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MAXWELL’S EQUATIONS FOR CONDUCTORS WITH IMPEDANCE
BOUNDARY CONDITIONS: DISCONTINUOUS GALERKIN AND REDUCED
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Abstract. We consider Maxwell’s equations with impedance boundary conditions on a conductive
polyhedron with polyhedral holes. Well-posedness of the variational formulation is proven, a hp-
discontinuous Galerkin (hp-dG) approximation as well as a priori error estimates are introduced. Next,
we use the frequency ω as a parameter in a multi-query context. For this purpose, we derive a Reduced
Basis Method (RBM) based upon the dG formulation as well as the corresponding a posteriori error
bound. Numerical results indicate the efficiency and the robustness of the scheme.
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1. Introduction

This paper is concerned with the analysis and the efficient numerical solution of the time-harmonic Maxwell’s
equations on a simply-connected conductive polyhedron which may have polyhedral holes. These holes can be
seen as rigid bodies of perfectly conducting material, whereas on the exterior we impose an impedance boundary
condition. In particular, we are interested in solving such a problem rapidly and certified by an a posteriori
error control for several different values of the frequency ω.

We start by proving well-posedness of the variational formulation in Section 2. Due to our assumption of
positive electric conductivity σ ≥ σ− > 0, this is a more or less standard application of the Lax−Milgram
theorem. However, verifying coercivity and boundedness is not trivial under our (mild) assumptions and we
were not able to find a corresponding proof in the literature. For this reason and in order to derive explicit
bounds for the constants in terms of the parameter ω, we detail all arguments in Appendix A.

Next, in Section 3, we construct a hp-discontinuous Galerkin (hp-dG) numerical method to obtain a dis-
cretization of the electric field density E. We detail well-posedness, which is again not trivially seen, and the
a priori convergence analysis. These results are a generalization of [22]. Specifically, in Section 3.1 we use an

Keywords and phrases. Maxwell’s equations, impedance, conductor, discontinuous Galerkin, reduced Basis Method.

∗ K.U. and O.Z. gratefully acknowledge support by Deutsche Forschungsgemeinschaft GrK1100.

1 Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96
Gothenburg, Sweden. kristin.kirchner@chalmers.se
2 University of Ulm, Institute for Numerical Mathematics, Helmholtzstrasse 18, 89069 Ulm, Germany.
karsten.urban@uni-ulm.de; oliver.zeeb@uni-ulm.de

Article published by EDP Sciences c© EDP Sciences, SMAI 2016

http://dx.doi.org/10.1051/m2an/2016006
http://www.esaim-m2an.org
http://www.edpsciences.org


1764 K. KIRCHNER ET AL.

interior penalty dG flux and derive a consistent discrete variational formulation in the nonconforming space of
piecewise polynomial functions. The corresponding sesquilinear form is shown to be continuous and coercive
w.r.t. an appropriate energy norm in Section 3.2. This provides us with the foundation for our error analysis in
Section 3.3, where we show convergence at an optimal rate w.r.t. the energy norm.

As already pointed out, our main objective is to solve the time-harmonic Maxwell problem for several different
values of the frequency ω. Hence, we obtain parameterized Maxwell’s equations, where we seek a numerical ap-
proximation for many values of the frequency. For this kind of multi-query problems, i.e., solving the same prob-
lem for many different values of the parameter, the Reduced Basis Method (RBM) has become a well-accepted
efficient numerical scheme, in particular for parameterized partial differential equations (pde’s). Roughly speak-
ing, the RBM is based upon a separation into offline and online computations and on the availability of a
detailed,but possibly costly numerical model, e.g., with a fine mesh size h and a huge number N = Nh of un-
knowns. Using this detailed model and an efficiently computable error bound allows one to determine parameter
values, say ω1, . . . , ωN , N � N , in the offline phase by maximizing the error estimator w.r.t. the parameter
ω3. For these ωi, the detailed solution ξi := Eh(ωi) is computed in the offline phase and stored. Then, the set
{ξ1, . . . , ξN} is called reduced basis, which is used in the online phase to compute an approximation EN (ω) for
a new parameter value ω �= ωi. The already mentioned a posteriori error bound gives rise to a certified reduced
numerical approximation.

There are several articles dealing with RBMs for different versions of Maxwell’s equations, see [10,11,15,16,
19, 20, 29], just to mention a few. However, to the best of our knowledge, the case treated in this paper has
not been considered so far. For the following reasons we think that the presented framework is particularly
interesting:
• The domain Ω, on which we consider the pde, is non-convex and we allow for coefficients with low regularity

(ε, σ ∈ L∞(Ω; R), μ−1 ∈ W 1,∞(Ω; R)), so that the solution cannot be expected to have maximal regularity
and hence H1-conforming finite elements may not be appropriate, whereas a dG approach seems adequate.

• Changing the frequency ω, i.e., interpreting it as a parameter may also change the mathematical properties
of the pde. If “critical” parameter values are not known a priori, RBM variants such as local RBM [24] or
hp-RBM [13,14] are at least not straightforward to apply. Such a strong parameter dependence as considered
here is a crucial issue for a RBM.

• In the literature, usually perfectly conducting material and corresponding boundary conditions on all of ∂Ω
have been considered. Instead, we use impedance boundary conditions on the outward part Σ of ∂Ω, see
below.
Section 4 contains construction and analysis of a RBM for the above Maxwell setting. Finally, Section 5

is devoted to our numerical results that show efficiency and robustness of our approach. We collect details of
certain proofs in Appendix A and the data for reproducing our numerical experiments in Appendix B.

2. Model problem

We consider an electromagnetic cavity problem on a bounded, simply-connected Lipschitz polyhedron Ω ⊂
R3 with M disjoint connected boundary parts Γ1, . . ., ΓM−1, Σ. Note that Σ is the boundary of the only
unbounded connected component of the complement R3 \ Ω̄ – the “interface” to the exterior. At the interior
boundaries Γ1, . . . , ΓM−1 the domain Ω is assumed to be surrounded by perfectly conducting material. At
the exterior boundary Σ the electromagnetic field satisfies an impedance boundary condition. Following the
approach presented, e.g., in [26] we obtain the following boundary value problem for the case of a time-harmonic

3In the RBM literature, usually the letter μ is used for denoting the parameter. Since we consider the frequency ω as the relevant
parameter and here μ denotes the magnetic permeability, we use ω to denote the parameter.
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Figure 1. Cross section of a possible 3d-domain Ω.

electromagnetic wave propagation (n being the outward normal)

∇× (μ−1∇×E) − (ω2ε + iωσ)E = iω
√

ε0Ja in Ω, (2.1a)
n×E = 0 on Γ1, . . . , ΓM−1, (2.1b)

(μ−1∇×E) × n− iωλ(ε0μ
−1
0 )1/2ET = μ−1

0 g on Σ. (2.1c)

As usual, μ0 = 4π × 10−7 Hm−1 and ε0 ≈ 8.854 × 10−12 F m−1 denote the magnetic permeability and electric
permittivity in vacuum, respectively. For u ∈ H(curl, Ω) :=

{
v ∈ L2

(
Ω; C3

) ∣∣∇× v ∈ L2
(
Ω; C3

)}
the “tan-

gential components trace” uT on ∂Ω is defined as uT := (n × u|∂Ω) × n, (cf. [8], Thm. 3.31 of [26]). Finally,
λ > 0 is a constant parameter depending on the intensity of the impedance. In addition, we make the following
assumptions on the model.

Assumption 2.1.

(a) The magnetic permeability μ satisfies μ−1 ∈ W 1,∞(Ω; R) and there exist constants μ−, μ+ > 0 such that

0 < μ− ≤ ess inf
x∈Ω

μ(x) ≤ ess sup
x∈Ω

μ(x) ≤ μ+ < +∞. (2.2)

(b) We assume ε, σ ∈ L∞(Ω; R) and that Ω is a conductor, i.e, there exist constants ε−, ε+, σ−, σ+ > 0 with

0 < ε− ≤ ess inf
x∈Ω

ε(x) ≤ ess sup
x∈Ω

ε(x) ≤ ε+ < +∞, (2.3)

0 < σ− ≤ ess inf
x∈Ω

σ(x) ≤ ess sup
x∈Ω

σ(x) ≤ σ+ < +∞. (2.4)

(c) Ja ∈ H(div, Ω) :=
{
u ∈ L2

(
Ω; C3

) ∣∣∇ · u ∈ L2(Ω; C)
}
.

(d) g ∈ L2
t (Σ; C3) :=

{
v ∈ L2

(
Σ; C3

)
|n · v = 0 a.e. on Σ

}
.

Remark 2.2. We point out assumption (2.4), which states that the electric conductivity is assumed to be
positive and bounded away from zero. This is indeed crucial for the subsequent analysis as it ensures coercivity.

Proceeding as in [26], Chapter 4, a variational formulation of (2.1a)–(2.1c) reads: given ω > 0, find E ∈ X
such that

ae(E,v; ω) = f(v; ω) ∀v ∈ X, (2.5)
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with the trial and test space defined as

X := {u ∈ H(curl, Ω) |n× u = 0 on Γ1, . . . , ΓM−1; uT ∈ L2(Σ; C3) on Σ}, (2.6)

the sesquilinear form

ae(E,v; ω) := (μ−1∇×E,∇× v)Ω − ω2(εE,v)Ω − iω(σE,v)Ω (2.7)

− iωλ(ε0μ
−1
0 )1/2〈ET ,vT 〉Σ ,

and the right-hand side
f(v; ω) := iω

√
ε0(Ja,v)Ω + μ−1

0 〈g,vT 〉Σ , (2.8)

where (·, ·)Ω denotes the inner product on L2
(
Ω; C3

)
and 〈·, · T 〉Σ is the dual pairing w.r.t. the pivot space

L2(Σ, C3), i.e., 〈g,vT 〉Σ :=
∫

Σ
g · vT dS for g ∈ L2

t (Σ; C3), v ∈ H(curl, Ω). As shown in ([26], Thm. 4.1), X is
a Hilbert space with inner product (u,v)X := (∇× u,∇× v)Ω + (u,v)Ω + 〈uT ,vT 〉Σ , u,v ∈ X , and induced
norm ‖u‖2

X := (u,u)X . It seems natural that (2.5) is well-posed in conductive mediums, i.e., if σ ≥ σ− > 0.
However, to the best of our knowledge there is no proof in the literature dealing with regularity assumptions
on the coefficients μ, ε and σ which are as low as in our case. Therefore, we include it in Appendix A.

Since we investigate problem (2.5) in a context with ω as a parameter, we state the dependency of all constants
in terms of ω.

Theorem 2.3 (Existence and uniqueness of E). Suppose Assumption 2.1 is satisfied. Then, there exists a
unique solution E(ω) ∈ X to (2.5). In particular, the bilinear form ae(·, ·) in (2.7) is continuous and coercive
with constants

γ(ω) := max
{
μ−1
− , ω2ε+ + ωσ+, ωλ(ε0μ

−1
0 )1/2

}
,

α(ω) := min
{

σ−
23/2μ+(ω2ε2

+ + σ2
−)1/2

,
ω

2

(
ω2ε2

+σ2
− + σ4

−
2 ω2ε2

+ + σ2
−

) 1
2

,
ωλ

√
ε0√

2μ0

}
.

The right-hand side (2.8) is bounded by ‖f(·; ω)‖X′ ≤ Cf (ω) := ω
√

ε0‖Ja‖L2(Ω)3 +μ−1
0 ‖g‖L2(Σ)3 . In particular,

the stability estimate ‖E(ω)‖X ≤ Cf (ω)
α(ω) holds.

Proof. The claim follows from a complex-valued version of the Lax−Milgram lemma, (e.g. [26], Lem. 2.21),
since ae : X ×X → C in (2.7) is continuous and coercive and f : X → C in (2.8) is bounded, which is shown in
detail in Appendix A.1. �

3. Discontinuous Galerkin approximation

In this section we introduce a hp-discontinuous Galerkin (hp-dG) formulation of (2.1a)–(2.1c) resp. (2.5).
For this purpose, we adapt an interior penalty numerical flux in [22] (there for the special case of a perfectly
conducting boundary, n×E = 0 on all of ∂Ω, and constant material parameters μ ≡ μ0, ε ≡ ε0 and σ ≡ 0).

3.1. Interior penalty dG formulation

The derivation of the dG formulation follows the ideas of [5], where a general dG approach for elliptic problems
using different numerical fluxes is described. Instead of the Laplace operator we have to investigate the curl-curl
operator.
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First, we introduce the auxiliary function q ∈ L2(Ω; C3) satisfying μ q = ∇ × E a.e. in Ω, so that instead
of (2.1a)–(2.1c) we can consider the first-order system

∇× q − (ω2ε + iωσ)E = iω
√

ε0Ja in Ω, (3.1a)
μq = ∇×E in Ω, (3.1b)

n×E = 0 on Γ1, . . . , ΓM−1, (3.1c)

q × n− iωλ(ε0μ
−1
0 )1/2ET = μ−1

0 g on Σ. (3.1d)

We follow the standard discontinuous Galerkin approach, namely: (1) partition of the polyhedron Ω into a finite
set of elements; (2) multiply (3.1a) and (3.1b) with test functions, integrate over Ω and use integration by parts
on each element; (3) in the integrals over the elemental boundaries replace q and E by their numerical fluxes q∗h
and E∗

h; (4) again, integrate (3.1b) by parts on each element.
Although this dG construction is standard, to the best of our knowledge it has not been applied to the

Maxwell problem with impedance boundary conditions before. In addition, the regularity assumptions that we
impose on the coefficients μ, ε and σ as well as on the exact solution E are quite low so that a careful analysis
is needed not only in order to prove convergence of the dG scheme, but also as a preliminary for the subsequent
RBM.

As for (1), let Th be a shape-regular mesh of tetrahedra covering the polyhedral domain Ω. For each element
T ∈ Th we define hT as the diameter of the smallest sphere containing T , and for Th we define the mesh size as
h := maxT∈Th

hT . Furthermore, let Fh denote the set of all faces in Th, FI
h := {F ∈ Fh : F ⊂ Ω} and FB

h :=
{F ∈ Fh : F ⊂ ∂Ω} the set of all interior and boundary faces, respectively. We partition FB

h in accordance
to the two different boundary conditions (3.1c) and (3.1d), i.e., FΓ

h := {F ∈ Fh : F ⊂ (Γ1 ∪ . . . ∪ ΓM−1)},
FΣ

h := {F ∈ Fh : F ⊂ Σ}. The size of each face F ∈ Fh is measured by the diameter hF of the smallest circle
containing F . In this context, we additionally define the function h by

h :
⋃

F∈Fh

F → R>0, h(x) :=
∑

F∈Fh

hF χF (x). (3.2)

For the dG formulation we need the following definitions of the tangential jump and average across an in-
terface F ∈ Fh between two tetrahedra T L �= T R, which are well-defined for all functions u satisfying
u ∈

{
f ∈ L2(Ω; C3)

∣∣ f |T ∈ C0(T ; C3) ∀T ∈ Th

}
,

�u� :=

{
nT L × u|T L + nT R × u|T R on F ∈ FI

h , F ⊂ ∂T L ∩ ∂T R,

n× u on F ∈ FB
h ,

{{u}} :=

{
1
2 (u|T L + u|T R) on F ∈ FI

h , F ⊂ ∂T L ∩ ∂T R,

u on F ∈ FB
h .

Here, nT L denotes the outward normal of T L, nT R the one of T R. In this context, we recall the so-called “dG
magic formula”, (cf. [21], Eq. (3.1)),∑

T∈Th

〈nT × u,v〉∂T =
∑

F∈FI
h

〈�u�, {{v}}〉F −
∑

F∈FI
h

〈{{u}}, �v�〉F +
∑

F∈FB
h

〈n× u,v〉F (3.3)

for u, v ∈
{
f ∈ L2(Ω; C3)

∣∣ f |T ∈ C0(T, C3) ∀T ∈ Th

}
, where 〈·, ·〉∂T and 〈·, ·〉F are the dual pairings on element

boundaries and interfaces induced by L2(∂T ; C3) and L2(F ; C3), respectively. In order to shorten notation, we
abbreviate:

〈·, ·〉Fh
:=

∑
F∈Fh

〈·, ·〉F , 〈·, ·〉FB
h

:=
∑

F∈FB
h

〈·, ·〉F , 〈·, ·〉FI
h

:=
∑

F∈FI
h

〈·, ·〉F ,

〈·, ·〉FΣ
h

:=
∑

F∈FΣ
h

〈·, ·〉F , 〈·, ·〉FΓ
h

:=
∑

F∈FΓ
h

〈·, ·〉F , 〈·, ·〉FI∪Γ
h

:=
∑

F∈FI
h∪FΓ

h

〈·, ·〉F .
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Next, for (2) above, we multiply (3.1a) with the complex conjugate of

vh ∈ Vh,p :=
{
ψ ∈ L2(Ω; C3)

∣∣ψ|T ∈ Pp(T ; C)3 ∀T ∈ Th

}
, (3.4)

where Pp(T ; C) denotes the space of complex-valued polynomials of degree at most p ∈ N on T . Replacing q
and E with approximations qh,Eh ∈ Vh,p and integrating over Ω yields

(∇h × qh,vh)Ω − ω2(εEh,vh)Ω − iω(σEh,vh)Ω = iω
√

ε0(Ja,vh)Ω . (3.5)

Here, ∇h× denotes the elementwise curl operator for functions in Vh,p, i.e., (∇h × qh,vh)Ω :=
∑

T∈Th
(∇ ×

qh,vh)T . By using integration by parts on each element T ∈ Th, substituting qh with its numerical flux q∗h in
the integrals over the elemental boundaries and applying the dG formula (3.3), we obtain

(∇h × qh,vh)Ω =
∑

T∈Th

(∇× qh,vh)T =
∑

T∈Th

[(qh,∇× vh)T + 〈nT × qh,vh〉∂T ]

≈ (qh,∇h × vh)Ω +
∑

T∈Th

〈nT × q∗
h,vh〉∂T

= (qh,∇h × vh)Ω+
∑

F∈FI
h

[〈�q∗h�, {{vh}}〉F−〈{{q∗h}}, �vh�〉F ] +
∑

F∈FB
h

〈n× q∗h,vh〉F . (3.6)

Now we adopt a similar procedure to the second equation (3.1b). Therefore, we consider a test function φh ∈{
f ∈ L2(Ω; C3)

∣∣ f |T ∈ C0(T ; C3) ∩ H1(T, C3) ∀T ∈ Th

}
. Then,

(μqh,φh)Ω = (∇h ×Eh,φh)Ω =
∑

T∈Th

(∇×Eh,φh)T

=
∑

T∈Th

[(Eh,∇× φh)T + 〈nT ×Eh,φh〉∂T ]

≈
∑

T∈Th

[(Eh,∇× φh)T + 〈nT ×E∗
h,φh〉∂T ]

=
∑

T∈Th

[(∇×Eh,φh)T + 〈nT × (E∗
h −Eh),φh〉∂T ]

= (∇h ×Eh,φh)Ω +
∑

F∈FI
h

[〈�E∗
h −Eh�, {{φh}}〉F − 〈{{E∗

h −Eh}}, �φh�〉F ]

+
∑

F∈FB
h

〈n× (E∗
h −Eh),φh〉F . (3.7)

The Sobolev embedding μ−1 ∈ W 1,∞(Ω; R) ↪→ C0,1(Ω̄; R) ⊂ C0(Ω̄; R), (cf. [1], Lem. 4.28), shows that μ−1ψh ∈
C0(T ; C3) ∩ H1(T ; C3) for all T ∈ Th and ψh ∈ Vh,p. Hence, the following expressions are all well-defined,

(qh,ψh)Ω = (μqh, μ−1ψh)Ω

= (∇h ×Eh, μ−1ψh)Ω +
∑

F∈FI
h

〈�E∗
h −Eh�, {{μ−1ψh}}〉F

−
∑

F∈FI
h

〈{{E∗
h −Eh}}, �μ−1ψh�〉F +

∑
F∈FB

h

〈n× (E∗
h −Eh), μ−1ψh〉F ,
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where we used (3.7). Inserting this into (3.6) and the result into (3.5) yields

iω
√

ε0(Ja,vh)Ω = (μ−1∇h ×Eh,∇h × vh)Ω − ω2(εEh,vh)Ω − iω(σEh,vh)Ω

+ 〈�E∗
h −Eh�, {{μ−1∇h × vh}}〉FI

h
− 〈{{E∗

h −Eh}}, �μ−1∇h × vh�〉FI
h

+ 〈n× (E∗
h −Eh), μ−1∇h × vh〉FB

h

+ 〈�q∗h�, {{vh}}〉FI
h
− 〈{{q∗h}}, �vh�〉FI

h
− 〈q∗h,n× vh〉FB

h
. (3.8)

As fluxes E∗
h and q∗h we choose interior penalty fluxes similar to the ones in [22]:

E∗
h :=

⎧⎪⎨⎪⎩
{{Eh}} on F ∈ FI

h ,

0 on F ∈ FΓ
h ,

Eh on F ∈ FΣ
h ,

q∗h :=

{
{{μ−1∇h ×Eh}} − τ h−1

F �Eh� on F ∈ FI
h ,

μ−1∇h ×Eh − τ h−1
F (n×Eh) on F ∈ FΓ

h ,

where τ > 0 is a constant penalty parameter. From the tangential component of the flux q∗h on Σ we require
n × q∗h := −μ−1

0 g − iωλ(ε0μ
−1
0 )1/2(Eh)T . Inserting these fluxes into (3.8), using the definition (2.8) of f and

observing that �{{u}}� = 0, ��u�� = 0, {{{{u}}}} = {{u}}, {{�u�}} = �u�, leads to the following equation

f(vh; ω) = (μ−1∇h ×Eh,∇h × vh)Ω − ω2(εEh,vh)Ω − iω(σEh,vh)Ω

− 〈�Eh�, {{μ−1∇h × vh}}〉FI∪Γ
h

− 〈{{μ−1∇h ×Eh}}, �vh�〉FI∪Γ
h

+ 〈τh−1�Eh�, �vh�〉FI∪Γ
h

− iωλ(ε0μ
−1
0 )1/2〈(Eh)T , (vh)T 〉Σ

=: ah(Eh,vh; ω, τ).

Then, for given ω, τ > 0 the discrete problem reads: Find Eh ∈ Vh,p such that

ah(Eh,vh; ω, τ) = f(vh; ω) ∀vh ∈ Vh,p. (3.9)

Remark 3.1. Since Vh,p �⊂ H(curl, Ω) and since we use a sesquilinear form ah different from ae in (2.7) (i.e.,
we have a nonconforming approximation), existence and uniqueness of a solution Eh to (3.9) are not obvious.

The above derivation already indicates that the hp-dG discretization is consistent. This is formulated in the
next theorem, whose proof is in Appendix A.2.

Theorem 3.2 (Consistency, proof see A.2). The formulation (3.9) is consistent, i.e., if E is the analytical
solution to the system (2.1a)–(2.1c), then E satisfies ah(E,vh; ω, τ) = f(vh; ω) for all vh ∈ Vh,p.

3.2. Continuity and coercivity

The next step is to show coercivity of ah on Vh,p and boundedness of an extension ãh to a vector space
containing both, Vh,p and X , with respect to an energy norm on this space. First, let us define the space Ṽh,p

that relates the spaces Vh,p in (3.4) and X in (2.6):

Ṽh,p := Vh,p + X =
{
v ∈ L2(Ω; C3)

∣∣ ∃wh ∈ Vh,p, ∃u ∈ X : v = wh + u
}

.

Note that the sum of Vh,p and X is not direct, since {0} �= Vh,p ∩X . On Ṽh,p we introduce the dG-norm ‖ · ‖DG

induced by the inner product

(uh,vh)DG := (uh,vh)Ω + (∇h × uh,∇h × vh)Ω

+ 〈(uh)T , (vh)T 〉Σ + 〈h−1�uh�, �vh�〉FI∪Γ
h

, uh,vh ∈ Ṽh,p, (3.10)
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where h is the function which has been defined in (3.2) and

‖w‖2
FI∪Γ

h
:=

∑
F∈FI

h∪FΓ
h

‖w‖2
L2(F )3 , w ∈ L2

(
FI

h ∪ FΓ
h ; C3

)
. (3.11)

The following discrete version of the trace inequality will be essential for the analysis of the hp-dG scheme.

Lemma 3.3 (Discrete trace inequality). There exists a constant Cinv > 0, depending only on the shape regularity
of the mesh Th and on the polynomial degree p, such that for every vh ∈ Vh,p

hT ‖vh‖2
L2(∂T )3 ≤ Cinv ‖vh‖2

L2(T )3 ∀T ∈ Th. (3.12)

Proof. According to ([32], Thm. 4), it holds ‖vh‖2
L2(∂T )3 ≤ (p+1)(p+3)

3
surface area(T )

volume(T ) ‖vh‖2
L2(T )3 for vh ∈ Vh,p and

T ∈ Th. This implies (3.12) since on shape-regular meshes, there exists a constant C > 0, independent of the
element T , such that surface area(T )

volume(T ) ≤ C h−1
T for all T ∈ Th. �

Lemma 3.4. For every vh ∈ Vh,p it holds

‖h 1
2 {{vh}}‖2

FI∪Γ
h

≤ Cinv ‖vh‖2
L2(Ω)3 , (3.13)

with ‖ · ‖FI∪Γ
h

as in (3.11) and the constant Cinv in (3.12) of Lemma 3.3.

Proof. Let vh ∈ Vh,p. Then we can estimate as follows

‖h 1
2 {{vh}}‖2

FI∪Γ
h

=
∑

F∈FI
h

hF

4

∥∥vh|T L + vh|T R

∥∥2

L2(F )3
+

∑
F∈FΓ

h

hF ‖vh‖2
L2(F )3

≤ 1
2

∑
F∈FI

h

hF

(
‖vh|T L‖2

L2(F )3 + ‖vh|T R‖2
L2(F )3

)
+

∑
F∈FΓ

h

hF ‖vh‖2
L2(F )3

≤ 1
2

∑
F∈FI

h

(
hT L‖vh|T L‖2

L2(F )3 + hT R‖vh|T R‖2
L2(F )3

)
+

∑
F∈FB

h

hF ‖vh‖2
L2(F )3

≤
∑

T∈Th

∑
F∈Fh∩∂T

hT ‖vh|T ‖2
L2(F )3

=
∑

T∈Th

hT ‖vh|T ‖2
L2(∂T )3 ≤ Cinv

∑
T∈Th

‖vh|T ‖2
L2(T )3 ,

where we used the discrete trace inequality (3.12) in the last step. This proves the lemma since the last term
equals Cinv ‖vh‖2

L2(Ω)3 . �

In order to extend ah to Ṽh,p × Ṽh,p, we need the definition of a lifting operator, similar to ([28], Sect. 3.5).

Definition 3.5. Let Assumption 2.1(a) on μ be satisfied. For u ∈ Ṽh,p we define the lifting operator Lμ(u) ∈
Vh,p via

(Lμ(u), μ−1vh)Ω = 〈�u�, {{μ−1vh}}〉FI∪Γ
h

∀vh ∈ Vh,p. (3.14)

Remark 3.6. For u ∈ Ṽh,p existence and uniqueness of Lμ(u) ∈ Vh,p satisfying (3.14) follow from the complex-
valued Riesz representation theorem (cf. [25], Thm. 2.30): for μ as in Assumption 2.1 (a) the form (·, μ−1·)Ω =
(μ−1·, ·)Ω is an inner product on L2(Ω; C3). The space Vh,p ⊂ L2(Ω; C3) is a closed subspace and for every
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u ∈ Ṽh,p, the mapping �μ
u(vh) := 〈{{μ−1vh}}, �u�〉FI∪Γ

h
, vh ∈ Vh,p, is a bounded linear functional on Vh,p: Indeed,

inequality (3.13) from above yields

|�μ
u(vh)| ≤ ‖h 1

2 {{μ−1vh}}‖FI∪Γ
h

‖h− 1
2 �u�‖FI∪Γ

h
≤ μ−1

− ‖h 1
2 {{vh}}‖FI∪Γ

h
‖u‖DG

≤
(
μ−1
−

√
Cinv ‖u‖DG

)
‖vh‖L2(Ω)3 .

Now we introduce the extended form ãh(·, ·; ω, τ) : Ṽh,p × Ṽh,p → C for ω, τ > 0 as

ãh(u,v; ω, τ) := (μ−1∇h × u,∇h × v)Ω − ω2(εu,v)Ω − iω(σu,v)Ω

− (Lμ(u), μ−1∇h × v)Ω − (μ−1∇h × u,Lμ(v))Ω

+ 〈τh−1�u�, �v�〉FI∪Γ
h

− iωλ(ε0μ
−1
0 )1/2〈uT ,vT 〉Σ .

It is obvious, that ãh(·, ·; ω, τ) and ah(·, ·; ω, τ) coincide on Vh,p × Vh,p. We will show now that ãh is bounded
on Ṽh,p × Ṽh,p w.r.t. the dG-norm ‖ · ‖DG.

Theorem 3.7 (Continuity, proof see A.3). Let Assumption 2.1 be satisfied. Then, the estimate
|ãh(u,v; ω, τ)| ≤ γDG(ω) ‖u‖DG‖v‖DG holds for all u,v ∈ Ṽh,p and all ω, τ > 0 with

γDG(ω) := max
{

μ−1
− +

μ+

μ2
−

√
Cinv, ω

2ε+ + ωσ+, τ +
μ+

μ2
−

√
Cinv, ωλ(ε0μ

−1
0 )1/2

}
.

Both, for the proof of Theorem 3.7 and for the error analysis in Section 3.3 below, we need the μ−1-
orthogonal L2-projection onto Vh,p.

Definition 3.8. Let Assumption 2.1(a) on μ be satisfied. For u ∈ L2(Ω; C3) the projection Πμu ∈ Vh,p is
defined as the following Riesz representative:

(μ−1Πμu,vh)Ω = (μ−1u,vh)Ω ∀vh ∈ Vh,p. (3.15)

Note that Πμ satisfies the stability estimate

‖Πμu‖L2(Ω)3 ≤ μ+

μ−
‖u‖L2(Ω)3 ∀u ∈ L2(Ω; C3), (3.16)

since it is readily seen that

μ−1
+ ‖Πμu‖2

L2(Ω)3 ≤ (μ−1Πμu, Πμu)Ω = (μ−1u, Πμu)Ω ≤ μ−1
− ‖u‖L2(Ω)3‖Πμu‖L2(Ω)3 .

Theorem 3.9 (Coercivity, proof see A.4). Let Assumption 2.1 hold. Then, for all

τ > τ∗ :=
16 Cinvμ+

σ2
−μ2

−
(ω2ε2

+ + σ2
−) (3.17)

and ω > 0 it holds that |ah(vh,vh; ω, τ)| ≥ αDG(ω) ‖vh‖2
DG for all vh ∈ Vh,p with

αDG(ω) := min
{

σ−
25/2μ+(ω2ε2

+ + σ2
−)1/2

,
ω

2

(
ω2ε2

+σ2
− + σ4

−
2ω2ε2

+ + σ2
−

) 1
2

,
ωλ

√
ε0√

2μ0

}
·

Corollary 3.10 (Existence and uniqueness of Eh). Let Assumption 2.1 be satisfied. Then, for every frequency
ω > 0 and τ > τ∗ there exists a unique function Eh ∈ Vh,p solving (3.9), i.e., ah(Eh,vh; ω, τ) = f(vh; ω) for
all vh ∈ Vh,p.
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Proof. Since Vh,p is finite dimensional, it is a Hilbert space w.r.t. (3.10). Due to Theorems 3.7 and 3.9,
ah(·, ·; ω, τ) is bounded and coercive w.r.t. ‖ · ‖DG =

√
(·, ·)DG for any ω > 0 and τ > τ∗ on Vh,p so that

the Lax−Milgram theorem yields the assertion. �

3.3. Error in the energy norm

For the error analysis we collect properties of the μ−1-orthogonal projection Πμ introduced in Definition 3.8.
To this end, we introduce the L2-orthogonal projection Πh : L2(Ω; C3) → Vh,p by

(Πhw,vh)Ω = (w,vh)Ω ∀vh ∈ Vh,p, w ∈ L2(Ω; C3). (3.18)

Furthermore, we define Δa for a node a in the mesh Th as the set of all tetrahedra sharing this vertex.

Lemma 3.11. There exists a constant C > 0, independent of T and hT , such that for any v ∈ L2(Ω; C3) with
v|Δa ∈ Ht(Δa; C3), t > 1

2 , any T ∈ Th and any vertex a of T the projection Πh in (3.18) satisfies

‖v − Πhv‖2
L2(T )3 + hT ‖v − Πhv‖2

L2(∂T )3 ≤ Ch
2min{t,p+1}
T ‖v‖2

Ht(Δa)3 . (3.19)

Proof. In two dimensions, this theorem follows from the properties of the interpolation operator in ([12], Thm. 1)
or ([6], Thm. 2.1 and Rem. 4). As mentioned in ([18], Sect. A.3), the proof can be directly adopted to the case
of higher dimensions. �

The estimate (3.19) for the L2-orthogonal projection Πh on Vh,p provides us now also with an error bound
for the μ−1-orthogonal projection Πμ in Definition 3.8.

Lemma 3.12. There exists a constant C > 0 depending only on p, μ and the shape regularity of the mesh such
that for any v ∈ L2(Ω; C3) with v|Δa ∈ Ht(Δa; C3), t > 1

2 , any T ∈ Th and any vertex a of T the projection
Πμ in (3.15) satisfies

‖v − Πμv‖2
L2(T )3 + hT ‖v − Πμv‖2

L2(∂T )3 ≤ Ch
2 min{t,p+1}
T ‖v‖2

Ht(Δa)3 . (3.20)

Proof. Let T ∈ Th, a be a vertex of T and v ∈ Ht(Δa; C3) for some t > 1
2 . Then,

μ−1
+ ‖Πhv − Πμv‖2

L2(T )3 ≤ (μ−1(Πhv − Πμv), Πhv − Πμv)T

= (μ−1Πhv, Πhv − Πμv)T − (μ−1v, Πhv − Πμv)T

= (μ−1(Πhv − v), Πhv − Πμv)T ≤ μ−1
− ‖Πhv − v‖L2(T )3‖Πhv − Πμv‖L2(T )3

and, therefore,

‖Πhv − Πμv‖L2(T )3 ≤ μ+

μ−
‖Πhv − v‖L2(T )3 , (3.21)

as well as

‖v − Πμv‖L2(T )3 ≤ ‖v − Πhv‖L2(T )3 + ‖Πhv − Πμv‖L2(T )3

≤
(

1 +
μ+

μ−

)
‖v − Πhv‖L2(T )3 ≤

(
1 +

μ+

μ−

)
Ch

min{t,p+1}
T ‖v‖Ht(Δa)3
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for any corner a of T ∈ Th by Lemma 3.11. For the L2-norm on ∂T we may use the discrete trace inequal-
ity (3.12), (3.19) for Πh and (3.21). Thus,

hT ‖v − Πμv‖2
L2(∂T )3 ≤ hT

(
‖v − Πhv‖L2(∂T )3 + ‖Πhv − Πμv‖L2(∂T )3

)2

≤ 2hT ‖v − Πhv‖2
L2(∂T )3 + 2hT ‖Πhv − Πμv‖2

L2(∂T )3

≤ 2hT ‖v − Πhv‖2
L2(∂T )3 + 2Cinv‖Πhv − Πμv‖2

L2(T )3

≤ 2 max
{
1, Cinvμ

2
+μ−2

−
}(

hT ‖v − Πhv‖2
L2(∂T )3 + ‖v − Πhv‖2

L2(T )3

)
≤ Ch

2min{t,p+1}
T ‖v‖2

Ht(Δa)3 ,

so that the lemma is proven. �
For ω, τ > 0 we define the residual for vh ∈ Vh,p by

rh(vh; ω, τ) := ãh(E,vh; ω, τ) − f(vh; ω) = ãh(E −Eh,vh; ω, τ),

where E denotes the exact solution of (2.1a)–(2.1c) and Eh the dG approximation as a solution of (3.9). We
are able to estimate the absolute value of the residual rh as follows.

Proposition 3.13. Let Assumption 2.1 be satisfied, and E be the unique exact solution to (2.1a)–(2.1c) for a
frequency ω > 0 with ∇×E ∈ Ht(Ω; C3) for some t > 1

2 . Then, for τ > 0, the residual can be expressed as

rh(vh; ω, τ) = 〈{{μ−1(∇×E − Πμ(∇×E))}}, �vh�〉FI∪Γ
h

∀vh ∈ Vh,p. (3.22)

In addition, there exists a constant C > 0 depending only on p, μ and the shape regularity of the mesh, such
that

|rh(vh; ω, τ)| ≤ Chmin{t,p+1}‖vh‖DG‖∇×E‖Ht(Ω)3 ∀vh ∈ Vh,p.

Proof. In order to derive representation (3.22), let ω, τ > 0, and vh ∈ Vh,p. Then,

rh(vh; ω, τ) = ãh(E,vh; ω, τ) − f(vh; ω)

= (μ−1∇×E,∇h × vh)Ω − ω2(εE,vh)Ω − iω(σE,vh)Ω

− (μ−1∇×E,Lμ(vh))Ω − iωλ (ε0μ
−1
0 )1/2〈ET , (vh)T 〉Σ

− (Lμ(E), μ−1∇h × vh)Ω + 〈τh−1�E�, �vh�〉FI∪Γ
h

− f(vh; ω).

The first two expressions in the last line vanish since �E� = 0 on FI∪Γ
h and, hence, Lμ(E) = 0. Applying

integration by parts to the integral (μ−1∇ × E,∇ × vh)T on every element T ∈ Th and afterwards the dG
formula (3.3) yields

rh(vh; ω, τ) = (∇× (μ−1∇×E),vh)Ω − ((ω2ε + iωσ)E,vh)Ω − (μ−1Πμ(∇×E),Lμ(vh))Ω

−
∑

T∈Th

〈nT × (μ−1∇×E),vh〉∂T − iωλ (ε0μ
−1
0 )1/2〈ET , (vh)T 〉Σ − μ−1

0 〈g, (vh)T 〉Σ

− iω
√

ε0 (Ja,vh)Ω

= − 〈�μ−1∇×E�, {{vh}}〉FI
h

+ 〈{{μ−1∇×E}}, �vh�〉FI
h

+ 〈μ−1∇×E,n× vh〉FΓ
h

− 〈n× (μ−1∇×E),vh〉FΣ
h
− 〈{{μ−1Πμ(∇×E)}}, �vh�〉FI∪Γ

h
− μ−1

0 〈g, (vh)T 〉Σ
− iωλ (ε0μ

−1
0 )1/2〈ET , (vh)T 〉Σ

= 〈{{μ−1∇×E − μ−1Πμ(∇×E)}}, �vh�〉FI∪Γ
h

− 〈n× (μ−1∇×E)

+ iωλ(ε0μ
−1
0 )1/2ET + μ−1

0 g, (vh)T 〉Σ = 〈{{μ−1(∇×E − Πμ(∇×E))}}, �vh�〉FI∪Γ
h

,
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since �μ−1∇ × E� = 0 on FI
h , 〈n × (μ−1∇ × E),vh〉FΣ

h
= 〈n × (μ−1∇ × E), (vh)T 〉Σ and E satisfies (2.1c).

Using this representation, we can estimate as follows

|rh(vh; ω, τ)| =
∣∣〈{{μ−1(∇×E − Πμ(∇×E))}}, �vh�〉FI∪Γ

h

∣∣
≤ ‖h− 1

2 �vh�‖FI∪Γ
h

‖h 1
2 {{μ−1(∇×E − Πμ(∇×E))}}‖FI∪Γ

h

≤ ‖vh‖DG

( ∑
F∈Fh

hF ‖{{μ−1(∇×E − Πμ(∇×E))}}‖2
L2(F )3

) 1
2

≤ ‖vh‖DG

( ∑
T∈Th

hT ‖μ−1(∇×E − Πμ(∇×E))‖2
L2(∂T )3

) 1
2

≤ μ−1
− ‖vh‖DG

( ∑
T∈Th

hT ‖(∇×E − Πμ(∇×E))‖2
L2(∂T )3

) 1
2

≤ Chmin{t,p+1} ‖vh‖DG‖∇×E‖Ht(Ω)3 ,

where we used estimate (3.20) for Πμ in the last step. �

Next, we state an error estimate for the Nédélec interpolant w.r.t. ‖ · ‖X .

Lemma 3.14 (Nédélec interpolant). Let v ∈ Ht(Ω; C3) with ∇ × v ∈ Ht(Ω; C3) and vT ∈ Ht
‖(Σ)3 ∩

H(curlΣ , Σ) for some t > 1
2 , where

Ht
‖(Σ)3 :=

{
w ∈ L2

t (Σ; C3) | ∃ ξ ∈ Ht+ 1
2 (Ω; C3) : w = γT (ξ) := (n× ξ|Σ) × n

}
and H(curlΣ , Σ) :=

{
w ∈ L2

t (Σ; C3) | ∇Σ ×w ∈ L2(Σ; C)
}

with the surface curl operator ∇Σ× on the surface
Σ, (cf. [8], Prop. 3.6). Then, there exists a function ΠNv ∈ Vh,p ∩ X satisfying

‖v − ΠNv‖X =
(
‖v − ΠNv‖2

H(curl,Ω) + ‖(v − ΠNv)T ‖2
L2(Σ)3

) 1
2

≤ Chmin{t,p}(‖v‖Ht(Ω)3 + ‖∇× v‖Ht(Ω)3 + ‖vT ‖Ht
‖(Σ)3 + ‖∇Σ × (vT )‖L2(Σ)

)
,

where ‖w‖Ht
‖(Σ)3 := inf

ξ∈Ht+ 1
2 (Ω)3

{‖ξ‖
Ht+ 1

2 (Ω)3

∣∣ γT (ξ) = w} and C > 0 is a constant depending only on p ∈ N

and the shape regularity of the mesh.

Proof. It is a well-known result (cf. [2, 26]) that the interpolation operator ΠN : H(curl, Ω) → Np
h(Ω) on the

finite element space Np
h(Ω) generated by the Nédélec elements of first kind and pth degree satisfies

‖v − ΠNv‖H(curl,Ω) ≤ Chmin{t,p}(‖v‖Ht(Ω)3 + ‖∇× v‖Ht(Ω)3
)

for some constant C > 0, independent of the mesh size h, if v ∈ Ht(Ω, C3) and ∇ × v ∈ Ht(Ω, C3) for some
t > 1

2 .
It remains to investigate ‖(v − ΠNv)T ‖L2(Σ)3 . As argued in [17], Section 5.1, the result of ([9], Lem. 15)

yields an error estimate for the interpolation operator ΠΣ
N on the finite element space Np

h(Σ) ⊂ H(curlΣ, Σ)
defined by

Np
h(Σ) := γT (Np

h(Ω)) = {g ∈ L2
t (Σ; C3) : ∃ξ ∈ Np

h(Ω) with g = γT (ξ)}.

To be specific, for every w ∈ Ht
‖(Σ)3 ∩ H(curlΣ , Σ), t > 1

2 , it holds

‖w − ΠΣ
Nw‖L2(Σ)3 ≤ Chmin{t,p+1}(‖w‖Ht

‖(Σ)3 + ‖∇Σ ×w‖L2(Σ)

)
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for some constant C > 0, independent of h. Finally, the commuting diagram property γT ΠN = ΠΣ
N γT (cf. [17],

Sect. 5.1) implies that

‖(v − ΠN )T ‖L2(Σ)3 ≤ Chmin{t,p+1}(‖vT ‖Ht
‖(Σ)3 + ‖∇Σ × (vT )‖L2(Σ)

)
,

if vT ∈ Ht
‖(Σ)3 ∩ H(curlΣ , Σ), and the assertion is proven. �

Proposition 3.15 (Partition of the error). Let Assumption 2.1 be satisfied, and E solve (2.1a)–(2.1c) for ω > 0.
If Eh is the dG approximation in (3.9) for τ > τ∗, then it holds

‖E −Eh‖DG ≤ K
(

inf
vh∈Vh,p

‖E − vh‖DG + sup
wh∈Vh,p\{0}

|rh(wh; ω, τ)|
‖wh‖DG

)
with

K = K(ω) :=
max{1, γDG(ω) + αDG(ω)}

αDG(ω)
· (3.23)

Proof. Let vh ∈ Vh,p. Then, ‖E −Eh‖DG ≤ ‖E − vh‖DG + ‖vh −Eh‖DG, and using coercivity and continuity
of ah and ãh, respectively,

αDG ‖vh −Eh‖2
DG ≤ |ah(vh −Eh,vh −Eh; ω, τ)| = |ãh(vh −Eh,vh −Eh; ω, τ)|

≤ |ãh(vh −E,vh −Eh; ω, τ)| + |ãh(E −Eh,vh −Eh; ω, τ)|
≤ γDG ‖vh −E‖DG‖vh −Eh‖DG + |rh(vh −Eh; ω, τ)| ,

which implies

‖E −Eh‖DG ≤
(
1 +

γDG

αDG

)
‖vh −E‖DG +

1
αDG

|rh(vh −Eh; ω, τ)|
‖vh −Eh‖DG

≤ max {1, γDG + αDG}
αDG

(
‖vh −E‖DG + sup

wh∈Vh,p

|rh(wh; ω, τ)|
‖wh‖DG

)
.

The assertion follows now by taking the infimum over vh in Vh,p. �

Theorem 3.16 (Error in the energy norm). Let Assumption 2.1 be satisfied and assume that the solution E
of (2.1a)– (2.1c) for ω > 0 satisfies E ∈ Ht(Ω; C3) with ∇×E ∈ Ht(Ω; C3) and ET ∈ Ht

‖(Σ)3 ∩H(curlΣ, Σ)
on Σ for some t > 1

2 . Let Eh ∈ Vh,p be the dG approximation solving (3.9) for τ > τ∗ and define K as
in (3.23). Then, there exists a constant, independent of h and ω, such that

‖E −Eh‖DG ≤ CKhmin{t,p}(‖E‖Ht(Ω)3 + ‖∇×E‖Ht(Ω)3 + ‖ET ‖Ht
‖(Σ)3 + ‖∇Σ × (ET )‖L2(Σ)

)
. (3.24)

Proof. The result follows from Propositions 3.13, 3.15 and Lemma 3.14:

‖E −Eh‖DG ≤ K
(

inf
vh∈Vh,p

‖E − vh‖DG + sup
wh∈Vh,p

|rh(wh; ω, τ)|
‖wh‖DG

)
≤ CK

(
inf

vh∈Vh,p

‖E − vh‖DG + hmin{t,p+1} ‖∇×E‖Ht(Ω)3

)
≤ CK

(
‖E − ΠNE‖DG + hmin{t,p+1} ‖∇×E‖Ht(Ω)3

)
≤ CKhmin{t,p}

(
‖E‖Ht(Ω)3 +‖∇×E‖Ht(Ω)3 +‖ET ‖Ht

‖(Σ)3 +‖∇Σ × (ET )‖L2(Σ)

)
,

which proves the theorem. �
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Remark 3.17. For large values of ω and for τ ≈ τ∗, the ratio between continuity and coercivity constant and,
hence, the constant K in (3.24) behaves like

γDG(ω)
αDG(ω)

∼ ω3, ω → ∞,

which might seem to be suboptimal. This is due to the fact that we use the above defined standard graph norms
‖ · ‖X and ‖ · ‖DG on X and Ṽh,p, respectively, which are not scaled by ω (as often done in the literature). The
reason for this choice is the fact that we use ω as a parameter within the RBM.

4. Reduced basis method

As already indicated above, we ultimately aim at constructing a numerical method that is able to rapidly
compute a certified approximation to the electric field density E(ω) as a function of the frequency ω, in particular
for many different values of ω – a so-called multi-query problem.

The main challenge here is that the mathematical properties of the underlying pde crucially depend on the
value of ω, not only – but also – all involved stability constants are heavily ω-dependent. Typically, a Reduced
Basis Method (RBM) requires a smooth (or at least a known) dependence of the solution E(ω) w.r.t. the
parameter ω. This is not the case here. We will show that the above introduced hp-dG method is in fact a
possible choice, which allows for a – more or less – standard RBM, which is shown in Section 5 below to be
efficient and robust.

In the context of the RBM, the detailed, i.e., high dimensional approximation Eh(ω) of the exact so-
lution E(ω) of (2.5) is called truth approximation. The key to set up the formulation for a lower dimen-
sional reduced basis approximation is the idea that the set of all possible truth approximations MN :=
{Eh(ω) solves (3.9) |ω ∈ D} lies on a low-dimensional manifold in Vh,p, [30]. Instead of computing the
–expensive– truth approximations Eh(ω) for all frequencies ω in a given parameter domain D, the RBM
amounts to finding a suitable approximation space XN ⊂ Vh,p of MN with lower dimension N := dim(XN ) �
dim(Vh,p) =: N = Nh,p and then computing –cheap– approximations EN (ω) ∈ XN . This is done using snap-
shots, i.e., truth approximations for N different values of the parameter, cf. [30],

XN := span {Eh(ω) solves (3.9) |ω ∈ SN} , SN := {ω1, . . . , ωN} ⊂ D.

In the online phase, one computes the Galerkin approximation in the previously determined low-dimensional
space XN , i.e.,4

ah(EN (ω),vN ; ω) = f(vN ; ω) ∀vN ∈ XN .

The spaces XN are called reduced basis spaces, a standard procedure to construct them is a greedy algorithm,
see e.g. [7, 30]. This algorithm constructs the space XN iteratively by enriching it with one new basis function
in each iteration. The particular choice of the basis functions is based upon an error indicator or estimator, the
algorithm therefore depends on efficiently computable a posteriori error bounds ‖Eh(ω)−EN (ω)‖DG ≤ ΔN (ω).
The greedy procedure then maximizes the efficiently computable ΔN (ω) w.r.t. an appropriate training set
Ξtrain ⊂ D to define the snapshots.

The key to these efficiently evaluable error bounds as well as to the efficiency of the calculation of the RBM
solution EN (ω) is an affine dependency of ah and f w.r.t. the parameter ω, i.e., they must be of the following
form:

ah(uh,vh; ω) =
Qa∑
q=1

Θa
q (ω)aq

h(uh,vh), f(vh; ω) =
Qf∑
q=1

Θf
q (ω)f q(vh)

for all uh,vh ∈ Vh,p and all ω ∈ D with parameter-dependent functions Θa
q (ω), Θf

q (ω) : D → R, as well as
sesquilinear forms aq

h(·, ·) and antilinear forms fq(·) which are independent of the parameter ω.

4To shorten notation we omit τ since it is chosen constant in our numerical experiments.
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The online-efficiency is obtained via precomputing the values aq
h(ξi, ξj), i, j ∈ {1, . . . , N}, q ∈ {1, . . . , Qa}

and f q(ξi), i ∈ {1, . . . , N}, q ∈ {1, . . . , Qf} in a precedent, possibly time-consuming offline phase, where
{ξ1, . . . , ξN} denotes a basis of the RB space XN . The mentioned error estimator ΔN (ω) can, e.g., be based
upon the dual norm of the RB residual rN (·; ω) = f(·; ω)− ah(EN , ·; ω) : Vh,p → C and the coercivity constant
αDG(ω) of ah(·, ·; ω). It reads, cf. [30]:

ΔN (ω) =
‖rN (·; ω)‖DG∗

αDG(ω)
=

1
αDG(ω)

sup
vh∈Vh,p

rN (vh; ω)
‖vh‖DG

·

For ω ∈ D, the dual norm of rN (·; ω) can be evaluated via the dG-norm of its Riesz representative vrN (ω) ∈ Vh,p

which satisfies ‖vrN (ω)‖DG = ‖rN (·; ω)‖DG∗ . Based upon the affine decomposition of ah and f , also the norm of
the Riesz representative vrN (ω) is offline-online-decomposable (e.g. [11, 19, 30]) and can therefore be evaluated
efficiently in the online phase. The coercivity constant αDG(ω) can e.g. be computed by an eigenvalue problem
or it can be approximated via the Successive Constraint Method (SCM), [23].

The above considerations indicate, that we can use the above introduced hp-dG discretization as a truth
approximation within the RBM. Since the frequency ω serves as the parameter, the challenge remains that
Eh(ω) strongly depends on ω.

5. Numerical results

In this section, we present results of some numerical experiments for the investigated problem being treated
with the RBM. As already mentioned, one crucial ingredient of the RBM is the affine decomposition of ah and f
w.r.t. the parameter. For our dG formulation (3.9), this affine form is readily given by:

Θa
1(ω) :≡ 1, a1(uh,vh) := (μ−1∇h × uh,∇h × vh)Ω − 〈�uh�, {{μ−1∇h × vh}}〉FI∪Γ

h

− 〈{{μ−1∇h × uh}}, �vh�〉FI∪Γ
h

+ 〈τh−1�uh�, �vh�〉FI∪Γ
h

,

Θa
2(ω) := ω2, a2(uh,vh) := −(εuh,vh)Ω ,

Θa
3(ω) := ω, a3(uh,vh) := −i(σuh,vh)Ω − iλ(ε0μ

−1
0 )1/2 〈(uh)T , (vh)T 〉Σ ,

Θf
1 (ω) := ω, f1(vh) := i

√
ε0(Ja,vh)Ω,

Θf
2 (ω) :≡ 1, f2(vh) := 〈μ−1

0 g, (vh)T 〉Σ ,

and, therefore, Qa = 3, Qf = 2. Note, that Ja and g are chosen to be parameter-independent. We use boundary
conditions as specified in (2.1b) and (2.1c). The models we use for our numerical tests were created using
COMSOL Multiphysics 4.2a. Details of the implementation an all data are given in Appendix B. All RB
calculations were implemented in RBmatlab, see http://www.morepas.org.

As geometry we use the unit cube (0, 1)3 from which we cut out two smaller blocks, each of side length 1/4.
One of the smaller blocks is placed parallel to the large block, one is rotated by 45 degrees about the z-axis,
see Figure 2. The two interior blocks are supposed to be perfectly conducting (2.1b), whereas an impedance
boundary condition (2.1c) is imposed on the exterior boundary.

We implemented two versions of the model: Model 1 has constant coefficients μ ≡ μ0 = 4π × 10−7, ε ≡ ε0 =
8.854×10−12, and σ ≡ 0.01. In Model 2 the coefficients are given by μ(x) = μ0(1+‖x−(0.5, 0.5, 0.5)T‖), ε(x) =
ε0(1 + ‖x‖), and σ(x) = 0.01(1 + 0.5 x2

1). Referring to [22], we chose τ = 1000/μ0 for both models. With these
two models, we performed a greedy sampling with a parameter domain D = [1, 50] GHz which was discretized
into 97 equidistant sampling points to obtain Ξtrain.

Note also that we are dealing with complex-valued degrees of freedom (DOFs), which has to be taken into
account when choosing a solver. Since the MATLAB backslash-solver (at least for finer discretizations) was not
capable of an efficient numerical solution, we used MUMPS [3, 4], which allows us to use about 300 000 DOFs
on an iMac, 3.2 GHz Intel Core i3 with 8GB RAM.

http://www.morepas.org
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Figure 2. Geometry for the numerical experiments.

Table 1. h-convergence: ‖E	 −Eh‖DG for different h.

p = 1 Model 1 Model 2
h # DOFs ω1 = 1 ω2 = 10 ω1 = 1 ω2 = 10
1 345 1.4637 2.5759 1.1366 4.3942
1/2 2760 0.9465 0.6149 0.7506 1.1621
1/4 22 080 0.5653 0.2853 0.4521 0.7041
1/8 176 640 0.2886 0.1357 0.2286 0.2679

In absence of an analytic solution to (2.1a)–(2.1c), we determine a reference solution E	 and investigate
‖E	 − Eh‖DG for decreasing mesh size h in order to validate our code w.r.t. (3.24). We start with h = 1 and
refine the mesh uniformly until we end up at a mesh size of h = 1/16. Thus, we obtain conforming meshes. We
choose p = 1. The solution E1/16 consisted of 1 413 120 DOFs and was used as reference solution E	, whose
computation took about 7 h. The h-convergence results are shown in Table 1.

For the greedy algorithm we used different mesh sizes that are pre-defined by COMSOL. The number of DOFs
varies from 7818 to 290 673. In Figure 3 we show the convergence of the error during the greedy algorithm when
using the real error (strong greedy)

max
ω∈Ξtrain

‖eN (ω)‖DG, eN (ω) := Eh(ω) −EN (ω),

as well as the error estimator maxω∈Ξtrain ΔN (ω) as error indicator. There are several versions of the Successive
Constraint Method (SCM) for complex-valued problems, e.g. [11,19,20]. As proposed in [27], we instead obtained
the coercivity constant via an interpolation method based on precalculated values of αDG(ω).

We observe an exponential decay of the error. As expected, the decay is faster for Model 1 than for Model 2
which is the more sophisticated one. In addition, although the error estimator overestimates the real error,
it reflects the dependency on the frequency ω correctly, cf. Figure 4, which is crucial for the selection of the
snapshots during the greedy algorithm. For Model 1, the RBM matrices are almost singular and, hence, the
reduced linear systems became unstable when creating reduced bases with more than 50 basis functions without
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Figure 3. Real error and error estimator during the greedy algorithm, p = 1.

Table 2. Runtimes.

Model 1 (N = 50) Model 2 (N = 73)
# DOFs 290 673 92 481 47 598 7818 290 673 92 481 47 598 7818
tdet.[s] 158.767 14.872 4.923 0.258 157.087 14.710 4.831 0.270
tred.[s] 0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.002
speedup 67 449 9487 3648 219 75 859 7280 2534 112
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(a) Model 1, N=20.
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(b) Model 2, N=40.

Figure 4. Error and error estimator for Model 1 with basis length N=20 (left) and Model 2
with basis length N = 40 (right).
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the computationally expensive Gram–Schmidt orthonormalisation. At this point, the error measured in the
dG-norm ‖ ·‖DG was below 10−4. For Model 2, the bases became unstable for N > 73 where the maximum error
over the sampling set was at about 10−3. The offline phase took between 3 min for the coarse meshes and 18 h
for the finer meshes. In Table 2, we show the online times needed for performing a detailed respectively reduced
simulation. The online speedup factors vary from 112 to 75 859. One can also observe that for both models the
error decays slightly faster for the finer discretized versions. This means that the physics of the problem can be
represented better with a finer mesh and can therefore also be reproduced better with a reduced solution.

In order to verify the robustness of our RB approach, we finally investigate the dependency over the whole
frequency range. In Figure 4, we show the error and error estimator over the whole parameter domain D with
100 equidistant grid points for the two models with 92 481 DOFs and reduced bases with dimension N = 20
(Model 1) resp. N = 40 (Model 2). As desired, the error estimator resembles the behavior of the true error and
both stay in an acceptable range, which shows the robustness of our dG discretization as well as of the RBM.

Appendix A. Proofs

A.1. Proof of Theorem 2.3

We collect detailed proofs of certain relevant results in this appendix.

Proof of Theorem 2.3. Fix ω > 0 and let u, v ∈ X , then

|ae(u,v; ω)| = |(μ−1∇× u,∇× v)Ω − ω2(εu,v)Ω − iω(σu,v)Ω − iωλ(ε0μ
−1
0 )1/2〈uT ,vT 〉Σ |

≤ μ−1
− ‖∇× u‖L2(Ω)3‖∇× v‖L2(Ω)3 +

(
ω2ε+ + ωσ+

)
‖u‖L2(Ω)3‖v‖L2(Ω)3

+ ωλ(ε0μ
−1
0 )1/2 ‖uT ‖L2(Σ)3‖vT ‖L2(Σ)3

≤ max
{
μ−1
− , ω2ε+ + ωσ+, ωλ(ε0μ

−1
0 )1/2

}
‖u‖X‖v‖X= γ(ω) ‖u‖X‖v‖X ,

which shows continuity. As for coercivity, we have:

|ae(u,u; ω)| =
[(

(μ−1∇× u,∇× u)Ω − ω2(εu,u)Ω

)2

+
(
ω(σu,u)Ω + ωλ(ε0μ

−1
0 )1/2‖uT ‖2

L2(Σ)3

)2]1/2

≥
[
(μ−1∇× u,∇× u)2Ω − 2ω2(μ−1∇× u,∇× u)Ω(εu,u)Ω

+ ω4(εu,u)2Ω + ω2(σu,u)2Ω + ω2λ2ε0μ
−1
0 ‖uT ‖4

L2(Σ)3

]1/2

≥
[
(1 − δ)(μ−1∇× u,∇× u)2Ω +

(
1 − δ−1

)
ω4(εu,u)2Ω

+ ω2(σu,u)2Ω + ω2λ2ε0μ
−1
0 ‖uT ‖4

L2(Σ)3

]1/2

,

for δ ∈ (0, 1) by Young’s inequality. The fact that
√

a + b ≥ 1√
2
(
√

a+
√

b) for a, b ≥ 0, together with (2.2), (2.3)
and (2.4) in Assumption 2.1, leads to

|ae(u,u; ω)| ≥ 1√
2

[
(1 − δ)(μ−1∇× u,∇× u)2Ω +

(
1 − δ−1

)
ω4(εu,u)2Ω + ω2(σu,u)2Ω

]1/2

+
ωλ

√
ε0√

2μ0
‖uT ‖2

L2(Σ)3

≥ 1√
2

[
1 − δ

μ2
+

‖∇× u‖4
L2(Ω)3 +

(
ω2σ2

− −
(
δ−1 − 1

)
ω4ε2

+

)
‖u‖4

L2(Ω)3

] 1
2

+
ωλ

√
ε0√

2μ0
‖uT ‖2

L2(Σ)3 .
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Choose 1 > δ >
ω2ε2

+

ω2ε2
++σ2

−
> 0, e.g., δ = ω2ε2

++σ2
−/2

ω2ε2
++σ2

−
,

|ae(u,u; ω)| ≥ 1√
2

[ σ2
−

2(ω2ε2
+ + σ2

−)μ2
+

‖∇× u‖4
L2(Ω)3+

ω4ε2
+σ2

− + ω2σ4
−

2ω2ε2
+ + σ2

−
‖u‖4

L2(Ω)3

] 1
2

+
ωλ

√
ε0√

2μ0
‖uT ‖2

L2(Σ)3

≥ 1
2

(
σ2
−

2(ω2ε2
+ + σ2

−)μ2
+

) 1
2

‖∇× u‖2
L2(Ω)3

+
ω

2

(
ω2ε2

+σ2
− + σ4

−
2ω2ε2

+ + σ2
−

) 1
2

‖u‖2
L2(Ω)3 +

ωλ
√

ε0√
2μ0

‖uT ‖2
L2(Σ)3

≥ min
{

σ−
23/2μ+(ω2ε2

+ + σ2
−)1/2

,
ω

2

(
ω2ε2

+σ2
− + σ4

−
2ω2ε2

+ + σ2
−

) 1
2

,
ωλ

√
ε0√

2μ0

}
‖u‖2

X

= α(ω) ‖u‖2
X .

For the right-hand side, standard arguments yield |f(v; ω)| ≤
(
ω
√

ε0‖Ja‖L2(Ω)3 + μ−1
0 ‖g‖L2(Σ)3

)
‖v‖X =

Cf (ω)‖v‖X for all v ∈ X , which proves the claim. �

A.2. Proof of Theorem 3.2

Proof of Theorem 3.2. The proof follows the standard method to show consistency of discrete dG variational
formulations that is mentioned, e.g., in [31] for other fluxes. Since, however, we were not able to find a proof in
the literature for the fluxes specified in Section 3.1, we state it here completely.

If E is a solution of (2.1a)–(2.1c), then the following tangential jumps vanish, �μ−1∇ × E� = 0 on FI
h ,

�E� = 0 on FI
h ∪FΓ

h , since E and μ−1∇×E are functions in H(curl, Ω) and n×E = 0 on Γ1, . . . , ΓM−1. This
fact together with the identity (μ−1∇×E,∇h × vh)Ω = (∇× (μ−1∇×E),vh)Ω − 〈�μ−1∇×E�, {{vh}}〉FI

h
+

〈{{μ−1∇×E}}, �vh�〉FI
h
− 〈n× (μ−1∇×E),vh〉FB

h
yield the desired consistency:

ah(E,vh; ω, τ) = (∇× (μ−1∇×E),vh)Ω −
=0︷ ︸︸ ︷

〈�μ−1∇×E�, {{vh}}〉FI
h

+ 〈{{μ−1∇×E}}, �vh�〉FI
h
− 〈n× (μ−1∇×E),vh〉FΓ

h
− 〈n× (μ−1∇×E),vh〉FΣ

h

− ((ω2ε + iωσ)E,vh)Ω − iωλ(ε0μ
−1
0 )1/2〈ET , (vh)T 〉Σ − 〈{{μ−1∇×E}}, �vh�〉FI∪Γ

h

− 〈�E�, {{μ−1∇h × vh}}〉FI∪Γ
h︸ ︷︷ ︸

=0

+ 〈τh−1�E�, �vh�〉FI∪Γ
h︸ ︷︷ ︸

=0

=(∇× (μ−1∇×E) − (ω2ε + iωσ)E,vh)Ω − 〈n× (μ−1∇×E), (vh)T 〉Σ

− iωλ(ε0μ
−1
0 )1/2〈ET , (vh)T 〉Σ

= iω
√

ε0(Ja,vh)Ω + μ−1
0 〈g, (vh)T 〉Σ = f(vh; ω)

for all vh ∈ Vh,p, since 〈n× (μ−1∇×E),vh〉FΣ
h

= 〈n× (μ−1∇×E), (vh)T 〉Σ . �
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A.3. Proof of Theorem 3.7

Proof of Theorem 3.7. Fix ω, τ > 0 and let u, v ∈ Ṽh,p. The properties (2.2), (2.3), (2.4) of μ, ε and σ yield∣∣ãh(u,v; ω, τ)
∣∣ =

∣∣∣(μ−1∇h × u,∇h × v)Ω − ω2(εu,v)Ω − iω(σu,v)Ω

− (Lμ(u), μ−1∇h × v)Ω − (μ−1∇h × u,Lμ(v))Ω

+ 〈τh−1�u�, �v�〉FI∪Γ
h

− iωλ(ε0μ
−1
0 )1/2〈uT ,vT 〉Σ

∣∣∣
≤μ−1

− ‖∇h × u‖L2(Ω)3‖∇h × v‖L2(Ω)3 +
(
ω2ε+ + ωσ+

)
‖u‖L2(Ω)3‖v‖L2(Ω)3

+ ‖μ−1Lμ(u)‖L2(Ω)3‖∇h × v‖L2(Ω)3 + ‖∇h × u‖L2(Ω)3‖μ−1Lμ(v)‖L2(Ω)3

+ τ ‖h− 1
2 �u�‖FI∪Γ

h
‖h− 1

2 �v�‖FI∪Γ
h

+ ωλ(ε0μ
−1
0 )1/2 ‖uT ‖L2(Σ)3‖vT ‖L2(Σ)3

≤max

{
μ−1
− +

μ+

√
Cinv

μ2
−

, ω2ε+ + ωσ+, τ +
μ+

√
Cinv

μ2
−

, ωλ

[
ε0

μ0

] 1
2
}
‖u‖DG ‖v‖DG

= γDG(ω) ‖u‖DG ‖v‖DG,

because we can estimate as follows (since Lμ(u) ∈ Vh,p and Πμw ∈ Vh,p)

‖μ−1Lμ(u)‖L2(Ω)3 = sup
w∈L2(Ω)3

(μ−1Lμ(u),w)Ω

‖w‖L2(Ω)3
= sup

w∈L2(Ω)3

(Lμ(u), μ−1Πμw)Ω

‖w‖L2(Ω)3

= sup
w∈L2(Ω)3

〈�u�, {{μ−1Πμw}}〉FI∪Γ
h

‖w‖L2(Ω)3
≤ ‖h− 1

2 �u�‖FI∪Γ
h

sup
w∈L2(Ω)3

‖h 1
2 μ−1{{Πμw}}‖FI∪Γ

h

‖w‖L2(Ω)3

≤μ−1
−

√
Cinv ‖h−

1
2 �u�‖FI∪Γ

h
sup

w∈L2(Ω)3

‖Πμw‖L2(Ω)3

‖w‖L2(Ω)3
≤ μ+μ−2

−
√

Cinv‖h−
1
2 �u�‖FI∪Γ

h
.

In this calculation we used the definitions (3.14) and (3.15) of the operators Lμ and Πμ as well as the esti-
mates (3.13) and (3.16). This proves the assertion. �

A.4. Proof of Theorem 3.9

Proof of Theorem 3.9. Fix ω > 0 and let vh ∈ Vh,p. Then,∣∣ah(vh,vh; ω, τ)
∣∣ =

∣∣(μ−1∇h × vh,∇h × vh)Ω − ω2(εvh,vh)Ω − iω(σvh,vh)Ω

− 〈�vh�, {{μ−1∇h × vh}}〉FI∪Γ
h

− 〈{{μ−1∇h × vh}}, �vh�〉FI∪Γ
h

+ 〈τh−1�vh�, �vh�〉FI∪Γ
h

− iωλ(ε0μ
−1
0 )1/2 ‖(vh)T ‖2

L2(Σ)3

∣∣.
First, we use the inverse triangle inequality and Hölder’s inequality to obtain∣∣ah(vh,vh; ω, τ)

∣∣ ≥ ∣∣(μ−1∇h × vh,∇h × vh)Ω − ω2(εvh,vh)Ω
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+ τ‖h− 1
2 �vh�‖2

FI∪Γ
h

− iω(σvh,vh)Ω − iωλ(ε0μ
−1
0 )1/2 ‖(vh)T ‖2

L2(Σ)3

∣∣
− 2 ‖h− 1

2 �vh�‖FI∪Γ
h

‖h 1
2 {{μ−1∇h × vh}}‖FI∪Γ

h
.

The definition of the absolute value of complex numbers yields

=
([

(μ−1∇h × vh,∇h × vh)Ω − ω2(εvh,vh)Ω + τ‖h− 1
2 �vh�‖2

FI∪Γ
h

]2

+
[
ω2(σvh,vh)2Ω + 2ω2λ(ε0μ

−1
0 )1/2 (σvh,vh)Ω ‖(vh)T ‖2

L2(Σ)3

+ ω2λ2ε0μ
−1
0 ‖(vh)T ‖4

L2(Σ)3

]) 1
2

− 2 ‖h− 1
2 �vh�‖FI∪Γ

h
‖h 1

2 μ−1{{∇h × vh}}‖FI∪Γ
h

.

Now we use property (2.2) of μ

≥
([

(μ−1∇h × vh,∇h × vh)Ω + τ‖h− 1
2 �vh�‖2

FI∪Γ
h

]2

− 2ω2(εvh,vh)Ω

[
(μ−1∇h × vh,∇h × vh)Ω + τ‖h− 1

2 �vh�‖2
FI∪Γ

h

]
+ ω4(εvh,vh)2Ω + ω2(σvh,vh)2Ω + ω2λ2ε0μ

−1
0 ‖(vh)T ‖4

L2(Σ)3

)1/2

− 2μ−1
− ‖h− 1

2 �vh�‖FI∪Γ
h

‖h 1
2 {{∇h × vh}}‖FI∪Γ

h

as well as
√

x + y ≥ 1√
2
(
√

x +
√

y) for x, y ≥ 0 and we apply Young’s inequality twice, for a ∈ (0, 1), δ > 0

≥ 1√
2

(
(1 − a)

[
(μ−1∇h × vh,∇h × vh)Ω + τ‖h− 1

2 �vh�‖2
FI∪Γ

h

]2

−
(
a−1−1

)
ω4(εvh,vh)2Ω + ω2(σvh,vh)2Ω

)1/2

+
ωλ

√
ε0√

2μ0
‖(vh)T ‖2

L2(Σ)3

− δ−1‖h− 1
2 �vh�‖2

FI∪Γ
h

− δμ−2
− ‖h 1

2 {{∇h × vh}}‖2
FI∪Γ

h
.

We note that
(
a−1 − 1

)
> 0 for a ∈ (0, 1) and use the properties (2.3) and (2.4) of ε and σ in Assumption 2.1

as well as the inverse inequality (3.13):

≥ 1√
2

(
(1 − a)

[
(μ−1∇h × vh,∇h × vh)Ω + τ‖h− 1

2 �vh�‖2
FI∪Γ

h

]2

+ ω2
(
σ2
− −

(
a−1 − 1

)
ω2ε2

+

)
‖vh‖4

L2(Ω)3

)1/2

+
ωλ

√
ε0√

2μ0
‖(vh)T ‖2

L2(Σ)3

− δ−1‖h− 1
2 �vh�‖2

FI∪Γ
h

− δCinvμ
−2
− ‖∇h × vh‖2

L2(Ω)3 .

Once again
√

x + y ≥ 1√
2
(
√

x +
√

y) together with the boundedness (2.2) of μ gives

≥ 1
2

(√
1 − a

[
μ−1

+ ‖∇h × vh‖2
L2(Ω)3 + τ‖h− 1

2 �vh�‖2
FI∪Γ

h

]
+ ω

(
σ2
− −

(
a−1 − 1

)
ω2ε2

+

)1/2 ‖vh‖2
L2(Ω)3

)
+

ωλ
√

ε0√
2μ0

‖(vh)T ‖2
L2(Σ)3
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− δ−1‖h− 1
2 �vh�‖2

FI∪Γ
h

− δCinvμ
−2
− ‖∇h × vh‖2

L2(Ω)3

= ‖∇h × vh‖2
L2(Ω)3

(√
1 − a

2μ+
− δCinvμ

−2
−

)

+ ‖vh‖2
L2(Ω)3

ω
(
σ2
− −

(
a−1 − 1

)
ω2ε2

+

)1/2

2
+ ‖(vh)T ‖2

L2(Σ)3
ωλ

√
ε0√

2μ0

+ ‖h− 1
2 �vh�‖2

FI∪Γ
h

(
τ
√

1 − a

2
− δ−1

)
.

We may choose 1 > a >
ω2ε2

+
ω2ε2

++σ2
−

, e.g., a =
ω2ε2

++
σ2
−
2

ω2ε2
++σ2

−
and obtain

= ‖∇h × vh‖2
L2(Ω)3

(
1

2μ+

(
σ2
−

2(ω2ε2
+ + σ2

−)

) 1
2

− δCinvμ
−2
−

)

+ ‖vh‖2
L2(Ω)3

ω

2

(
σ2
− −

σ2
−

2ω2ε2
+ + σ2

−
ω2ε2

+

) 1
2

+ ‖(vh)T ‖2
L2(Σ)3

ωλ
√

ε0√
2μ0

+ ‖h−1�vh�‖2
FI∪Γ

h

(
τ

2

(
σ2
−

2(ω2ε2
+ + σ2

−)

) 1
2

− δ−1

)

= ‖∇h × vh‖2
L2(Ω)3

(
σ−

23/2μ+(ω2ε2
+ + σ2

−)1/2
− δCinvμ

−2
−

)

+ ‖vh‖2
L2(Ω)3

ω

2

(
ω2ε2

+σ2
− + σ4

−
2ω2ε2

+ + σ2
−

) 1
2

+ ‖(vh)T ‖2
L2(Σ)3

ωλ
√

ε0√
2μ0

+ ‖h−1�vh�‖2
FI∪Γ

h

(
τσ−

23/2(ω2ε2
+ + σ2

−)1/2
− δ−1

)
.

Choose 0 < δ <
μ2
−σ−

23/2Cinvμ+(ω2ε2
++σ2

−)1/2 . e.g. δ = μ2
−σ−

25/2Cinvμ+(ω2ε2
++σ2

−)1/2 yields

= ‖∇h × vh‖2
L2(Ω)3

σ−
25/2μ+(ω2ε2

+ + σ2
−)1/2

+ ‖vh‖2
L2(Ω)3

ω

2

(
ω2ε2

+σ2
− + σ4

−
2ω2ε2

+ + σ2
−

) 1
2

+ ‖(vh)T ‖2
L2(Σ)3

ωλ
√

ε0√
2μ0

+ ‖h−1�vh�‖2
FI∪Γ

h

(
τσ−

23/2(ω2ε2
+ + σ2

−)1/2
−

25/2Cinvμ+(ω2ε2
+ + σ2

−)1/2

μ2
−σ−

)
·

Hence, for all penalty parameters τ > τ∗ with τ∗ defined by (3.17), e.g., choosing specifically

τ = 23/2(ω2ε2
++σ2

−)1/2

σ−

(
25/2Cinvμ+(ω2ε2

++σ2
−)1/2

μ2
−σ−

+ ωλ
√

ε0√
2μ0

)
, we obtain

≥ min
{

σ−
25/2μ+(ω2ε2

+ + σ2
−)1/2

,
ω

2

(
ω2ε2

+σ2
− + σ4

−
2ω2ε2

+ + σ2
−

) 1
2

,
ωλ

√
ε0√

2μ0

}
‖vh‖2

DG

= αDG(ω) ‖vh‖2
DG,

and everything is proven. �
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Table B.1. Weak Form PDE and boundary conditions.

Weak Form PDE, whole domain

weak (1) 1/mu*rotE1*rotv1 - omega*omega*epsilon*E1*test(E1)

-i*omega*sigma*E1*test(E1)

-i*omega*sqrt(epsilon0)*Ja1*test(E1)

weak (2),(3) accordingly

Weak Contributions on Mesh Boundaries, whole domain

Weak expression (1) -jumpE1 * 1/mu * avrotv1 -1/mu *avrotE1 *jumpv1

+tau/h*jumpE1*jumpv1

Weak expression (2),(3) accordingly

Weak Contributions on Interior Block Boundaries, interior blocks

Weak expression (1) -(ny*E3-nz*E2)*1/mu*rotv1

-1/mu*rotE1*(ny*test(E3)-nz*test(E2))

+tau/h*(ny*E3-nz*E2)*(ny*test(E3)-nz*test(E2))

Weak expression (2),(3) accordingly

Exterior Boundary Conditions, outer boundary

Weak expression (4) - (g1*vT1+g2*vT2+g3*vT3) / mu0

Weak expression (5) -i*omega*lambda *sqrt(epsilon0/mu0)

* (ET1*vT1 + ET2*vT2 + ET3*vT3)

Table B.2. Parameters.

Global Parameters Expression Description

omega 1× 1e9 frequency, ω ∈ [1 · 1e9, 50 · 1e9]
epsilon0 8.854× 1e-12 electric permittivity in vacuum

Ja1 1,00E+004 electric current density, first entry

Ja2 1,00E+004 electric current density, second entry

Ja3 1,00E+004 electric current density, third entry

mu0 4×pi× 1e-7 magnetic permeability in vacuum

tau 1000/mu0 penalty parameter for dG formulation

lambda 1 λ > 0, intensity of impedance

Appendix B. Description of the COMSOL model

In order to enable reproducibility, we provide details about the COMSOL model which we used for our
numerical experiments. We use the Weak Form PDE from Mathematics → PDE interfaces and define three
Dependent variables E1, E2, and E3. For reasons of compactness we only show the first entry here when dealing
with vectors or multiple similar expressions.

Table B.1 shows the weak expressions (1), (2) and (3) defined by the weak form PDE node on the whole
domain as well as jump and average terms on the mesh boundaries and the contributions on the interior block
boundaries to the weak formulation. Parameters and Variables are indicated in Tables B.2 and B.3, respectively.
In particular, the used source functions Ja and g can be found there. A physics-controlled mesh was used, the
Element size varied from coarser to finer. In all cases we used Discontiuous Lagrange as shape function type.
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Table B.3. Variables.

Variables Expression Description

rotE1 E3y-E2z ∇h × E, first entry

rotv1 test(E3y)-test(E2z) ∇h × v, first entry

jumpE1 dny*down(E3)-dnz*down(E2) +uny*up(E3)-unz*up(E2) [[E]] on FI
h , first entry

jumpv1 dny*test(down(E3))-dnz*test(down(E2)) +uny*test(up(E3))-unz*test(up(E2))[[v]] on FI
h, first entry

avrotE1 0.5*(up(E3y)-up(E2z) +down(E3y)-down(E2z)) {{∇h × E}}, first entry

avrotv1 0.5*(test(up(E3y))-test(up(E2z)) +test(down(E3y))-test(down(E2z))) {{∇h × v}}, first entry

ET1 nz*E1*nz-nx*E3*nz -nx*E2*ny+ny*E1*ny ET , first entry

vT1 nz*test(E1)*nz-nx*test(E3)*nz -nx*test(E2)*ny+ny*test(E1)*ny vT , first entry

mu mu0*(1+distance midpoint) magnetic permeability

sigma 0.01*(1+0.5*xˆ2) electric conductivity

epsilon epsilon0*(1+distance 000) electric permittivity

distance midpoint sqrt((0.5-x)ˆ2 + (0.5-y)ˆ2 + (0.5-z)ˆ2) ‖x − ( 1
2
, 1

2
, 1

2
)T ‖

distance 000 sqrt(xˆ2+yˆ2+zˆ2) ‖x‖
g1, g2, g3 t1x, t1y, t1z g ∈ L2

t (Σ)3
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