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NUMERICAL APPROXIMATION OF STOCHASTIC CONSERVATION LAWS
ON BOUNDED DOMAINS

CAROLINE BAUZET!, JULIA CHARRIER? AND THIERRY GALLOUET?

Abstract. This paper is devoted to the study of finite volume methods for the discretization of scalar
conservation laws with a multiplicative stochastic force defined on a bounded domain D of R? with
Dirichlet boundary conditions and a given initial data in L (D). We introduce a notion of stochastic
entropy process solution which generalizes the concept of weak entropy solution introduced by F.Otto
for such kind of hyperbolic bounded value problems in the deterministic case. Using a uniqueness result
on this solution, we prove that the numerical solution converges to the unique stochastic entropy weak
solution of the continuous problem under a stability condition on the time and space steps.
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1. INTRODUCTION

We wish to find an approximate solution to the following nonlinear scalar conservation law with a stochastic
multiplicative force, posed over a bounded domain D with initial condition and Dirichlet boundary conditions:

du + div [v(z,t) f(u)]dt = g(u)dW in 2 x D x (0,T),
u(w,z,0) = ug(z), weR, xeDb, (1.1)
u(w, z,t) = ub(z,t), w € 2, x € 9D, t € (0,T),

where D C R%, d € N* is a polygonal subset with boundary 9D, T > 0 and W = {W;, F;0 < t < T} is a
standard adapted one-dimensional continuous Brownian motion defined on the classical Wiener space (§2, F, P).
In order to make the lecture more fluent, we omit in the sequel the variables w,z,t and write u instead of
u(w, z,t).

Note that, even in the deterministic case, a weak solution to a nonlinear scalar conservation law is not unique
in general. The mathematical challenge consists in introducing a selection criterion in order to identify a unique
solution. The notion of entropy solution was first introduced in the 70s by Kruzkhov in the case where the domain
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was the whole space. In the present work we consider a stochastic version of the entropy condition proposed
by Otto in his Ph.D. (see [19]) to take into account our non-homogeneous Dirichlet boundary conditions. We
assume the following hypotheses:

Hi: up € LOO(D)

Hy: u® € L=(0D x (0,T)).

Hs: f:R — R is a Lipschitz-continuous function with f(0) = 0.

Hy: g : R — R is a Lipschitz-continuous function.

Hs: v: D x [0,T] — R? is a Lipschitz-continuous function and satisfies div[v(z,t)] = 0 V(x,t) € D x [0, T].
Hg: There exists V' < oo such that |v(x,t)| <V V(z,t) € D x [0,T].

H7: ¢ is a bounded function.

Remark 1.1 (On these assumptions).

— H; to Hg are used in the present work to prove the well-posedness of problem (1.1). Note that, as it is
classically done for hyperbolic scalar conservation laws, for convenience one can assume that f(0) = 0
without loss of generality.

— Note that the present study can be extended to the case div|v(z,t)] # 0 (which brings additional technical
difficulties) following for example the work of [8] in the deterministic case.

— Hj7 is a technical and sufficient assumption used to show the convergence of the finite volume scheme (precisely
to prove that the terms denoted C"¥ — CM* and DM+ — phik go to 0 in the proof of Prop. 5.3).

Remark 1.2. Note that we can also consider the case where f is only locally Lipschitz-continuous if we make
the additional assumption that g has a compact support. Indeed in this case, by adapting the proof of Vallet [21]
Section 6.1, we can show that the stochastic entropy solution u also belongs to L>°(D). More precisely, thanks
to the It6 formula, this maximum principle is direct for the viscous solution wu., then it is conserved at the limit
for u. Therefore it allows us to treat the cases where f is only locally Lipschitz-continuous. In particular, all the
results stated in this paper hold if one considers the stochastic Burgers equation (i.e. when f(u) = u?).

1.1. State of the art

Only few papers have been devoted to the theoretical study of scalar conservation laws with a multiplicative
stochastic forcing, let us mention in chronological order the contributions of [3,6,7,9,11,14,15,17]. The last of
these papers is the only one which proposes to study the problem with nonhomogeneous Dirichlet boundary
conditions, whereas in the other papers cited, the problem is studied on R?, on the torus or on bounded domain
with homogeneous Dirichlet boundary conditions. Concerning the study of numerical approximation of these
stochastic problems, there is also, to our knowledge, few papers. Let us cite the work of [16] and also its
recent generalization to the multidimensional-case [2] where a time-discretization of the equation is proposed
by the use of an operator-splitting method. Let us also mention the paper of [18] where a space-discretization
of the equation is investigated by considering monotone numerical fluxes. In recent works [4, 5], proposed a
time and space discretization of the problem in the case where the domain is the whole space R? and showed
the convergence of a class of flux-splitting finite volume scheme (in [4]) and more generally of monotone finite
volume schemes (in [5]) towards the unique stochastic entropy solution of the problem by using the theoretical
framework of [3]. For a thorough exposition of all these papers, we refer the reader to the introduction of [4].

1.2. Goal of the study and outline of the paper

The aim of this paper is to fill the gap left by the previous authors by proposing a both time and space
discretization for multi-dimensional nonlinear scalar conservation laws forced by a multiplicative noise on a
bounded domain with nonhomogeneous Dirichlet boundary conditions and studying the convergence of this
scheme.

The paper is organized as follows. In Section 2, we propose the definition of a stochastic entropy solution
for (1.1) and state the well-posedness result of the problem as a consequence of [17], which proposes a kinetic
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approach. In Section 3 we define the scheme used to approximate the stochastic entropy solution of (1.1).
Then, we give the main result of this paper, which states the convergence of the approximate solution towards
the unique stochastic entropy solution of the equation. The remainder of the paper is devoted to the proof
of this convergence result. In Section 4, several preliminary results satisfied by the finite volume approximate
solution denoted w7 1 are stated. Then, Section 5 is devoted to show the convergence of u7 j towards the unique
stochastic entropy solution of problem (1.1).

1.3. General notations
First of all, we need to introduce some notations and make precise the functional setting.

- Q=Dx(0,T).

- R* =R\ {0} and N* =N\ {0}.

— Throughout the paper, we denote by Cy and Cj the Lipschitz constants of f and g.

— || denotes the Euclidian norm of z in R? and 2.y the usual scalar product of 2 and y in R?.

— Forp=1,dord+1, |||/~ denotes the L>°(RP) norm.

— E[——] denotes the expectation, i.e. the integral over {2 with respect to the probability measure P.

— D* (R%x [0,T)) denotes the subset of nonnegative elements of D(R? x [0,T)).

— For a given separable Banach space X we denote by AN2(0,7T, X) the space of the predictable X-valued

processes endowed with the norm ||¢|

w

T
A orx) =E [/0 |¢|§(dt] (see Da Prato-Zabczyk [10]).

— A denotes the set of nonnegative convex functions 7 in C%*(R), such that 1 admits 0 as a minimum, which
is reached at a unique point x € R. We also suppose that ' and n” are bounded functions.
— @ denotes the entropy flux defined for any a € R and for any smooth function € A by
a

&(a) = / n'(0)f'(c)do. Note in particular that @ is a Lipschitz-continuous function.
K

2. THE CONTINUOUS PROBLEM

Let us introduce in this section the definition of a solution for problem (1.1) and the existence and uniqueness
result which ensures us the well-posedness of such a problem. This result is obtained under hypotheses H; to Hg.
We follow [22], which establishs the convergence of finite volume monotone schemes for scalar conservation laws
on bounded domains in the deterministic case. This work uses the concept of entropy solution introduced
by Otto (see [19]) for Dirichlet boundary conditions. Such a notion of solution is well-suited for numerical
approximation (see [22]) and is additionally equivalent to the BLN concept of solution in the case where the
solution is of bounded variation. We adapt this notion of solution to the stochastic case.

Definition 2.1 (Stochastic entropy solution). A function u of N2 (0,7, L*(D)) N L> (0,T, L*(2 x D)) is an
entropy solution of the stochastic scalar conservation law (1.1) with the initial condition ug € L*>(D), if P-a.s
in £2, for any n € A and for any ¢ € DT (R x [0,7))

T
0< /D n(uo)p(e, 0)dz + CfV / /8 el (o) )t
w)Opp(x, t)dad P(u)v(x,t).Vop(x,t)ded
+/Q?7() (. t) t+/Q (w)o(, ).V ppla, )t

T / 1 /!
—I—/O /Dn (u)g(u)w(m,t)dxdW(t)—l—5/@92(11)77 (w)p(z, t)dadt.

For technical reasons, as in [5] for the case D = R™ and as in [22] for the deterministic case, we also need to
consider a more general notion of solution. In fact, in a first step, we will only prove the convergence of the
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finite volume approximate solution u7 ) to a stochastic measure-valued entropy solution. Then, thanks to the
result of uniqueness stated in Theorem 2.3, we will be able to deduce the convergence of u7 ;. to the unique
stochastic entropy solution of problem (1.1).

Definition 2.2 (Stochastic measure-valued entropy solution). A function u of N2 (0,7, L?(D x (0,1))) N
L*> (O, T,L*(2 x D x (0, 1))) is a measure-valued entropy solution of the stochastic scalar COHbeI‘V&thD law (1.1)
with the initial condition ug € L>(D), if P-a.s in {2, for any n € A and for any ¢ € D+ (R? x [0,T))

0 g/ N(uo)p(z, O)dx+CfV/ /BD z, t)n(ub(z, t))dy(z)dt
/ / a))0p(w, t)dadzdt —I—/ / (x,1).Vyp(z, t)dadzdt

+/0 /D/O n'(a(., a))g(u(., @))e(z, t)dadzdW ()

1
+% /Q /0 g°(u(., )" (u(., a))p(z, t)dadzdt.

Theorem 2.3. Under assumptions Hy to Hg there exists a unique measure-valued entropy solution for prob-
lem (1.1). Moreover, it is the unique stochastic entropy solution in the sense of Definition 2.1.

Proof. According to the uniqueness and reduction result of [17], there exists a unique generalized kinetic solution
which is actually a kinetic solution to the first order stochastic conservation law (1.1). Moreover, using the same
arguments as in the work of [11], we can show that a kinetic solution is an entropy solution and wice versa. To
conclude we just have to exploit the equivalence between the notions of measure-valued entropy solution and
generalized kinetic solution. O

3. MAIN RESULT

In the sequel, assume that assumptions H; to H7 hold. Let us first give a definition of the admissible meshes
for the finite volume scheme.

3.1. Meshes and scheme

Definition 3.1 (Admissible mesh). An admissible mesh 7 of R for the discretization of problem (1.1) is given
by a family of disjoint connected polygonal subset of D such that D is the union of the closure of the elements
of 7 (which are called control volumes in the following) and such that the common interface of any two control
volumes is included in a hyperplane of R%. It is assumed that h = size(7) = sup{diam(K), K € T} < oo and
that, for some & € R*, we have

ah? <|K|, and |0K|<=h%', VK eT, (3.1)

Q\IH

where we denote by

— 0K the boundary of the control volume K.

— |K| the d-dimensional Lebesgue measure of K.

— |0K| the (d — 1)-dimensional Lebesgue measure of 0K.

— N(K) the set of control volumes neighbors of the control volume K.

— ok,r the common interface between K and L for any L € N (K).

— nk,r the unit normal vector to interface ok r,, oriented from K to L, for any L € N(K).
— & the set of all the interfaces of the mesh 7.
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~ & ={0 € &:|0NID| > 0} the set of boundary interfaces.
— &k the set of interfaces of the control volume K.
— Nk, the unit normal to interface o, outward to the control volume K, for any o € Ek.

Tt follows easily from (3.1) the following inequality, which will be used several times later:

|OK]| 1
< — 2
|K| a2h (3.2)

Remark 3.2. Since |D| = Z | K|, assumption (3.1) yields the following estimate on the number of control

KeT
volumes:

Card(T) < 1Dl (3.3)

a

We now define the general monotone scheme. Consider an admissible mesh 7 in the sense of Definition 3.1. In
T

order to compute an approximation of u on [0,7] we take N € N* and define the time step k = N eR}. In

this way [0, 7] = U} [nk, (n + 1)k].

n=0
The equations satisfied by the discrete unknowns denoted by u’, n € {0,...,N — 1}, K € 7, are obtained
by discretizing problem (1.1). For the discretization of such a problem, we need to define the numerical flux.

Definition 3.3 (Monotone numerical flux). We say that a function F : R? — R is a monotone numerical flux
if it satisfies the following properties:

— F(a,b) is nondecreasing with respect to a and nonincreasing with respect to b.
— There exists Fy, Fo > 0 such that for any a,b € R we have

|F(b,a) — F(a,a)| < Fila —b| and |F(a,b) — F(a,a)| < Fzla — b|. (3.4)
— F(a,a) = f(a) for all a € R.

Remark 3.4.

— Note that it is not necessary to suppose F' to be continuous, even with respect to each variable separately.

— It is possible to choose a numerical flux F' depending on 7,0k 1,7, as soon as the constants F;, F» can be
chosen independently of 7,0k r,n. For the sake of readability we will consider in what follows a numerical
flux F' independent of 7,0k 1., n.

The set {u%, K € T} is given by the initial condition

1
ul = —/ ug(z)dz, VK € T. (3.5)
K] Jk
The equations satisfied by the discrete unknowns v, n € {0,...,N — 1}, K € T are given by the following
explicit scheme associated to any monotone numerical flux F: for any K € 7, any n € {0,..., N — 1}
|K| n+1 n n,+ n o ,mn n,— n n n wrtt —wr
S =i+ Y ol (v F e e ) - i Fui g ui) | = [Klglui) ————,  (36)

cEEK
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where, by denoting ng , the unit normal vector to interface o € £x outward to K:

et 1 (n+1)k N
UKO' k‘0'| / l’t nKO') drY( )d

N (n+1)k
VK, = ka|/ / (z,t).nK,o) dy(z)dt,
if o= OK,L,

unK . prmnd 1 (n+1)k‘
T Y= L / / W, t)dy(2)dt if o € £,
k|0‘ nk o

W" =W(nk), Vn € {0,...,N —1}.

Remark 3.5. When 0 = ok 1, we will denote v JE v?(ik , and vK L= v}?;K ,» and using these notations,

n,+ -
we have ULK—UKL

The approximate finite volume solution uz , may be defined on 2 x D x [0,T) from the discrete unknowns v,
K eT,ne{0,...,N — 1} which are computed in (3.6) by:
ur p(w, @, t) = ul forw € 2,2 € K and t € [nk, (n+ 1)k). (3.7)

Remark 3.6. Note that for any interface o € £

N (n+1)k
n, n,
UKO’ KU_IC‘O’|/ / l‘t nKUd’Y( )d

n+1
and UKU +UR, = wol /k /\v(x,t).n;{’a\d'y(x)dt

Moreover, since div[v(z,t)] = 0 for any (x,t) € D x [0,T], we have

> lolwih —vie,) =0. (3.8)
o€k
Indeed,
1 [tDk (n+1)k
> lol(ph —vi,) = E/ > / v(z,t).ng o dy(z / / div[v(z, t)|dzdt = 0
o€lK nk o€lK g nk K

Remark 3.7. By denoting for any c € £, K € 7 and n € {0,...,N — 1}

Fit o(a,) = o] {vich Fla,b) = v, F(b,a) }
as a consequence of (3.8) we get that:
VaeRVK €T, >  Fy (a,a)=0,
o€fK
which allows us to rewrite the numerical scheme (3.6) in the following way:
|K| Wn+1 —Wn
R i)+ Y (R (ke e ) = Fip (e, ui) | = [Klg(u)————  (39)

o€k
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Remark 3.8 (On the measurability of the approximate finite volume solution). Let us mention that using
properties of the Brownian motion, for all K in 7 and all n in {0,..., N — 1}, u}% is F,p-measurable and so, as
an elementary process adapted to the filtration (F;)¢>0, ur  is predictable with values in L?(D).

3.2. Main result

We now state the main result of this paper.

Theorem 3.9 (Convergence to the stochastic entropy solution). Assume that hypotheses Hy to Hr hold. Let
T be an admissible mesh in the sense of Definition 3.1, N € N* and k = % € R be the time step. Let ut
be the finite volume approximation defined by the monotone finite volume scheme (3.6) and (3.7). Then ur i

converges to the unique stochastic entropy solution of (1.1) in the sense of Definition 2.1, in LP(£2 x Q) for any
p<2as(h,k/h)— (0,0).

Remark 3.10. Note that uz j converges particularly in Lp(£2, LP(Q)) for any 1 < p < 2 and so in probability
in the space of random variables with values in L?(Q).

Remark 3.11. Under the CFL Condition

a’h

(3.10)
where & € RY is a constant independent of the mesh coming from (3.1), we will prove in the sequel firstly
for £ = 0, the L?Li@ stability of ug j, stated in Proposition 4.1, p.231, and secondly for some ¢ € (0,1), the
“weak BV” estimate stated in Proposition 4.3. In the deterministic case, condition (3.10) for some £ € (0,1)
is sufficient to show the convergence of ur ) to the unique entropy solution of the problem, whereas in the
stochastic case this condition doesn’t seem to be sufficient, that is why we assume the stronger assumption
k/h — 0 as h — 0. Note that this assumption on k/h is perhaps technical and is quite weak (with respect to
the usual CFL condition) since k/h can goes to 0 as slowly as we want. An interesting point would be to see
by using numerical simulations if it seems to be a necessary condition or not, but it is out of the scope of the
present paper.

Remark 3.12. This theorem can easily be generalized to the case of a stochastic finite dimensional perturbation
of the form g(u).dW where g takes values into R? and W is a p-dimensional Brownian motion.

4. PRELIMINARY RESULTS ON THE FINITE VOLUME APPROXIMATION

Let us state in this section several results satisfied by the finite volume approximate solution wz ) defined
by (3.6) and (3.7).

4.1. Stability estimates

Proposition 4.1 (L{°L? , estimate). Let T > 0, ug € L*(D), T be an admissible mesh in the sense of

w,x

Definition 3.1, N € N* and k = % € RY satisfying the Courant—Friedrichs—Levy (CFL) condition

a’h

SVR LR #2)

Let ur j, be the finite volume approzimate solution defined by (3.6) and (3.7).
Then we have the following bound

||t k] |L°°(O,T;L2(Q><D)) < Cest,
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where
bi|2 /2
Cest = ¢ <Hu0HL2(D +2T|D[g*(0) + V(F1 + F)|[u HL?((U,T)an)) :

As a consequence we get
2 2
HUT,/CHL2(Q><Q) STCZy.

(1 Lo @)dg”)z]

Set n € {0,..., N —1}. Let us multiply the numerical scheme (3.6) by u', we thus get

Proof. First one has

Y IKIE[(u%)?] = ) |KIE

KeT KeT

< fuol |22y

L n,—
i widul = = Y lol{ oRE (i uk o) = R F(ui o uk) puk
oelk
K
+ oy v —wu
And by using formula ab = 1[(a + b)? — a? — b?] with a = wi"' — % and b = u; we obtain
1 ‘K‘ n n n, n n n,— n n n
3% [(“nK+1)2 — (ug)? - (“?{H - UK)Q] == Z ‘U|{UK:;F(UK3’LLK,0) - UK,O'F(U’K,O"U‘K)}HK
o€fK
+ @ ( n)(Wn+1 _Wn) n
ALY Up
and then
9 [(UnKH)z - (UK)Q] = T( uitt - —k Z |U‘{ quuK,a) - U?{,UF(UK,WUK)}UK
c€EK

+ K g () (W = W uj.

Using the finite volume scheme (3.6) we can replace (v, — ul)? and we take then the expectation. Thanks

to the independance between the random variables (W"+! — W") and u'%, together with the equality
n n n 2 n n n n
B[ (g(uie) W™ = W)’ = B|(g(ui))?| B|(WH = w)?| = kB (g(ug))?)],
we get

BBy — ey’

2
- Bl [( ‘K‘Zw\{ F(uhe, W, o) = V3o P o) | + g(uf) (W W”)ﬂ

2
cEEK

—kE| 3 lol{vies Flufe, i o) = vie g F e gy wic) fue | + [KIB g i) (W = W |
c€EK
K 1 kK|
= 5= | 2 ol vRi Fluk i o) = v o Pk o ui) } | | + 25 B (9(wi))’
‘ ‘ o€k
—kE| Y lol{uih Plute ule o) = oo F(uk o, u@@)}u;z]. (4.2)
cEEK
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Using (3.8), which states that Z |0\(v?(’+ vy ) = 0, this equality can be rewritten as, after summing over

, 0

ocelk
each control volume K € 7T,
K
> e (i) - wio?) = B - B2+ B, (43)
KeT
where
k2 2
Bi=Y" WEK S lol{vih (Flue, uie o) = F(uh) = vie gy (F (e g, ) = f(%?))}) ]
KeT oefk
By =3 kB S Jol{uieh (Fuh uke o) — Fi)) — vk (F(uf g i) —f(u&@))}u;z]
KeT c€lK
and

e Study of B;: Using the notations

A= Fluf,uf,) — fluk), B=F(uf,,ufk) — f(ufk)
v?(’Jr
(o2
—2 _ and 1-(=
Uiy TR,

n,—
UKQJ

n,+ n,—’

vkﬂo +>vkﬂo

(=

since ¢ € (0,1) we get using Cauchy—Schwarz inequality that

2 2
( > lol{vieA- v?é,ZB}> = ( > lolwi s + vk ){ca— (1~ C)B}>

oefk o€l
— — 2
< D ol + o) Y loloplh + v ) {CA+ (1 - ¢)(-B)}
c€lK oefk
< D Mol + ko) Y lol(uglh + vk ){¢A? + (1 - OB},
oc€EK ocefk

Since (vigl + v )¢ = vl and (vl + ) (1 - () = vig,, we get the following estimate

,o

k2 _
B < Y g (5 loluih 4 oin) < B| S lol{olh (Flutoue,) - f(ui)’

KeT occEx o€l
e (F () — f(u}%))z}] .
Using the fact that
D oIy +vis) < VIOK] (4.4)

c€EK
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which implies thanks to (3.2) and to the CFL Condition (4.1) that

|8K\ a’h 1 1
LV -
\K\ D lolwics +vie,) < K SVB <5 ah  Bih

cEEK

we have
2 _ 2
B < m >y U|E{UKU Flug,ufe,) = f(uk))” + v, (Fuf o, uk) = fluk)" |- (4.6)
KeT oeli

By denoting
T, ={(K,L) € T?: L € N(K) and u}, > ul}},

we see that the double sum in the right hand side of (4.6) can be gathered by edges, according to the
following formula (see [22], Lem. 7, p. 582):

Z Z Pio = Z Piot Z (pTIL(,K\L+pz,K|L)’ (4.7)

KeT o€€k oeé&l (K,L)e%,

where p% , = |o|E |:1}K U(F(u"K,u'}(J) - f(u"K))2 + R, (F(u'}(’o_, uly) — f(u"K))ﬂ This finally gives:

By < Bi1+ B, (4.8)
where
k n,— n n n
B = 5 7 o 718 e (Pl ) = F(00)" v (Pl ) = £050)
Biam st S foxulE vieh { (Pl ut) = J(uie)* + (Flufe, up) = f(u})}
> 2(F1+F2) e » K,L K>Y%L K K> YL L

o { () - i) + (F) - Flug. )’}
o Study of By: We introduce the term Ba,, defined by
Bas =k 3 ol [uf {olh (Flukeou™) = £ — oy (PGt uie) — 1) )]
okl
We have then

By-Bpi=k Y aK,LE[v?gz{u"K(Fw"K,uﬁ) — flu)) = (F(ule,uf) — fuh) |
(K,L)eT,,

~ o R (P i) - F(u) — () — )} |
Denoting by ¢ the function defined for any a € R by ¢(a fo sf’(s)ds, an integration by parts yields, for
all (a,b) € R?
b

b
o(b) — b(a) = / sf(s)ds = b(f(b) — F(a,b)) — a(f(a) — Fa,b)) — / (F(s) - F(a,b))ds.

a
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Using this formula, we define By 5 and B 3 by
up ue
Brz=E| ) Koxrl{vi; / (f(s) = Flufe, up))ds | +vf; / (f(s) = F(ul}, uf))ds
(K,L)ET, U u

and

Bos=-E| Y kloxol(wi] —ogp){euk) - o(u})}

(K,L)eT,

We have then split Bs into three terms:
By =By + B+ Bas.

Note that since div[v(z,t)] =0 V(z,t) € D x [0,T], one has
(n+1)k
Bos=—E| > kloxul k\UKL\ / / v(z,t).nk, rdy(z)dt {¢(u'f<) —¢(uﬁ)}

(K,L)eT,,
(n+1)k
{( / / w(a, t)ng.pdy( )dt) B(ul)
(K,L)ET,,
(n+1)k
( / / w(w, t)np xdy (e )dt) WHH

| Z Z o(u /n+1 / v(z,t).ng rdy(z )dt]

KeT o€k

(n+1)k
quuK/ /le (z,t)]dzdt
KeT

=-F

=E | > kolwi! v )e(uk)| — E
UESb

=F Z klo|(vigh — v o) | — E
UESb

=F Z klo| (il — v )e(uf)
_UESb

Next, we will estimate simultaneously By 1 and B3 3 which correspond to the terms on the boundary of the
domain. To do this, we first introduce the following technical lemma from [13] (Lem. 4.5, p. 107), which will
be used several times in the sequel:

Lemma 4.2. Let G : R — R be a monotone Lipschitz-continuous function with a Lipschitz constant Cg > 0.
Then:
1

12 50 (9(d) - G(c))*, Ve, d € R.

Thanks to this lemma, we estimate B by treating separately the terms ul (F(uK,ug") — f(u"K)) and
—ufe (F(uy™, ue) — f(uf)):
— Study of uf ( (ul, ulm) — f(u”K)) by using the nonincreasing and F5-Lispchitz continuous function ¢y
function defined by
wd(s) = F(uk,s),Vs € R,
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we have

ufe (F(ufe,ug™) = f(uf)) = uf (F(uf,ug") — Fuf, uf)) = uf (0alug™) = pa(uf)) -

We now introduce the function ¢g4 defined by ¢q4(a) = apq(a fo pa(s)ds for any a € R, one has then
for any a,b € R:

b
6a(b) — bula) = ba(b) — ala)) / pa(s) — pa(a)ds.

With a = ug’” and b = u%, we deduce from this last equality that

i (F(ulfe,ug™) = fuf)) = —uf (valuf) — palug™))

840"~ dualu) = [ " ouls) = ealut)ds

o

> Gulul™) — dulu) + 5 (alua™) = palufo))’

> ¢ga(ul™) — pa(uly) + ﬁ (F(uf,ul™) — f(U?())Q . (49)

— Study of —u'; (F(uf’,”, u'l) — f(u”K)) by using the nondecreasing and Fi-Lispchitz continuous function
g defined by

pg(s) = F(s,uf),Vs € R,

we have

—ul (F(ug™, uf) = fluk)) = i (F(uk,uk) = Flug", uk)) = uf (0q(uf) — q(ug")) -

We now introduce the function ¢, defined by ¢,4(a) = apy(a fo ©g(s)ds for any a € R, one has then
for any a,b € R:

b
30(8) = 0y(a) = beo 1) — 20(@) — [ 045) — eyfa)d.
With a = u%™ and b = u', we deduce from this last equality that

—uf (Fug™ uj) = fuf)) = ul (g(uf) — og(u b”))

= 0y (k) — 0y (uh™) + / " 0g(s) — g™

> g (uf) — ¢y (ul >+ﬁ(F<uz",uK> Fug))?

> 6a(u) = 0a(u") + 5oy (P wi) = Ji)” . (410)
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— Thanks to (4.9) and (4.10) we get

Boy =k Y |o|B |uk {vieh (Fuje, ™) = Fuf)) = vie, (P, wh) = f(uic) }]

oe&b

k) |olE [UKU { a(u™) — ga(u) + m (F(ufge,ul™) — f(U%))Q}
ocEd

+ vR, {¢g(ux) dg(ul™) + m (F(ul", uf) — f(UnK))2H

k n n n n n,— n .n n
T 2R+ B) Ogb ol {UK—Z (F(uf,ug™) = f(“K))2 + i, (Fud™ ug) — f(uK))ﬂ

ke Y Nl B [vhes {@alus™) = dalui)} + i, {69 (i) — 09 ()} ]
oe&l
=Bi1+k Z lo|E |:’UKO_ {gbd — da(uf)} + o {(]59 ul) qﬁg(uf;")}}
oe&l
> Bia+k Y |olB [V oy(uk) vymd(u@] Tk Y [olB vt daul™) — v g (ub™)]
oc&l &b

— Let us now estimate By 1 + B3 :

By + Bag 2 Bii+k Y |o]E [v?é;%(u}é) — Vi b daluf) } —k Y ol E [¢g(uf™)]

oc&l oe&b
+k Y ot E [¢a(ul™)] + Bajs
oc&l
= Bia+k Y [0l [vii 6, (uk) = vih da(ui)| — b Y lolo B [6,(us")]
oce&l oc&l

kY ol L E [¢auf™] + E | Y klol(wiy — vi,)d(uk)

oeé&l oeé&l
= Biy+k S JolB o {8uk) — dalui)} + v, {0 u) — S(ul)}]
oce&l
kY lolB[vieh dalub™) — vl o (ul™)].
oe&l

Using the fact that F' is nondecreasing with respect to its first variable and nonincreasing with respect to
its second one, one shows that

P(ug) — ¢a(uk) =0, (4.11)

and

WV
o

bg(uk) — d(uk) (4.12)
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Indeed, since ¢(a) = / sf'(s)ds, we have
0
(S
Blufe) — dalufe) = ufe S / F(s)ds = (i (uu) — [ Fugs)ds)
0

= /OuK (F(uf,s)— F(s,s))ds

=0,

and
a(u) — Olu) = i F () — [ F(sui)ds — (whefa / F(s)ds)
0
= KF(s s) — F(s,uf)d
0

>0

Finally,
BQ 1+ Bo 3= Bl 1+k Z ‘O’|E|: j;d)d(ul;’ ) UK 0¢9( )j| (413)

oc&l

Let us now turn to an estimate of By 2. To do this, we use again Lemma 4.2 which gives us for all a,b € R
the following inequalities:

b b
/ f(t) — F(a,b)dt > / F(a,t) — F(a,a)dt > %(f(a) — F(a, b))2 (4.14)
a a 2
and
b b 1 2
/ F(t) — F(a,b)dt > / F(t,5) ~ F(a, b)dt > o1 (£(b) ~ F(a,b)” (4.15)
a a 1
Multiplying (4.14) (respectively (4.15)) by (respectively by L ) and adding the two inequalities
F F2 Fl + F2

yields:

b

We can deduce from this last inequality that

{vK p ( [ - F(u"K,u’z»ds) ok ( |- F(u%,u’&))ds) }]

Byo =

(K,L)ET, %

>m S owa [ { (Pl - 50)* + (Fluteut) — i)

(K,L)e%,

" v?s,L{(ﬂu"K) R )+ (F) — B, u"K>)2H
=B (4.16)
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In this way, combining (4.8), (4.13) and (4.16), one gets
By =By + Baos+ Bas
>Biy+ Biatk Y \0|E[U?€;¢d(ug’”) - U?é,;%(ug’”)]

oe&l

> Butk Y ol [vi halub™) = vic 10y (ub™)|.

oc&l
In summary, we showed that

Z|K| n+1)] Bl_B2+BS+Z|2£|E[(U?()2]

KeT KeT
K .
<Bs+ Y %E [(w)?] +k > |a\E[vaya¢g(ugv ) — vt pa(u )],
KeT oc&l

Since for any = € R we have

T T T 2
¢g(x) = oF(z,uf) — / F(s,uf)ds = / (F(z,uf) — F(s,uj))ds < F1/ (x —s)ds = Fy %,
0 0 0

2
and similarly for any x € R, ¢q4(x) > —Fg%, one finally gets that

K " kK " K n n
> Bp iy < 3 %E[gwm S '2' ok 3 lolB[v, (™) — vt aul)]
KeT KeT KeT oegl

K] 2
<M 7(14—2/lc0g) 2+ K| 0 (Fl + ) Y olk(ub™)?
KeT KeT ceed

n+1
<M ‘23‘(1 +2kC2)E [(uf)?] + k|D|g*(0) + g(Fl + FQ)/ /E)D(ub(w,t))de(w)dt,

KeT

where we have used Jensen inequality. In this way, we deduce from the discrete Gronwall lemma that for any
ne{0,...,N}

nk
> IK|E [(uk)?] < e2knC; { > IK|E [(u%)?] + 2nk|D|g*(0) + V (Fy + F) / /8D (z,1))*dy(x )dt}

KeT KeT
T
< 7€ {|u0|2L2(D) +2T|D|g*(0) + V(F, +F2)/ / (ub(x,t))zdv(w)dt}
0 oD

We conclude that

HUT,k”L“(O,T;L?(QxD)) \/HUOH 2(D) +2T|D|g?(0) + V(F1 + F2)HubHQL2((o7T)XaD)~

This gives the L?OLE),Z stability of the approximate solution. As a consequence, we have

N—-1
Laaxay = . 2 HIKIE | (wh)?]

n=0 KeT

2
< T (HUOH2L2(D) +2T|D|g?(0) + V(F1 + F2)Hub”%2((0,T)><8D)> . O
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2. Weak BV estimate
Proposition 4.3 (Weak BV estimate). Let 7 be an admissible mesh in the sense of Definition 3.1, T > 0,
N € N* and let k = % € R% satisfying the CFL Condition

a’h

VETEY (4.17)

E<(1-9)

for some & € (0,1).
Let {u”K, KeT,ne{0,...,N— 1}} be given by the finite volume scheme (3.6).
Then the following hold:

1. There exists C1 € R%, only depending on T, |D|ug,u’, &, F1, Fs, Cy and g(0) such that

ZkZ > 1olB [o b {F (i uhe 0) = F (i) + v g {F (e oo uke) = Fui)}] < o,

n=0 Ke7T ok

2. There exists Ca € R%, only depending on T, |D|, &, ug,u’, &, Fy, F>, Cy and g(0) such that

N-1
k> |UK,L|E{U"K’I{ L max (F(d,c) — f(d)) + | max (F(d,c) —f(c))}
n=0 (K,L)E%, ULSCESOSUR u? <e<d<u
L — _ ~1/2
voien], max  (F@) = Fle.d) + | max o (f(e) ~ Fle d>)}} < Cyh~12,
where

T, ={(K,L) e T*: L e N(K) and u}; > ul}.

Proof. Recall that by multiplying the finite volume scheme (3.6) by kul;, taking the expectation and summing
over K € 7 yields equality (4.3) and after summing over n € {0,..., N}, we have:

|}(| n+1 n \2 —
§ > )? — (uk)?] = Y (Bi — By + Bg),
n=0

n=0 KeT
where
2
B= Y S [( 5 lo{oks (Pluouen) — £(u) = o (Flue ) = Flu) }) ]
KeT o€lKk
By =3 kB S lol{uiel (Pl wke,) = Fui)) = vie, (F(uf g i) —f<u@>)}u’;<]
KeT ocefk
and

B, = 3 Mg [(pp?].

KeT
e Study of By: Similarly to (4.5), it follows from the CFL Condition (4.17) and the mesh properties (3.2) that

OK] _ 1-¢
|K| Z |U‘ UKU+ Ka') kV ——+ |K| F1+F2

o€k

(4.18)
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Then, by using Cauchy—Schwarz inequality and Jensen inequality, we get similarly to (4.6) the following
estimate

BI\WKEGITU;K\ o1 |3 (s ) = k) 0 (Pl i) = F(0))°] - (419)

By denoting again
T, ={(K,L) e T?: L € N(K) and u}y > ul}
and by reordering the summation in the right hand side of (4.19) thanks to the formula (4.7), one gets:
By < B1i1+ By, (4.20)

where

k(1 — n n n n n,— n o, mn n
B = gy 0 1B [oRD (PR ™) = 7000 o (PO k) 100

_ k(l B 5) . 2 _ 2
Bz = 2(Fy + F») (K,%:ez o5 | B [UK L{ uggrggfgu;; (F(d,c) = f(d))" + uggrggfgu;; (F(d,0) = f(0)) }
n,— 2 2
+ UK,L{ uggrglgfgu;; (f(d) = F(c,d))” + uggrglgfgu;; (f(c) = F(c,d)) }]

Study of Bs: By reordering the summation and using again the notation ¢(a) = foa sf'(s)ds, By can be
decomposed, as in the proof of Proposition 4.1, in the following way

By =By + Baa+ B
where

Boa =k Y |olB [ufe {vies (Plufe,us™) = f(ufe)) = vie, (F(ub™ uie) = F(ui)) }]

oeé&l

3272 =F Z I{i|O'K7L| {1}?{7,‘2 (/uL (f(g) — F(u?{, u%))ds) + U?{v,z (/uk (f(s) B F(u%’ u"K))ds> } ’

(K,L)ETn uf z

and

Bys=E Z klo|(vigh — v )e(ul)

oe&b

Following the proof of Proposition 4.1 one shows that

k n n n )2 n,— no.n n o\ 2
By > e Ugg:b lo|E |:UKU (F(ufe, ul™) — flulk)) +ug, (F(ul™, uf) — f(ul)) }
k3 1ol [ofh {0uluh™) = Gulu)} + 5 {64 (w0 — o)}
oec&b
=7T¢ i 5Bl,1 +k Z lo|E [vKU {gbd — ¢a(u } + vy {gbg u') %(uf’;”)}}
oc&l
> T—¢ 1531,1 +k Z |o| E [UK S0q(uf) — v?(’;qﬁd(u"}()}
oe&l

Tk Y 1olB [t oa(ul™) — vie g0y (us™)]

oce&l
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We still follow the proof of Proposition 4.1. In particular we use the fact that F' is nondecreasing with respect
to its first variable and nonincreasing with respect to its second variable, and we deduce that

1 n,— n n n
By1+Bas > ——Bi1+k Z lo| & |:U[(’,O'¢g(uK) - Ul(’;éi’d(ul()} + B3

1 _-f océ&l
+k Y JolB [vhoa(ub™) —vie g (ul™)]
oek&b
1 n,— n n
= 1—_531,1 +Fk Z o|E {UK’,J%(UK) t¢d(uK):| +E Z klo|( UKJ — VK ) B(uk)
oek&b oeklb
+k Y JolB [vihoa(ub™) — vie s de ()]
oc&l
1 n n n,— n
> 7Bk Y 1olB [vilou(ul™) — v oy (™) (4.21)
oc&l

Let us now turn to an estimate of By ». For this purpose, let a,b € R and define
C(a,b) = {(c,d) € [min(a, b), max(a,b)]* : (d —c)(b —a) = 0} .

Thanks to the monotonicity of F, the following inequality holds for any (¢, d) € C(a,b):

b d d
[ 6= Favis> [ 1)~ Flabs> [ 1) - Fe.das

We now use again Le