Y / P e (Vi —w)de, Raa =AY YRy
K

n=1KeT n=1KeT
. 1 1 ) VAL anl
and Ry = /K(r” — 7" )0 V] (Vg —u™) dz + /K " ([atV]" — T) (Vo —u™)da.

. K .
The remainder Ry’ can be rewritten as follows

tn 1 tn tn
REK = / [ / Qur(t, )t V] - (Vg — ") o+ / | / / RV (=, )dzds| - (Vi — u") da
K tn—1 K th—1

S

whence, by the Holder inequality,

K
Ry | < At[(IITHLw(QT) + 110i7] Loe (@) 10V || oo () 1P O (1™ Lo (1) + 1 Vil Lo )

+||5’t2V"||L6/5(Q;]R<3))(HunHLS(K) + IVioll s (x)) |-

Consequently, by the same token as in (6.19) or (6.23),
‘R2,1| < Atc (M()» Ey,T, ”(at'ra V.oV, VV)”LN(QT;RlS)v HatQV‘|L2(0,T;L6/5(Q;R3))) ’ (79)

where we have used the discrete Holder and Young inequalities, the estimates (2.39), (2.48) and (2.49) and the
energy bound (4.4) from Corollary 4.2.

Step 2a: Term 73 1. We decompose the term 751 as
To1 =Top + R,

] m P 74 anl . N m e
with To = 430 30 [ o = (Vo — e, Rap = 4rY0 3 R
n=1KeT n=1KeT

| VAL Vn—l
and RS = [ (77 =) e - (Vi — ) d

therefore,

K
IRELl =1 Ry | < hel Vrll Lo (0rr2) 10V I Lo (0rik?) 1™ = Vilol Lo o)
KeT

Consequently, by virtue of formula (4.5) for u” and estimates (2.39), (2.48) and (2.49),

‘R272‘ < hc(M07 E07 ||(VT? Va 8tV, VV)HLOO(QT;Rls))' (710)
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Step 2b: Term 73 5. We decompose the term 75 5 as
Too=To3+Ras,

B VAl 1 m
with Ty = 413 Y / w1 Vo RO TIOK (r —ut) d, Rag =AY ST RES,
n=1KeT n=1KeT
v _yn-1 yvn _—yn-1
and Rgf = /}(T?{l ( o - [ v }h> -(Vilp —u")dz

o (Far - ) s

vn vyl vr—yn-l n K, 7K, 1K
+/KTK ({ At L,K - { At }h,O,K> ' (Vh’o —un)dr =17+ 17+ 1

We calculate carefully

1= i [ [V -0 @] - i - wsf o

1 tn
< -t /
At tn—1

Summing over polyhedra K € 7 we get simply by using the discrete Sobolev inequality

1/6 5/6
1 tn 6/5
K —1 n n|6
> 11| < Fprk /t (} Vi~ ||L6(K;R3)> (} oV (@)l — [V ()]no) LS/S(K;R3)> dz

KeT KeT KeT

[EAZOIEEAZOIN

[Viio — unHLG(K;]R{S)dZ’

K‘ L6/5(K;R?)

1 — tn n n
<t [ IV = s, w0V G~ OV o,

th—1

h5/6 . N

< [ IV = @ lingo ) 10V ) e
tn—1

where we have used estimate (2.51) to obtain the last line.
As far as the term I is concerned, we write

= 2| [ ( " ave], - |
< h P 1/
ALK,

where we have used the Fubini theorem, Hélder’s inequality and (2.52), (2.41)s=1. Further, employing the
Sobolev inequality on the Crouzeix—Raviart space V, o(£2;,) (2.43), the Holder inequality and estimate (2.41)5=1,

we get
K h n—1 n n .
> < a'x 1w = Vilollce(o,me)
KeT tn—1

tn

8tV(z)dz]h K) (" = V) da

tn—1

[atV(z)]

u™ — VhnyHLG(K;]R{S)’

h‘ L6/5(K;R®)

(=)]

z
L6/5(2,;R?)

We reserve the similar treatment to the term €. Resuming these calculations and summing over n from 1
to m we get by using Corollary 4.2 and estimates (2.48)-(2.49), (2.39),

|R2,3‘ < h?/0 (Mo, Eo, H(T’ V,VV.0,V) HLOO(QT;]Rw)v ||8tvvHL2(0,T;L5/5(Q;]R9)))' (7'11)
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Step 2c: Term 733. We rewrite this term in the form

m
To3="To4 +Ros, Roy= At Z Z R;”f,
n=1KeT
m v _ Vn—l
wih Ty = a3 Y [t TaC IO v, (r.12)
n=1KeT 'K At v

K thO K~ th(;}(
n, n—1 U, ,U, n n n n
and Ry'y = /K " T A ((u" —uk) = (Vi — Vilo k) da.

h,0,K

‘/vhrtO’Kivn—l )
—mm e as in (6.5). Next, we decompose

First, we estimate the L°° norm of
Vito = Vilook = Vio = Vi + Vi = V', + [V} = Vil i,

and use (2.52)p=2 to estimate u" —uf, (2.52)p=c0, (2.41)5=1 to estimate V;' — V"' and (2.48)-(2.49) to evaluate
1Vi' = Vilol k[l Lo (emey < VR — Viloll oo (im2)- Thanks to the Holder inequality and (4.4) we finally deduce

[Raal < h e (Mo, Eo, (V. 0V, YV) | 1 (gpes)) - (7.13)

Step 3: Term 73. Let us first decompose 73 as

T3 =731+ Rs.1,
m m
with T3 = ALY Y / P Vitowe - VV™ - (Vi e —uj)de, Rgr=AtY > Ry,
n=1KeT VK n=1KeT
and RglK = / (r" = r)V"-VVT (Vg —u")de —I—/ (V" =V') - VV" - (Vg —u")do
K K

+ [ TRVl = Vi) TV (Vi — ") do
We have

I =il & BIVE Loy,

by the Taylor formula,
<
v - Vh%”Loc(K;RS) ~ thvnHLOO(K;R9)7

by virtue of (2.40),—-1 and (2.48) and (2.49),

Vo = Vino, ko (k2 < Viio = Vi,

ooy T IV = Vil k|l Lo (1 ,R%)

+I[Vi" - VIZO}KHL“’(K;RS) S h”VVnHLoo(K;RQ)
by virtue of (2.52), (2.40)s=1 (2.41)s=1 and (2.48)—(2.49),

<
[u" = will Lo () ~ RIVU™ || oo (1R -
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Consequently by employing several times the Holder inequality (for integrals over K) and the discrete Holder
inequality (for the sums over K € T), and using estimate (4.4), we arrive at

Rs1| < h (Mo, Eo, 7, |[(Vr, V,YV)|| e (ii5)- (7.14)

Now we shall deal wit term 73 ;. Integrating by parts, we get:

/K T?(V}ZO,K A (Vhfo,K —uf)dr = Z |J‘TK[Vh 0,k "o, x|V, (Vh 0,K — u)
ce&(K)

= 3 ol Vi o)V = Vi) - (Vi — ul),
c€eE(K)

thanks to the the fact that > ¢ [, Vi'g - Do,xdS = 0.
Next we write

T30 =T32+Rs2, Rsza=A4t Z R 5,

n=1

Tam At S ol [V ny (V2 — Vi) - (VD — aow), (7.15)
n=1KeT ce&(K)

and Rs 2 = Z Z lo|(rg — 75 up)[Vh 0,k "o, (V) Vh ) (Vhny,K —ufg)
KeT 0e€(K)

30 Jelie | (Vow — Vig®) - mou | (Vi = Vilk) - (Vi — wi)
KeT 0e&(K)

30N Il I me (Ve = Vi) - (Vitose = Vi) = (uie — a2®) )
KeT oe&(K)

We may write

Vo —Vioxg=Ve=V"+ V" VR + V- Vi +[Vy = Vilk,

and use several times the Taylor formula along with (2.40)s=1, (2.52), (2.41)s=1, (2.48)-(2.49) (in order to
estimate 1 — 7P, Vi — Vi 1, Vi e — ViPTP) to get the bound

3
Rl < helrlwsoy (14 IVIprm@prey) 3 Alolhuil
KeT

tel|rlwre () (1+||V\|W1‘M(QT;R3) S 3 hloffug —ull.
KeT oe&(K)
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We have by the Hélder inequality

1/6 1/6
S Hiolukl < ¢ (z h|a|u;z|6> < (z o - umgG(K;RS))

KeT oceT KeT

1/6 1/2
+ (Z |u”II§G(K;R3>> <c (Z |Vun||2LQ(K;R9)> ,

KeT KeT

1/2
Z Z h‘UHuK - un| <c (Z Hun _unK”iz(K;RS))

KeT océ(K) KeT
1/2 1/2
ID IR R [ VR 5 ol B
KEeT se&(K) KeT

where we have used (2.54),=2, (2.52)—(2.53),=2. Consequently, we may use (4.4) to conclude
[Razl < he (Mo, By, V7, V. YV | g, 20%)) - (7.16)

Finally, we replace in 735 V' —

o

Vi'k by Vilo.o — Vilo - We get

T30 =T33+ R33, Rzz=A Z R3 3,

n=1

T35 = At Z Z Z o |75 thouf,) 1, k](Vito.o = Vio,x) - (Vh’f&f? —ay"), (7.17)
n=1Ke7T ce&(K)

and

33 = Z Z o7 PVl ko (VT = Viols = [V = Vilolk) - (‘7,,”0“5 —ag"),
KeT oes(K)

committing error

Ry 4| <he (MO, Eo, 7|V, V, vaLw(QT;Rm)) , (7.18)
as in the previous step.
Step 4: Terms 7, We write

To=Ti1+Ray, Ta1=— Vp(r™) - V'dz,

2
Rap= [ Vp(r")- (V" = V) dw;
2y
whence
(Raal < he (7. o V7 e orime) ) (7.19)

by virtue of (2.40),-1, (2.48)—(2.49).
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Next, employing the integration by parts

Tao=Tao+Ru2, Tap= / p(r™) div V™ dz,
2n

Raz=— Y > / ‘nggdS=— )" > / ~ Vi) - Do rdS.

KeT 0e&(K),0€082), KeT oe&(K),0€082),
Writing
n n — n n n n n n
V' =V, =V =V +Vy =V + [V = Vilo,

we deduce by using (2.40)s=1, (2.41)s=1, (2.53)p=cc, (2.48), (2.49),
n n < n
||V - Vh,O,JHL‘”(K;RS) ~ h”vv HL‘X’(K;R?’)a ocK.

Now, we employ the fact that

> > /dS~1

KeT ce&(K),0€082),

whence
[Ra2| < he(T, [plor,m, IV VI e (@rir?))

Finally,

Tao=Ti3+Ru3, Tasz= / p(F*)divV™de, Rusz= / (p(r™) = p(#™)) div V" du;
.Qh -Qh,

whence
Ras| < he(]plewm [V VV) [ Lo (grri2))-

Step 5: Term 7g We decompose Tg as

72;—7231+R61,W1th761——AtZZ/ (FMu" - Vr" de,

n=1KeT

RGl_AtZZ/ ) —=p'(r"™)) - u™ - Vr' da.

n=1KeT

Consequently, by the Taylor formula, Holder inequality and estimate (4.5),

|R6,1| < hC(MO, EOaZa Fv ‘p/‘cl([g,ﬂ)’ HVTHLOO(QT;R:;))'

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

Gathering the formulae (7.7), (7.12), (7.17), (7.21), (7.23) and estimates for the residual terms (7.8), (7.9)—

(7.13), (7.14)—(7.18), (7.19), (7.20), (7.22), (7.24) concludes the proof of Lemma 7.1.

8. A GRONWALL INEQUALITY

O

In this section we put together the relative energy inequality (6.1) and the identity (7.1) derived in the
previous section. The final inequality resulting from this manipulation is formulated in the following lemma.
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Lemma 8.1. Let (9", u") be a solution of the discrete problem (3.5)—(3.7) with the pressure satisfying (1.4),
where v > 3/2. Then there exists a positive number

c=¢c (M07 EO) r,T, |p/|Cl[£,F]v || (at'f', VT, Va atvv VV, V2V)||LOC(QT;R45)7
1077 21 (0,752 2y 106V | 20,7 671576 (03 ||8t2V78tvvHL2(0,T;L5/5(Q;R12))) ;
such that for allm =1,..., N, there holds:

am H n
e i Vi At S S [ IV - ViR

n=1KeT

e[+ VAL+ (0", uO17(0), Vio(0))] + e At ST (0", w i, Vi),

n=1

with any couple (r, V) belonging to (2.25) and satisfying the continuity equation (1.1) on (0,T) x R and
momentum equation (1.2) with boundary conditions (1.5) on (0,T) X £2 in the classical sense, where a is defined
in (3.9) and & is given in (4.9).

Proof. We observe that

SG—Se—AtZ/

25

T yn gy dx+AtZ/ L9 wn—vn"). v da.

25

Gathering the formulae (6.1) and (6.2), one gets

S(gm,um‘fm,vh%) —S(QO,uO‘f(O),Vho +uAtZ 3 ‘v

n=1KeT

, ,ZP +9, (81
L2(K]R

where

n—1

\ 7% V,
—ary 3 Kl i )RR (Vi i — )

n=1KeT

m
ALY ST ol ety (VI - @) - (Vi = Viltos) ViaS - o

n=1KeT o=K|LeEk

Pimary / (p(a™) — /(") (0" — ) — p(F™)) div V™,

P4—AtZZ/

n=1KeT
Q= Rh,At + Rh,At +G™

(u -V . Vr'de,

Now, we estimate conveniently the terms P;, ¢ = 1,...,4 in four steps.
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Vn Vn 1
Step 1: Term P;. We estimate the L> norm of W by L° norm of &;V in the same manner as
in (6.5). According to Lemma 7.2, [0 — r["1g,\[r/2,27(0) < c(p)EP(o|r), with any p > 1; in particular,

o= rl*P1p,\/20m (0) < cE(elr) (8:2)
provided v > 6/5.
We get by using the Holder inequality,

n—1 n—1 VhTfO,K B V'h'fo—}( n n
O IK| (ot —ri ) et (Vi —u) | < llaV e orre)

At
KeT
1/2 5/6
X (Z |Kllof " — 7“?<_1|21[g/2,2ﬂ(91{)> + (Z [K|lof ™ — T?(_16/51R+\[£/2,2F](QK)>
KeT KeT

1/6
n n |6 n—1 ~n—1|sn— Crn—
x (Z K| Vi i — uly| ) < e (1OV )l grmn) (872 (&= Vi)

KeT
1/6
+E3/0 (gn’l,ﬁ”’llf”*, ‘7;,751)) (Z IVio. = uTlLf”iG(K;RS)> ’
KeT

where we have used (8.2) and estimate (4.8) to obtain the last line. Now, we write V}/'y - — ux = ([V})y —
u"lx — (Vi'p —u")) + (V;'y — u") and use the Minkowski inequality together with formulas (2.54), (2.43) to get

1/6 1/2
(Z Vi — u?(@e(K;Rs)) < (Z IV (Vi u">||iQ(K;R3)> .

KeT KeT

Finally, employing Young’s inequality, and estimate (4.8), we arrive at

P1| < ¢ (6, Mo, Eo, .7, [V, YV, V) | e )

X (Atf:(go,aofo,V,S,oHAtZe(@",a"fﬂ%)) +0ALY Y IV = u) e emeys (83)

n=1 n=1KeT

with any § > 0.

Step 2: Term Pz. We rewrite V! — V" . = V"' — V' + [V — Vi']o + [V)) — V' and estimate the
L* norm of this expression by hHVVHLm (QriR%) by virtue of (2.48)- (2.49), (2. 52)- (2.53), (2.41)4—1. Now we

write Py = At > | P¥ where Lemma 7.2 and the Holder inequality yield, similarly as in the previous step,
P3| < ez, 7 [[VV| Lo (grir?))
% Z Z |0"h <E1/2 nup|An up) E2/5( nup|An up) ‘th upHthéup_,an,up
il 70-

g

KeT ce&(K)
1/2
<cw T (V. VV)pmgrrz) | | Do D lolh (Bley ™ [i))
KeT 0e&(K)
2/3 1/6

(XY e | < (S e —ape])

KeT oe&(K) KeT 0e&(K)
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provided v > 3/2. Next, we observe that theA contribution of the face o = K|L to the sums ZKGT ZUES(K)
|o|RE (e |7 P) and g e Yoee(r) lo1hIVy gy — i 'P|® is less or equal than 2|o|h(E (o} [7%) + E(0} [71)),
and than 2[o|h(|V;y x — u? |6+ Vito.r — u” (%), respectively. Consequently, we get by the same reasoning as in
the previous step, under assumption v > 3/2,

|Pa| < e(8, Mo, Eo, v, T [|(V, YV o (umizy) At Y E(", 7|77, Vilg) + 84t Y > IV(Villo = u™) 13 eimey-

n=1 n=1KeT
(8.4)
Step 3: Term Ps. We realize that
pok) =P/ (ri) ek — rk) — p(rk) < e(r, 7 E(ox|r),
by virtue of Lemma 7.2 in combination with assumption (1.4). Consequently,
P3| < cll div V=@ At Y E(", a7, Vi) (8.5)

n=1

Step 4: Term Py. We write u”™ — V" as the sum (u" — V') + (Vg — V") accordingly splitting Py into two

terms
Atz Z / ( Vh 0) Vrdx and Atz Z / (VhO n) V" da.
n=1KeT =l ker

Reasoning similarly as in Step 2, we get
"P4‘ < h? 0(5 My, Eg, 1,7, ‘p/‘c (Ir,7) H(V’I“ VV)HLOQ _Q']Rg))

+ ¢ 7 P e I V7l e (or#) Atzé’ At v, o)+MtZ D IV (Vily = u™) 7o oy
n=1KeT

(8.6)
Gathering the formulae (8.1) and (8.3)—(8.6) with ¢ sufficiently small (with respect to u), we conclude the proof
of Lemma 8.1. O
9. END OF THE PROOF OF THE ERROR ESTIMATE (THM. 3.2)
Finally, Lemma 8.1 in combination with the bound (4.8) yields

m—1
E(o™, @™, Vi) < c[h* + VAL + At + E(0°, @1 (0), Vio(0))] + e AL Y (0", @i, Vil);

n=1

whence by the discrete standard version of the Gronwall lemma one gets at the first step
E(o™, @[, Viih) < ¢|n + VAL + (o, @7 (0), Vao(0))]

Going with this information back to Lemma 8.1, one gets finally

Elem i Vi) + ALY Y [ Vs = Vi g)ax < efn + VET+ £, @17 0), Vhol0)]. - 91)

n=1KeT
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Now, we write
o (U — Z,O,K)2 = ok (ug — V")z + 20 V" (ug — Z,O,K) + o (V" — Z,O,K)27
where
V"™ = Vi 0.kl Lo (52 Svr - oo rirey F IIVE = Vi ke gy + 1TVE = Violg | Lo (k2
Sh (vavnHLm(K;R") + HV:EVZHLM(K;R% + Vi = VZ,O||L°°(K;R3)> S hHVVnHLoc(K;R")'
In the above calculation we have employed formula (2.40) to estimate the first term, esti-

mates (2.52)s=1, (2.41),=1 to estimate the second term, and formulas (2.48) and (2.49) for K N 9§, = 0
and K N A8y, # 0, respectively, to evaluate the last term. We conclude that

1 N .
S 5T (@R bk ~ Vil — dlule ~ Vianl) > [ on@n - viRde = [ 0@ - vOPdr L,
02Ny,

KeT 02NNy,
(9.2)
where
<
[Li| ~ h M0||VIVHL°°((O,T)><Q;R9)'
Similarly, we find with help of (4.8),
|E(ok ") — E(of, 7)o (x) < h (Mo, 1,7, [Pl 7 VT Lo (0rir?) )
whence
1K (Bl - Bli) = [ B o= [ B@hOds + La, 93)
KeT 02N82y, 02N82y,
where
|L2| < h e(Mo,r,T, |p‘C1[L7]v HVTHL‘X’(QT;]R?’))'
Finally, by virtue of (2.48)—(2.49) and (2.41)s=2
IV(Vito = V) 2wy ~ MYV VAV | oo 0 025
whence
m m
a3 / V(" = VI o) Pdx > AtS (Vpu" — Vo V") Pdx + Ls, (9.4)
n=1KeT 'K n=1" 202
where

|Ls| < R2e([(VV", V2V | oo (sm12))-

Theorem 3.2 is a direct consequence of estimate (9.1) and identities (9.2)—(9.4). Theorem 3.2 is thus proved.

10. CONCLUDING REMARKS

In the convergence proofs one usually needs to complete the numerical scheme by stabilizing terms, so that
the new numerical scheme reads

n—1
Qn —0 n,u n
E |K|—E——E— AtK P + E E lolog ™™ (ug - o k)oK + Te(d) = 0, (10.1)
KeTy, KeTh 0eé(K)
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for any ¢ € Qn(2,) and n=1,...,N,

K n— n— N
Z % (QnKuylL( — Ok 1uK 1) sV + Z Z |g‘gg,upug,up[ug . na,K} SV (10.2)
KeT KeT 0e&(K)
_ZP(QHK) Z |J‘Uo"no,K+/~LZ/ Vu" : Vo dz
KeT o€E(K) KeT 7K
857 [ divundive do +T,,(6) =0, for any v € Vig(2 %) and n = L., N,
K

KeT

where

T.(¢) = 1'% 3 Jol0"ome [Bonss Tu(@) = 3 lolle"oimo{@" o [Blom, s € € [0,1),

0€Eint 0E€Eint
(see [20,30]). These terms are designed to provide the supplementary positive term

RS ol .
o€

to the left hand side of the discrete energy identity (4.2). They contribute to the right hand side of the discrete
relative energy (5.1) by supplementary terms whose absolute value is bounded from above by

p(1=e)/2 c(Mo,Eo7 sup 7", U™, VU"||p (g, m13), SUP  sup [r"]mn”/h).
n=0,...,N n=0,...,N c€€int
Consequently, they give rise to the contributions at the right hand side of the approximate relative energy
inequality (6.1) whose bound is
huﬁv2COMLEmHnVn[LVUﬂU%QﬂW%).

Similar estimates are true, if we replace in the numerical scheme everywhere classical upwind formula (3.4)

UpK(Q? 11) = Z q;pu(r : no’,K - Z (qK[ua' : no’,[(]Jr + qr [ua' : no’,K]i) 9
cEE(K) o€E(K)
o=K|L

by the modified upwind suggested in [15]:

UpK(Qv u) = Z QTK ([’UJO— ‘N Kk + hlferr + [UU N hlfe]Jr)

c€eE(K)

o=K|L
*‘%f‘Uuo'ThnK-+h?_ﬂ‘-+[ua-7hnx——h1‘ﬂ‘), (10.3)
where ¢ = K|L € &u. We will finish by formulating the error estimate for the numerical prob-

lem (3.5), (10.1), (10.2) or for (3.5), (3.6), (3.7) with modified upwind (10.3).

Theorem 10.1. Let 2, p, [ro, VO], [r, V] satisfy assumptions of Theorem 3.2. Let (0™, u™)n—o... N be a family
of numerical solutions to the scheme (3.5), (10.1), (10.2) or to the scheme (3.5), (3.6), (3.7) with modified
upwind (10.3), where € € [0,1). Then error estimate (3.8) holds true with the exponent
. { 2v—3 1—¢
a = min ,
¥ 2
Finally, a natural question arises as top what extent the obtained error estimates are optimal. In the light
of the results obtained in [28,29], it may seem we loose, in particular in terms of the spatial discretization
parameter h for v — 3/2. On the other hand, however, it is worth noting we do not make any extra assumption
concerning boundedness of the numerical solutions in contrast with [28].

]__
}ﬁg§7<z a= 2€ﬁ722
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