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EXISTENCE AND UNIQUENESS OF GLOBAL SOLUTIONS
FOR THE MODIFIED ANISOTROPIC 3D NAVIER−STOKES EQUATIONS ∗, ∗∗
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Abstract. We study a modified three-dimensional incompressible anisotropic Navier−Stokes equa-
tions. The modification consists in the addition of a power term to the nonlinear convective one. This
modification appears naturally in porous media when a fluid obeys the Darcy−Forchheimer law instead
of the classical Darcy law. We prove global in time existence and uniqueness of solutions without as-
suming the smallness condition on the initial data. This improves the result obtained for the classical
3D incompressible anisotropic Navier−Stokes equations.

Mathematics Subject Classification. 35Q30, 35Q35, 76D05, 76D03, 76S05.

Received August 18, 2015. Revised October 19, 2015. Accepted January 22, 2016.

1. Introduction

The purpose of this paper is to study the following modified Navier−Stokes system

Sa :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t u− ν Δh u+ (u · ∇)u+ a |u|2αu = −∇ p for (t, x) ∈ R+ × R
3,

∇ · u = 0 for (t, x) ∈ R+ × R
3,

u|t=0 = u0,

where ∂t denotes the partial derivative with respect to time, α ∈ R, a > 0, Δh := ∂2
1 + ∂2

2 and ∂i denotes
the partial derivative in the direction xi. Clearly, S0 corresponds to the classical anisotropic Navier−Stokes
equations. When a Coriolis force 1

εu× e3 is added, where e3 denotes the unit vertical vector and ε > 0 is the so
called Rossby number, system S0 models rotating flows (see e.g. [12]). We refer the reader to e.g. [2,6] where the
relevance of considering anisotropic viscosities of the form νhΔhu + ενv ∂

2
3u is explained through the Ekman’s

law. For a complete discussion leading to the anisotropic Navier−Stokes systems, the reader is referred to the
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book [12] or the introduction of the book [5]. System Sa withΔh replaced by the classical Laplacian is nothing but
the three-dimensional Brinkman−Forchheimer-extended Darcy model. The Brinkman−Forchheimer-extended
Darcy equations

∂t u− νΔu+ (u · ∇)u+ ∇ p+ a |u|2αu = f, ∇ · u = 0, (1.1)

have been extensively studied. The existence of weak solutions for α ≥ 0 and existence (for α ≥ 5
4 ) and

uniqueness (for 5
4 < α ≤ 2) of strong solutions of (1.1) is shown in [3]. Also, in [10], existence and uniqueness

of weak and strong solutions is shown for a larger range of α. In [7], the authors show existence and uniqueness
of solutions for all α > 1, with Dirichlet boundary conditions and regular enough initial data. Their argument
relies on the maximal regularity estimate for the corresponding semi-linear stationary Stokes problem proved
using some modification of the nonlinear localization technique. In [10], the authors showed the existence and
uniqueness of weak and strong solutions, in particular with initial data in H1 instead of H2 in [7] with periodic
boundary conditions. Let us mention that the space L2α+2 appears naturally in the mathematical analysis of
system (1.1), and it coincides obviously with L4 for α = 1. Since Ḣ

1
2 is known to be the critical Sobolev space

for the classical 3D Navier−Stokes equations and Ḣ
1
2 ⊂ L4, then it makes sense to assume α > 1. For a more

detailed discussion about equation (1.1) and the various values of α that lead to the well posedness, we refer
the reader to [7, 10] and the references therein.

Before going further, let us precise the notation and the functional setting that will be used along the paper.
Since the horizontal variable xh

def=(x1, x2) does not play the same role as the vertical variable x3, it is natural to
introduce functional spaces taking into account this feature. These spaces are the so called anisotropic Sobolev
spaces Hs,s′

for all s, s′ ∈ R. More precisely, the space Hs,s′
is the Sobolev space with regularity Hs in xh and

Hs′
in x3. Let 〈x〉 denote the quantity 〈x〉def=(1 + |x|2) 1

2 , then for all s, s′ ∈ R, Hs,s′
is the space of tempered

distributions ψ ∈ S′(R3) which satisfy

||ψ||s,s′
def=
∫

R+

〈ξ′〉2s 〈ξ3〉2s′ |Fψ(ξ)|2 dξ,

where ξ′ := (ξ1, ξ2) and F denotes the Fourier transform. The space ||ψ||Hs,s′ endowed with the norm || · ||s,s′ is
a Hilbert space. Obviously, the homogenous anisotropic Sobolev space Ḣs,s′

(R3) are obtained by replacing 〈·〉
by | · |. We will denote Lp

h(Lq
v) the space Lp(Rx1 × Rx2 ;Lq(Rx3)) endowed with the norm

||ψ||Lp
h(Lq

v)
def= ||||ψ||Lq(Rx3)||Lp(Rx1×Rx2 ) =

⎧⎨
⎩
∫

Rx1×Rx2

(∫
Rx3

|ψ(xh, x3)|q dx3

) p
q

dxh

⎫⎬
⎭

1
p

.

Equivalently, we denote Lq
v(L

p
h) the space Lq(Rx3(Lq(Rx1 × Rx2))) with the associated norm given by

||ψ||Lq
v(Lp

h) := ||||ψ(·, x3)||Lp(Rx1×Rx2)||Lq(Rx3 ). The Lp(R3) norms will be denoted || · ||p.
The mathematical analysis of the anisotropic Navier−Stokes system S0 was originally investigated in [4, 8]

where it is proved that the system S0 is locally well-posed for initial data in H0,s(R3) for all s > 1
2 . Moreover,

it has also been proved that if the initial data u0 is such that

||u0||s−
1
2

L2(R3) ||u0||
3
2−s

Ḣ0,s(R3)
≤ c,

for a sufficiently small constant c, then system S0 is globally well-posed. The aim of this short paper is to show
how the damping term |u|2αu gives rise to a smoothing effect in the vertical velocity. Therefore it allows to get
rid of the smallness assumption (above) used in S0. Even though, this result is still valid in the critical Sobolev
and Besov spaces H0, 1

2 and B0, 1
2 (see [11]), in order to avoid technicalities, in this paper we chose to focus on

a less optimal space to show how we take advantage of the damping term. A similar result in the spaces H0, 1
2

and B0, 1
2 will be shown in a forthcoming paper soon. Here, we specifically show the following.
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Theorem 1.1. Let a, ν > 0, α > 1 and u0 ∈ H0,1(R3) such that div u0 = 0. Then, system Sa has a unique
global solution u(t) satisfying

u(t) ∈ L∞
loc(R+;H0,1(R3)) ∩ L2

loc(R+;H1,1(R3)) ∩ L2α+2
loc (R+;L2α+2(R3)).

Moreover, the solution is in C0(R+;L2(R3)) and depends continuously on the initial data.

2. Proof of Theorem 1.1

The rest of the paper is dedicated to the proof of Theorem 1.1. In general, the proof is structured in four
steps. First, one defines a family of approximate systems (Sn

a )n∈N and show that this family has local in time
smooth enough solutions (un(t), pn(t)). This can be achieved for instance by the classical Friedrich’s method.
Second, one proves uniform bounds for (un(t), pn(t)) on some fixed time interval [0, T ]. Next, one shows that the
sequence of solutions to (Sn

a )n∈N converges towards some solution of Sa with adequate properties. Eventually,
one exhibits a stability kind estimate leading to the continuous dependence of the solutions on the initial data,
in particular their uniqueness. We refer to any textbook of fluid mechanics for technical details of this procedure
(see e.g. [1,13]). To shorten the presentation, we will only present the necessary uniform bounds by performing
formal calculation using system Sa instead of (Sn

a )n∈N and we will briefly explain how to pass to the limit.

2.1. A priori estimates

We start by looking for an L2 uniform estimate for the velocity. For this purpose, we multiply the first
equation of system Sa by u and integrate4 over R

3 to get

1
2

d
dt

||u(t)||22 + ν ||∇hu(t)||22 + a ||u(t)||2α+2
2α+2 = 0,

thanks to the fact that
∫

R3(u · ∇)u · u dx = 0. Now, we integrate this equality with respect to time

||u(t)||22 + 2ν
∫ t

0

||∇hu(τ)||22 dτ + 2a
∫ t

0

||u(t)||2α+2
2α+2 dτ = ||u0||22.

This shows that if u0 ∈ L2(R3), then for all t ∈ [0, T ], it holds

u(t) ∈ L∞(R+;L2(R3)) ∩ L2
loc(R+;H1,0(R3)) ∩ L2α+2

loc (R+;L2α+2(R3)). (2.1)

Next, we multiply the first equation of S by −∂2
3u and integrate1 over R

3 to get

1
2

d
dt

||∂3u(t)||22 + ν ||∇h∂3u(t)||22 −
∫

R3
(u(t) · ∇)u(t) · ∂2

3u(t) dx− a

∫
R3

|u(t)|2αu(t) · ∂2
3u(t) dx = 0. (2.2)

Now, we handle the nonlinear terms. On the one hand, an integration by parts leads clearly to the fact that

−
∫

R3
|u|2αu · ∂2

3u dx =
∫

R3
|∂3u|2|u|2α dx+ 2α

∫
R3

(u · ∂3)2|u|2α−2 dx = (1 + 2α) |||u|α ∂3u||22. (2.3)

On the other hand, using integration by parts, we can write

−
∫

R3
(u · ∇)u · ∂2

3u dx =
3∑

k,l=1

∫
R3
∂3uk ∂kul ∂3ul dx

=
2∑

k=1

3∑
l=1

∫
R3
∂3uk ∂kul ∂3ul dx+

3∑
l=1

∫
R3
∂3u3 ∂3ul ∂3ul dx := T1 + T2.

4This should be done on the smooth approximate solutions un.
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Now, integrating again by parts, we obtain that

T1 = −
2∑

k=1

3∑
l=1

∫
R3

(ul ∂3ul ∂k∂3uk + ul ∂3uk ∂k∂3ul) dx.

Moreover, using the fact that ∇ · u = 0, we have −∂3u3 = divh uh where uh
def=(u1, u2). Thus

T2 = −
3∑

l=1

∫
R3

divh uh ∂3ul ∂3ul dx.

Next, using Hölder and Young inequality, it is rather easy to see that for all f, g and h, we have for all α > 1
and ε0, ε1 > 0 ∫

R3
f g h dx ≤

∫
R3

|f | |g| 1
α |g|1− 1

α |h| dx ≤ |||f | |g| 1
α ||2α |||g|1− 1

α ||| 2α
α−1

||h||2

≤ 1
4ε0

||fα g|| 2
α
2 ||g||2(1− 1

α )
2 + ε0||h||22

≤ ε1
4ε0

||fα g||22 +
ε1

1
1−α

4ε0
||g||22 + ε0 ||h||22.

Eventually, applying this inequality with f = ul, g = ∂3ul, h = ∂k∂3uk for the first part of T1, f = ul, g =
∂3uk, h = ∂k∂3ul for the second part of T1 and proceeding equivalently for T2, we obtain the existence of a
constant γ > 0 independent of α such that

∫
R3

(u · ∇)u · ∂2
3u dx ≤ γε1

4ε0
|||u|α ∂3 u||22 +

γε
1

1−α

1

4ε0
||∂3 u||22 + γε0 ||∇h ∂3u||22. (2.4)

The idea then is to tune ε0 and ε1 to compensate the first and third terms of the right hand side of (2.4)
using (2.3) and the second term of the left hand side of (2.2). More precisely, setting ε0 = ν

2γ and ε1 = aν(1+4α)
γ2

and using (2.3) and (2.4), the equality (2.2) implies the existence of some η > 0 such that

d
dt

||∂3u(t)||22 + ν ||∇h∂3u(t)||22 + a |||u(t)|α∂3u(t)||22 ≤ η ||∂3u(t)||22.

Thus, thanks to Gronwall’s inequality, we obtain the following bound

||∂3u(t)||22 ≤ ||∂3u0||22 eη t, for all t ∈ [0, T ].

In particular, we have

||∂3u(t)||22 + ν

∫ t

0

||∇h∂3u(τ)||22 dτ + a

∫ t

0

|||u(τ)|α∂3u(τ)||22 dτ ≤ (1 + eη t
) ||∂3u0||22.

Thus, we infer
u(t) ∈ L∞

loc(R+;H0,1) ∩ L2
loc(R+;H1,1). (2.5)

Rigorously, these bounds hold for the approximate solutions constructed via the Friederich’s regularization
procedure. So, at this level, it remains only to pass to the limit in the sequence of solutions of (Sn

a )n∈N. For
that purpose, the main point to show is that

∂tu ∈ L2
loc(R+, H

−1(R3)) + L
1+ 1

2α+1
loc (R+, L

1+ 1
2α+1 (R3)) =

(
L2

loc(R+, H
1(R3)) ∩ L2α+2

loc (R+, L
2α+2(R3))

)�
,

(2.6)
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where the star stands for the dual symbol. Indeed, let us recall the Ladyžhenskaya inequality, which is a special
case of the Gagliardo−Nirenberg−Sobolev inequality (see e.g. [9])

||ψ||4 ≤ δ1 ||ψ||
1
4
2 ||∇ψ|| 342 , for all ψ ∈ H1

0 (R3). (2.7)

Therefore, using Hölder and Ladyžhenskaya inequalities, we have

||(u · ∇)u|| 4
3
≤ ||u||4 ||∇u||2 ≤ δ1||u||

1
4
2 ||∇u|| 742 ≤ δ81 ||u||22 + ||∇u||22. (2.8)

Therefore (u · ∇)u ∈ L2
loc(R+, H

−1(R3)). Also, we have clearly

|||u|2αu||1+
1

2α+1

1+ 1
2α+1

= ||u||2α+2
2α+2, and (2α+ 2)−1 + (1 + 1/2α+ 1)−1 = 1.

Thus, (2.6) holds thanks to (2.1), (2.5), (2.7) and (2.8). Recall that (2.6) is needed in order to get some
compactness in time. The passage to the limit follows using using classical argument by combining Ascoli’s
theorem and the Cantor diagonal process.

Remark 2.1. It is rather standard to show that u ∈ C0(R+;L2) by using (2.5) and (2.6).

2.2. Uniqueness

Now, we show the continuous dependence of the solutions on the initial data, in particular their uniqueness.
Let u(t) and v(t) be two solutions of system S in the class u(t) ∈ L∞

loc(R+;H0,1) ∩ L2
loc(R+;H1,1). Let w(t) =

u(t) − v(t), then w satisfies
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t w − ν Δh w + (w · ∇)u+ (v · ∇)w + a |u|2αu− a |v|2αv = −∇ (pu − pv),

∇ · w = 0,

u|t=0 = u0 − v0.

We proceed as for the obtention of a priori estimates. Thanks to (2.6), the action of ∂tw on w leads to

1
2

d
dt

||w||22 + ν ||∇hw||22 +
∫

R3
(w · ∇)u · w dx+ a

∫
R3

(|u|2αu− |v|2αv
)
w dx = 0.

On the one hand

∫
R3

(w · ∇)u · w dx =
2∑

k=1

3∑
l=1

∫
R3
wk ∂kul wl dx +

3∑
l=1

∫
R3
w3 ∂3ul wl dxdef=I1 + I2.

Now, using Hölder inequality, it holds

I1 ≤
2∑

k=1

3∑
l=1

∫
R

||∂kul||L2
h
||wk||L4

h
||wl||L4

h
dx3 ≤

2∑
k=1

3∑
l=1

||∂kul||L∞
v (L2

h) ||wk||L2
v(L4

h) ||wl||L2
v(L4

h).

Now, using the Sobolev embedding Ḣ
1
2
h ↪→ L4

h and interpolating Ḣ
1
2
h between Ḣ1

h and L2
h, we obtain clearly for

all ψ ∈ L2
v ∩ Ḣ1

h

||ψ||L2
v(L4

h) ≤ C ||∇hψ||
1
2
2 ||ψ|| 122 . (2.9)
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Also, we have

||ψ(·, x3)||2L2
h

=
∫ x3

−∞

d
dz

(
||ψ(·, z)||2L2

h

)
dz = 2

∫ x3

−∞

∫
R2
ψ(xh, z) ∂zψ(xh, z)dxh dz ≤ 2 ||ψ||2 ||∂3ψ||2. (2.10)

Therefore, using (2.9) with ψ = wk and ψ = wl and (2.10) with ψ = ∂kul, we obtain thanks to Young’s
inequality

I1 ≤ C ||∂3∇hu||
1
2
2 ||∇hu||

1
2
2 ||∇hw||2 ||w||2 ≤ ν

4
||∇hw||22 + C

(
||∂3∇hu||22 + ||∇hu||22

)
||w||22.

Next, proceeding in the same way, we get

I2 ≤ C ||w3||L∞
v (L2

h) ||∂3∇hu||
1
2
2 ||∂3u||

1
2
2 ||∇hw||

1
2
2 ||w|| 122 .

But, using the fact that ∇ · w = 0, thus divhwh = −∂3w3, we get

||w3||2L2
h

= 2
∫ x3

−∞

∫
R2
w3(xh, z) ∂3w3(xh, z)dxh dz = −2

∫ x3

−∞

∫
R2
w3(xh, z) divhwh(xh, z)dxh dz

≤ 2 ||divhwh||2 ||w3||2.

Hence

I2 ≤ C ||divhwh||
1
2
2 ||w3||

1
2
2 ||∂3∇hu||

1
2
2 ||∂3u||

1
2
2 ||∇hw||

1
2
2 ||w|| 122

≤ ν

4
||∇hw||22 + C

(
||∂3∇hu||22 + ||∂3u||22

)
||w||22.

On the other hand, it is well known that there exists a nonnegative constant κ = κ(α) such that

0 ≤ κ |u− v|2 (|u| + |v|)2α ≤ (|u|2αu− |v|2αv
) · (u− v).

Thus

a

∫
R3

(|u|2αu− |v|2αv
)
w dx ≥ a κ

∫
R3

(|u| + |v|)2α w2 dx = aκ || (|u| + |v|)α w||22.

All in all, we have

d
dt

||w||22 + ν ||∇hw||22 + 2aκ || (|u| + |v|)α w||22 ≤ C
(
||∂3∇hu||22 + ||∂3u||22 + ||∇hu||22

)
||w||22

Setting L(t) := C
(
||∂3∇hu||22 + ||∂3u||22 + ||∇hu||22

)
and integrating the above inequality with respect to time, we

obtain that for all t ∈ [0, T ]

||w(t)||22 + ν

∫ t

0

||∇hw(τ)||22 dτ + 2aκ
∫ t

0

|| (|u| + |v|)α
w(τ)||22 dτ ≤ ||w0||22 +

∫ t

0

L(τ) ||w(τ)||22 dτ (2.11)

Now, since ∂3u ∈ L∞
loc(R+, L

2(R3)), ∂3∇hu ∈ L2
loc(R+, L

2(R3)) and ∇hu ∈ L2
loc(R+, L

2(R3)), it is clear that
L(t) ∈ L1

loc(R+). Therefore, Gronwall’s Lemma applied to the inequality (2.11) leads to the uniqueness for all
α > 1 and the proof is complete.
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