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A CONVEX ANALYSIS APPROACH TO MULTI-MATERIAL TOPOLOGY
OPTIMIZATION

Christian Clason
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Abstract. This work is concerned with optimal control of partial differential equations where the
control enters the state equation as a coefficient and should take on values only from a given discrete
set of values corresponding to available materials. A “multi-bang” framework based on convex analysis
is proposed where the desired piecewise constant structure is incorporated using a convex penalty term.
Together with a suitable tracking term, this allows formulating the problem of optimizing the topology
of the distribution of material parameters as minimizing a convex functional subject to a (nonlinear)
equality constraint. The applicability of this approach is validated for two model problems where the
control enters as a potential and a diffusion coefficient, respectively. This is illustrated in both cases by
numerical results based on a semi-smooth Newton method.
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1. Introduction

In this work, topology optimization consists in determining the optimal distribution of two or more given
materials within a domain, where the material properties enter as the values of a spatially varying coefficient
u(x) into the operator of a partial differential equation. We propose to follow a direct approach and minimize a
cost functional of interest subject to the constraint u(x) ∈ {u1, . . . , ud}, where ui are given parameters specific
to different materials. This constraint is realized by means of the penalty functional

G0(u) =
∫

Ω

α

2
|u(x)|2 + β

d∏
i=1

|u(x) − ui|0 dx, (1.1)

where |0|0 = 0 and |t|0 = 1 for t �= 0, and α and β are fixed parameters to be further discussed below (see
Cor. 2.3). This functional was analyzed in [10] in the context of linear optimal control problems. There it was
shown that, under mild technical assumptions, the solutions to optimal control problems based on the convex
envelope GΓ of G0 have the desired property of being exactly multi-bang. This means that the solutions assume
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values in {u1, . . . , ud} pointwise a.e. in the control domain, provided that β is sufficiently large. This property
is related to the use of the �1 norm in sparse optimization as the convex envelope (on the unit interval) of the
�0 “norm”. Although the explicit form of GΓ is not needed in our approach, we compute it in Section 3 and
remark on its relation to a direct L1-type penalization of the constraint u(x) ∈ {u1, . . . , ud}.

In this work, we focus on tracking-type functionals for multi-material optimization, i.e., we consider the
optimization problem

min
u∈U

1
2
‖S(u) − z‖2

Y + GΓ (u), (1.2)

where
U =

{
u ∈ L2(Ω) : u(x) ∈ [u1, ud] for almost all x ∈ Ω

}
(1.3)

is the admissible set with u1 < . . . < ud given, Y is a Hilbert space, z ∈ Y is the given desired state, and
S : U → Y is the (nonlinear) parameter-to-state mapping.

Following [9, 10], we can derive a first-order necessary primal-dual optimality system

{−p̄ = S′(ū)∗(S(ū) − z),
ū ∈ ∂G∗

0 (p̄)
(1.4)

(where ∂G∗
0 is the convex subdifferential of the (convex) Fenchel conjugate of G0), whose Moreau–Yosida regu-

larization is amenable to numerical solution by a superlinearly convergent semismooth Newton method. While
in earlier works, we considered the case of linear S, the main focus here is on nonlinear, and in particular
bilinear, parameter-to-state mappings. Our aim is to demonstrate that the proposed methodology provides a
viable technology for solving multi-material shape and topology optimization problems without the need for
computing shape or topological derivatives.

Let us very briefly point out some of the alternative approaches for topology optimization and give very
selective references. Relaxation methods [1,7,19,20] are amongst the earliest and most frequently used techniques.
A standard approach for the two-material case consists in setting u(x) = u1w(x)+u2(1−w(x)) and minimizing
over the set of all characteristic functions w(x) ∈ {0, 1}. This problem is non-convex, but its convex relaxation –
minimizing over all w(x) ∈ [0, 1] – often has a bang-bang solution, i.e., w(x) ∈ {0, 1} almost everywhere. For
multi-material optimization, this approach can be extended by introducing multiple characteristic functions;
non-overlapping materials can be enforced by considering the third domain as an intersection of two (possibly
overlapping) domains, e.g., u(x) = u1w1(x)+u2(1−w1(x))w2(x)+u3(1−w1(x))(1−w2(x)) for w1(x), w2(x) ∈
[0, 1]. For an increasing number d of materials, this approach has obvious drawbacks due to the combinatorial
nature and increasing non-linearity. Shape calculus techniques [20,23] focus on the effect of smooth perturbations
of the interfaces on the cost functional and have reached a high level of sophistication. From the point of view
of numerical optimization, they are first-order methods and stable, with the drawback that they mostly allow
only smooth variations of the reference geometry. When combined with level-set techniques [2, 15], they are
flexible enough to allow vanishing and merging of connected components, but they do not allow the creation of
holes. This is allowed in the context of topological sensitivity analysis [12, 22], which investigates the effect of
the creation of holes on the cost. Let us point out that in our work we do not rely in any explicit manner on
knowledge of the shape or the topological derivatives. Moreover, the numerical technique that we propose is of
second order rather than of gradient nature. Second-order shape or topological derivative analysis is available,
but it is involved when it comes to numerical realization. Multi-material optimization for elasticity problems
are further investigated in [13] by means of H-convergence methods and by phase-field methods in [8]. The work
which in part is most closely related to ours is [4], see also [3,5], where for the case of linear solution operators
and two materials, the set of coefficients is expressed in terms of characteristic functions, and the resulting
problem is considered in function spaces rather than in terms of subdomains and their boundaries. The first
order-optimality condition is derived and formulated as a nonlinear equation for which a semi-smooth Newton
method is applicable.
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The general theory to be developed will be tested on two particular model problems. For the first one, the
mapping S : u �→ y ∈ H2(Ω) is the solution operator to{−Δy + uy = f,

∂νy = 0,
(1.5)

for u in an appropriate subset of L2(Ω) and fixed f ∈ L2(Ω). The second one is motivated by the mapping
S̃ : u �→ y ∈ H1

0 (Ω), where y is the solution to{−∇ · (u∇y) = f,

y = 0,
(1.6)

with u in a subset of L∞(Ω). It is well known from [17] that (1.2) does not admit a solution in this case, since
the differential equation is not closed under weak-∗ convergence in L∞(Ω). For this reason we shall introduce
a local smoothing operator G and define the associated solution operator as S = S̃ ◦ G. We point out that the
operator to be used in Section 4 will be of local nature. It acts as smoothing of the constant values ui across
interior interfaces of boundaries between different materials and will justify the use of a semi-smooth Newton
method for the numerical realization.

This work is organized as follows. In Section 2, existence of a solution to (1.2) is shown and the explicit
form of (1.4) is derived. Section 3 is devoted to the explicit form of G and its comparison to an alternative
L1-type penalty. The numerical solution is addressed in Section 4, where the Moreau–Yosida regularization
and its convergence are treated for general nonlinear mappings in Section 4.1. The analysis of the semismooth
Newton method for the regularized problems requires specific properties of the state equation and is therefore
addressed in 4.2 separately for each model problem. Finally, numerical results are presented in Section 5.

2. Existence and optimality conditions

We set

F : L2(Ω) → R, F(u) =
1
2
‖S(u)− z‖2

Y , (2.1)

G0 : L2(Ω) → R, G0(u) =
α

2
‖u‖2

L2 + β

∫
Ω

d∏
i=1

|u(x) − ui|0 dx + δU (u), (2.2)

where U ⊂ L2(Ω) is a convex and closed set U ⊂ L2(Ω) and δU is the indicator function in the sense of convex
analysis, i.e.,

δU (u) =

{
0 if u ∈ U,

∞ if u /∈ U.
(2.3)

For S : U → Y , we assume that

(A1) S : U → Y is weak-to-weak continuous, i.e., {un}n∈N ⊂ U and un ⇀ u ∈ U in L2(Ω) implies S(un) ⇀
S(u) ∈ Y ;

(A2) S is twice Fréchet differentiable.

Both assumptions are satisfied for the two model problems stated in the introduction. Now consider

min
u∈L2(Ω)

F(u) + G(u) (2.4)

for
G := G∗∗

0 , (2.5)
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where G∗∗
0 is the biconjugate of G0, i.e., the Fenchel conjugate of

G∗
0 : L2(Ω) → R, G∗

0 (q) = sup
u∈L2(Ω)

〈q, u〉 − G0(u). (2.6)

Since Fenchel conjugates are always lower semicontinuous and convex (see, e.g. [6], Prop. 13.11), it follows that
G is proper, lower semicontinuous and convex for any α > 0 and β ≥ 0. Existence of a solution to (1.2) thus
follows under the stated assumptions on S.

Proposition 2.1. There exists a solution ū ∈ U to (1.2) for any α > 0 and β ≥ 0.

Proof. Due to assumption (A2), the tracking term F is weakly lower semicontinuous and bounded from below.
Similarly, G0 is bounded from below by 0, which implies that G∗∗

0 ≥ 0 as well (see, e.g. [6], Prop. 13.14). Since
U is a compact subset of L2(Ω), we have

U = domG0 ⊂ domG∗∗
0 ⊂ domG0 = U = U (2.7)

(see, e.g., [6], Prop. 13.40), and hence that G = G∗∗
0 is coercive. This implies that F +G is proper, weakly lower

semicontinous and coercive, and application of Tonelli’s direct method yields existence of a minimizer. �

We next derive first-order necessary optimality conditions of primal-dual type.

Proposition 2.2. Let ū ∈ U be a local minimizer of (2.4). Then there exists a p̄ ∈ L2(Ω) satisfying

{−p̄ = S′(ū)∗(S(ū) − z),
ū ∈ ∂G∗(p̄).

(2.8)

Proof. Let ū ∈ U be a local minimizer, i.e., for t > 0 small enough and any u ∈ U there holds

F(ū) + G(ū) ≤ F(ū + t(u − ū)) + G(ū + t(u − ū)). (2.9)

Since G is convex, we have

G(ū + t(u − ū)) = G(tu + (1 − t)ū) ≤ tG(u) + (1 − t)G(ū), (2.10)

which implies
G(tu + (1 − t)ū) − G(ū) ≤ t(G(u) − G(ū)). (2.11)

Inserting this in (2.9) and rearranging yields

F(ū + t(u − ū)) −F(ū) + t(G(u) − G(ū)) ≥ 0. (2.12)

Since F is Fréchet-differentiable due to assumption (A2), we can divide by t > 0 and let t → 0 to obtain

〈F ′(ū), u − ū〉 + G(u) − G(ū) ≥ 0 (2.13)

for every u ∈ U , i.e.,
p̄ := −F ′(ū) ∈ ∂G(ū). (2.14)

Since G is convex, this is equivalent to ū ∈ ∂G∗(p̄). Applying the chain rule for Fréchet derivatives to F then
yields the desired optimality conditions. �
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The question of optimality of solutions to Problem (2.4) with respect to the non-convex functional F + G0

has been addressed (for linear S) in [10]; here we only remark that since G = G∗∗
0 ≤ G0 and G(u) = G0(u)

for u(x) ∈ {u1, . . . , ud} almost everywhere (see Sect. 3 below), it follows that if a (local) minimizer ū of (2.4)
satisfies ū(x) ∈ {u1, . . . , ud} almost everywhere, we have for all u ∈ U (sufficiently close to ū) that

F(u) + G0(u) ≥ F(u) + G(u) ≥ F(ū) + G(ū) = F(ū) + G0(ū), (2.15)

i.e., ū is a (local) minimizer of F + G0 as well.
Since G∗ = (G∗∗

0 )∗ = G∗∗∗
0 = G∗

0 (see, e.g., [6], Prop. 13.14 (iii)), we can make use of the following characteri-
zation from ([10], Sect. 2.1).

Corollary 2.3. If α and β satisfy the relation

α

2
(ui+1 − ui) ≤

√
2αβ for all 1 ≤ i < d, (2.16)

then u ∈ ∂G∗(p) if and only if for almost all x ∈ Ω,

u(x) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{u1} p(x) <
α

2
(u1 + u2),

{ui} α

2
(ui−1 + ui) < p(x) <

α

2
(ui + ui+1), 1 < i < d,

{ud} p(x) >
α

2
(ud−1 + ud),

[ui, ui+1] p(x) =
α

2
(ui + ui+1), 1 ≤ i < d.

(2.17)

Thus, with (2.16) holding, u(x) coincides with one of the preassigned control values ui, except in the singular
cases when p(x) = α

2 (ui + ui+1) for some i. If, on the other hand, (2.16) is not satisfied, then u = 1
αp may hold

on subsets Ω̂ of nontrivial measure. In this case we call u|Ω̂ a free arc, and refer to [10] for details.

3. Relation to L
1

penalization

We now compare the penalty G to a direct L1 penalization of u(x) − ui, i ∈ {1, . . . , d}. First, we give an
explicit characterization of G = G∗∗

0 . Since G0 is defined via the integral of a pointwise function of u(x), we can
compute the Fenchel conjugate and its subdifferential pointwise as well (see, e.g., [11], Props. IV.1.2, IX.2.1, [6],
Prop. 16.50). It therefore suffices to consider

g0 : R → R, g0(v) =
α

2
|v|2 + β

d∏
i=1

|v − ui|0 + δ[u1,ud](v), (3.1)

where δ[u1,ud] is again the indicator function in the sense of convex analysis, cf. (2.3). To compute g∗∗0 we make
use of the fact that the biconjugate coincides with the lower convex envelope (or Gamma-regularization)

gΓ (v) = sup {a(v) : a : R → R is affine and a ≤ g0} (3.2)

(see, e.g., [21], Thm. 2.2.4 (a)). We assume again that (2.16) holds.
First, note that g0(ui) = α

2 u2
i for all 1 ≤ i ≤ d, which implies that gΓ (ui) ≤ α

2 u2
i . Now consider a single

interval [ui, ui+1] for 1 ≤ i < d. Obviously, a candidate for gΓ (v) in v ∈ {ui, ui+1} is given by the linear
interpolant gi of g0(ui) and g0(ui+1), i.e.,

gi(v) =
α

2
((ui + ui+1)v − uiui+1) . (3.3)
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This function in fact satisfies the conditions for gΓ also for v ∈ (ui, ui+1), which follows from the fact that on
this open interval, the quadratic function

(g0 − gi)(v) =
α

2
(
v2 − (ui + ui+1)v + uiui+1

)
+ β (3.4)

has a unique minimizer (since α > 0) in its critical point v̄ = 1
2 (ui + ui+1), where

(g0 − gi)(v) =
α

2

(
−1

4
(ui + ui+1)2 + uiui+1

)
+ β

= −α

8
(ui+1 − ui)

2 + β ≥ 0 (3.5)

by (2.16). Hence, gi(v) ≤ g0(v) for all v ∈ [ui, ui+1] with equality in v ∈ {ui, ui+1}.
To obtain a global function, we define ḡ : [u1, ud] → R via

ḡ(v) := gi(v) for v ∈ [ui, ui+1], 1 ≤ i < d. (3.6)

It remains to verify that for each fixed i, we have gj(v) ≤ gi(v) for all j �= i and v ∈ [ui, ui+1]. A short
computation shows that gj(ui) ≤ gi(ui). Moreover, due to the ordering of the ui we have

g′j(v) =
α

2
(uj + uj+1) >

α

2
(ui+1 + ui+2) = g′i(v) (3.7)

for all j > i and similarly g′i(v) < g′j(v) for all j < i. This implies that gj(v) ≤ gi(v) for all j �= i and
v ∈ [ui, ui+1]. Using again that dom gΓ = dom g0 = [u1, ud] since the interval is closed, we obtain

g∗∗0 (v) = gΓ (v) = ḡ(v) + δ[u1,ud](v)

=

{α

2
((ui + ui+1)v − uiui+1) v ∈ [ui, ui+1], 1 ≤ i < d,

∞ v ∈ R \ [u1, ud].
(3.8)

and hence
G(u) =

∫
Ω

gΓ (u(x)) dx. (3.9)

From the above, we have that gΓ is the unique continuous and piecewise (on [ui, ui+1]) affine function with
gΓ (ui) = α

2 u2
i . It is not surprising that using such a function in optimization promotes solutions lying in the

“kinks” (cf. sparse optimization using �1-type norms, where the only “kink” is at v = 0). Other penalties h with
a similar piecewise affine structure can be constructed by prescribing different values for h(ui), although the
obvious choice h(ui) = α|ui| results in a shifted �1 norm which has only one “kink” at v = mini |ui| and hence
does not have the desired structure.

An alternative to this piecewise affine construction is the direct �1-penalization of the deviation, i.e., choosing

h(v) = α

d∑
i=1

|v − ui| + δ[u1,ud](v). (3.10)

(Note that the product
∏d

i=1 |v − ui| is a polynomial of order d and hence in general is not convex.) We first
point out that the value h(ui) depends on all uj, 1 ≤ j ≤ d, (and in particular, on d) rather than on ui only,
which may be undesirable; see Figure 1. To further illustrate the practical difference between using gΓ and h,
we compute the corresponding subdifferential ∂h∗ which would appear in (2.8). First, we determine the Fenchel
conjugate

h∗(q) = sup
v∈[u1,ud]

vq − α

d∑
i=1

|v − ui|. (3.11)
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Figure 1. Plot of g∗∗0 and g0 (left), h (right) for d = 3, (u1, u2, u3), α = 0.5, β = 0.26
(satisfying (2.16)).

Since the function to be maximized is continuous and piecewise affine on R, the supremum must be attained at
v̄ = ui for some 1 ≤ i ≤ d. Making use of the fact that the ui are ordered, we obtain that h∗(q) must be equal
to one of the functions

h∗
i (q) = qui − α

⎛
⎝i−1∑

j=1

(ui − uj) +
d∑

j=i+1

(uj − ui)

⎞
⎠

= ui(q + α(d + 1 − 2i)) + α
i−1∑
j=1

uj − α
d∑

j=i+1

uj (3.12)

(with the convention that empty sums evaluate to 0). It remains to determine the supremum over 1 ≤ i ≤ d
based on the value of q. For this, we first compare h∗

i (q) with h∗
i+1(q). Simple rearrangement of terms shows

that h∗
i (q) ≤ h∗

i+1(q) if and only if

α(2i − d)(ui+1 − ui) ≤ q(ui+1 − ui). (3.13)

Since ui+1 > ui, we deduce that this is the case if and only if q ≥ α(2i − d). Hence, the supremum is attained
for the largest i for which q ≥ α(2i − d). This yields

h∗(q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1(q + α(d − 1)) − α
∑d

j=2 uj
1
α

q < 2 − d,

ui(q + α(d + 1 − 2i)) − α
∑i−1

j=1 uj + α
∑d

j=i+1 uj 2(i − 1) − d ≤ 1
α

q < 2i − d, 1 < i < d,

ud(q − α(d + 1)) + α
∑d−1

j=1 uj
1
α

q ≥ d − 2.

(3.14)

Since h∗ is continuous and piecewise differentiable, we have that the convex subdifferential is given by

∂h∗(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{u1} 1
α

q < 2 − d,

{ui} 2(i − 1) − d <
1
α

q < 2i − d, 1 < i < d,

{ud} 1
α

q > d − 2,

[ui, ui+1]
1
α

q = 2i − d, 1 ≤ i < d.

(3.15)
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Figure 2. Plot of ∂g∗ (left), ∂h∗ (right) for d = 3, (u1, u2, u3), α = 0.5, β = 0.26.

Comparing this with Corollary 2.3, we see that the case distinction is independent of ui, but rather depends on
d only, with the individual cases always being intervals of length 2α. In particular, for fixed q, the value ∂h∗(q)
changes if the number of parameters d is increased, independent of the magnitude of the additional parameters.
Furthermore, since the distribution of intervals is symmetric around the origin, h tends to favor for increasing
α those ui closer to the “middle parameter” ud/2, rather than those of smaller magnitude as is the case for g∗∗0 ;
see Figure 2.

4. Numerical solution

For the numerical solution, we follow the approach described in [9] for linear parameter-to-state mappings,
where we replace ∂G∗ by its Moreau–Yosida regularization and apply a semi-smooth Newton method with
backtracking line search and continuation. In this section, we describe the necessary modifications for nonlinear
mappings, arguing in terms of the functional instead of the optimality system. We first introduce the regu-
larization and discuss its convergence to the original problem for general nonlinear mappings in Section 4.1.
The explicit form and well-posedness of the Newton step (from which superlinear convergence follows) requires
exploiting the structure of the mapping, hence we discuss it separately for each model problem in Section 4.2.

4.1. Regularization

Since F is not convex, we cannot proceed directly to the regularized system. Instead, we start by considering
for γ > 0 the regularized problem

min
u∈L2(Ω)

F(u) + G(u) +
γ

2
‖u‖2

L2(Ω). (4.1)

By the same arguments as in the proof of Proposition 2.1, we obtain the existence of a minimizer uγ ∈ U . We
now address convergence of uγ as γ → 0.

Proposition 4.1. The family {uγ}γ>0 of global minimizers to (4.1) contains at least one subsequence {uγn}n∈N

converging to a global minimizer of (2.4) as n → ∞. Furthermore, for any such subsequence the convergence is
strong.
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Proof. Since U is bounded, the set {uγ}γ>0 contains a subsequence {uγn}n∈N with γn → 0 converging weakly to
some ū. Furthermore, it follows that limn→∞ γn

2 ‖uγn‖2
L2(Ω) = 0. By the weak lower semicontinuity of J := F+G

and the optimality of uγn , we thus have for any u ∈ U that

J (ū) ≤ lim inf
n→∞J (uγn) = lim inf

n→∞J (uγn) +
γn

2
‖uγn‖2

L2(Ω)

≤ J (u) + lim
n→∞

γn

2
‖u‖2

L2(Ω) = J (u), (4.2)

i.e., ū is a global minimizer of (2.4).
To show strong convergence, it suffices to show lim supn→∞ ‖uγn‖ ≤ ‖ū‖. This follows from

J (uγn) +
γn

2
‖uγn‖2

L2(Ω) ≤ J (ū) +
γn

2
‖ū‖2

L2(Ω) ≤ J (uγn) +
γn

2
‖ū‖2

L2(Ω) (4.3)

for every n ∈ N due to the optimality of uγ and ū. Hence, ‖uγn‖L2(Ω) → ‖ū‖L2(Ω), which together with weak
convergence implies strong convergence in the Hilbert space L2(Ω) of the subsequence. �

Arguing as in the proof of Proposition 2.2, we obtain the abstract first-order necessary optimality conditions{−pγ = F ′(uγ),
uγ ∈ ∂(Gγ)∗(pγ),

(4.4)

where
Gγ(u) := G(u) +

γ

2
‖u‖2

L2(Ω). (4.5)

We now use that (G + γ
2‖ · ‖2

L2(Ω))
∗ is equal to the infimal convolution of G∗ and 1

2γ ‖ · ‖2
L2(Ω), which in turn

coincides with the Moreau envelope of G∗ (see, e.g., [6], Prop. 13.21). Furthermore, the Moreau envelope is
Fréchet-differentiable with Lipschitz-continuous gradient which coincides with the Moreau–Yosida regularization
(∂G∗)γ of ∂G∗ (see, e.g., [6], Prop. 12.29). We can therefore make use of the pointwise characterization of
Hγ := (∂G∗)γ = ∂(Gγ)∗ from ([9], Appendix A.2), assuming again that (2.16) holds, to obtain

[Hγ(p)](x) =

⎧⎨
⎩

ui p(x) ∈ Qγ
i , 1 ≤ i ≤ d,

1
γ

(
p(x) − α

2
(ui + ui+1)

)
p(x) ∈ Qγ

i,i+1, 1 ≤ i < d.
(4.6)

where

Qγ
1 =

{
q : q <

α

2

((
1 +

2γ

α

)
u1 + u2

)}
, (4.7)

Qγ
i =

{
q :

α

2

(
ui−1 +

(
1 +

2γ

α

)
ui

)
< q <

α

2

((
1 +

2γ

α

)
ui + ui+1

)}
for 1 < i < d, (4.8)

Qγ
d =

{
q :

α

2

(
ud−1 +

(
1 +

2γ

α

)
ud

)
< q

}
, (4.9)

Qγ
i,i+1 =

{
q :

α

2

((
1 +

2γ

α

)
ui + ui+1

)
≤ q ≤ α

2

(
ui +

(
1 +

2γ

α

)
ui+1

)}
for 1 ≤ i < d, (4.10)

to obtain the explicit primal-dual first-order necessary conditions{−pγ = S′(uγ)∗(S(uγ) − z),
uγ = Hγ(pγ).

(4.11)

Comparing (4.6) to (2.17), we observe that the Moreau–Yosida regularization is of local nature, acting along
interfaces between regions with different material parameters.



1926 CH. CLASON AND K. KUNISCH

Since Hγ is a superposition operator defined by a Lipschitz continuous and piecewise differentiable scalar
function, Hγ is Newton-differentiable from Lr(Ω) → L2(Ω) for any r > 2 (see, e.g., [14], Example 8.12 or [24],
Thm. 3.49). Its Newton derivative at p in direction h is given pointwise almost everywhere by

[DNHγ(p)h](x) =

⎧⎨
⎩

1
γ

h(x) if p(x) ∈ Qγ
i,i+1, 1 ≤ i < d,

0 else.
(4.12)

4.2. Semismooth Newton method

We now wish to apply a semismooth Newton method to (4.11). For this purpose, we need to argue that pγ ∈ V
for some V ↪→ Lr(Ω) with r > 2 and show uniform invertibility of the Newton step. Since the control-to-state
mapping is nonlinear, this requires exploiting its concrete structure. We thus directly consider the specific model
problems.

4.2.1. Potential problem

We first express (4.11) in equivalent form by introducing the state yγ = S(uγ) ∈ H1(Ω), i.e., satisfying for
u = uγ {−Δy + uy = f in Ω,

∂νy = 0 on ∂Ω.
(4.13)

In the following, we assume that Ω ⊂ R
N , N ≤ 3, is sufficiently regular such that for any f ∈ L2(Ω) and any

u ∈ U = UM :=
{
u ∈ L2(Ω) : u1 ≤ u ≤ M a.e.

}
, the solution to (4.13) satisfies y ∈ H2(Ω) together with the

uniform a priori estimate
‖y‖H2(Ω) ≤ CM‖f‖L2(Ω). (4.14)

We also consider for given u ∈ UM and y ∈ H2(Ω) the adjoint equation{−Δw + uw = −(y − z) in Ω,

∂νw = 0 on ∂Ω,
(4.15)

whose solution w ∈ H2(Ω) also satisfies the uniform a priori estimate (4.14). Due to the Sobolev embedding
theorem, we have that the solutions y and w are also bounded in L∞(Ω) uniformly with respect to u ∈ UM .

By standard Lagrangian calculus, we can now write pγ = yγwγ , where wγ ∈ H1(Ω) is the solution to (4.15)
with u = uγ and y = yγ . We further eliminate uγ using the second equation of (4.11) to obtain the reduced
system {−Δwγ + Hγ(−yγwγ)wγ + yγ = z,

−Δyγ + Hγ(−yγwγ)yγ = f.
(4.16)

Due the regularity of yγ and pγ , we can consider this as an equation in L2(Ω) × L2(Ω) for (yγ , pγ) ∈ H2(Ω) ×
H2(Ω). By the Sobolev embedding theorem, we have yγwγ ∈ L∞(Ω), and hence that the system (4.16) is
semismooth. By the chain rule, the Newton derivative of Hγ(−yw) with respect to y in direction δy is given by

DN,yHγ(−yw)δy = − 1
γ

χ(−yw)w δy, (4.17)

where χ(−yw) is the characteristic function of the inactive set

Sγ(−yw) :=
d−1⋃
i=1

{
x ∈ Ω : −y(x)w(x) ∈ Qγ

i,i+1

}
. (4.18)

Similarly,

DN,wHγ(−yw)δw = − 1
γ

χ(−yw) y δw. (4.19)
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For convenience, we set χk := χ(−ykwk). A Newton step consists in solving

⎛
⎜⎝ 1 − 1

γ
χk(wk)2 −Δ + Hγ(−ykwk) − 1

γ
χkykwk

−Δ + Hγ(−ykwk) − 1
γ

χkykwk − 1
γ

χk(yk)2

⎞
⎟⎠

(
δy

δw

)

= −
(−Δwk + Hγ(−ykwk)wk + yk − z

−Δyk + Hγ(−ykwk)yk − f

)
(4.20)

and setting yk+1 = yk + δy and wk+1 = wk + δw.
To show local superlinear convergence, it remains to prove uniformly bounded invertibility of (4.20). We

proceed in several steps. First, we consider the off-diagonal terms in (4.20).

Lemma 4.2. For any γ > 0 and y, w ∈ H2(Ω), the linear operator B : H2(Ω) → L2(Ω),

B = −Δ + Hγ(−yw) − 1
γ

χ(−yw)yw, (4.21)

is uniformly invertible, and there exists a constant C > 0 independent of y, w such that

‖B−1‖L(L2(Ω),H2(Ω)) ≤ C. (4.22)

Proof. We first note that by definition, [Hγ(p)](x) ∈ [u1, ud] for any p ∈ L2(Ω). Furthermore, on the inactive
set Sγ(−yw) we have, again by definition,

u1 ≤ α

2γ
(u1 + u2) + u1 ≤ 1

γ
(−yw)(x) ≤ α

2γ
(ud−1 + ud) + ud ≤

(
1 +

α

γ

)
ud. (4.23)

Thus, Hγ(−yw) − 1
γ χ(−yw)yw ∈ UM for M = (2 + α

γ )ud, and the claim follows from the a priori esti-
mate (4.14). �

Proposition 4.3. For γ > 0, let (yγ , wγ) ∈ H2(Ω) × H2(Ω) be a solution to (4.16) with wγ satisfying
‖wγ‖L∞(Ω) <

√
γ. Furthermore, let U(yγ) be a bounded neighborhood of yγ in H2(Ω), and let U(wγ) be a

bounded neighborhood of wγ in H2(Ω) such that ‖w‖L∞(Ω) ≤ √
γ for any w ∈ U(wγ). Then there exists a

constant C > 0 such that for any (y, w) ∈ U(yγ)×U(wγ) and any r1, r2 ∈ L2(Ω), there exists a unique solution
(δy, δw) ∈ H2(Ω) × H2(Ω) to

⎛
⎜⎝1 − 1

γ
χ(−yw)w2 B

B − 1
γ

χ(−yw)y2

⎞
⎟⎠

(
δy

δw

)
=

(
r1

r2

)
(4.24)

satisfying
‖δy‖H2(Ω) + ‖δw‖H2(Ω) ≤ C

(‖r1‖L2(Ω) + ‖r2‖L2(Ω)

)
. (4.25)

Proof. We exploit the invertibility of B to obtain the required bounds on δy and δw. For the sake of convenience,
we set ω := Sγ(−yw) and h := 1 − 1

γ χ(−yw)w2. As a first step, we introduce the following bilinear form on
L2(ω) × L2(ω):

aω(w1, w2) := (w1, w2)L2(ω) +
(

hB−1

(
1√
γ

yEωw1

)
, B−1

(
1√
γ

yEωw2

))
L2(Ω)

, (4.26)



1928 CH. CLASON AND K. KUNISCH

where Eω denotes the extension by zero operator from ω to Ω. Due to the assumption on w, we have that h ia
nonnegative. Thus the second term on the right hand side of the above equation is non-negative as well. Hence
aω is symmetric, continuous and elliptic on L2(ω) (uniformly on the set of admissible (y, w)). This implies the
existence of a unique solution δw̃ ∈ L2(ω) to

aω(δw̃, w̃) =
(

1√
γ

yB−1
(
r1 − hB−1r2

)
, w̃

)
L2(ω)

for all w̃ ∈ L2(ω) (4.27)

satisfying
‖δw̃‖L2(ω) ≤ C

(‖r1‖L2(Ω) + ‖r2‖L2(Ω)

)
. (4.28)

(Here and below, C is a generic constant that may change its value between occurences but does not depend
on y and w.)

Next we consider the auxiliary equation

Bδy = r2 +
1√
γ

yEωδw̃. (4.29)

From Lemma 4.2 we obtain a unique solution δy ∈ H2(Ω) to (4.29) satisfying

‖δy‖H2(Ω) ≤ C

(
‖r2‖L2(Ω) +

1√
γ
‖δw̃‖L2(ω)

)
≤ C

(‖r1‖L2(Ω) + ‖r2‖L2(Ω)

)
, (4.30)

using that y ∈ U(yγ) is uniformly bounded in L∞(Ω). Given δy ∈ H2(Ω), the first equation of (4.24) now
admits a unique solution δw ∈ H2(Ω) satisfying

‖δw‖H2(Ω) ≤ C
(‖r1‖L2(Ω) + ‖δy‖L2(Ω)

) ≤ C
(‖r1‖L2(Ω) + ‖r2‖L2(Ω)

)
, (4.31)

using the uniform boundedness of w ∈ U(wγ) in L∞(Ω).
To complete the proof, it remains to verify that δw = 1√

γ yδw̃ on ω. For this purpose we note that by the
first of equation of (4.24) and (4.29),

δw + B−1

(
hB−1

(
1√
γ

yEωδw̃

))
= B−1

(
r1 − hB−1r2

)
. (4.32)

Taking the inner product of this equation in L2(ω) with 1
γ yEωw2 for arbitrary w2 ∈ L2(ω) and subtracting (4.27),

we arrive at (
1
γ

yδw − δw̃, w2

)
L2(ω)

= 0 for all w2 ∈ L2(ω). (4.33)

Inserting into (4.29) now verifies the second equation of (4.24). �

We remark that according to the a priori estimate (4.14), the required smallness of wγ corresponds to smallness
of the tracking error ‖yγ − z‖L2(Ω). In the following we give an alternative sufficient condition for the uniform
continuous invertibility of the Newton iteration matrix (4.24) that does not rely on the smallness of wγ . For
this purpose, we set ωγ := Sγ(−yγwγ) and define

∂ωγ :=
d−1⋃
i=1

{
x ∈ Ω : −yγ(x)wγ(x) ∈ ∂Qγ

i,i+1

}
. (4.34)

We also introduce the compact self-adjoint operator

C : L2(ωγ) → L2(ωγ), C =
(

B−1

(
1√
γ

yEωγ

))∗
(hγ Id)

(
B−1

(
1√
γ

yEωγ

))
, (4.35)
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where hγ = 1 − 1
γ χ(−yγwγ)w2

γ and B = B(yγ , wγ). We require the following two assumptions.

(H1) −1 /∈ σ(C),
(H2) |∂ωγ | = 0.

Proposition 4.4. For γ > 0, let (yγ , wγ) ∈ H2(Ω) × H2(Ω) be a solution to (4.16) satisfying (H1) and (H2).
Then there exists a neighborhood U(yγ) × U(wγ) of (yγ , wγ) in H2(Ω) × H2(Ω) such that the conclusion of
Proposition 4.3 holds.

Proof. By (H1) and as a consequence of the proof of Proposition 4.3, the system matrix in (4.24) is continuously
invertible in (yγ , wγ). Since the set of continuously invertible operators between Hilbert spaces is open with
respect to the topology of the operator norm (see, e.g., [25], Thm. 6.2.3), the claim will be established once we
have argued that the system matrix, considered as an operator from H2(Ω)×H2(Ω) to L2(Ω)×L2(Ω), depends
continuously in the operator norm on (y, w) ∈ H2(Ω)×H2(Ω) in a neighborhood of (yγ , wγ). For this purpose,
we first argue that p := −yw �→ χ(p) is continuous from C(Ω) to L2(Ω) in a neighborhood of pγ := −yγwγ . For
ε > 0 sufficiently small, we set

∂Sε
γ :=

d−1⋃
i=1

{
x ∈ Ω : dist

(
pγ(x), ∂Qγ

i,i+1

)
< ε

}
. (4.36)

The family {∂Sε
γ}ε>0 is monotone with respect to set inclusion and satisfies

lim
ε→0

∣∣∂Sε
γ

∣∣ =
∣∣∣ lim
ε→0

∂Sε
γ

∣∣∣ = |∂Sγ | = 0. (4.37)

For any ε > 0 and any p ∈ C(Ω) such that ‖p − pγ‖C(Ω) < ε
2 , we thus have

‖χ(p) − χ(pγ)‖2
L2(Ω) =

∫
Ω\∂Sε

γ

|χ(p)(x) − χ(pγ)(x)|2 dx +
∫

∂Sε
γ

|χ(p)(x) − χ(pγ)(x)|2 dx

= 0 +
∣∣∂Sε

γ

∣∣ → 0 for ε → 0, (4.38)

since dist
(
p(x), ∂Qγ

i,i+1

)
< ε

2 on Ω \ ∂Sε
γ due to the choice of p. Due to the continuous embedding H2(Ω) ↪→

C(Ω), there exists η = η(ε) such that ‖y− yγ‖H2(Ω) < η and ‖w−wγ‖H2(Ω) < η implies ‖yw− yγwγ‖C(Ω) < ε
2 .

Hence yw → χ(−yw) is continuous from H2(Ω) × H2(Ω) to L2(Ω).
In a similar manner, one argues continuity of Hγ from H2(Ω) × H2(Ω) to L2(Ω), since the pointwise case

distinction in the definition (4.6) can equivalently be expressed via the sum of characteristic functions. It follows
from these considerations that the system matrix in (4.24) as an operator from H2(Ω)×H2(Ω) to L2(Ω)×L2(Ω)
depends continuous on (y, w) ∈ H2(Ω) × H2(Ω). �

Semismoothness of (4.16) together with Proposition 4.3 or Proposition 4.4 now implies local convergence of
the Newton iteration (see, e.g., [14], Thm. 8.6).

Theorem 4.5. Under the assumptions of either Proposition 4.3 or Proposition 4.4, if (y0, w0) is sufficiently
close in H2(Ω) × H2(Ω) to a solution (yγ , wγ) to (4.16), the semismooth Newton iteration (4.24) converges
superlinearly in H2(Ω) × H2(Ω) to (yγ , wγ).

4.2.2. Diffusion problem

We now consider the optimization of the leading coefficient. Here we are immediately faced with the difficulty
that the state equation is not closed with respect to weak convergence of u in L2(Ω) or even weak-∗ convergence
in L∞(Ω); in particular, we cannot expect (A1) to hold. This is a classical difficulty concerning the identification
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of diffusion coefficients when only pointwise bounds are available. In this respect we recall results from [17] where,
for given data z, and inhomogeneities f and g, examples for non-existence of solutions to the problem

min
0<u1≤u≤u2

∫
Ω

|y(u) − z|2 dx s.t −∇ · (u∇y) = f, y|∂Ω = g, (4.39)

are given, as well as the notion of H- and G-convergence [18]. To address this difficulty and thus to ensure (A2),
we propose to introduce a local bounded smoothing operator G : L2(Ω) → L2(Ω) with the property that its
restrictions satisfy G ∈ L(Ls(Ω), W 1,s(Ω)) and G∗ ∈ L(W 1,s(Ω), W 1,s(Ω)) for s ∈ (n,∞) and G(UM ) ⊂ UM .
This choice of s guarantees that W 1,s(Ω) embeds compactly into C(Ω) and that W 1,s(Ω) is a Banach algebra.
For example, we can choose G as local averaging, i.e.,

[Gu](x) =
1

|Bρ|
∫

Bρ

u(x + ξ) dξ, (4.40)

where Bρ is a ball with radius ρ > 0 and center at the origin, and u is extended by u1 outside of Ω.
The corresponding state equation is {−∇ · (Gu∇y) = f in Ω,

y = 0 on ∂Ω.
(4.41)

We assume that Ω ⊂ R
N , N ≤ 3, is sufficiently regular such that for any f ∈ Ls(Ω) and any u ∈ U = UM

defined as above, the solution to (4.41) satisfies y ∈ W 2,s(Ω) ∩ H1
0 (Ω) together with the uniform a priori

estimate
‖y‖W 2,s(Ω) ≤ CM‖f‖Ls(Ω). (4.42)

This is the natural W 2,s(Ω) regularity estimate for strongly elliptic equations (see [16], p. 191). Here we use that
the set G(UM ) is bounded in W 1,s(Ω) and hence that elements in G(UM ) have a uniform modulus of continuity
(which affects the constant CM ). Setting S : u �→ y in (4.41) and Y = L2(Ω), the assumptions (A1) and (A2)
are satisfied. Digressing for a moment, we recall that our solutions to (2.4) and (4.1) still depend on G, and
in particular in the case of (4.40), they depend on ρ. Let us denote this dependence by uρ. Then as ρ → 0,
these solution converge weakly in Ls(Ω) and G-converge to a – possibly different – limit which both satisfies
the constraints involved in U and appears as diffusion coefficient in the state equation (see, e.g., [1], Chap. 1.3).

We next turn for given z ∈ Ls(Ω) and any u ∈ UM and y ∈ W 2,s(Ω) to the adjoint equation{−∇ · (Gu∇w) = −(y − z) in Ω,

w = 0 on ∂Ω,
(4.43)

whose solution w ∈ W 2,s(Ω) ∩ H1
0 (Ω) also satisfies the uniform a priori estimate (4.42). We note that the

solutions y and w satisfy ∇y · ∇w ∈ W 1,s(Ω).
Using the solution yγ to (4.41) for u = uγ and the solution wγ to (4.43) for u = uγ and y = yγ , we can write

pγ = −G∗(∇yγ · ∇wγ) ∈ W 1,s(Ω) and thus express (4.11) equivalently as⎧⎪⎨
⎪⎩

−∇ · (Guγ∇wγ) + yγ = z,

uγ − Hγ(−G∗(∇yγ · ∇wγ)) = 0,

−∇ · (Guγ∇yγ) = f.

(4.44)

After eliminating uγ using the second equation, the reduced system has the form{−∇ · ((GHγ(−G∗(∇yγ · ∇wγ))) ∇wγ) + yγ = z,

−∇ · ((GHγ(−G∗(∇yγ · ∇wγ))) ∇yγ) = f.
(4.45)
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We consider this again as an equation in Ls(Ω)×Ls(Ω) for (yγ , pγ) ∈ (W 2,s(Ω)∩H1
0 (Ω))× (W 2,s(Ω)∩H1

0 (Ω)),
and interpret Hγ as bounded linear operator from W 1,s(Ω) to Ls(Ω). This renders system (4.45) semismooth.
Appealing again to the chain rule for Newton derivatives and introducing χ = χ(−G∗(∇y ·∇w)), we obtain the
Newton system

(
Id +Ak(wk, ·, wk) −∇ · (Guk ∇·) + Ak(yk, ·, wk)

−∇ · (Guk ∇·) + Ak(wk, ·, yk) Ak(yk, ·, yk)

) (
δy

δw

)

= −
(−∇ · (Guk ∇wk

)
+ yk − z

−∇ · (Guk ∇yk
) − f

)
, (4.46)

where we have set uk := Hγ(−G∗(∇yk · ∇wk)) and

Ak(v1, v2, v3) := ∇ ·
(

G

(
1
γ

χkG∗(∇v1 · ∇v2)
)

∇v3

)
. (4.47)

Note that for all y, w, δy, δw ∈ H2(Ω),(
Ak(y, δy, w), δw

)
L2(Ω)

=
(
Ak(w, δw, y), δy

)
L2(Ω)

. (4.48)

It remains to provide sufficient conditions for the uniform bounded invertibility of the system matrix in (4.46).
For this purpose we specify the critical set ∂ωγ for the present case:

∂ωγ :=
d−1⋃
i=1

{
x ∈ Ω : −G∗(∇yγ(x) · ∇wγ(x)) ∈ ∂Qγ

i,i+1

}
. (4.49)

Theorem 4.6. Let (yγ , wγ) denote a solution to (4.45), assume that |∂ωγ | = 0, and that the system ma-
trix (4.46) evaluated at (yγ , wγ) is continuous invertible as an operator from (W 2,s ∩ H1

0 (Ω))2 to (Ls(Ω))2.
Then, if (y0, w0) is sufficiently close in (W 2,s ∩ H1

0 (Ω))2 to (yγ , wγ), the semismooth Newton iteration (4.24)
converges superlinearly to (yγ , wγ).

Proof. It suffices to argue that the system matrix depends continuously on (y, w) ∈ (W 2,s(Ω) ∩ H1
0 (Ω))2 in

a neighborhood of (yγ , wγ) considered as operators in L((W 2,s(Ω) ∩ H1
0 (Ω))2, Ls(Ω)2). For this purpose we

consider the operator

(W 2,s(Ω) ∩ H1
0 (Ω))2 � (y, w) �→ A(w, ·, w) ∈ L(W 2,s(Ω) ∩ H1

0 (Ω), Ls(Ω)), (4.50)

where A still depends on χ = χ(−G∗(∇y · ∇w)). First we argue exactly as in the proof of Proposition 4.4 that

(W 2,s(Ω) ∩ H1
0 (Ω))2 � (y, w) �→ χ = χ(−G∗(∇y · ∇w)) ∈ Ls(Ω) (4.51)

is continuous. Next we observe that

W 2,s(Ω) ∩ H1
0 (Ω) � w �→ G∗(∇w · ∇·) ∈ L(W 2,s(Ω) ∩ H1

0 (Ω), W 1,s(Ω)) (4.52)

is continuous, and consequently

(W 2,s(Ω) ∩ H1
0 (Ω))2 � (y, w) �→ G(

1
γ

χG∗(∇w · ∇·)) ∈ L(W 2,s(Ω) ∩ H1
0 (Ω), Ls(Ω)) (4.53)

is continuous as well. From here we can conclude that (y, w) �→ A(w, ·, w) is continuous from (W 2,s(Ω)∩H1
0 (Ω))2

to L((W 2,s(Ω) ∩ H1
0 (Ω)), Ls(Ω)). We argue similarly for A(w, ·, y), A(y, ·, w) and A(y, ·, y), which establishes

the claim. �
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Returning to the assumption on the well-posedness of the system matrix at (yγ , wγ), we now argue that this
is indeed the case if wγ is sufficiently small in the W 2,s(Ω) norm, i.e., for small residual problems. For w = 0,
the system matrix in (4.46) has the form(

Id −∇ · (u1 ∇·)
−∇ · (u1 ∇·) 0

)
(4.54)

since uγ = GHγ(0) = Gu1 = u1 because Gu = u for u constant. This operator is clearly continuously invertible.
A perturbation argument as in the proof of Theorem 4.6 implies continuous invertibility also for (yγ , wγ) if
‖wγ‖W 2,s(Ω) is sufficiently small.

5. Numerical examples

We illustrate the behavior of the proposed approach with numerical examples modeling a simple material
design problem for the potential and the diffusion equation, in which a reference binary material distribution ur

(i.e., using only two values: matrix or void, and material) has already been obtained. The goal is now to obtain
a comparable behavior using additionally available materials of intermediate density (and hence presumably
lower cost) by solving the multi-material optimization problem (2.4) with target z = yr (the solution to the state
equation corresponding to the reference coefficient ur) and an extended list ub of feasible material parameters
containing the two original values. Here, the tracking term F penalizes the deviation from the reference state,
while the “multi-bang” term G both promotes the desired discrete structure and favors materials with lower
density; the trade-off between the two goals is controlled by the parameter α. We point out that not strictly
enforcing attainment of the target allows parameter distributions that are different from the original binary
distribution (which is only recovered in the limit α → 0). For each example, we report on the deviation from
the reference state as well as on the achieved total material cost reduction (as measured by the difference of the
L2 norms of the reference and computed coefficients).

The multi-material optimization problem (2.4) is solved using the described regularized semismooth Newton
method. To address the local convergence of Newton methods and to avoid having to choose the Moreau–Yosida
regularization parameter γ a priori, a continuation strategy is applied where the problem is solved starting with
a large γ0 = 1 and the initial guess (y0, p0) = (0, 0). The regularization parameter is then successively reduced
via γk+1 = γk/2, taking the previous solution as a starting point. The iteration is terminated if γ = 10−12 is
reached or more than 300 Newton iterations are performed. This is combined with a non-monotone backtracking
line seach based on the residual of the optimality system (4.11), starting with a step length of 1 and using a
reduction factor of 1/2, where a minimal step length of 10−6 is accepted even if it leads to a (small) increase in
the residual norm.

The partial differential equations are discretized using finite differences on a uniform grid of 128 × 128 grid
points. Our Matlab implementation of the described algorithm can be downloaded from https://github.com/
clason/multimaterialcontrol.

5.1. Potential problem

We first consider the design problem associated with equation (4.13), where we fix Ω = [−1, 1]2 and

f(x1, x2) = sin(πx1) cos(πx2). (5.1)

The reference material parameter is

ur(x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2.5 if 1/4 < |x|2 <
3
4

and x1 >
1
10

,

2.5 if 1/4 < |x|2 <
3
4

and x1 < − 1
10

,

1.5 else,

(5.2)

https://github.com/clason/multimaterialcontrol
https://github.com/clason/multimaterialcontrol
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(a) reference coefficient ur
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(b) optimal coefficient uγ for α = 10−5
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(c) optimal coefficient uγ for α = 10−6
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(d) optimal coefficient uγ for α = 10−7

Figure 3. Results for potential problem.

see Figure 3a. We then solve the multi-material design problem for the target z = yr with the extended fea-
sible parameter set {1, 1.5, 2, 2.5} for different values of α using the described algorithm. In all cases, after
some initial reduced steps were taken for γ < 5 × 10−5, the Newton iteration entered a superlinear phase
and converged after at most three iterations. Depending on γ, the total number of Newton iterations was
between 5 and 28. The algorithm always terminated at γ ≈ 10−12 because the minimal value of γ was
reached. The final material distributions uγ for α ∈ {10−5, 10−6, 10−7} are shown in Figures 3b–3d. As can
be seen, at almost all points, only the feasible parameter values are attained, where lower values of α lead
to increased use of higher density materials. The relative tracking error eT := ‖yγ − yr‖L2/‖yr‖L2 as well as
the relative total material cost reduction eM := (‖ur‖L2 − ‖uγ‖L2)/‖ur‖L2 for each value of α are given in
Table 1a.
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Table 1. Relative tracking error eT and material cost reduction eM for different values of α.

(a) Potential problem.

α 10−5 10−6 10−7

eT 2.95 × 10−2 8.28 × 10−3 2.01 × 10−3

eM 2.89 × 10−1 1.82 × 10−1 1.10 × 10−1

(b) Diffusion problem.

α 10−1 10−2 10−6

eT 4.96 × 10−2 1.15 × 10−2 5.29 × 10−5

eM 1.16 × 10−2 4.61 × 10−1 7.29 × 10−4
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(b) optimal coefficient Guγ for α = 10−2
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(c) optimal coefficient Guγ for α = 10−3
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(d) optimal coefficient Guγ for α = 10−6

Figure 4. Results for diffusion problem.

5.2. Diffusion problem

For the design problem associated with equation (4.41), we set f ≡ 10 and ur as given in (5.2). The smoothing
operator G is taken as averaging over the local five-point stencil; the smoothed reference coefficient Gur is shown
in Figure 4a to facilitate comparison. For the multimaterial design problem, we choose the extended feasible
parameter set {1.5, 1.75, 2, 2.25, 2.5} and α ∈ {10−2, 10−3, 10−6} (the last value to illustrate the behavior for
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α → 0). In these cases, the algorithm terminated prematurely due to reaching the maximal number of Newton
iterations at γ∗ ≈ 4.8× 10−7, γ∗ ≈ 6.0× 10−8, and γ∗ ≈ 9.3× 10−10, respectively. The behavior of the Newton
method is similar as in the potential problem, although the required number of Newton iterations now increases
significantly as γ is decreased due to the line search leading to smaller step lengths (including, e.g., for α = 10−3

in total six non-monotone steps due to the minimal step length being reached). The corresponding material
coefficients Guγ from the last successful iteration at γ = 2γ∗ are shown in Figures 4b–4d. Although the multi-
bang structure is no longer perfect, it can be observed that the penalty is successful in promoting the desired
parameter values even in the presence of the smoothing operator G. Figure 4d also indicates that the original
binary reference distribution ur is recovered for α → 0. Finally, the relative tracking errors and relative material
cost reductions for these values of α are given in Table 1b.

6. Conclusion

A convex analysis approach is presented for the determination of piecewise constant coefficients in a partial
differential equation where the constants range over a predetermined discrete set. Since the subdomains where
the coefficient is constant are not specified a priori, this constitutes a topology optimization problem. Two
model applications are analyzed in detail. For the case where the unknown coefficient enters into the potential
term, the numerical results are very encouraging. If the unknown parameter enters into the diffusion term,
regularization is required that has a smoothing effect on the solutions, and thus the numerical results are less
“crisp”. In practice, this could be addressed by a post-processing step, either by standard thresholding or by
evaluating the unregularized subdifferential at the computed optimal dual variable, i.e., taking an appropriate
selection ũ ∈ ∂G∗(pγ). Since the considered problems resemble inverse coefficient problems, it comes as no
surprise that the diffusion problem is more ill-posed than the potential problem.

In future work, we plan to return to the diffusion problem and to formulate the multi-topology optimization
problem based on a bounded variation framework using a functional including the total variation seminorm. It
may also be of interest to search for other types of functionals which serve the purpose of multi-material topology
optimization. In particular, we note that the currently used formulation in (1.2) favors values u(x) = ui with
small magnitude over other ones. Depending on the practical relevance of the ui, this may not be a desired
effect. In this case, functionals should be constructed that favor different criteria (e.g., the weight or the price
of different materials) while still keeping the “multi-bang” property feature of promoting controls with values
only from the given set.
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