
ESAIM: M2AN 50 (2016) 1789–1816 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2016007 www.esaim-m2an.org

A POSTERIORI ERROR ANALYSIS FOR A VISCOUS FLOW-TRANSPORT
PROBLEM ∗

Mario Alvarez
1,∗∗

, Gabriel N. Gatica
2

and Ricardo Ruiz-Baier
3

Abstract. In this paper we develop an a posteriori error analysis for an augmented mixed-primal
finite element approximation of a stationary viscous flow and transport problem. The governing system
corresponds to a scalar, nonlinear convection-diffusion equation coupled with a Stokes problem with
variable viscosity, and it serves as a prototype model for sedimentation-consolidation processes and
other phenomena where the transport of species concentration within a viscous fluid is of interest. The
solvability of the continuous mixed-primal formulation along with a priori error estimates for a finite
element scheme using Raviart−Thomas spaces of order k for the stress approximation, and continuous
piecewise polynomials of degree ≤ k + 1 for both velocity and concentration, have been recently es-
tablished in [M. Alvarez et al., ESAIM: M2AN 49 (2015) 1399–1427]. Here we derive two efficient and
reliable residual-based a posteriori error estimators for that scheme: for the first estimator, and under
suitable assumptions on the domain, we apply a Helmholtz decomposition and exploit local approxi-
mation properties of the Clément interpolant and Raviart−Thomas operator to show its reliability. On
the other hand, its efficiency follows from inverse inequalities and the localization arguments based on
triangle-bubble and edge-bubble functions. Secondly, an alternative error estimator is proposed, whose
reliability can be proved without resorting to Helmholtz decompositions. Our theoretical results are
then illustrated via some numerical examples, highlighting also the performance of the scheme and
properties of the proposed error indicators.
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1. Introduction

We have recently analyzed in [2] the solvability of a three-field flow-transport problem given by the coupling
of a scalar nonlinear convection-diffusion problem with the Stokes equations where the viscosity depends on the
distribution of the solution to the transport problem. There, an augmented mixed-primal variational formulation
was proposed, where the Cauchy stresses are sought in H(div;Ω), the velocity is in H1(Ω), and the solution
to the transport problem has H1(Ω) regularity. The associated numerical scheme employed Raviart−Thomas
spaces of order k for the Cauchy stress, whereas the velocity and a coupled scalar field (e.g. concentration as
in [3], or temperature) were approximated with continuous piecewise polynomials of degree ≤ k + 1. Optimal
a priori error estimates were also derived.

Our goal in this paper is to propose reliable and efficient residual-based a posteriori error estimators for the
coupled flow-transport problem studied in [2]. Estimators of this kind are typically used to guide adaptive mesh
refinement in order to guarantee an adequate convergence behavior of the Galerkin approximations, even under
the eventual presence of singularities. The global estimator θ depends on local estimators θT defined on each
element T of a given mesh Th. Then, θ is said to be efficient (resp. reliable) if there exists a constant Ceff > 0
(resp. Crel > 0), independent of meshsizes, such that

Ceff θ + h.o.t. ≤ ‖error‖ ≤ Crel θ + h.o.t.,

where h.o.t. is a generic expression denoting one or several terms of higher order. A number of a posteriori
error estimators specifically targeted for non-viscous (e.g., Darcy) flow coupled with transport problems area
available in the literature (see, e.g. [11, 18, 28, 32, 35]). However, only a couple of contributions deal with a
posteriori error analysis for coupled viscous flow-transport problems. In particular, we mention the reactive
flow equations studied in [12] and the adaptive finite element method for heat transfer in incompressible fluid
flow proposed in [29], which is based on dual weighted residual error estimation.

In contrast, here we apply a Helmholtz decomposition, local approximation properties of the Clément in-
terpolant and Raviart−Thomas operator, and known estimates from [4, 19, 22, 24, 25], to prove the reliability
of a residual-based estimator. Then, inverse inequalities, the localization technique based on triangle-bubble
and edge-bubble functions imply the efficiency of the estimator. An alternative (also reliable and efficient)
residual-based a posteriori error estimator is proposed, where the Helmholtz decomposition is not employed
in the corresponding proof of reliability. The remainder of this paper is structured as follows. In Section 2,
we first recall from [2] the model problem and a corresponding augmented mixed-primal formulation as well
as the associated Galerkin scheme. In Section 3, we derive a reliable and efficient residual-based a posteriori
error estimator for our Galerkin scheme. A second estimator is introduced and studied in Section 4. Finally,
in Section 5 we provide some numerical results confirming the reliability and efficiency of the estimators, and
illustrating the good performance of the associated adaptive algorithm for the augmented mixed-primal finite
element method.

2. A coupled viscous flow-transport problem

Let us denote by Ω ⊆ Rn, n = 2, 3 a given bounded domain with polyhedral boundary Γ = Γ̄D ∪ Γ̄N, with
ΓD ∩ ΓN = ∅ and |ΓD|, |ΓN| > 0, and denote by ν the outward unit normal vector on Γ . Standard notation will
be adopted for Lebesgue spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖·‖s,Ω and seminorm | · |s,Ω. In
particular, H1/2(Γ ) is the space of traces of functions of H1(Ω) and H−1/2(Γ ) denotes its dual. By M,M we
will denote the corresponding vectorial and tensorial counterparts of the generic scalar functional space M. We
recall that the space

H(div;Ω) := {τ ∈ L
2(Ω) : div τ ∈ L2(Ω)},

equipped with the usual norm
‖τ‖2

div;Ω := ‖τ‖2
0,Ω + ‖div τ‖2

0,Ω
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is a Hilbert space. As usual, I stands for the identity tensor in Rn×n, and | · | denotes both the Euclidean norm
in Rn and the Frobenius norm in Rn×n.

2.1. The three-field formulation

The following system of partial differential equations describes the stationary state of the transport of species
φ in an immiscible fluid occupying the domain Ω (cf. [2]):

1
μ(φ)

σd = ∇u in Ω, −divσ = fφ in Ω,

σ̃ = ϑ(|∇φ|)∇φ − φu − γ(φ)k in Ω, − div σ̃ = g in Ω,

(2.1)

u = uD on ΓD, σν = 0 on ΓN,

φ = φD on ΓD, and σ̃ · ν = 0 on ΓN,
(2.2)

where the sought quantities are the Cauchy fluid stress σ, the local volume-average velocity of the fluid u, and
the local concentration of species φ. In this model, the kinematic effective viscosity, μ; the diffusion coefficient,
ϑ; and the one-directional flux function describing hindered settling, γ; depend nonlinearly on φ. In turn, k is
a vector pointing in the direction of gravity, and f ∈ L∞(Ω), uD ∈ H1/2(ΓD), g ∈ L2(Ω) are given functions.
For sake of the subsequent analysis, the Dirichlet datum for the concentration will be assumed homogeneous,
that is φD = 0, ϑ is assumed of class C1, and we suppose that there exist positive constants μ1, μ2, γ1, γ2, ϑ1,
ϑ2, Lμ and Lγ , such that

μ1 ≤ μ(s) ≤ μ2 and γ1 ≤ γ(s) ≤ γ2 ∀ s ∈ R, (2.3)

ϑ1 ≤ ϑ(s) ≤ ϑ2 and ϑ1 ≤ ϑ(s) + s ϑ′(s) ≤ ϑ2 ∀ s ≥ 0, (2.4)

|μ(s) − μ(t)| ≤ Lμ |s− t| ∀ s, t ∈ R, (2.5)

|γ(s) − γ(t)| ≤ Lγ |s− t| ∀ s, t ∈ R. (2.6)

2.2. The augmented mixed-primal formulation

The homogeneous Neumann boundary condition for σ on ΓN and the Dirichlet datum for φ (cf. second and
third relations of (2.2), respectively) suggest the introduction of the spaces

HN(div;Ω) :=
{
τ ∈ H(div;Ω) : τν = 0 on ΓN

}
,

H1
ΓD

(Ω) :=
{
ψ ∈ H1(Ω) : ψ = 0 on ΓD

}
.

Also, due to the generalized Poincaré inequality, there exists cp > 0, depending only on Ω and ΓD, such that

‖ψ‖1,Ω ≤ cp |ψ|1,Ω ∀ψ ∈ H1
ΓD

(Ω). (2.7)

An augmented mixed-primal formulation for problem (2.1) reads as follows: find (σ,u, φ) ∈ HN (div;Ω) ×
H1(Ω) × H1

ΓD
(Ω) such that

Bφ((σ,u), (τ ,v)) = Fφ(τ ,v) ∀(τ ,v) ∈ HN(div;Ω) × H1(Ω),
Au(φ, ψ) = Gφ(ψ) ∀ψ ∈ H1

ΓD
(Ω) (2.8)
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where

Bφ((σ,u), (τ ,v)) :=
∫

Ω

1
μ(φ)

σd : τd +
∫

Ω

u · divτ −
∫

Ω

v · divσ (2.9)

+ κ1

∫
Ω

(
∇u − 1

μ(φ)
σd

)
: ∇v + κ2

∫
Ω

divσ · divτ + κ3

∫
ΓD

u · v,

Fφ(τ ,v) := 〈τν,uD〉ΓD +
∫

Ω

fφ · v − κ2

∫
Ω

fφ · divτ + κ3

∫
ΓD

uD · v, (2.10)

Au(φ, ψ) :=
∫

Ω

ϑ(|∇φ|)∇φ · ∇ψ −
∫

Ω

φu · ∇ψ ∀φ, ψ ∈ H1
ΓD

(Ω), (2.11)

Gφ(ψ) :=
∫

Ω

γ(φ)k · ∇ψ +
∫

Ω

gψ ∀ψ ∈ H1
ΓD

(Ω),

where κi, i ∈ {1, 2, 3}, are the stabilization parameters specified in ([2], Lem. 4.1). Further details yielding
the weak formulation (2.8) can be found in ([2], Sect. 3.1), whereas its solvability follows from the fixed point
strategy developed in ([2], Thm. 3.13).

2.3. The augmented mixed-primal finite element method

We denote by Th a regular partition of Ω into triangles T (resp. tetrahedra T in R3) of diameter hT , and
meshsize h := max

{
hT : T ∈ Th

}
. In addition, given an integer k ≥ 0, the space Pk(T ) contains polynomial

functions on T of degree ≤ k, and we define the corresponding local Raviart−Thomas space of order k as
RTk(T ) := Pk(T ) ⊕ Pk(T )x , where, according to the notations described in Section 1, Pk(T ) = [Pk(T )]n,
and x ∈ Rn. Then, the Galerkin scheme associated to (2.8) is as follows: find (σh,uh, φh) ∈ H

σ
h × Hu

h × Hφ
h

such that
Bφh

((σh,uh), (τ h,vh)) = Fφh
(τ h,vh) ∀(τ h,vh) ∈ H

σ
h × Hu

h ,

Auh
(φh, ψh) =

∫
Ω

γ(φh)k · ∇ψh +
∫

Ω

gψh ∀ψh ∈ Hφ
h,

(2.12)

where the involved finite element spaces are defined as:

H
σ
h :=

{
τh ∈ HN(div;Ω) : ct τh|T ∈ RTk(T ) ∀ c ∈ Rn, ∀T ∈ Th

}
,

Hu
h :=

{
vh ∈ C(Ω) : vh|T ∈ Pk+1(T ) ∀T ∈ Th

}
,

Hφ
h :=

{
ψh ∈ C(Ω) ∩ H1

ΓD
(Ω) : ψh|T ∈ Pk+1(T ) ∀T ∈ Th

}
.

The solvability analysis and a priori error bounds for (2.12) are established in ([2], Sect. 5).

3. A residual-based a posteriori error estimator

In this section we derive a reliable and efficient residual-based a posteriori error estimator for the Galerkin
scheme (2.12). The analysis will be restricted to the two-dimensional case, with the discrete spaces introduced
in Section 2. However, we point out that a straightforward extension of our analysis to 3D does also apply since
the key estimate given by the stability of the corresponding Helmholtz decomposition (see (3.36) below for our
2D case) follows from the technique suggested in ([26], Lem. 4.3) and the results provided in ([10], Thms. 2.17
and 3.12, and Cor. 3.16).

Now, given a suitably chosen r > 0 (see [2] for details), we define the balls

W := {φ ∈ H1
ΓD

(Ω) : ‖φ‖1,Ω ≤ r} and Wh := {φh ∈ Hφ
h : ‖φh‖1,Ω ≤ r}, (3.1)



A POSTERIORI ERROR ANALYSIS FOR A VISCOUS FLOW-TRANSPORT PROBLEM 1793

and throughout the rest of the paper we let (σ,u, φ) ∈ HN (div;Ω) × H1(Ω) × H1
ΓD

(Ω) with φ ∈ W and
(σh,uh, φh) ∈ H

σ
h × Hu

h × Hφ
h with φh ∈ Wh be the solutions of the continuous and discrete formulations (2.8)

and (2.12), respectively. In addition, we set

H := HN (div, Ω) × H1(Ω), ‖(τ ,v)‖H := ‖τ‖div;Ω + ‖v‖1,Ω ∀ (τ ,v) ∈ H,

and recall from ([2], Thms. 3.13 and 4.7) that the following a priori estimates hold

‖(σ,u)‖H ≤ CS

{
‖uD‖1/2,ΓD + ‖φ‖1,Ω ‖f‖∞,Ω

}
,

‖(σh,uh)‖H ≤ CS

{
‖uD‖1/2,ΓD + ‖φh‖1,Ω ‖f‖∞,Ω

}
,

(3.2)

where CS is a positive constant independent of φ and φh.

3.1. The local error indicator

Given T ∈ Th, we let Eh(T ) be the set of its edges, and let Eh be the set of all edges of the triangulation Th.
Then we write Eh = Eh(Ω) ∪ Eh(ΓD) ∪ Eh(ΓN), where Eh(Ω) := {e ∈ Eh : e ⊆ Ω}, Eh(ΓD) := {e ∈ Eh : e ⊆ ΓD}
and Eh(ΓN) := {e ∈ Eh : e ⊆ ΓN}. Also, for each edge e ∈ Eh we fix a unit normal vector νe := (ν1, ν2)t,
and let se := (−ν2, ν1)t be the corresponding fixed unit tangential vector along e. Then, given e ∈ Eh(Ω) and
τ ∈ L2(Ω) such that τ |T ∈ [C(T )]2 on each T ∈ Th, we let �τ · νe� be the corresponding jump across e, that
is, �τ · νe� := (τ |T − τ |T ′ )|e · νe, where T and T ′ are the triangles of Th having e as a common edge. Similarly,
given τ ∈ L

2(Ω) such that τ |T ∈ [C(T )]2×2 on each T ∈ Th, we let �τse� be the corresponding jump across e,
that is, �τse� := (τ |T − τ |T ′)|e se. If no confusion arises, we will simple write s and ν instead of se and νe,
respectively. The curl operator applied to scalar, vector and tensor valued fields v, ϕ := (ϕ1, ϕ2) and τ := (τij),
respectively, will be denoted as

curl(v) :=
( ∂v

∂x2

− ∂v
∂x1

)
, curl(ϕ) :=

(
curl(ϕ1)t
curl(ϕ2)t

)
, and curl(τ ) :=

(
∂τ12
∂x1

− ∂τ11
∂x2

∂τ22
∂x1

− ∂τ21
∂x2

)
.

Then, we let σ̃h := ϑ(|∇φh|)∇φh − φhuh − γ(φh)k and define for each T ∈ Th a local error indicator θT as
follows

θ2T := ‖fφh + divσh‖2
0,T +

∥∥∥∥∇uh − 1
μ(φh)

σd
h

∥∥∥∥2

0,T

+ h2
T ‖g + div σ̃h‖2

0,T

+ h2
T

∥∥∥∥curl
{

1
μ(φh)

σd
h

}∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(Ω)

he

∥∥∥∥� 1
μ(φh)

σd
h s

�∥∥∥∥2

0,e

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖�σ̃h · νe�‖2
0,e +

∑
e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖2
0,e

+
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖2
0,e +

∑
e∈Eh(T )∩Eh(ΓD)

he

∥∥∥∥duD

ds
− 1
μ(φh)

σd
h s

∥∥∥∥2

0,e

. (3.3)

The residual character of each term defining θ2T is clear, and hence, proceeding as usual, a global residual error
estimator can be defined as:

θ :=

{∑
T∈Th

θ2T

}1/2

. (3.4)

Note that the last term defining θ2T requires that
duD

ds

∣∣∣
e
∈ L2(e) for each e ∈ Eh(ΓD). This is ensured below

by assuming that uD ∈ H1
0(ΓD).
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3.2. Reliability

The following theorem constitutes the main result of this section

Theorem 3.1. Assume that Ω is a connected domain and that ΓN is the boundary of a convex part of Ω, that
is Ω can be extended to a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B (see Fig. 1 below). In addition,
assume that uD ∈ H1

0(ΓD) and that for some ε ∈ (0, 1) (when n = 2) or some ε ∈ (1/2, 1)(when n = 3) there
holds

C3 |k| + C6 ‖uD‖1/2+ε,ΓD + C7 ‖f‖∞,Ω <
1
2
· (3.5)

where C3, C6 and C7 are the constants given below in (3.22). Then, there exists a constant Crel > 0, which
depends only on parameters, ‖uD‖1/2+ε,ΓD , ‖f‖∞,Ω, and other constants, all them independent of h, such that

‖φ− φh‖1,Ω + ‖(σ,u) − (σh,uh)‖H ≤ Crel θ. (3.6)

We begin the proof of (3.6) with the upper bounds derived in the following two subsections.

3.2.1. A preliminary estimate for ‖(σ,u) − (σh,uh)‖H

In order to simplify the subsequent writing, we first introduce the following constants

C0 :=
1
α
, C1 := 2C0 Cε C̃ε C̃S(r)

Lμ(1 + κ2
1)

1/2

μ2
1

, C2 := C0 (1 + κ2
2)

1/2 + r C1, (3.7)

where C̃S(r) and Cε, C̃ε are defined in ([2], cf. (3.22)) and ([2], Lem. 3.9 and Thm. 3.13), respectively.

Lemma 3.2. Let θ2
0 :=

∑
T∈Th

θ20,T , where for each T ∈ Th we set

θ20,T := ‖fφh + divσh‖2
0,T +

∥∥∥∥∇uh − 1
μ(φh)

σd
h

∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖2
0,e. (3.8)

Then there exists C̄ > 0, depending on C0, κ1, κ3, and the trace operator in H1(Ω), such that

‖(σ,u) − (σh,uh)‖H

≤ C̄
{
θ0 + ‖Eh‖HN (div,Ω)′

}
+
{
C1 ‖uD‖1/2+ε,ΓD + C2 ‖f‖∞,Ω

}
‖φ− φh‖1,Ω,

(3.9)

where C1 and C2 are given by (3.7), and Eh ∈ HN(div, Ω)′, defined for each ζ ∈ HN(div, Ω) by

Eh(ζ) := 〈ζ ν,uD〉ΓD −
∫

Ω

1
μ(φh)

σd
h : ζ −

∫
Ω

uh · divζ − κ2

∫
Ω

(fφh + divσh) · divζ, (3.10)

satisfies
Eh(ζh) = 0 ∀ ζh ∈ H

σ
h . (3.11)

Proof. We first deduce from theH-ellipticity of Bφ (cf. [2], Lem. 3.4) that there holds the global inf-sup condition

α ‖(τ ,v)‖H ≤ sup
(ζ,w)∈H
(ζ,w) �=0

Bφ((τ ,v), (ζ,w))
‖(ζ,w)‖H

∀ (τ ,v) ∈ H, (3.12)

where α is the constant of ellipticity, which depends only on μ1, μ2, Ω, ΓN and ΓD (see [2], Lem. 3.4). Then,
applying (3.12) to the error (τ ,v) := (σ − σh,u − uh), we find that

α ‖(σ,u) − (σh,uh)‖H ≤ sup
(ζ,w)∈H
(ζ,w) �=0

Fφ(ζ,w) −Bφ((σh,uh), (ζ,w))
‖(ζ,w)‖H

· (3.13)



A POSTERIORI ERROR ANALYSIS FOR A VISCOUS FLOW-TRANSPORT PROBLEM 1795

Next, using the definitions of Bφ (cf. (2.9)) and Fφ (cf. (2.10)), and adding and subtracting suitable terms, we
can write

Fφ(ζ,w) − Bφ((σh,uh), (ζ,w)) = Fφh
(ζ,w) − Bφh

((σh,uh), (ζ,w))

+ Bφh
((σh,uh), (ζ,w)) − Bφ((σh,uh), (ζ,w)) + Fφ(ζ,w) − Fφh

(ζ,w).
(3.14)

In this way, employing the estimate for |Bφh
( ·, (ζ,w)) − Bφ( ·, (ζ,w))| (see [2], Eq. (3.29)) and |Fφ(ζ,w) −

Fφh
(ζ,w)| (see [2], Eq. (3.28)), we deduce from (3.13) and (3.14) that

‖(σ,u) − (σh,uh)‖H ≤ C0 ‖Fφh
( · ) −Bφh

((σh,uh), · )‖H′

+
{
C1 ‖uD‖1/2+ε,ΓD + C2 ‖f‖∞,Ω

}
‖φ− φh‖1,Ω,

(3.15)

where, bearing in mind (3.10), there holds

Fφh
(ζ,w) − Bφh

((σh,uh), (ζ,w)) = Eh(ζ) + Êh(w) ∀ (ζ,w) ∈ H, (3.16)

with Êh ∈ H1(Ω)′ defined for each w ∈ H1(Ω) by

Êh(w) := =
∫

Ω

(fφh + divσh) · w + κ1

∫
Ω

(
∇uh − 1

μ(φh)
σd

h

)
: ∇w + κ3

∫
ΓD

(uD − uh) · w.

Then, applying the Cauchy−Schwarz inequality we readily deduce the existence of a constant ĉ > 0, depending
on κ1, κ3, and the trace operator in H1(Ω), such that

‖Êh‖H1(Ω)′ ≤ ĉ θ0,

which, together with (3.15) and (3.16), imply the main inequality (3.9). Moreover, using the fact that

Fφh
(ζh,wh) −Bφh

((σh,uh), (ζh,wh)) = 0 ∀ (ζh,wh) ∈ Hh,

and taking in particular wh = 0, we deduce (3.11), which completes the proof. �

Observe, according to (3.11), that for each ζ ∈ HN(div, Ω) there holds

Eh(ζ) = Eh(ζ − ζh) ∀ ζh ∈ H
σ
h ,

and hence the upper bound of ‖Eh‖HN (div,Ω)′ to be derived below (see Sect. 3.2.3) will employ the foregoing
expression with a suitable choice of ζh ∈ H

σ
h .

3.2.2. A preliminary estimate for ‖φ− φh‖1,Ω

We begin with the following results.

Lemma 3.3. The nonlinear operator Au : H1
ΓD

(Ω) → [H1
ΓD

(Ω)]′ induced by Au (cf. (2.11)), that is

[Au(φ), ψ] :=
∫

Ω

ϑ(|∇φ|)∇φ · ∇ψ −
∫

Ω

φu · ∇ψ ∀ψ ∈ H1
ΓD

(Ω), (3.17)

where [·, ·] is the duality pairing between H1
ΓD

(Ω) and [H1
ΓD

(Ω)]′, is Gâteaux differentiable in H1
ΓD

(Ω).

Proof. We begin by observing, thanks to simple computations and the C1-regularity of ϑ, that for all φ̂, ψ, ϕ ∈
H1

ΓD
(Ω), with ∇φ̂ �= 0 there holds

lim
ε→0

[Au(φ̂+ ε ψ) − Au(φ̂), ϕ]
ε

=
∫

Ω

ϑ′(|∇φ̂|)

(
∇φ̂ · ∇ψ

)
|∇φ̂|

∇φ̂ · ∇ϕ

+
∫

Ω

ϑ(|∇φ̂|)∇ψ · ∇ϕ −
∫

Ω

ψu · ∇ϕ,
(3.18)
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whereas for ∇φ̂ = 0, we find that

lim
ε→0

[Au(φ̂+ ε ψ) − Au(φ̂), ϕ]
ε

=
∫

Ω

ϑ(0)∇ψ · ∇ϕ −
∫

Ω

ψu · ∇ϕ. (3.19)

In this way, the identities (3.18) and (3.19) show that Au is Gâteaux differentiable at φ̂. Moreover, DAu(φ̂) is
the bounded linear operator of H1

ΓD
(Ω) into [H1

ΓD
(Ω)]′ that can be identified with the bilinear form DAu(φ̂) :

H1
ΓD

(Ω) × H1
ΓD

(Ω) → R defined by

DAu(φ̂)(ψ, ϕ) := lim
ε→0

[Au(φ̂+ ε ψ) − Au(φ̂), ϕ]
ε

∀ψ, ϕ ∈ H1
ΓD

(Ω). (3.20)

�
Lemma 3.4. Let cp and c(Ω) be the constants given by (2.7) and ([2], Eq. (3.5)), respectively, and let u ∈ H1(Ω)
be such that

‖u‖1,Ω <
ϑ1

2 cp c(Ω)
.

Then, the family of Gâteaux derivates {DAu(φ̂)}φ̂∈H1
ΓD

(Ω) is uniformly bounded and uniformly elliptic on

H1
ΓD

(Ω) × H1
ΓD

(Ω). More precisely, there exist positive constants λ̃, α̃, depending only on ϑ1, ϑ2 (cf. (2.4)),
c(Ω), and cp, such that for all φ̂, ϕ, ψ ∈ H1

ΓD
(Ω), there holds

|DAu(φ̂)(ψ, ϕ)| ≤ λ̃ ‖ψ‖1,Ω ‖ϕ‖1,Ω and DAu(φ̂)(ψ, ψ) ≥ α̃ ‖ψ‖2
1,Ω.

Proof. It proceeds similarly to the proof of ([19], Lem. 5.1). �

As a consequence of the ellipticity of the family {DAu(φ̂)}φ̂∈H1
ΓD

(Ω), we obtain the following global inf-sup

condition

α̃ ‖ψ‖1,Ω ≤ sup
ϕ∈H1

ΓD
(Ω)

ϕ �=0

DAu(φ̂)(ψ, ϕ)
‖ϕ‖1,Ω

∀ψ ∈ H1
ΓD

(Ω). (3.21)

Next, similarly as before, we simplify the subsequent writing by introducing the following constants

C̃ :=
1
α̃
, C3 := C̃ Lγ , C4 := r c(Ω) C̄, C5 := r c(Ω) C̃, C6 := C1 C5 C7 := C2 C5, (3.22)

where C̄ is the constant provided by Lemma 3.2.

Lemma 3.5. Assume that

C3 |k| + C6 ‖uD‖1/2+ε,ΓD + C7 ‖f‖∞,Ω <
1
2
. (3.23)

Then, there exists Ĉ > 0, depending on C̃ and C4 (cf. (3.22)), such that

‖φ− φh‖1,Ω ≤ Ĉ
{
θ0 + ‖Eh‖HN (div,Ω)′ + ‖Ẽh‖H1

ΓD
(Ω)′

}
, (3.24)

where θ0 and Eh are given in the statement of Lemmas 3.2 and (3.10), respectively, and Ẽh ∈ H1
ΓD

(Ω)′, defined
for each ϕ ∈ H1

ΓD
(Ω) by

Ẽh(ϕ) :=
∫

Ω

g ϕ −
∫

Ω

{
ϑ(|∇φh|)∇φh − φh uh − γ(φh)k

}
· ∇ϕ, (3.25)

satisfies
Ẽh(ϕh) = 0 ∀ϕh ∈ Hφ

h. (3.26)
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Proof. Since φ and φh belong to H1
ΓD

(Ω), a straightforward application of the mean value theorem yields the
existence of a convex combination of φ and φh, say φ̂h ∈ H1

ΓD
(Ω), such that

DAu(φ̂h)(φ− φh, ϕ) = [Au(φ) − Au(φh), ϕ] ∀ϕ ∈ H1
ΓD

(Ω).

Next, applying (3.21) to the Galerkin error ψ := φ− φh, we find that

α̃ ‖φ− φh‖1,Ω ≤ sup
ϕ∈H1

ΓD
(Ω)

ϕ �=0

[Au(φ) − Au(φh), ϕ]
‖ϕ‖1,Ω

·
(3.27)

Now, using the fact that [Au(φ), ϕ] = [Gφ, ϕ], the definition of Au (cf. (3.17)), and adding and subtracting
suitable terms, it follows that

[Au(φ) − Au(φh), ϕ] = [Gφh
− Auh

(φh), ϕ] + [Gφ − Gφh
, ϕ] + [Auh

(φh) − Au(φh), ϕ]. (3.28)

In this way, applying the estimate for |[Gφ − Gφh
, ϕ]| (see [2], Eq. (5.5)) and |[Au(φh) − Auh

(φh), ϕ]| (see [2],
Eq. (5.6)), we deduce from (3.27) and (3.28) that

‖φ− φh‖1,Ω ≤ C̃ ‖Gφh
− Auh

(φh)‖[H1
ΓD

(Ω)]′ + C̃ Lγ |k| ‖φ− φh‖1,Ω + r c(Ω) C̃ ‖u − uh‖1,Ω. (3.29)

Then, bounding ‖u−uh‖1,Ω by the error estimate provided by (3.9) (cf. Lem. 3.2), and then employing (3.23),
we arrive at

‖φ− φh‖1,Ω ≤ 2 C̃
{
‖Gφh

− Auh
(φh)‖[H1

ΓD
(Ω)]′ + C4

(
θ0 + ‖Eh‖HN (div,Ω)′

)}
,

where, bearing in mind (3.25), there holds

[Gφh
− Auh

(φh), ϕ] = Ẽh(ϕ) ∀ϕ ∈ H1
ΓD

(Ω).

Finally, using the fact that [Gφh
− Auh

(φh), ϕh] = 0 ∀ϕh ∈ Hφ
h, we obtain (3.26) and the proof concludes. �

At this point we remark, similarly as we did at the end of Section 3.2.1, and thanks now to (3.26), that for
each ϕ ∈ H1

ΓD
(Ω) there holds

Ẽh(ϕ) = Ẽh(ϕ− ϕh) ∀ϕh ∈ Hφ
h,

and therefore ‖Ẽh‖H1
ΓD

(Ω)′ will be estimated below (see Sect. 3.2.3) by employing the foregoing expression with

a suitable choice of ϕh ∈ Hφ
h.

3.2.3. A preliminary estimate for the total error

We now combine the inequalities provided by Lemmas 3.2 and 3.5 to derive a first estimate for the total error
‖φ− φh‖1,Ω + ‖(σ,u) − (σh,uh)‖H . To this end, we now introduce the constants

C(uD,f ) := Ĉ
{
C1 ‖uD‖1/2+ε,ΓD + C2 ‖f‖∞,Ω + 1

}
and c(uD,f ) := C̄ + C(uD,f),

where C̄ and Ĉ are provided by Lemmas 3.2 and 3.5, respectively, and C1 and C2 are given by (3.7).

Theorem 3.6. Assume that

C3 |k| + C6 ‖uD‖1/2+ε,ΓD + C7 ‖f‖∞,Ω <
1
2
·

Then there holds

‖φ− φh‖1,Ω + ‖(σ,u) − (σh,uh)‖H ≤ C(uD,f) ‖Ẽh‖H1
ΓD

(Ω)′ + c(uD,f)
{

θ0 + ‖Eh‖HN (div,Ω)′
}
· (3.30)
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Proof. It suffices to replace the upper bound for ‖φ − φh‖1,Ω given by (3.24) into the second term on the
right hand side of (3.9), and then add the resulting estimate to the right hand side of (3.24). We omit further
details. �

It is clear from (3.30) that, in order to obtain an explicit estimate for the total error, it only remains to derive
suitable upper bounds for ‖Ẽh‖H1

ΓD
(Ω)′ and ‖Eh‖HN (div,Ω)′ . This is precisely the purpose of the next subsection.

3.2.4. Upper bounds for ‖Ẽh‖H1
ΓD

(Ω)′ and ‖Eh‖HN (div,Ω)′

In what follows we make use of the Clément interpolation operator Ih : H1(Ω) → Xh (cf. [17]), where Xh is
given by

Xh := {vh ∈ C(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th}.
The following Lemma establishes the local approximation properties of Ih.

Lemma 3.7. There exist constants c1, c2 > 0, independent of h, such that for all v ∈ H1(Ω) there hold

‖v − Ih(v)‖0,T ≤ c1hT ‖v‖1,Δ(T ) ∀T ∈ Th, (3.31)

and
‖v − Ih(v)‖0,e ≤ c2h

1/2
e ‖v‖1,Δ(e) ∀ e ∈ Eh, (3.32)

where Δ(T ) and Δ(e) are the union of all elements intersecting with T and e, respectively.

Proof. See [17]. �

We now recall from Subsection 3.1 that we have defined there

σ̃h := ϑ(|∇φh|)∇φh − φhuh − γ(φh)k. (3.33)

Then, the following lemma provides an upper bound for ‖Ẽh‖H1
ΓD

(Ω)′ .

Lemma 3.8. Let η̃2 :=
∑

T∈Th

η̃2
T , where for each T ∈ Th we set

η̃2
T := h2

T ‖g + div σ̃h‖2
0,T +

∑
e∈Eh(T )∩Eh(Ω)

he ‖�σ̃h · νe�‖2
0,e +

∑
e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖2
0,e.

Then there exists c > 0, independent of h, such that

‖Ẽh‖H1
ΓD

(Ω)′ ≤ c η̃. (3.34)

Proof. Given ϕ ∈ H1
ΓD

(Ω) we let ϕh := Ih(ϕ) ∈ Hφ
h, and observe, according to (3.25), (3.26), and (3.33), that

Ẽh(ϕ) = Ẽh(ϕ− ϕh) =
∑

T∈Th

∫
T

g (ϕ− ϕh) −
∑

T∈Th

∫
T

σ̃h · ∇(ϕ− ϕh).

Next, integrating by parts on each T ∈ Th in the last term on the right hand side of the foregoing equation, we
find that

Ẽh(ϕ) =
∑

T∈Th

∫
T

(g + div σ̃h) (ϕ− ϕh) −
∑

e∈Eh(Ω)

∫
e

(ϕ− ϕh) �σ̃h · νe� −
∑

e∈Eh(ΓN)

∫
e

(ϕ− ϕh) σ̃h · ν,

from which, applying Cauchy−Schwarz inequality, employing the approximation properties of the Clément
operator given by (3.31) and (3.32), and performing some algebraic rearrangements, we readily conclude that

|Ẽh(ϕ)| ≤ c η̃ ‖ϕ‖1,Ω,

which yields (3.34) and finishes the proof. �
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ΓD
ΓN

Ω

∂B

B

Figure 1. Extension of Ω to a convex domain B for the Helmholtz decomposition.

We now aim to provide an upper bound for ‖Eh‖HN (div,Ω)′ (cf. (3.10)), which, being less straightforward
than Lemma 3.8, requires several preliminary results and estimates. We begin by introducing the space

H1
ΓN

(Ω) :=
{

ϕ ∈ H1(Ω) : ϕ = 0 on ΓN

}
,

and establishing a suitable Helmholtz decomposition of our space HN(div, Ω).

Lemma 3.9. Assume that Ω is a connected domain and that ΓN is contained in the boundary of a convex part
of Ω, that is there exists a convex domain B such that Ω ⊆ B and ΓN ⊆ ∂B (see Fig. 1). Then, for each
ζ ∈ HN (div, Ω), there exist τ ∈ H

1(Ω) and χ ∈ H1
ΓN

(Ω) such that

ζ = τ + curl(χ) in Ω, (3.35)

and
‖τ‖1,Ω + ‖χ‖1,Ω ≤ C ‖ζ‖div,Ω, (3.36)

with a positive constant C independent of ζ.

Proof. Given ζ ∈ HN(div, Ω), we let z ∈ H2(B) be the unique weak solution of the boundary value problem:

Δz =

⎧⎪⎨⎪⎩
divζ in Ω

−1
|B\Ω |

∫
Ω

divζ in B\Ω
, ∇z ν = 0 on ∂B,

∫
Ω

z = 0. (3.37)

Thanks to the elliptic regularity result of (3.37) we have that z ∈ H2(B) and

‖z‖2,B ≤ c ‖divζ‖0,Ω, (3.38)

where c > 0 is independent of z. In addition, it is clear that τ := (∇z)|Ω ∈ H
1(Ω), divτ = Δz = divζ in Ω,

τ ν = 0 on ∂B (which certainly yields τ ν = 0 on ΓN), and

‖τ‖1,Ω ≤ ‖z‖2,Ω ≤ ‖z‖2,B ≤ c ‖divζ‖0,Ω. (3.39)
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On the other hand, since div(ζ − τ ) = 0 in Ω, and Ω is connected, there exists χ ∈ H1(Ω) such that

ζ − τ = curl(χ) in Ω. (3.40)

In turn, noting that 0 = (ζ − τ )ν = curl(χ)ν = dχ
ds on ΓN, we deduce that χ is constant on ΓN, and

therefore χ can be chosen so that χ ∈ H1
ΓN

(Ω), which, together with (3.40), gives (3.35). In addition, from the
equivalence between ‖χ‖1,Ω and |χ|1,Ω = ‖curl(χ)‖0,Ω (which is a consequence of the generalized Poincaré
inequality), and employing (3.39) and (3.35), we deduce that there exists a constant c̃ > 0 such that

‖χ‖1,Ω ≤ c̃ ‖ζ‖div,Ω. (3.41)

Finally, it is clear that (3.39) and (3.41) yield (3.36), which is the stability estimate for (3.35). �

We remark here, as already announced at the beginning of this section, that Lemma 3.9 also holds in the
3D case. The corresponding proof follows by combining the extension technique introduced in ([26], Lem. 4.3)
with the approach suggested in the foregoing proof (cf. auxiliary problem (3.37)), and the results stated in ([10],
Thms. 2.17 and 3.12, and Cor. 3.16).

We now consider the finite element subspace of HΓN(Ω) given by

Xh,N :=
{
ϕh ∈ C(Ω) : ϕh|T ∈ P1(T ) ∀ T ∈ Th, ϕh = 0 on ΓN

}
,

and introduce, analogously as before, the Clément interpolation operator Ih,N : HΓN(Ω) → Xh,N . In addition,
we let Πk

h : H
1(Ω) → H

σ
h be the Raviart−Thomas interpolation operator (see [13,31]), which, given τ̄ ∈ H

1(Ω),
is characterized by the identities:∫

e

Πk
h(τ̄ )ν · p =

∫
e

τ̄ ν · p, ∀ edge e ∈ Th, ∀p ∈ Pk(e), when k ≥ 0, (3.42)

and ∫
T

Πk
h(τ̄ ) : ρ =

∫
T

τ̄ : ρ, ∀ T ∈ Th, ∀ρ ∈ Pk−1(T ), when k ≥ 1, (3.43)

where Pk(e) := [Pk(e)]2 and Pk−1(T ) := [Pk−1(T )]2×2. It is easy to show, using (3.42) and (3.43), that (see,
e.g. [21], Lem. 3.7, [30], Eq. (3.4.23))

div(Πk
h(τ̄ )) = Pk

h(divτ̄ ), (3.44)

where Pk
h : L2(Ω) → Qh is the L2(Ω)-orthogonal projector and

Qh :=
{
v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀ T ∈ Th

}
.

Note that Pk
h can also be identified with (P k

h , P
k
h ), where P k

h is the orthogonal projector from L2(Ω) into Qh

with Qh := {v ∈ L2(Ω) : v|T ∈ Pk(T ) ∀ T ∈ Th}. Furthermore, the following approximation properties hold
(cf. [13, 16, 21, 31]):

‖v − P k
h (v)‖0,T ≤ c hm

T |v|m,T ∀T ∈ Th, (3.45)

for each v ∈ Hm(Ω), with 0 ≤ m ≤ k + 1,

‖τ̄ −Πk
h(τ̄ )‖0,T ≤ c hm

T |τ̄ |m,T ∀T ∈ Th, (3.46)

for each τ̄ ∈ H
m(Ω), with 1 ≤ m ≤ k + 1,

‖div(τ̄ −Πk
h(τ̄ ))‖0,T ≤ c hm

T |divτ̄ |m,T ∀T ∈ Th, (3.47)
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for each τ̄ ∈ H
1(Ω) such that divτ̄ ∈ Hm(Ω), with 0 ≤ m ≤ k + 1, and

‖τ̄ ν −Πk
h(τ̄ )ν‖0,e ≤ c h1/2

e ‖τ̄‖1,Te ∀ edge e ∈ Th, (3.48)

for each τ̄ ∈ H
1(Ω), where Te ∈ Th contains e on its boundary.

Then, given ζ ∈ HN (div, Ω) and its Helmholtz decomposition (3.35), we define χh := Ih,N (χ), and set

ζh := Πk
h(τ ) + curl(χh) ∈ H

σ
h (3.49)

as its associated discrete Helmholtz decomposition. It follows that

ζ − ζh = τ − Πk
h(τ ) + curl(χ − χh),

from which, using (3.44) and the fact that div τ = Δz = div ζ in Ω, yields

div(ζ − ζh) = div(τ −Πk
h(τ )) = (I − Pk

h)(divζ). (3.50)

Hence, according to (3.10) and (3.11), and noting from (3.50) that∫
Ω

uh · div(τ −Πk
h(τ )) =

∫
Ω

uh · (I − Pk
h)(div ζ) = 0,

we find that
Eh(ζ) = Eh(ζ − ζh) = Eh,1(τ ) + Eh,2(χ), (3.51)

where
Eh,1(τ ) := 〈(τ −Πk

h(τ ))ν,uD〉ΓD −
∫

Ω

1
μ(φh)

σd
h :
(
τ −Πk

h(τ )
)

+ κ2

∫
Ω

(fφh + divσh) · (I − Pk
h)(div τ )),

(3.52)

and
Eh,2(χ) := 〈curl(χ − χh)ν,uD〉ΓD −

∫
Ω

1
μ(φh)

σd
h : curl(χ − χh). (3.53)

It is now evident from (3.51) that, in order to estimate ‖Eh‖HN (div,Ω)′ , it only remains to bound |Eh,1(τ )|
and |Eh,2(χ)| in terms of a multiple of ‖ζ‖div,Ω, which is indeed the purpose of the following two lemmas.

Lemma 3.10. Let θ2
1 :=

∑
T∈Th

θ21,T , where for each T ∈ Th we set

θ21,T := h2
T

∥∥∥∥∇uh − 1
μ(φh)

σd
h

∥∥∥∥2

0,T

+ ‖fφh + divσh‖2
0,T +

∑
e∈Eh(T )∩Eh(ΓD)

he ‖uD − uh‖2
0,e.

Then there exists c > 0, independent of h, such that

|Eh,1(τ )| ≤ c θ1 ‖ζ‖div,Ω. (3.54)

Proof. The analysis for the first two terms defining Eh,1 (cf. (3.52)) follows as in the proof of [24], Lem. 4.4, after
replacing Γ by ΓD, and then employing the characterization (3.42)−(3.43), the Cauchy−Schwarz inequality, the
approximation properties (3.46) and (3.48), and the stability estimate (3.36). In turn, for the corresponding
third term it suffices to see that∣∣∣∣∫

Ω

(fφh + divσh) · (I − Pk
h)(div τ ))

∣∣∣∣
≤ ‖fφh + divσh‖0,Ω ‖div τ‖0,Ω ≤ ‖fφh + divσh‖0,Ω ‖ζ‖div,Ω,

which concludes the proof. �
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Lemma 3.11. Assume that uD ∈ H1
0(ΓD), and let θ2

2 :=
∑

T∈Th

θ22,T , where for each T ∈ Th we set

θ22,T := h2
T

∥∥∥∥curl
{

1
μ(φh)

σd
h

}∥∥∥∥2

0,T

+
∑

e∈Eh(T )∩Eh(Ω)

he

∥∥∥∥� 1
μ(φh)

σd
hs

�∥∥∥∥2

0,e

+
∑

e∈Eh(T )∩Eh(ΓD)

he

∥∥∥∥duD

ds
− 1
μ(φh)

σd
h s

∥∥∥∥2

0,e

.

Then there exists c > 0, independent of h, such that

|Eh,2(χ)| ≤ c θ2 ‖ζ‖div,Ω. (3.55)

Proof. We proceed similarly as in the proof of ([24], Lem. 4.3). In fact, using that curl(χ−χh)ν = d
ds(χ−χh),

noting that
duD

ds
∈ L2(ΓD), and then integrating by parts on ΓD, we find that

〈curl(χ − χh)ν,uD〉ΓD = −
〈

χ − χh,
duD

ds

〉
ΓD

= −
∑

e∈Eh(ΓD)

∫
e

(χ − χh) · duD

ds
·

On the other hand, integrating by parts on each T ∈ Th, we obtain that∫
Ω

1
μ(φh)

σd
h : curl(χ − χh) =

∑
T∈Th

{∫
T

curl
{

1
μ(φh)

σd
h

}
· (χ − χh) −

∫
∂T

1
μ(φh)

σd
h s · (χ − χh)

}
=
∑

T∈Th

∫
T

curl
{

1
μ(φh)

σd
h

}
· (χ − χh) −

∑
e∈Eh(Ω)

∫
e

�
1

μ(φh)
σd

hs

�
· (χ − χh)

−
∑

e∈Eh(ΓD)

∫
e

1
μ(φh)

σd
h s · (χ − χh) −

∑
e∈Eh(ΓN)

∫
e

1
μ(φh)

σd
h s · (χ − χh).

Then, replacing the above expressions on the right hand side of (3.53), and using the fact that χ|ΓN = χh|ΓN = 0,
we deduce that

Eh,2(χ) =
∑

e∈Eh(Ω)

∫
e

�
1

μ(φh)
σd

hs

�
· (χ − χh) −

∑
T∈Th

∫
T

curl
{

1
μ(φh)

σd
h

}
· (χ − χh)

−
∑

e∈Eh(ΓD)

∫
e

{
duD

ds
− 1
μ(φh)

σd
h

}
· (χ − χh).

Next, since χh := Ih,N (χ), the approximation properties of Ih,N (cf. Lem. 3.7) yield

‖χ − χh‖0,T ≤ c1 hT ‖χ‖1,Δ(T ) ∀T ∈ Th, (3.56)

and
‖χ − χh‖0,e ≤ c2 h

1/2
e ‖χ‖1,Δ(e) ∀ e ∈ Eh. (3.57)

In this way, applying the Cauchy−Schwarz inequality to each term in the above expression for Eh,2(χ), and
making use of (3.56), (3.57), and (3.36), together with the fact that the number of triangles in Δ(T ) and Δ(e)
are bounded, the proof is finished. �

As a consequence of Lemmas 3.10 and 3.11 we conclude the following upper bound for ‖Eh‖HN (div,Ω)′ .
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Lemma 3.12. There exists c > 0, independent of h, such that

‖Eh‖HN (div,Ω)′ ≤ c
{
θ1 + θ2

}
.

Proof. It follows straightforwardly from (3.51) and the upper bounds (3.54) and (3.55). �

We now observe that the terms h2
T ‖∇uh − 1

μ(φh)σ
d
h‖2

0,T and he‖uD − uh‖2
0,e, which appear in the definition

of θ21,T (cf. Lem. 3.10), are dominated by ‖∇uh − 1
μ(φh)σ

d
h‖2

0,T and ‖uD −uh‖2
0,e, respectively, which form part

of θ20,T (cf. (3.8)). In this way, the reliability estimate (3.6) (cf. Thm. 3.1) is a direct consequence of Theorem 3.6,
the definition of θ0 (cf. Lem. 3.2), and Lemmas 3.8, 3.10, 3.11, and 3.12.

We end this section by remarking that the assumption (3.5) on the data k, uD, and f , which, as shown
throughout the foregoing analysis, is a key estimate to derive (3.6), is, unfortunately, unverifiable in practice.
In fact, while the data are certainly known in advance, the constants C3, C6, and C7 involved in that condition
(cf. (3.22)), which in turn are expressed in terms of the previous constants C1 and C2 (cf. (3.7)), depend all on
boundedness and regularity constants of operators, as well as on parameters, some of which are not explicitly
calculable, and hence it is not possible to check whether (3.5) is indeed satisfied or not. This is, however, a
quite common fact arising in the analysis of many nonlinear problems, and only in very particular cases (usually
related to simple geometries of the domain) it could eventually be circumvented.

3.3. Efficiency

The following theorem is the main result of this section.

Theorem 3.13. There exists a constant Ceff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD, ‖f‖∞,Ω,
and other constants, all of them independent of h, such that

Ceff θ ≤ ‖φ− φh‖1,Ω + ‖u − uh‖1,Ω + ‖div(σ − σh)‖0,Ω +
∥∥∥∥ 1
μ(φ)

σd − 1
μ(φh)

σd
h

∥∥∥∥
0,Ω

+ h.o.t. (3.58)

where h.o.t. stands for one or several terms of higher order. Moreover, under the assumption that σ ∈ L
4(Ω),

there exists a constant Ceff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD , ‖f‖∞,Ω, ‖σ‖L4(Ω), and
other constants, all them independent of h, such that

Ceff θ ≤ ‖φ− φh‖1,Ω + ‖(σ,u) − (σh,uh)‖H + h.o.t. (3.59)

Throughout this and the following sections we assume for simplicity that the nonlinear functions μ, ϑ, and

γ are such that
1

μ(φh)
, ϑ(|∇φh|), γ(φh), and hence σ̃h as well, are all piecewise polynomials. The same is

assumed for the data uD and g. Otherwise, and if μ−1, ϑ, γ, uD, and g are sufficiently smooth, higher order
terms given by the errors arising from suitable polynomial approximations of these expressions and functions
would appear in (3.58) and (3.59) (cf. Thm. 3.13), which explains the eventual h.o.t. in these inequalities. In
this regard, we remark that (3.58) constitutes what we call a quasi-efficiency estimate for the global residual
error estimator θ (cf. (3.4)). Indeed, the quasi-efficiency concept refers here to the fact that the expression
appearing on the right hand side of (3.58) is not exactly the error, but part of it plus the nonlinear term
given by ‖ 1

μ(φ)σ
d − 1

μ(φh)σ
d
h‖0,Ω. However, assuming additionally that σ ∈ L

4(Ω), we show at the end of this
section that the latter can be bounded by ‖σ−σh‖0,Ω +‖φ−φh‖1,Ω, thus yielding the efficiency estimate given
by (3.59).

In order to prove (3.58) and (3.59), in what follows we derive suitable upper bounds for the ten terms defining
the local error indicator θ2T (cf. (3.3)). We first notice, using that fφ = −divσ in Ω, that there holds

‖fφh + divσh‖2
0,T ≤ 2 ‖f(φ− φh)‖2

0,T + 2 ‖div(σ − σh)‖2
0,T

≤ 2 ‖f‖2
∞,Ω ‖φ− φh‖2

0,T + 2 ‖div(σ − σh)‖2
0,T . (3.60)
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In addition, since ∇u = 1
μ(φ)σ

d in Ω, we find that∥∥∥∥∇uh − 1
μ(φh)

σd
h

∥∥∥∥2

0,T

≤ 2 ‖∇u −∇uh‖2
0,T + 2

∥∥∥∥ 1
μ(φ)

σd − 1
μ(φh)

σd
h

∥∥∥∥2

0,T

· (3.61)

Furthermore, employing that u = uD on ΓD and applying the trace theorem, we obtain that∑
e∈Eh(ΓD)

‖uD − uh‖2
0,e = ‖u − uh‖2

0,ΓD
≤ c20 ‖u − uh‖2

1,Ω, (3.62)

where c0 is the norm of the trace operator in H1(Ω).
The upper bounds of the remaining seven terms, which depend on the mesh parameters hT and he, will be

derived next. We proceed as in [14,15] (see also [20]), and apply results ultimately based on inverse inequalities
(see [16]) and the localization technique introduced in [34], which is based on triangle-bubble and edge-bubble
functions. To this end, we now introduce further notations and preliminary results. In fact, given T ∈ Th and
e ∈ Eh(T ), we let ψT and ψe be the usual triangle-bubble and edge-bubble functions, respectively (see [34],
Eqs. (1.4) and (1.6)), which satisfy:

(i) ψT ∈ P3(T ), supp(ψT ) ⊆ T, ψT = 0 on ∂T , and 0 ≤ ψT ≤ 1 in T .
(ii) ψe|T ∈ P2(T ), supp(ψe) ⊆ ωe := ∪{T ′ ∈ Th : e ∈ Eh(T ′)}, ψe = 0 on ∂T \{e}, and 0 ≤ ψe ≤ 1 in ωe.

We also recall from [33] that, given k ∈ N ∪ {0}, there exists a linear operator L : C(e) → C(T ) that satisfies
L(p) ∈ Pk(T ) and L(p)|e = p ∀p ∈ Pk(e). A corresponding vectorial version of L, that is the component-wise
application of L, is denoted by L. Additional properties of ψT , ψe and L are collected in the following lemma.

Lemma 3.14. Given k ∈ N∪ {0}, there exist positive constants c1, c2, c3, and c4, depending only on k and the
shape regularity of the triangulations (minimum angle condition), such that for each T ∈ Th and e ∈ Eh(T ),
there hold

‖ψT q‖2
0,T ≤ ‖q‖2

0,T ≤ c1 ‖ψ1/2
T q‖2

0,T ∀ q ∈ Pk(T ),

‖ψe L(p)‖2
0,T ≤ ‖p‖2

0,e ≤ c2 ‖ψ1/2
e p‖2

0,e ∀ p ∈ Pk(e),

c3 he ‖p‖2
0,e ≤ ‖ψ1/2

e L(p)‖2
0,T ≤ c4 he ‖p‖2

0,e ∀ p ∈ Pk(e). (3.63)

Proof. (see [33], Lem. 4.1). �

The following inverse estimate is also needed.

Lemma 3.15. Let l,m ∈ N ∪ {0} such that l ≤ m. Then, there exists c > 0, depending only on k, l,m and the
shape regularity of the triangulations, such that for each T ∈ Th there holds

|q|m,T ≤ c hl−m
T |q|l,T ∀ q ∈ Pk(T ). (3.64)

Proof. (see [16], Thm. 3.2.6). �

The following Lemma is required for the terms involving the curl operator and the tangential jumps across
the edges of Th. It proofs, which makes use of Lemmas 3.14 and 3.15, can be found in [14].

Lemma 3.16. Let ρh ∈ L
2(Ω) be a piecewise polynomial of degree k ≥ 0 on each T ∈ Th. In addition, let

ρ ∈ L
2(Ω) be such that curl(ρ) = 0 on each T ∈ Th. Then, there exist c, c̃ > 0, independent of h, such that

‖curl(ρh)‖0,T ≤ c h−1
T ‖ρ− ρh‖0,T ∀T ∈ Th

and
‖�ρhse�‖0,e ≤ c̃ h−1/2

e ‖ρ − ρh‖0,ωe ∀ e ∈ Eh.
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Proof. For the first estimate we refer to ([14], Lem. 4.3), whereas the second one follows from a slight modification
of the proof of ([14], Lem. 4.4). Further details are omitted. �

We now apply Lemma 3.16 to obtain upper bounds for two other terms defining θ2T .

Lemma 3.17. There exist c̃1, c̃2 > 0, independent of h such that

h2
T

∥∥∥∥curl
{

1
μ(φh)

σd
h

}∥∥∥∥2

0,T

≤ c̃1

∥∥∥∥ 1
μ(φ)

σd − 1
μ(φh)

σd
h

∥∥∥∥2

0,T

∀T ∈ Th,

he

∥∥∥∥� 1
μ(φh)

σd
h s

�∥∥∥∥2

0,e

≤ c̃2

∥∥∥∥ 1
μ(φ)

σd − 1
μ(φh)

σd
h

∥∥∥∥2

0,ωe

∀ e ∈ Eh(Ω).

Proof. It suffices to apply Lemma 3.16 to ρh := 1
μ(φh)σ

d
h and ρ := 1

μ(φ)σ
d = ∇u. �

Lemma 3.18. There exists c̃3 > 0, independent of h, such that

he

∥∥∥∥duD

ds
− 1
μ(φh)

σd
h s

∥∥∥∥2

0,e

≤ c̃3

∥∥∥∥ 1
μ(φ)

σd − 1
μ(φh)

σd
h

∥∥∥∥2

0,Te

∀ e ∈ Eh(ΓD). (3.65)

Proof. We proceed similarly as in the proof of ([24], Lem. 4.15), by replacing g, Γ , and 1
μσd

h by uD, ΓD, and
1

μ(φh)σ
d
h, respectively. �

Finally, it only remains to provide upper bounds for the three terms completing the definition of the local
error indicator θ2T (cf. (3.3)). This requires, however, the preliminary result given by the following a priori
estimate for the error ‖σ̃ − σ̃h‖2

0,T .

Lemma 3.19. There exists C > 0, depending on ϑ1, ϑ2, Lγ (cf. (2.4), (2.6)), and |k|, such that

‖σ̃ − σ̃h‖2
0,T ≤ C

{
‖φ− φh‖2

1,T + ‖u(φ− φh)‖2
0,T + ‖φh(u − uh)‖2

0,T

}
. (3.66)

Proof. According to the definitions of σ̃ (cf. (2.1)) and σ̃h (cf. Sect. 3.1), and applying the triangle inequality,
we obtain that

‖σ̃ − σ̃h‖2
0,T ≤ 2

{
‖ϑ(|∇φ|)∇φ − ϑ(|∇φh|)∇φh‖2

0,T + 2 ‖k(γ(φ) − γ(φh))‖2
0,T

+ 4 ‖u(φ− φh)‖2
0,T + 4 ‖φh(u − uh)‖2

0,T

}
.

(3.67)

We now recall from ([23], Thm. 3.8) that the nonlinear operator induced by the first term defining Au (cf. (3.17))
is Lipschitz-continuous with constant L := max{ϑ2, 2ϑ2−ϑ1}. In this way, applying the aforementioned Lipschitz
continuity, but restricted to each triangle T ∈ Th instead of Ω, and using the Lipschitz continuity assumption
for γ (cf. (2.6)), we deduce from (3.67) that

‖σ̃ − σ̃h‖2
0,T ≤ 2

{
L2 ‖∇φ−∇φh‖2

0,T + 2L2
γ |k|2 ‖φ− φh‖2

0,T

+ 4 ‖u(φ− φh)‖2
0,T + 4 ‖φh(u − uh)‖2

0,T

}
,

(3.68)

which readily yields (3.66) and ends the proof. �

Having proved the previous result we now establish the efficiency estimates given by the following three
lemmas.
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Lemma 3.20. There exists c̃4 > 0, which depends only on L, Lγ, |k|, and other constants, all them independent
of h, such that

h2
T ‖g + div σ̃h‖2

0,T ≤ c̃4

{
‖φ− φh‖2

1,T + ‖u(φ− φh)‖2
0,T + ‖φh(u − uh)‖2

0,T

}
. (3.69)

Proof. We proceed as in the proof of ([4], Lem. 4.4). In fact, given T ∈ Th we first observe, using that div σ̃ = −g
in Ω, and integrating by parts, that

‖g + div σ̃h‖2
0,T ≤ c1 ‖ψ1/2

T (g + div σ̃h)‖2
0,T = −c1

∫
T

∇
(
ψT (g + div σ̃h)

)
· (σ̃ − σ̃h).

Next, the Cauchy−Schwarz inequality, the inverse estimate (3.64), the fact that 0 ≤ ψT ≤ 1, and the triangle
inequality imply that

‖g + div σ̃h‖2
0,T ≤ c1 |ψT (g + div σ̃h)|1,T ‖σ̃ − σ̃h‖0,T ≤ C h−1

T ‖g + div σ̃h‖0,T ‖σ̃ − σ̃h‖0,T ,

which gives
‖g + div σ̃h‖0,T ≤ C h−1

T ‖σ̃ − σ̃h‖0,T .

The foregoing inequality and (3.66) (cf. Lem. 3.19) imply (3.69) and complete the proof. �

Lemma 3.21. There exists c̃5 > 0, which depends only on L, Lγ, |k|, and other constants, all of them inde-
pendent of h, such that for each e ∈ Eh(Ω) there holds

he ‖�σ̃h · νe�‖2
0,e ≤ c̃5

∑
T⊆ωe

{
‖φ− φh‖2

1,T + ‖u(φ − φh)‖2
0,T + ‖φh(u − uh)‖2

0,T

}
, (3.70)

where ωe is the union of the two triangles in Th having e as an edge.

Proof. Proceeding analogously as in the proof of ([4], Lem. 4.5), we find that

he ‖�σ̃h · νe�‖2
0,e ≤ c

∑
T⊆ωe

{
h2

T ‖g + div σ̃h‖2
0,T + ‖σ̃h − σ̃‖2

0,T

}
,

which, together with (3.66) and (3.69) (cf. Lems. 3.19 and 3.20), yields (3.70) and ends the proof.
�

Lemma 3.22. There exists c̃6 > 0, which depends only on L, Lγ, |k|, and other constants, all of them inde-
pendent of h, such that for each e ∈ Eh(ΓN) there holds

he ‖σ̃h · ν‖2
0,e ≤ c̃6

{
‖φ− φh‖2

1,T + ‖u(φ− φh)‖2
0,T + ‖φh(u − uh)‖2

0,T

}
, (3.71)

where T is the triangle of Th having e as an edge.

Proof. Following a similar reasoning to the proof of ([4], Lem. 4.6), we find that

he ‖σ̃h · ν‖2
0,e ≤ c

{
h2

T ‖g + div σ̃h‖2
0,T + ‖σ̃h − σ̃‖2

0,T

}
,

which, thanks again to (3.66) and (3.69), provides (3.71) and ends the proof. �
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In order to complete the global efficiency given by (3.58), we now need to estimate the terms ‖u(φ−φh)‖2
0,T

and ‖φh(u − uh)‖2
0,T appearing in the upper bounds provided by the last three lemmas. In fact, applying

Cauchy−Schwarz’s inequality, the compactness (and hence continuity) of the injections i : H1(Ω) → L4(Ω) and
i : H1(Ω) → L4(Ω) (cf. [1], Thm. 6.3, [30], Thm. 1.3.5), and the a priori bound for ‖u‖1,Ω given by (3.2), we
find that ∑

T∈Th

‖u(φ − φh)‖2
0,T ≤

∑
T∈Th

‖u‖2
L4(T ) ‖φ− φh‖2

L4(T )

≤ ‖u‖2
L4(Ω) ‖φ− φh‖2

L4(Ω) ≤ C ‖φ− φh‖2
1,Ω,

(3.72)

where C is a positive constant, independent of h, that depends only on ‖i‖, ‖i‖, ‖uD‖1/2,ΓD , ‖f‖∞,Ω, and r
(cf. (3.1)). Similar arguments allow to establish the existence of another constant C > 0, also independent of h,
and depending now on ‖i‖, ‖i‖, and r, such that∑

T∈Th

‖φh(u − uh)‖2
0,T ≤ C ‖u − uh‖2

1,Ω. (3.73)

Consequently, it is not difficult to see that (3.58) follows straightforwardly from (3.60), (3.61), (3.62),
Lemmas 3.17, 3.18, 3.20, 3.21, and 3.22, and the final estimates given by (3.72) and (3.73). Furthermore,
adding and subtracting a suitable term, using the lower bound (cf. (2.3)) and the Lipschitz continuity (cf. (2.5))
of μ, and applying the boundedness of τ → τ d, we find that∥∥∥∥ 1

μ(φ)
σd − 1

μ(φh)
σd

h

∥∥∥∥
0,Ω

≤ 1
μ1

‖σ − σh‖0,Ω +
Lμ

μ2
1

‖(φ− φh)σ‖0,Ω, (3.74)

from which, assuming now that σ ∈ L
4(Ω), and estimating ‖(φ−φh)σ‖0,Ω almost verbatim as we derived (3.72)

and (3.73), we arrive at (3.59), thus concluding the proof of Theorem 3.13.

4. A second a posteriori error estimator

In this section we introduce and analyze another a posteriori error estimator for our augmented mixed-primal
finite element scheme (2.12), which is not based on the Helmholtz decomposition. More precisely, this second
estimator arises simply from a different way of bounding ‖Eh‖HN (div,Ω)′ in the preliminary estimate for the
total error given by (3.30) (cf. Thm. 3.6). Then, with the same notations and discrete spaces introduced in
Sections 2 and 3, we now set for each T ∈ Th the local error indicator

θ̃2T := ‖fφh + divσh‖2
0,T +

∥∥∥∥∇uh − 1
μ(φh)

σd
h

∥∥∥∥2

0,T

+ h2
T ‖g + div σ̃h‖2

0,T

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖�σ̃h · νe�‖2
0,e +

∑
e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖2
0,e +

∑
e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖2
0,e,

and define the following global residual error estimator

θ̃
2

:=
∑

T∈Th

θ̃2T + ‖uD − uh‖2
1/2,ΓD

. (4.1)

In what follows we establish quasi-local reliability and efficiency for the estimator θ̃. The name quasi-local
refers here to the fact that the last term defining θ̃ can not be decomposed into local quantities associated to
each triangle T ∈ Th (unless it is either conveniently bounded or previously modified, as we will see below).

Theorem 4.1. Assume that uD ∈ H1
0(ΓD) and

C3 |k| + C6 ‖uD‖1/2+ε,ΓD + C7 ‖f‖∞,Ω <
1
2
,
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where C3, C6 and C7 are the constants given in (3.22). Then, there exists a constant C̃rel > 0, which depends
only on ‖uD‖1/2+ε,ΓD , ‖f‖∞,Ω and other constants, all them independent of h, such that

‖φ− φh‖2
1,Ω + ‖(σ,u) − (σh,uh)‖2

H ≤ C̃rel θ̃
2
. (4.2)

Proof. As mentioned at the beginning of this section, the proof reduces basically to derive another upper bound
for ‖Eh‖HN (div,Ω)′ . Indeed, Integrating by parts the third term defining Eh (cf. (3.10)), and then using the
homogeneous Neumann boundary condition on ΓN, we find that for each ζ ∈ HN(div, Ω) there holds

Eh(ζ) = 〈ζ ν,uD − uh〉ΓD +
∫

Ω

(
∇uh − 1

μ(φh)
σd

h

)
: ζ − κ2

∫
Ω

(fφh + divσh) · divζ,

from which, applying the Cauchy−Schwarz inequality, we readily deduce that

‖Eh‖HN (div,Ω)′ ≤ C

{
‖uD − uh‖1/2,ΓD +

∥∥∥∇uh − 1
μ(φh)

σd
h

∥∥∥
0,Ω

+ ‖fφh + divσh‖0,Ω

}
, (4.3)

where C is a positive constant independent of h. In this way, replacing (4.3) back into (3.30) (cf. Thm. 3.6),
and employing again the upper bound for ‖Ẽh‖H1

ΓD
(Ω)′ (cf. Lem. 3.8), and the definition of θ0 (cf. Lem. 3.2),

we obtain (4.2) and finish the proof. �

Theorem 4.2. There exists a constant C∗
eff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD , ‖f‖∞,Ω,

and other constants, all them independent of h, such that

C∗
eff θ̃

2
≤ ‖φ− φh‖2

1,Ω + ‖u − uh‖2
1,Ω + ‖div(σ − σh)‖2

0,Ω +
∥∥∥∥ 1
μ(φ)

σd − 1
μ(φh)

σd
h

∥∥∥∥2

0,Ω

+ h.o.t. (4.4)

where h.o.t. stands for one or several terms of higher order. Moreover, assuming σ ∈ L
4(Ω), there exists a

constant C̃eff > 0, which depends only on parameters, |k|, ‖uD‖1/2,ΓD , ‖f‖∞,Ω, ‖σ‖L4(Ω), and other constants,
all them independent of h, such that

C̃eff θ̃
2
≤ ‖φ− φh‖2

1,Ω + ‖(σ,u) − (σh,uh)‖2
H + h.o.t. (4.5)

Proof. We simply observe, thanks to the trace theorem in H1(Ω), that there exists c > 0, depending on ΓD and
Ω, such that

‖uD − uh‖2
1/2,ΓD

≤ c ‖u − uh‖2
1,Ω. (4.6)

The rest of the arguments are contained in the proof of Theorem 3.13 (cf. Sect. 3.3), and hence we omit further
details. �

At this point we remark that the eventual use of θ̃ (cf. (4.1)) in an adaptive algorithm solving (2.12) would be
discouraged by the non-local character of the expression ‖uD −uh‖2

1/2,ΓD
. In order to circumvent this situation,

we now apply an interpolation argument and replace this term by a suitable upper bound, which yields a reliable
and fully local a posteriori error estimate.

Theorem 4.3. Assume that uD ∈ H1
0(ΓD) and that

C3 |k| + C6 ‖uD‖1/2+ε,ΓD + C7 ‖f‖∞,Ω <
1
2
,
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where C3, C6 and C7 are given in (3.22). In turn, let θ̂
2

:=
∑

T∈Th

θ̂2T , where for each T ∈ Th we set

θ̂2T := ‖fφh + divσh‖2
0,T +

∥∥∥∥∇uh − 1
μ(φh)

σd
h

∥∥∥∥2

0,T

+ h2
T ‖g + div σ̃h‖2

0,T

+
∑

e∈Eh(T )∩Eh(Ω)

he ‖�σ̃h · νe�‖2
0,e +

∑
e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν‖2
0,e +

∑
e∈Eh(T )∩Eh(ΓD)

‖uD − uh‖2
1,e.

Then, there exists a constant Ĉrel > 0, which depends only on parameters, ‖uD‖1/2+ε,ΓD , ‖f‖∞,Ω, and other
constants, all them independent of h, such that

‖φ− φh‖2
1,Ω + ‖(σ,u) − (σh,uh)‖2

H ≤ Ĉrel θ̂
2
. (4.7)

Proof. It reduces to bound ‖uD − uh‖1/2,ΓD . In fact, since H1/2(ΓD) is the interpolation space with index 1/2
between H1(ΓD) and L2(ΓD), there exists a constant cD > 0, depending on ΓD, such that

‖uD − uh‖2
1/2,ΓD

≤ cD ‖uD − uh‖0,ΓD ‖uD − uh‖1,ΓD

≤ cD ‖uD − uh‖2
1,ΓD

= cD
∑

e∈Eh(ΓD)

‖uD − uh‖2
1,e,

(4.8)

which, together with (4.2), implies (4.7) and finishes the proof. �

The same remark stated at the end of Section 3.2 concerning the assumption (3.5) (which is also required in
Thm. 4.3) is valid here.

5. Numerical tests

This section serves to illustrate the properties of the estimators introduced in Sections 3 and 4. The domain
of each example to be considered below is discretized into a series of nested uniform triangulations, where errors
and experimental convergence rates will be computed as usual

e(σ) := ‖σ − σh‖div,Ω, e(u) := ‖u − uh‖1,Ω, e(φ) := ‖φ− φh‖1,Ω,

r(σ) :=
log(e(σ)/ê(σ))

log(h/ĥ)
, r(u) :=

log(e(u)/ê(u))
log(h/ĥ)

, r(φ) :=
log(e(φ)/ê(φ))

log(h/ĥ)
,

with e and ê denoting errors associated to two consecutive meshes of sizes h and ĥ, respectively. In addition,
the total error, the modified error suggested by (3.58) and (4.4), and the effectivity and quasi-effectivity indexes
associated to a given global estimator η are defined, respectively, as

e =
{
[e(σ)]2 + [e(u)]2 + [e(φ)]2

}1/2
, eff(η) =

e

η
,

m =
{

[e(u)]2 + [e(φ)]2 + ‖divσ − divσh‖2
0,Ω +

∥∥∥∥ σd

μ(φ)
− σd

h

μ(φh)

∥∥∥∥2

0,Ω

}1/2

, qeff(η) =
m

η
·

According to the coupling structure of the scheme (2.12), the linearization of the coupled problem can follow
a Newton method solving the nonlinear transport problem, nested within a Picard iteration to establish the
coupling with the Stokes problem. This procedure requires the computation of the Gâteaux derivative (3.20).
When the residuals from Newton−Raphson and Picard iterations reach the tolerances εN = 1e-8 and εP = 1e-7,
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Table 1. Test 1: Convergence history, average Newton iteration count, Picard steps to reach the
desired tolerance, effectivity and quasi-effectivity indexes for the mixed-primal RTk − Pk+1 −
Pk+1 approximations of Cauchy stress, velocity, and concentration, with k = 0, 1.

h e(σ) r(σ) e(u) r(u) e(φ) r(φ) iN iP eff(θ) qeff(θ) eff(θ̃) qeff(θ̃)

Augmented RT0 −P1 − P1 scheme

0.7071 99.1853 – 10.1168 – 1.5980 – 4 12 1.8570 1.8603 1.8740 1.8773
0.4714 83.1416 0.4351 8.6706 0.3804 1.1558 0.7990 3 15 1.5604 1.5627 1.5950 1.5973
0.2828 56.1085 0.7698 6.1721 0.6653 0.7191 0.9288 5 17 1.2142 1.2158 1.2474 1.2490
0.1571 31.7872 0.9667 2.9676 1.2458 0.4035 0.9828 4 16 1.0694 1.0707 1.1021 1.1034
0.0831 16.7731 1.0051 1.3190 1.2749 0.2136 0.9998 4 16 1.0088 1.0101 1.0409 1.0421
0.0428 8.5927 1.0083 0.6226 1.1316 0.1100 1.0009 4 16 0.9861 0.9873 1.0180 1.0193
0.0217 4.3466 1.0053 0.3071 1.0422 0.0558 1.0003 5 16 0.9777 0.9789 1.0097 1.0110

Augmented RT1 −P2 − P2 scheme

0.7071 51.6128 – 7.1534 – 0.4563 – 5 13 1.0353 1.0370 1.1487 1.1506
0.4714 29.6423 1.3677 3.2044 1.9805 0.2157 1.8475 4 14 0.9638 0.9650 1.0549 1.0562
0.2828 15.2131 1.3058 1.2003 1.9222 0.0799 1.9439 4 16 0.9573 0.9580 1.0198 1.0205
0.1571 4.9972 1.8940 0.3289 2.2022 0.0249 1.9837 5 15 0.9525 0.9532 1.0088 1.0095
0.0831 1.4251 1.9726 0.0868 2.0947 0.0070 1.9944 5 16 0.9515 0.9522 1.0045 1.0052
0.0428 0.3799 1.9928 0.0225 2.0320 0.0018 1.9984 4 16 0.9488 0.9495 1.0003 1.0011
0.0217 0.0980 1.9983 0.0057 2.0070 0.0004 1.9996 5 16 0.9396 0.9403 0.9895 0.9902

respectively, the algorithms are terminated. The unsymmetric multi-frontal direct solver for sparse matrices
(UMFPACK) is used to solve the linear systems appearing at each linearization step.

In a first example, the following exact solutions to system (2.1) are considered

φ(x1, x2) = b− b exp(−x1(x1 − 1)x2(x2 − 1)), u(x1, x2) =
(

sin(2πx1) cos(2πx2)
− cos(2πx1) sin(2πx2)

)
,

σ(x1, x2) = μ(φ)∇u − μ(φ)
∂u1

∂x1
I,

defined on the unit square Ω = (0, 1)2 and satisfying the first and third conditions of (2.2) on the whole
boundary ΓD = ∂Ω. The data uD,f , g are constructed with these manufactured exact solutions, and the involved
coefficients in the equations (and in the solutions) are k = (0,−1)T , μ(φ) = (1 − cφ)−2, γ(φ) = cφ(1 − cφ)2,
ϑ(|∇φ|) = m1 + m2(1 + |∇φ|2)m3/2−1, with b = 15, c = m1 = m2 = 1/2,m3 = 3/2. These values imply
μ1 = 0.99, μ2 = 3.35, and consequently the stabilization parameters adopt the values κ1 = μ2

1/μ2 = 0.2976,
κ2 = 1/μ2 = 0.2985, and κ3 = κ1/2 = 0.1488.

The manufactured solutions on the considered (convex) domain are smooth, and the a posteriori error in-
dicators show effectivity (and quasi-effectivity) indexes close to one in all studied cases. This behavior can be
observed in Table 1, where errors in different norms indicate optimal convergence rates for the two lowest order
methods (k = 0, 1). We also show the average number of Newton steps to achieve the tolerance εN and the total
Picard iteration count at each refinement level. The subsequent examples will be restricted to the lowest order
method k = 0.

Our second test focuses on the case where, under uniform mesh refinement, the convergence rates are affected
by the loss of regularity of the exact solutions. The problem setting is as follows: the domain is taken as the
non-convex pacman-shaped domain Ω = {(x1, x2) ∈ R2 : x2

1 +x2
2 ≤ 1} \ (0, 1)2, where an exact solution to (2.1)
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is given by the same velocity as in the previous test, while concentration and Cauchy stress now read

φ(x1, x2) = b− b exp(x2
1(x

2
1 + x2

2 − 1)),

σ(x1, x2) = μ(φ)∇u −
[
μ(φ)

∂u2

∂x2
+

x2

((x1 − a1)2 + (x2 − a2)2)2

]
I.

(5.1)

Now the boundary is indeed split into ΓN = (0, 1)×{0} (the horizontal segment of ∂Ω) and ΓD = ∂Ω \ΓN (the
arch and vertical borders of the domain), and the only difference with respect to (2.1) is that a non-homogeneous
concentration flux σ̃ · ν = j is imposed on ΓN, where j is manufactured according to (5.1). In this case, the
relevant term in the a posteriori error estimators will be evidently replaced by∑

e∈Eh(T )∩Eh(ΓN)

he ‖σ̃h · ν − j‖2
0,e,

whose estimation from below and above follows in a straightforward manner. For this example, the individual
and total convergence rates are determined by the expression

r(·) := −2 log(e(·)/ê(·))[log(N/N̂)]−1,

where N and N̂ denote the total number of degrees of freedom associated to each triangulation. Alternatively to
the first test, here the Picard tolerance is set to εP = 1e-6, and no inner Newton linearization will be employed
for the transport problem.

The viscosity, hindered settling and diffusivity functions μ, γ, ϑ are taken as in the first example with the
parameters a1 = 0.1, a2 = 0.5, b = 3, c = 4/3. Notice that the isotropic part of the stress in (5.1) exhibits
a singularity just outside the domain, at (a1, a2). With the chosen parameters, the concentration has a high
gradient near ΓD, and the viscosity vanishes whenever the concentration attains its maximum value. Therefore,
and according to (5.1), high gradients are also expected in the stress approximation; and optimal convergence,
especially in that field, is no longer evidenced under uniform mesh refinement (see first rows of Tab. 2). On the
other hand, if an adaptive mesh refinement step (guided by the proposed residual error indicators) is applied,
optimal convergence can be restored, as shown in the last two blocks of Table 2. This feature is also seen
in Figure 3, where we plot the total errors e, m versus the degrees of freedom associated to each triangulation.
Total errors under adaptive refinement exhibit a superconvergence whereas uniform refinement yields suboptimal
rates. From the figure we also observe that the curves for e and m coincide for each algorithm.

Once the local and global error indicators are computed, the adaptation procedure uses the automatic
adaptmesh tool (see particulars in e.g. [27]) to construct the next triangulation. The algorithm is based on
an equi-distribution of the discrete a posteriori error indicators, where the diameter of each triangle in Thi+1 ,
which is contained in a generic element T ∈ Thi in the new step of the algorithm, is proportional to hT times
the ratio ζ̂T /ζT , where ζ̂ denotes the mean value of an estimator over Th. Approximate solutions obtained
after six adaptation steps are depicted in Figure 2, whereas a few adaptive meshes generated using the two
proposed indicators are collected in Figure 4. At least for this particular configuration, the second a posteriori
error estimator produces smaller errors but the convergence rates coincide with the ones obtained with the first
indicator.

In our last example the assumptions on the diffusivity ϑ will not hold anymore: we allow ϑ to be constant
and very small for any concentration below a so-called gel point φ ∈ [0, φc]. This extension (whose limit case
translates into a loss of ellipticity in the concentration equation) implies that for low volume fractions, one
may expect shock-like fronts to develop (see e.g. the monograph [9] and the recent review [5]). Adaptive mesh
refinement would then be highly appreciated in this particular case; not only to restitute optimal convergence
orders, but also to resolve concentration profiles accurately without the need of refining the grid everywhere (even
more important if higher-order schemes are used, or transient models are studied). The problem configuration
corresponds to the so-called Boycott effect (cf. [6]), where the sedimentation-consolidation of small particles
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Figure 2. Test 2: Approximate solutions obtained with the lowest order method, after six
steps of adaptive mesh refinement following the second indicator θ̃. Concentration, velocity
components, and stress components are depicted.
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m with quasi-uniform refinement

e with adaptive refinement by θ

m with adaptive refinement by θ

e with adaptive refinement by θ

m with adaptive refinement by θ

Figure 3. Test 2: log-log plot of the total errors vs. degrees of freedom associated to uniform
and adaptive mesh refinements using the two proposed indicators.
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Table 2. Test 2: Convergence history, Picard iteration count, effectivity and quasi-effectivity
indexes for the mixed-primal approximation of the coupled problem under quasi-uniform, and
adaptive refinement according to the indicators introduced in Sections 3, 4.

N e(σ) r(σ) e(u) r(u) e(φ) r(φ) iP eff(θ) qeff(θ) eff(θ̃) qeff(θ̃)

Augmented RT0 − P1 − P1 scheme with quasi-uniform refinement

135 497.2285 – 172.3239 – 1.6796 – 25 1.0930 1.0855 1.0736 1.0662
403 501.6796 -0.0174 189.3379 -0.1835 1.5883 0.1090 29 0.9688 0.9610 0.9654 0.9576

1191 325.2386 0.8264 136.1004 0.6295 0.7731 1.3728 28 1.0512 1.0490 1.0413 1.0391
4090 150.5401 1.2842 35.1355 2.2575 0.4022 1.0896 29 1.0112 1.0078 1.0096 1.0062

15074 81.0276 0.9336 12.4395 1.5649 0.1990 1.0606 28 1.0022 0.9988 1.0031 0.9997
58289 41.1328 1.0175 3.0515 2.1089 0.1012 1.0146 31 1.0004 0.9968 1.0031 0.9996

238705 20.5693 1.0063 0.8447 1.8650 0.0510 0.9956 29 0.9997 0.9962 1.0032 0.9997

Augmented RT0 − P1 − P1 scheme with adaptive refinement according to θ

409 482.0538 – 229.0604 – 1.1557 – 21 1.1461 1.1431 – –
1215 325.3517 0.7222 151.3681 0.7610 0.5798 1.2670 20 1.0059 1.0040 – –
3108 160.3139 1.5071 47.6470 2.4614 0.4017 0.7817 19 1.0032 1.0007 – –
6346 82.9351 1.8466 13.4484 3.5441 0.3298 0.5527 18 1.0060 1.0030 – –

13629 44.6689 1.6201 4.6110 2.8026 0.2538 0.6851 21 0.9984 0.9949 – –
31278 25.1967 1.3780 1.8416 2.2089 0.1908 0.6873 20 0.9941 0.9893 – –
79064 15.0459 1.1118 0.8192 1.7468 0.1332 0.7739 19 0.9903 0.9849 – –

Augmented RT0 − P1 − P1 scheme with adaptive refinement according to θ̃

409 482.0538 – 229.0604 – 1.1557 – 21 – – 1.1219 1.1190
1206 318.9239 0.7641 148.2081 0.8052 0.5510 1.3700 19 – – 0.9979 0.9962
3247 160.2352 1.3899 49.7563 2.2041 0.3399 0.9758 20 – – 0.9986 0.9965
6703 79.3292 1.9399 12.8689 3.7315 0.3024 0.3221 21 – – 1.0038 1.0011

15393 41.1173 1.5928 3.7409 2.9945 0.2553 0.4104 20 – – 1.0073 1.0039
36869 22.9177 1.3296 1.2198 2.5490 0.1777 0.8247 20 – – 1.0055 1.0008
94817 13.4813 1.1231 0.5302 1.7635 0.1289 0.6790 19 – – 1.0058 1.0006

Figure 4. Test 2: From left to right, four snapshots of successively refined meshes according
to the indicators θ and θ̃ (top and bottom panels, respectively).
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Figure 5. Test 3: Approximate solutions obtained with the lowest order method, after six
steps of adaptive mesh refinement following the second indicator θ̃. Concentration, velocity
components, and stress components are depicted.

within an enclosure is enhanced by tilting the vessel (from the gravity direction), thus allowing the formation of
recirculation zones carrying low concentration fluid along the underside of the inclined wall (see also [7]). The
diffusivity function will be set to

ϑ(φ) =

⎧⎨⎩
ε for φ ≤ φc,

ϑ0
α

φc

(
φ

φc

)α−1

otherwise,

with α = 5, ϑ0 = 0.055, ε = 1e-6. As computational domain we consider an inclined rectangle of height 1.5m
and width of 6m forming an angle of 2π/3 with the positive x1-axis, which we initially discretize into a coarse
mesh of 102 triangular elements. Viscosity is set as in the previous examples and the remaining coefficients
are f = Δρk, g = 0, uD = 0, φD = {0.8 on the bottom and overside inclined wall; 0.0001 elsewhere in ∂Ω},
γ(φ) = {γ0φ(1 − φ)2 if φ ≥ φc; 0 otherwise}, φc = 0.07, c = 2/3, γ0 = 4.4e-3, Δρ = 700, The stabilization
constants will depend on μ1 = 1 and μ2 = 4.75.

The numerical solutions are collected in Figure 5, where velocity shows a main circulation zone at the center
of the domain, directing the flow towards the bottom along the lower inclined side and moving upwards on the
opposite side. In addition, high concentration zones are located at the bottom of the vessel, while clear fluid
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Figure 6. Test 3: From left to right, four snapshots of successively refined meshes according
to the indicator θ̃.

forms at the top. These flow patterns are in accordance with the observations in [7, 8]. Four intermediate steps
of mesh adaptation guided by the second a posteriori error estimator θ̃ are displayed in Figure 6. We can see
the capturing of the high concentration gradient and velocity boundary layer near the upper inclined side of
the domain.
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