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SCALING LIMITS IN COMPUTATIONAL BAYESIAN INVERSION
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Abstract. Computational Bayesian inversion of operator equations with distributed uncertain input
parameters is based on an infinite-dimensional version of Bayes’ formula established in M. Dashti and
A.M. Stuart [Handbook of Uncertainty Quantification, edited by R. Ghanem, D. Higdon and H. Owhadi.
Springer (2015).] and its numerical realization in C. Schillings and Ch. Schwab [Inverse Problems 29
(2013) 065011; Inverse Problems 30 (2014) 065007.] Based on the sparsity of the posterior density
shown in C. Schillings and Ch. Schwab [Inverse Problems 29 (2013) 065011; Inverse Problems 30
(2014) 065007.]; C. Schwab and A.M. Stuart [Inverse Problems 28 (2012) 045003.], dimension-adaptive
Smolyak quadratures can afford higher convergence rates than MCMC in terms of the number M
of solutions of the forward (parametric operator) equation in C. Schillings and Ch. Schwab [Inverse
Problems 29 (2013) 065011; Inverse Problems 30 (2014) 065007.]. The error bounds and convergence
rates obtained in C. Schillings and Ch. Schwab [Inverse Problems 29 (2013) 065011; Inverse Problems
30 (2014) 065007.] are independent of the parameter dimension (in particular free from the curse of
dimensionality) but depend on the (co)variance Γ > 0 of the additive, Gaussian observation noise as
exp(bΓ−1) for some constant b > 0. It is proved that the Bayesian estimates admit asymptotic ex-
pansions as Γ ↓ 0. Sufficient (nondegeneracy) conditions for the existence of finite limits as Γ ↓ 0 are
presented. For Gaussian priors, these limits are shown to be related to MAP estimators obtained from
Tikhonov regularized least-squares functionals. Quasi-Newton (QN) methods with symmetric rank-1
updates are shown to identify the concentration points in a non-intrusive way, and to obtain second
order information of the posterior density at these points. Based on the theory, two novel computational
Bayesian estimation algorithms for Bayesian estimation at small observation noise covariance Γ > 0
with performance independent of Γ ↓ 0 are proposed: first, dimension-adaptive Smolyak quadrature
from C. Schillings and Ch. Schwab [Inverse Problems 29 (2013) 065011; Inverse Problems 30 (2014)
065007.] combined with a reparametrization of the parametric Bayesian posterior density near the
MAP point (assumed unique) and, second, generalized Richardson extrapolation to the limit of van-
ishing observation noise variance. Numerical experiments are presented which confirm Γ -independent
convergence of the curvature-rescaled, adaptive Smolyak algorithm. Dimension truncation of the pos-
terior density is justified by a general compactness result for the posterior’s Hessian at the MAP point.
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1. Introduction

Efficient computational Bayesian inversion of partial differential equations has attracted considerable atten-
tion in recent years, in statistics in the context of “big data”, and in computational uncertainty quantification,
as documented in [13, 23, 26] and the references therein. While, historically, numerical analysis focused on
finite-dimensional, parametric problems, recent years have seen a heightened interest in numerical treatment
of partial differential equations (PDEs) with “distributed uncertainty”, such as random field inputs from an
infinite-dimensional space X . Upon choosing an (unconditional) basis of the space X the Bayesian inversion and
estimation formally become infinite-dimensional, parametric deterministic quadrature problems, with quadra-
ture understood with respect to the Bayesian posterior measure. Under appropriate sparsity and smoothness of
the Bayesian posterior density, deterministic, dimension-adaptive quadrature approaches have been shown to
achieve higher convergence rates than the widely used MCMC methods; we refer to [29, 30] and the references
therein. It is well-known, however, that the Bayesian posterior exhibits concentration effects for small observation
noise covariance Γ ; in high-dimensional parameter spaces, which commonly arise in problems with uncertain,
distributed input data, most contributions to the Bayesian estimate therefore stem from a “small” subset of
the parameter space. This subset is, generally, data dependent, and its efficient computational localization, e.g.
during the “burn-in” of MCMC samplers, is key to efficient computational Bayesian inversion.

To develop efficient numerical treatment of a class of concentrating posterior densities in the sparse, dimension-
adaptive deterministic quadrature methods from [29, 30] is the purpose of the present paper. We propose to
numerically identify so-called MAP points of posterior concentration in parameter spaces by Quasi-Newton
methods with symmetric rank-1 (SR1) update, [10] applied to the (co)variance-weighted Bayesian misfit func-
tional. These methods afford locally superlinear convergence of iterates and Hessians. We propose to use the
second order information on the Bayesian posterior density at the MAP point for posterior “desingulariza-
tion” via curvature-based, affine reparametrization of the posterior density. We prove that this reparametriza-
tion renders the dimension-adaptive Smolyak quadratures from [29, 30] robust with respect to the observation
noise variance Γ . We also obtain asymptotic expansions of the Bayesian estimate with respect to observa-
tion noise variance Γ which generalize the results in [24] for the linear Gaussian case to nonlinear forward
problems.

The outline of this paper is as follows: in Section 2 we present (nonparametric) Bayesian estimation prob-
lems on function space for operator equations with Lipschitz dependence on distributed uncertainty u ∈ X , a
separable Banach space admitting an unconditional basis. To this end, we recapitulate the formalism of [29,30]
whereby the Bayesian estimate can be expressed as a formally infinite-dimensional integral wr. to the Bayesian
posterior density. Section 3 addresses the case when the observation noise (co)variance Γ ↓ 0. Under nondegen-
eracy assumptions on the (co)variance-weighted LSQ functions, the Bayesian estimate admits a finite (possibly
weak, cf. [14], Sect. 3) limit which equals the QoI evaluated at the point y0 in the (possibly infinite-dimensional)
parameter domain. Section 3 presents an asymptotic analysis which reveals, in particular, the need for the nu-
merical solution of a nonlinear, high-dimensional (co)variance-weighted least-squares problem to determine the
Γ = 0 limit as well as its asymptotic expansion with respect to Γ . Section 4 uses the structure of the leading
terms in the asymptotic expansion of the Bayesian estimate to develop a curvature-rescaling coordinate trans-
formation at the MAP point. We prove that under some nondegeneracy assumption, our approach removes the
posterior concentration as Γ ↓ 0. The asymptotic expansions obtained in Section 3 also justify a new (gener-
alized) “extrapolation to the limit” approach developed in Section 4.3, which can be combined with curvature
rescaling. The required second order information at the MAP point y0 can be obtained “for free” by Quasi-
Newton methods with SR1 updates (we refer to [31], Appendix C or to [10, 18]). The asymptotic expansion
of the Bayesian estimate w.r. to small covariances justifies the use of generalized Richardson extrapolation to
small observation (co)variance Γ , and its stable, algorithmic realization by the T -transformation based on [34].
In Section 5 numerical experiments are presented which confirm the theoretical results. Appendix A collects
known results on Laplace’s method for the asymptotic analysis of integrals depending on a parameter, and
Appendix B establishes the compactness of the Hessian, for bounded parameter ranges and uniform prior π0.
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2. Bayesian inversion of operator equations

We consider a class of Bayesian inverse problems for partial differential equations (PDES) with “distributed”
uncertain input data u taking values in infinite-dimensional spaces, in the setting outlined in [13].

2.1. Bayesian inversion in infinite dimension

By G : X → X we denote a “forward” response map from the separable Banach space X of uncertain,
distributed parameters u into some state (reflexive Banach) space X of responses. We equip X and X with
norms ‖ · ‖X and with ‖ · ‖X , respectively. We think of the forward response map as a solution map of an
operator equation acting on a state q ∈ X and taking values in the dual of a reflexive Banach space Y, i.e. we
consider an operator equation of the following form:

Given u ∈ X, f ∈ Y ′, find q ∈ X : A(u; q) = f (2.1)

where, for each instance u ∈ X , the uncertain operator A(u; ·) ∈ L(X ,Y ′) is assumed to be boundedly invertible,
at least locally sufficiently close to a nominal input u0 ∈ X , i.e. for ‖u − u0‖X small enough. Then, for any
instance of the uncertainty u and for known forcing f ∈ Y ′, the response q, i.e. the solution q ∈ X of the forward
problem (2.1) is the image of a map G : X × Y ′ to X , i.e.

q = G(u; f) ∈ X .
We omit the dependence of the response on f and simply write q = q(u) = G(u) for the uncertainty-to-solution
map G(·). We also assume given K bounded, linear observation functionals O(·) = (o1, . . . , oK) : X → Y = RK .
Specifically, we shall assume that O(·) comprises K bounded linear observation operators on the space X of
system responses, i.e. O ∈ (X ′)K , the dual space of the space X of system responses. We assume that there
are a finite number K of observables, taking values in the data space Y = RK equipped with the Euclidean
norm, denoted by ‖ · ‖2. The data δ is assumed to consist of observations of QoI system responses corrupted by
additive, centered Gaussian noise, i.e.

δ = O(G(u)) + η ∈ Y (2.2)

where η ∈ Y = RK is Gaussian observation noise and where the observation functional is O(·) = (ok(·))Kk=1 ∈
(X ′)K . In the present paper, we assume that the noise process η is Gaussian, i.e. a random vector η ∼ N (0, Γ ),
for a positive definite covariance operator Γ on RK (i.e., a symmetric, positive definite K × K covariance
matrix Γ ) which we assume to be known. Then, the uncertainty-to-observation map G = O ◦G : X → Y = RK

reads
δ = G(u) + η = (O ◦G)(u) + η : X �→ L2

Γ (Y ; gΓ ) (2.3)

where L2
Γ (Y ; gΓ ) denotes random vectors taking values in Y = RK which are square integrable with respect

to the centered Gaussian measure gΓ on Y with positive definite covariance matrix Γ > 0. In view of Bayes’
formula (e.g. [13], Thm. 3.3), we define the least-squares functional (also referred to as “potential” in [13], or as
“mismatch” resp. “misfit” functional in the literature, e.g. [3]) ΦΓ : X×Y → R by ΦΓ (u; δ) = 1

2R(u)�Γ−1R(u),
with the residual R at data δ and uncertainty u ∈ X given by

R(u) := G(u) − δ = (O ◦G)(u) − δ.

For observation noise (co)variance Γ > 0, the Bayesian potential ΦΓ (u; δ) : X×Y → R is a covariance-weighted
model-data misfit least squares function, given by

ΦΓ (u; δ) =
1
2
R(u)�Γ−1R(u) =

1
2
(
(δ − (O ◦G)(u))�Γ−1(δ − (O ◦G)(u))

)
. (2.4)

In ([13], Thm. 3.4), an infinite-dimensional version of Bayes’ rule is shown to hold in the present
setting. It states that, under appropriate continuity conditions on the uncertainty-to-observation map
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G = (O ◦G)(·) : X �→ Y = RK and on the prior measure π0 on the space X of uncertain parameters u, the
posterior distribution πδ is absolutely continuous with respect to the prior π0. While MCMC methods sample
from πδ, the deterministic quadrature approach from [29,30] is based on parametrizing the (bounded) posterior
density ΘΓ = dπδ

dπ0
and to use ΘΓ to integrate adaptively against the posterior πδ; cf. Proposition 2.3 ahead.

2.2. Uncertainty parametrization

We parametrize the uncertain datum u in the forward equation (2.1). In parametric statistical estimation, u is
a (low-dimensional) vector containing a few unknown parameters (yj)j∈J, for a finite index set J = {1, 2, . . . , J}
with small cardinality J so that X 	 RJ . In the present context of PDEs, u ∈ X , an infinite-dimensional,
separable Banach space is of interest in which case J = N. We assume that there exists a Schauder basis {ψj}j∈J

of X such that, for some “nominal” value 〈u〉 ∈ X of the uncertain datum u, and for some coefficient sequence
y = (yj)j∈J (uniquely associated with u− 〈u〉 ∈ X) the uncertainty u is parametrized by the sequence y in the
sense that there holds

u = u(y) := 〈u〉 +
∑
j∈J

yjψj ∈ X (2.5)

with unconditional convergence. We refer to u− 〈u〉 as “fluctuation” of u about the nominal value 〈u〉 ∈ X . So
far, the parametrization (2.5) is deterministic. In the case of a uniform prior, in order to place (2.2), (2.5) into
the (probabilistic) Bayesian setting of [13], we introduce (after possibly rescaling the fluctuations) a “reference”
parameter domain U = [−1, 1]J =

∏
j∈J[−1, 1], and equip this cartesian product of sets with the product

sigma-algebra B =
⊗

j∈J B1, with B1 denoting the sigma-algebra of Borel sets on [−1, 1]. On the measurable
space (U,B) thus obtained, we introduce a probability measure π0 (which will serve a Bayesian prior in what
follows), and which we shall choose as π0 =

⊗
j∈J

1
2λ

1 with λ1 denoting the Lebesgue measure on [−1, 1]. Then
(U,B, π0) becomes (as countable product of probability spaces) a probability space on the set U of all sequences
of coefficient vectors y in the uncertainty parametrization (2.5). The uncertain datum u in (2.5) becomes a
random field, with π0 charging the possible realizations of u. As indicated in [8,29,33], analyticity of uncertainty
parametrization (2.5) with respect to the parameter sequence y can be used to derive sparsity results for this
posterior. In the case of a Gaussian prior, a parametrization of the form (2.5) of the Gaussian random field can
be obtained via a Karhunen−Loève expansion, where (yj)j∈J is an iid. sequence of N (0, 1) random variables.
We refer to ([35], Chap. 6) and the references therein for details.

Throughout the remainder of this paper, we will assume that the uncertain input u in the forward problem (2.1)
is parametrized as in (2.5). We write R(y) and G(y) in place of R(u(y)) and of G(u(y)), respectively.

2.3. Forward models

We recapitulate classes of abstract, countably-parametric operator equations considered in [29,30]. Through-
out, we denote by X and Y two separable and reflexive Banach spaces over R (for some of the technical
arguments which follow, we shall require also extensions of these spaces to Banach spaces over the coefficient
field C; we shall use these without distinguishing these extensions notationally) with (topological) duals X ′

and Y ′, respectively. By L(X ,Y ′), we denote the set of bounded linear operators A : X → Y ′. Via the Riesz
representation theorem, we associate to each A ∈ L(X ,Y ′) in a one-to-one correspondence a bilinear form (with
Y〈·, ·〉Y′ denoting the Y × Y ′-duality pairing) via a(v, w) := Y〈w,Av〉Y′ for all v ∈ X , w ∈ Y.

2.3.1. Affine-parametric operator equations. Uniform prior π0

The assumption on affine parametrization of the distributed system uncertainty by the sequence y = (yj)j∈J ∈
U of (possibly countably many) parameters results in a parametric operator equation of the form

A(y) = A0 +
∑
j∈J

yjAj ∈ L(X ,Y ′). (2.6)
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Here, either J = {1, 2, . . . , J} for some J <∞ or J = N. In the latter case, the forward models admit dimension
truncations with error bounds which are addressed in Section 2.5 ahead.

In (2.6), y = (yj)j∈J can be, for example, an iid. sequence of real-valued random variables yj ∼ U(−1, 1), A0

is a “nominal operator” (representing the non-perturbed system) and {Aj}j∈J ⊂ L(X ,Y ′) denotes a sequence of
“fluctuations” about the “nominal operator”A0 = A(0). We impose the following assumptions on the sequence
{Aj}j≥0 ⊂ L(X ,Y ′).

Assumption 2.1. The operator family {Aj}j≥0 ∈ L(X ,Y ′) in (2.6) satisfies:

(1) The “nominal” or “mean field” operator A0 ∈ L(X ,Y ′) is boundedly invertible.
(2) The “fluctuation” operators {Aj}j≥1 are small relative to A0 in the following sense: there exists a constant

0 < κ < 1 such that ∑
j∈J

bj ≤ κ < 1, where bj := ‖A−1
0 Aj‖L(X ,X ), (2.7)

(3) (p summability) For some 0 < p < 1, the operators Bj = A−1
0 Aj are p-summable, in the sense that with

the sequence b = (bj)j∈J as in (2.7) holds

‖b‖p�p(J) =
∑
j∈J

bpj <∞. (2.8)

Condition (2.7) (and, hence, Assumption 2.1) is sufficient for the bounded invertibility of A(y), uniformly with
respect to the parameter sequence y ∈ U = [−1, 1]J. The next result from [30] makes this precise.

Theorem 2.2. Under Assumption 2.1, for every realization y ∈ U of the parameters, the affine parametric
operator family A(y) is boundedly invertible, uniformly with respect to the parameter sequence y ∈ U : for every
f ∈ Y ′ and for every y ∈ U , the parametric operator equation

find q(y) ∈ X : a(y; q(y), v) = 〈f, v〉Y′×Y ∀v ∈ Y
admits a unique solution q(y) = (A(y))−1f which is uniformly bounded over U , i.e.

sup
y∈U

‖q(y)‖X ≤ ‖f‖Y′

μ
·

In the case that the observation functional O : X → Y = RK comprises K continuous, linear functionals
ok ∈ X ′, k = 1, . . . ,K,

∀y ∈ U : ‖G(y)‖2 = ‖O(q(y))‖2 ≤ ‖f‖Y′

μ

(
K∑
k=1

‖ok‖2
X ′

) 1
2

.

The forward maps q : U → X and G : U → RK are globally Lipschitz and admit analytic continuations wr.
to the parameters yj into the complex domain. Specifically (see [33], Lem. 3.3 and Thm. 3.4) if q and q̃ are
solutions of (2.1) with the same right hand side f with operators A(y) and A(y′), respectively, then the forward
solution map y → q(y) = (A(y))−1f is Lipschitz as a mapping from U into X , i.e. there exists a constant C > 0
(depending only on κ and π0 in Assumption 2.1) such that for every y, ỹ ∈ U holds

‖q(y) − q(ỹ)‖X ≤ C‖y − ỹ‖�∞‖f‖Y′ .

Moreover, the uncertainty-to-observation map U � y → G(y) := (O ◦ q)(y) is globally Lipschitz as a mapping
from �∞(N) into Y = RK , in the sense that

‖G(y) − G(ỹ)‖2 ≤ C

(
K∑
k=1

‖ok‖2
X ′

) 1
2

‖y − ỹ‖�∞(J)‖f‖Y′.
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The prototypical example for (2.6) is the linear, elliptic diffusion problem

−∇ · (u(x,y)∇q) = f in D, q(·,y)|∂D = 0. (2.9)

Here, D ⊂ Rd is a bounded Lipschitz domain, f ∈ L2(D) a known, deterministic source term, and the uncertain
diffusion coefficient u is given by the affine-parametric function

u(x,y) := 〈u〉(x) +
∑
j≥1

yjψj(x) (2.10)

where 〈u〉, ψj ∈ C0,α(D) for some 0 < α < 1, and |yj | ≤ 1 so that y = (yj)j≥1 ∈ U . Convergence of (2.10) for
y ∈ U is ensured by assuming that for some 0 < p ≤ 1

b = (bj)j≥1 ∈ �p(N), bj := ‖ψj‖C0,α(D),

i.e. we have (2.5) with X = C0,α(D). Uniform (with respect to the parameter vector y) inf-sup conditions are
implied by uniform ellipticity of (2.9). This, in turn, is ensured by imposing that there exist constants μ0 > 0
and 0 < κ < 1 such that

0 < μ0 ≤ ess inf
x∈D

〈u〉(x), κ := ‖b‖�1(N) < 1. (2.11)

For possibly nonlinear operator equations admissible in the present theory see [7, 8, 21, 22, 32].

2.3.2. Lognormal diffusion models. Gaussian Prior π0.

Gaussian priors arise, for example, in UQ for subsurface flow problems, with unknown permeability coeffi-
cient u, J = N and U = RJ, (cf. e.g. [5], [13], Sect. 3.4) In a bounded Lipschitz domain D ⊂ Rd, we consider
once more the diffusion problem (2.9), with

u(x, y) = exp

⎛
⎝〈u〉(x) +

∑
j≥1

yjψj(x)

⎞
⎠ , (2.12)

with 〈u〉(x) +
∑

j≥1 yjψj(x) an isotropic, Gaussian random field in D as in (2.10). Then, (2.11) is not required.
The prior π0 is the normalized, centered Gaussian measure π0 = N (0, B−θ) on U = RN. If B = −Δ denotes
the Dirichlet Laplacian on D, the covariance operator Γ = B−θ is a trace class operator on the Hilbert space
H = L2(D) if θ > d/2. If J = {1, . . . , J} and U = RJ , i.e. if the parameter space dimension J is finite, θ = 0
is admissible (for finite J , Γ = I is trace-class, and the prior π0 = N (0, I) on U = RJ is admissible). The
case of infinite dimensional observational data will not be investigated in this work and we refer to [14] for
more details in this setting. Furthermore, Bayesian posterior consistency for the MAP estimator, which can be
defined as the minimizer of an Onsager–Machlup functional on the Cameron–Martin space of the prior in the
infinite dimensional case, is established in [14]. In both the small noise limit and large sample size limit, the
MAP estimator for Gaussian prior π0 is shown in [14] to concentrate on the truth.

2.4. Parametric Bayesian posterior density

Motivated by [29, 33], the basis for the presently proposed, adaptive deterministic quadrature approaches
for Bayesian estimation via the computational realization of Bayes’ formula is a parametric, deterministic
representation of the derivative of the posterior measure with respect to the uniform prior measure π0. The
prior measure π0 in Section 2.3.1 being uniform, for this prior we admit in (2.5) sequences y which take values
in the parameter domain U = [−1, 1]J. In the lognormal case in Section 2.3.2, we admit as priors π0 ∼ N (0, C)
Gaussian measures on U = RN with trace class covariance operator C. As explained in Section 2.2, this leads



SCALING LIMITS IN COMPUTATIONAL BAYESIAN INVERSION 1831

to parametric, deterministic forward problems in the probability space (U,B, π0). With the parameter domain U ,
the parametric forward map Ξ : U → RK is given by

Ξ(y) = G(u)
∣∣∣
u=〈u〉+∑ j∈J

yjψj

.

The mathematical foundation of Bayesian inversion is Bayes’ theorem. It addresses the structure of the mathe-
matical expectation of the QoI φ, over all realizations of the uncertain datum u which are distributed according
to the prior π0, given data δ. We present a version of it, from [13] and, in its parametric version, from [33].

Proposition 2.3. Assume that Ξ : U → RK is continuous, π0(U) = 1 and∫
U

exp
(−ΦΓ (u; δ)

)∣∣∣
u=〈u〉+∑ j∈J

yjψj

π0(dy) > 0.

Then πδ(dy), the distribution of y ∈ U given δ, is absolutely continuous with respect to π0(dy), i.e.

dπδ

dπ0
(y) =

1
ZΓ

ΘΓ (y), ΘΓ (y) := exp
(−ΦΓ (u; δ)

)∣∣∣
u=〈u〉+∑ j∈J

yjψj

, (2.13)

with the parametric Bayesian posterior ΘΓ (y) and with the Bayesian potential ΦΓ defined in (2.4). The nor-
malization constant ZΓ in (2.13) is given by

ZΓ = Eπ
δ

[1] =
∫
U

ΘΓ (y)π0(dy). (2.14)

Given (noisy) observation data δ, computational Bayesian inversion is concerned with computational approx-
imation of a “most likely” system response φ : X → S of a QoI φ which may take values in a Banach space S
(possibly distinct from the space Y of observations). With the QoI φ we associate the parametric map

ΨΓ (y) = ΘΓ (y)φ(u) |u=〈u〉+∑ j∈J
yjψj

= exp
(−ΦΓ (u; δ)

)
φ(u)
∣∣∣
u=〈u〉+∑ j∈J

yjψj

: U → S. (2.15)

Then the Bayesian estimate of the QoI φ, given noisy data δ, takes the form

Eπ
δ

[φ] =
Z ′
Γ

ZΓ
=

1
ZΓ

∫
y∈U

ΨΓ (y)π0(dy) =
1
ZΓ

∫
y∈U

exp
(−ΦΓ (u; δ)

)
φ(u)
∣∣∣
u=〈u〉+∑ j∈J

yjψj

π0(dy) (2.16)

where we introduced the integral

Z ′
Γ :=

∫
y∈U

ΨΓ (y)π0(dy) =
∫

y∈U
exp
(−ΦΓ (u; δ)

)
φ(u)
∣∣∣
u=〈u〉+∑ j∈J

yjψj

π0(dy).

Based on (2.16), in [29,30] we approximated Z ′
Γ and ZΓ which, in the parametrization with respect to y ∈ U ,

take the form of infinite-dimensional integrals with respect to the prior π0(dy). In [29, 30], we proposed the
use of dimension adaptive Smolyak quadrature to the numerical evaluation of the integrals ZΓ and Z ′

Γ . The
definitions (2.14) and (2.16) imply that 0 < Γ � 1 entails concentration of the posterior density ΘΓ in (2.13).

The Bayesian approach to inverse problems of the form (2.2) as well as the adaptive quadrature approach
proposed in [29,30] are both well defined in the infinite dimensional setting, i.e. in the case that the parameter
space X is infinite dimensional. However, the analysis based on Laplace’s method presented below, which will
be used to quantify the concentration effect of the posterior, requires the truncation to a finite number of
parameters. Due to the ill posedness inherent in the underlying parameter identification problem, it is well
known, and observed in many numerical experiments, that the data informs only a lower dimensional (finite)
subspace of the parameter space resulting in a small effective dimension of the problem. This observed effect
is theoretically underpinned by the compactness result of the Hessian of the uncertainty-to-observation map
(cf. Prop. B.1).
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2.5. Dimension truncation

The uncertainty parametrization (2.5) renders the forward map A(u; q) parametric, which we express by
writing A(y; q) := (A(u; q))|u=u(y). We consider now the case J = ∞, i.e., that J = N, so that A(y; q) depends
on the sequence y = (yj)j∈N of countably many variables. The asymptotic analysis based on Laplace’s method
requires the dimensional truncation of the forward map to a finite number J < #(J) of parameters, i.e. we
replace u ∈ X in (2.5) by its J-term truncation

u(J) = 〈u〉 +
J∑
j=1

yjψj ∈ X. (2.17)

We assume that these truncations converge towards u ∈ X in the norm of X , for every u ∈ X , at rate s > 0:
there exists C(s) > 0 such that for all J and for every admissible uncertainty u ∈ Xs ⊂ X there holds

∀J ∈ N : ‖u− u(J)‖X ≤ CJ−s. (2.18)

Condition (2.18) is related to a smoothness assumption on the admissible unknown data: e.g. assume given
a “smoothness scale” X = X0 ⊃ X1 ⊃ . . . ⊃ Xs of Hilbert spaces and that {ψj}j≥1 is, properly rescaled, a
Riesz basis for each Xs, (2.18) is implied by assuming u ∈ Xs ⊂ X . For Gaussian priors, (2.17) is a truncated
Karhunen−Loève expansion, and (2.18) is implied by assuming that u belongs to the domain of a suitable power
of the covariance operator. We refer to ([13], Sect. 2) for further details. Assumption 2.1, item (3), implies (2.18)
with s = 1/p− 1. We also remark that (2.18) is closely connected to compactness of Hessian of the uncertainty-
to-observation map (cf. condition (B.1) in Prop. B.1). Under the assumption that the dependence of the forward
operator A(u; q) on the uncertain parameter u ∈ X is Lipschitz, i.e. there exists L > 0 such that for u1, u2 ∈ X0

sup
q∈X

‖A(u1; q) −A(u2; q)‖Y′

‖q‖X ≤ L‖u1 − u2‖X ,

then, choosing u1 = u ∈ X0 as in (2.5) and u2 = u(J) as in (2.17), we find that for given f ∈ Y ′ the corresponding
solutions q = (A(u; ·))−1f and q(J) = (A(u(J); ·))−1f satisfy the estimate

‖q − q(J)‖X ≤ CJ−s (2.19)

where C > 0 is possibly different from the constant in (2.18). It follows from (2.19) and from ([13], Sect. 3.4,
Thm. 4.7, Rem. 4.9), that the Bayesian estimates obtained with the dimensionally truncated forward solution
q(J) in place of q likewise admit the bound CJ−s. We therefore note that in the ensuing developments, it suffices
to assume that the uncertain input u ∈ X is parametrized according to (2.17) with a sufficiently large, but finite
number J of parameters.

3. Asymptotic analysis of ZΓ , Z ′
Γ as Γ ↓ 0

We are interested in Bayesian prediction (2.16) in the case that the (co)variance Γ of the (assumed Gaussian)
noise η in the observation data δ in (2.2) concentrates, i.e. when Γ ↓ 0. This will induce concentration of the
density (2.15) in u. Based on the integral representation (2.16), (2.14), and bearing in mind the definition (2.4)
of the Bayesian potential, the asymptotic behaviour as Γ ↓ 0 of the Bayesian estimate (2.16) follows from an
asymptotic analysis of the integrals ZΓ and Z ′

Γ in (2.16) by Laplace’s method which we present next; necessary
results and references are collected for convenience in Section 6. We remark that Laplace’s method can be also
used to compute approximations of posterior moments by using the explicit expression of the first term in the
expansion for the numerator ZΓ and denominator Z ′

Γ , see e.g. [36]. In the present work, we derive an expansion
of the Bayesian estimate w.r. to the observational noise covariance Γ , which allows to design computational
methods numerically stable in the small noise limit.
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Throughout, we assume that (possibly after dimension-truncating the parameter space as in Sect. 2.5) that
J <∞. We distinguish the cases K = 1 (in which case we set Γ−1 = λ so that Γ ↓ 0 corresponds to λ→ ∞) in
Propositions A.3 and A.4, and finite K > 1. We assume that the forward map has been dimensionally truncated
to a finite number J < ∞ of parameters as in Section 2.5 and there exists a unique maximum of the Bayesian
potential at y0. It can be easily shown that the assumption on the uniqueness of the maximizer implies K ≥ J
(by considering the linear uncertainty-to-observation map G(y) = Ay, A ∈ RK×J). We point out that, for
computational purposes, the integrals ZΓ and Z ′

Γ in (2.16) are expressed in terms of the Lebesgue measure dy
on the parameter domain U . Then, for uniform prior π0, we are interested in the maximizer of

Θ(y) = exp
(−ΦΓ (u; δ)

∣∣
u=〈u〉+∑J

j=1 yjψj
)

and for Gaussian prior π0, (cf. [13], Eq. (4.6))

Θ(y) = exp
(
−ΦΓ (u; δ)

∣∣
u=〈u〉+∑J

j=1 yjψj
−1

2
‖y‖2

2

)
.

assuming parametrization (2.17) of the uncertain datum u with normally distributed parameters yj , j = 1, . . . , J .
In order to unify notation for the ensuing asymptotic analysis, we introduce the parameter θ, where θ = 0
corresponds to the uniform prior, θ = 1 to the Gaussian prior.

3.1. Γ ↓ 0, Case K = 1, J = 1

Since K = 1, the variance Γ of the Gaussian observation noise is a real-valued random variable and we use
the Laplace asymptotics with large parameter λ = Γ−1 > 0.

Both integrals ZΓ and Z ′
Γ in (2.16) are of the same type; comparing (2.16) with integrals of the form

F (λ) =
∫
U
φ(y) exp[λS(y)]dy in order to use Laplace’s method (cf. Appendix A in Sect. 6), we find

λS(y) = − 1
Γ

(
Φ1(y; δ) +

θ

2
Γ‖y‖2

2

)
(3.1)

with Φ1(y; δ) = 1
2

(
(δ − G(u))�(δ − G(u))

)
, so that −2ΓS(y) = ‖r(y)‖2

2 + θΓ‖y‖2
2 where r(y) := G(y) − δ

denotes the scalar residual of the data δ w.r. to the uncertainty-to-observation map G(y), and where θ = 0 for
uniform prior π0 and θ = 1 for Gaussian prior π0. In (3.1), ‖y‖2 denotes the Euclidean norm in RJ . To verify
the assumptions of Proposition A.3, we calculate

S′(y) = −r(y)r′(y) − θΓy, S′′(y) = −{r′(y)r′(y) + r(y)r′′(y) + θΓ} . (3.2)

Based on the expressions (3.2), we see that, in the uniform case, i.e. θ = 0, y0 ∈ int(U) is critical wr. to S()
if either r(y) = 0 or if r′(y) = 0. The former, compatible case corresponds to an exactly solvable inversion,
where the observed data is reproduced exactly for some realization u(y0) ∈ X of the uncertainty. Note that in
the presence of observational noise, exact recovery of the observational data is undesirable in practice, since,
in case of ill-posedness of the inverse problem, the exact inversion leads to fitting of high frequencies to the
noise, the so-called ”overfitting” effect. However, the analysis presented here will be used to develop Bayesian
estimation algorithms with performance independent of the size of the noise covariance Γ , i.e. the maximizer
of (3.1) will not be used as an estimate of the unknown parameters.

In the latter, incompatible case, we have

∃y0 ∈ int(U) : r(y0) �= 0, r′(y0) = 0, sgn(r(y0))r
′′(y0) ≥ 0. (3.3)

We remark that due to the definition r(y) = O(q(y)) with O(·) ∈ X ′ and δ being independent of y, we find

r′(y) = O(q′(y)), r′′(y) = O(q′′(y)).
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The second differential r′′(y) requires knowledge of the Hessian D2
y(G(u(y); f)) of the solution map for the

forward problem. Under the assumption that there exists a unique, nondegenerate maximizer y0 ∈ int(U),
sufficient conditions are

S(y0) ≤ 0, S′(y0) = 0, S′′(y0) < 0. (3.4)

In particular, then, all assumptions of Proposition A.3 hold, and both integrals, ZΓ and Z ′
Γ , admit asymptotic

expansions (A.5) as Γ ↓ 0. The explicit form (A.6) of the principal term of the asymptotics allows to infer:

Theorem 3.1. Assume that G(·) and δ are such that the assumptions of Proposition A.3 hold; in particular,
that the potential (3.1) satisfies conditions (3.3)−(3.4). Then, for uniform prior π0, the Bayesian estimate
in (2.16) admits an asymptotic expansion

Eπ
δ

[φ] =
Z ′
Γ

ZΓ
∼ ã0 + ã1Γ + ã2Γ

2 + . . . Γ ↓ 0, (3.5)

where ã0 = φ(y0) so that

Eπ
δ

[φ] =
Z ′
Γ

ZΓ
= φ(y0)(1 + o(1)), Γ ↓ 0. (3.6)

The latter relation (3.6) remains valid in the case of a Gaussian prior π0.

Proof. In the nondegenerate case, with uniform prior π0, the parameter range is bounded, θ = 0 in (3.1)−(3.3)
and (3.4) hold. Proposition A.3 allows to infer that as λ = Γ−1 → ∞, both integrals ZΓ and Z ′

Γ in (2.16) admit
asymptotic expansions (A.5). The explicit form (A.6) of the principal term of the asymptotics then implies
that the quotient allows to infer that as λ = Γ−1 → ∞, both integrals ZΓ and Z ′

Γ in (2.16) admit asymptotic
expansions

exp(−Γ−1S(y0))ZΓ ∼ Γ J/2
∑
k≥0

akΓ
k, exp(−Γ−1S(y0))Z

′
Γ ∼ Γ J/2

∑
k≥0

a′kΓ
k

as Γ ↓ 0. In particular, these quantities depend continuously on Γ ∈ [0, Γ0] for some Γ0 > 0. From the theorem
on quotients of asymptotic expansions ([16], Thm. I.3.1 item 3), there holds the asymptotic expansion

Eπ
δ

[φ] =
Z ′
Γ

ZΓ
=

exp(−Γ−1S(y0))Z
′
Γ

exp(−Γ−1S(y0))ZΓ
∼
∑
k≥0

ãkΓ
k,

and from the explicit form (A.6) follows ã0 = a′0/a0 = φ(y0).
In the Gaussian case, the parameter domain is unbounded and θ = 1 in (3.1), so that the function S depends

(linearly) on λ = Γ−1. Since J = 1, the function S is the regularized least-squares functional

S(y) = −1
2
[‖r(y)‖2

2 + Γ‖y‖2
2

]
.

This function has, for Γ > 0, a nondegenerate maximum at y0(Γ ). This assumption allows to derive a result: let
y0, Γ0 denote the (nondegenerate) maximizer of the function S. Then, in a neighbourhood U(Γ0) of Γ0, exists
a continuously differentiable function y0(Γ ) with y0(Γ0) = Γ0 and y0(Γ ) is a strict local maximizer of S(y)
for all Γ ∈ UΓ0 . Hence, as Γ ↓ 0, the maximum of S(y) remains in a fixed, compact subset of R. We may then
apply Proposition A.2 to conclude (3.6) in the Gaussian case. �

The results (3.5), (3.7) show that despite the generally exponential growth wr. to Γ ↓ 0 in the asymp-
totics (A.5), (A.8) for either of the constants ZΓ and Z ′

Γ , (which we remark in passing shows that the expo-
nential dependence on 1/Γ in the Smolyak quadrature error bounds in [30] can, in general, not be improved),
the Bayesian estimate (2.16) given by Z ′

Γ /ZΓ has a finite one-sided limit as Γ ↓ 0 which, in case that the
Hessian S′′(y0) is nondegenerate and that S(y) is unimodal at the critical point y0 ∈ int(U) of the residual
r(y0) in (3.1), equals the QoI φ evaluated at this (MAP) point.
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For Bayesian potentials ΦΓ (y; δ) which attain a unique, global minimum at y0 ∈ int(U) which is degenerate,
i.e. where the Hessian S′′(y0) has a nontrivial nullspace, then, for every finite truncation dimension J as in
Section 2.5, there exist N(J) ∈ N and rk(J) ∈ Q such that

Eπ
δ

[φ] =
Z ′
Γ

ZΓ
=
a00[φ]
a00[1]

(1 + o(Γ )) as Γ ↓ 0, (3.7)

where a00[φ], a00[1] denote the leading terms in the asymptotic expansions (A.8) of Z ′ and of Z, respectively,
which are independent of Γ (but depend on δ and on J).

3.2. Γ ↓ 0, Case 1 < K < ∞
The asymptotic analysis in the case K > 1 many observables can be derived in an analogous way: for uniform

prior π0, the asymptotic expansion follows from Proposition A.3, and for Gaussian prior, the relation (3.6) is a
consequence of the general result ([14], Thm. 3.5).

Consider now a finite number 1 < K <∞ of observables. Then Γ ∈ RK×K is the symmetric and (assumed)
positive definite covariance matrix of the observation noise η ∈ RK . It can therefore be diagonalized:

Γ = PMP�, M = diag{γ1, . . . γK}, 0 < γ1 ≤ . . . ≤ γK , P
�P = 1. (3.8)

In the following, we will assume that the covariance matrix of the noise is of the form Γ = γI, i.e. γ = γ1 =
. . . = γK . The case when all eigenvalues of Γ tend to zero at the same rate, i.e. when γK ↓ 0 while γK/γ1

remains bounded, is analogous to the case Γ = γI. Various intermediate cases (e.g. with the γk tending to zero
at different rates) will not be elaborated here.

Since K > 1, the residual of the data δ wr. to the uncertainty-to-observation map R(y) = G(y) − δ ∈ RK is
a K-vector with component residuals rk(y), k = 1, . . . ,K. For (3.1), we choose in Proposition A.3

S(y) = −ΦΓ (y; δ) − θ
1
2
‖y‖2

2 = −1
2
R(y)�Γ−1R(y) − θ

1
2
‖y‖2

2 = − 1
γ

(
1
2
R(y)�R(y) − θ

1
2
γ‖y‖2

2

)
. (3.9)

Under the assumption of a unique, nondegenerate maximizer y0 ∈ int(U), y0 satisfies the sufficient conditions
given by (3.4) and (3.5) of Theorem 3.1 holds also in this case. Note that this assumption implies that K ≥ J .

The asymptotic expansions (3.5), (3.7) in Theorem 3.1 show that the Bayesian estimate (2.16) converges, in
the zero observation noise limit and for nondegenerate critical points, to the QoI φ at critical points y0 of the
parameter sequence y. These parameters, in turn, can be determined numerically from the data by the solution
of a nonlinear least-squares problem (for the potential ΦΓ ) rather than by numerical integration.

Moreover, Theorem 3.1 shows that in the limit Γ = 0 the Bayesian estimate (2.16) behaves numerically as
quotient of infinite quantities which admits a finite limiting value at Γ = 0. This suggests that the deterministic
quadrature approach of [29, 30] for the evaluation of ZΓ , Z ′

Γ becomes numerically unstable as Γ ↓ 0. To
deal with positive, but small observation noise (co)variance Γ , therefore, the quadrature algorithms must be
modified in order to remain numerically stable. As suggested by the asymptotic expansions (3.5) and by the
explicit form (3.6) of its leading term, the numerical treatment of the limit Γ ↓ 0 will require addressing the
deterministic, nonlinear least-squares problem

min
y∈U

ΦΓ (y; δ) + θ/2‖y‖2
2, (3.10)

where θ = 0 in the uniform case, and θ = 1 in the Gaussian case. The minimization problem (3.10) is generally
ill-conditioned for countably-parametric operator equations with uniform prior, as considered in Section 2.3.1.
In the lognormal case with Gaussian prior discussed in Section 2.3.2, the minimizer of (3.10) depends on Γ , gen-
erally. It corresponds to a Tikhonov regularized solution of the nonlinear least-squares problem miny∈U ΦΓ (y; δ)
and converges, as Γ ↓ 0, to a MAP estimator (see, e.g., [14, 23], Chap. 3.1.1 and [13], Sect. 2.2 for more details
on the MAP estimator and its relation to regularized, deterministic least-squares minimization problems).
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4. Numerical analysis of small observation noise covariance Γ

We analyze computational Bayesian inversion for positive, but possibly small observation noise (co)variance
Γ > 0. We also assume throughout that the Hessian S′′(y0) of the Γ -scaled least-squares functional

S(y) = Γ

(
−ΦΓ (y; δ) − θ

2
‖y‖2

2

)
(4.1)

is nondegenerate, negative definite, uniformly with respect to 0 < Γ < 1. Then, the asymptotic analysis of Sec-
tion 3 applies (see Sect. A.3 for remarks on the degenerate case (3.7)). Quasi-Newton iterations with symmetric
updates are known to produce locally superlinearly convergent approximations of both, critical point y0 of S
and of its Hessian S′′

yy(y0) (we refer to [10,18] for details; optionally, also 2nd order adjoint techniques [19] could
be used). The point y0 is known to be related to a MAP estimate, in the Gaussian case (see [13], Sect. 4.3). We
therefore assume that (e.g. upon termination of the QN-SR1 algorithm from [10]), that the point y0 and the
Hessian S′′

yy(y0) of the Bayesian potential Φ are available.
Then, from (A.5), (A.6), upon termination of the QN process the leading term of the asymptotic expan-

sion (A.5) in the Γ ↓ 0 limit is accessible for both ZΓ and Z ′
Γ in (2.16). Also, since S(y) is either independent

of Γ (for uniform prior) or depends linearly on it (Gaussian prior), the performance of the QN method is
independent of Γ .

Based on Theorem 3.1, we propose two computational strategies which we prove to be robust with respect
to vanishing observation noise (co)variance: first, we assume available knowledge of y0 and S′′(y0) to “pre-
condition” dimension-adaptive, deterministic Smolyak quadratures proposed in [29,30]: for uniform prior, they
are based on the midpoint rule as lowest order quadrature rule and for Gaussian prior, on the lowest Gauss–
Hermite quadrature formula. For small, but positive Γ > 0, shifting the coordinate origin to y0 will thus identify
the dominant contribution to the posterior expectation in the first sweep of the dimension-adaptive Smolyak
algorithm. For small values of Γ , however, the high curvatures in the shifted posterior density due to the con-
centration entails excessive refinements of the adaptive quadratures in all concentrating coordinates. To render
the performance of the adaptive Smolyak algorithm independent of 0 < Γ < 1, we propose reparametrization
of the posterior density near MAP-points y0 of posterior concentration. We prove in Theorem 4.1 ahead that
this reparametrization renders the integrand functions in the adaptive Smolyak quadrature scheme unimodal,
with maximum at y = 0, and holomorphic with curvatures which are bounded independently of Γ . We remark
that inclusion of curvature information on the Bayesian potential ΦΓ near concentration points of the posterior
has been proposed to increase efficiency of MCMC methods. In [25], operator weighted proposals based on
Hessian information of the likelihood are introduced and (numerically) shown to significantly speed-up MCMC.
Details on the use of Hessian information within the so-called “stochastic Newton framework” can be found e.g.
in [4,26]. A further MCMC variant relies on the exploration of the Riemann geometry of the parameter space to
automatically adapt to the local structure of the posterior. We refer to [20] for more details. The low dimension-
ality of the data-informed subspace is investigated e.g. in [11, 12]. The idea of “likelihood-informed” (“DILI”)
subspaces has been proposed to design MCMC in this low-dimensional subspace. It has been found improve
computational efficiency, but can not, of course, increase convergence rates beyond the intrinsic limit 1/2 of
MC. We also remark that reparametrization the posterior to alleviate ill-conditioning due to, e.g., concentration
effects, has been suggested in [27], albeit with a different approach related to optimal transport.

The second strategy is based on (generalized) Richardson extrapolation to the limit of zero observation noise
justified by the asymptotic expansions (3.5) and (3.7). In this case, Γ is treated as a algorithm-parameter as
follows: for data δ with given, small observation noise variance Γobs > 0, compute (in parallel) estimates (2.16)
for several, synthetic, large values Γk of Γ , with 0 ≤ Γobs � Γk ≤ 1 and extrapolate to 0 ≤ Γobs � 1.

4.1. Curvature rescaling

We develop the approach in the (notationally less involved) case of K = 1 observation functional. We
apply Proposition A.3 with S as in (3.1), (3.9). We assume in (3.8) that γ = Γ > 0 and initially for uniform
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prior π0. Then, S(y) in (4.1) is independent of Γ . A Quasi-Newton method with symmetric rank 1 (SR1) update
(cf. [10, 18]) converges superlinearly and yield, upon termination, the (unique by Assumption 2. of Prop. A.3)
maximum point y0 of S(y) in U and the (positive) definite Hessian approximation HS ∼ −S′′(y0) at y0 (we
refer to [10, 18] for details). Due to the use of symmetric QN updates and assumption 2 of Prop. A.3), then,
the Hessian HS is symmetric positive definite, and the total work required by QN for S(y) in (4.1) scales
polynomially in J (updating the inverse of the SR1 approximation using the Sherman–Morrison formula leads
to a performance similar to the BFGS algorithm, e.g. discussed in [17]) uniformly with respect to Γ (as S(y)
in (4.1) is either independent of Γ or depends linearly on it). Denote by μj with 0 < μJ ≤ μJ−1 ≤ . . . ≤ μ1

its eigenvalues (enumerated in decreasing order of magnitude and counting multiplicity), and by Q the J × J
orthogonal matrix of its J eigenvectors, i.e.

HSQ = QM, M := diag{μ1, . . . , μJ}. (4.2)

We next perform an affine change of variables y = ϕ(x̌) in S(y) such that y0 = ϕ(0) and such that the Hessian
of (S ◦ ϕ)(x̌) is diagonal: (D2

x(S ◦ ϕ))(0) = M = diag{μ1, . . . , μJ}. With V̌ := Q�(U − {y0}), we find∫
U

exp(λS(y))φ(y)dπ0(y) =
∫
V̌

ǧ(x̌)dπ0(x̌), (4.3)

where ǧ(x̌) := exp(λS(y0 +Qx̌))φ(y0 +Qx̌).
By the orthogonality of Q, the integration domain V̌ is a rotated and translated unit (wr. to the prior π0)

cube. The transformed function Š(x̌) := S(y0 +Qx̌) is analytic in a vicinity of x̌ = 0; therefore

Š(x̌) = S(y0) +
1
2
x̌�Q�S′′

yy(y0)Qx̌ +O(‖x̌‖3
2) = S(y0) +

1
2
x̌�M x̌ +O(‖x̌‖3

2)

with O(·) being uniform w.r. to Γ .
The application of Proposition A.3 to the transformed integral (4.3) (for λ = Γ−1 � 1) gives that the

transformed integrand function g(x̌) in (4.3) will depend on the coordinate x̌j to leading order (as the affine
coordinate change in (4.3) will reach the normal form (A.7) only up to higher order terms) as exp(−Γ−1μj x̌

2
j/2).

The ordering (4.2) of the μj then implies that the strongest “concentration” of the integrand function g(x̌) as
Γ ↓ 0 occurs in coordinate x̌1 at x̌1 = 0, on scale Γ−1/2μ

1/2
1 . This observation suggests curvature-rescaling of

the form
x̌ := M−1/2Γ 1/2x, g(x) := ǧ(M−1/2Γ 1/2x). (4.4)

Theorem 4.1. Under Assumption 2.1 and for nondegenerate Hessian S′′
yy and for analytic parametric forward

maps, for uniform prior π0, the curvature rescaling transformation

y = ϕ(x) := y0 +QM−1/2Γ 1/2x (4.5)

with M as in (4.2) yields a transformed posterior density g(x) := exp(Γ−1(S ◦ϕ)(x))(φ ◦ϕ)(x) that is analytic
in a neighborhood of x = 0 ∈ RJ . The size of the domain of analyticity of g(x) is independent of 0 < Γ < 1.
In this domain, the derivatives of the rescaled posterior density admit analytic regularity estimates which are
uniform with respect to Γ .

Proof. As π0 is uniform, both φ(y) and S(y) are independent of Γ and analytic. Since the affine change of
variables ϕ̌ is independent of Γ , also the functions Š(x̌) = S(y0 + Qx̌) and φ(y0 + Qx̌) are analytic w.r. to
x̌ in a neighborhood V̌ of x̌ = 0 which is independent of Γ . There, Š admits the convergent power series
representation

Š(x̌) = S(y0) +
1
2
x̌�M x̌ +

∑
k≥3

∑
|α|=k

tαx̌α, (4.6)
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where all coefficients tα := 1
α! (D

α
x̌Š)(0) are independent of Γ . Multiplying (4.6) with Γ−1 and inserting (4.4)

results in the (nonasymptotic) identity

(S ◦ ϕ)(x)
Γ

=
S(y0)
Γ

+
1
2
x�x + Γ 1/2

⎧⎨
⎩
∑
k≥3

Γ (k−3)/2
∑
|α|=k

tα(M−1/2x)α

⎫⎬
⎭ . (4.7)

Here, the power series in parentheses converges uniformly w.r. to Γ ≤ 1 for x ∈ M1/2V̌ . Hence, as Γ ↓ 0,
Γ−1(S ◦ ϕ)(x) tends to a quadratic. All x-derivatives of the rescaled integrand function S ◦ ϕ exist and are
bounded uniformly with respect to Γ . Moreover, the convergence radius of the power series shown in parentheses
in (4.7) increases with decreasing Γ . An analogous power series argument shows that the QoI (φ ◦ ϕ)(x) is
analytic with respect to the curvature-rescaled coordinates x, with domain of analyticity that is even increasing
as Γ ↓ 0. �

4.2. Curvature-rescaled adaptive Smolyak quadrature

The preceding observations motivate curvature rescaled, adaptive Smolyak quadrature. Given a tolerance
parameter τ > 0, and λ = Γ−1 > 0, (where we think of Γ as observation noise covariance Γobs associated with
data δ in (2.2)), define the closed intervals Ij(τ, λ) := {xj ∈ R : exp(−λμjx2

j/2) ≥ τ}, j ∈ J. The Ij are bounded
intervals centered at xj = 0 which are nested by the ordering (4.2) of the μj : I1 ⊆ I2 ⊆ . . . ⊆ IJ ⊆ . . .. Define

J∗(τ, λ) :=
{

0 if {j ∈ J|Ij(τ, λ) ⊂ V̌ } = ∅,
max{j ∈ J|Ij(τ, λ) ⊂ V̌ } otherwise.

(4.8)

Notice that J∗(τ, λ) in (4.8) is monotonically increasing for decreasing τ at fixed λ = Γ−1.
If J∗ = 0, there is no coordinate in which the integrand function f(x) in the transformed integral (4.3) over

V is concentrating. If J∗ > 0, the integrand function in the transformed integral (4.3) over V concentrates
numerically (at threshold τ) near xj = 0 in the coordinates x1, . . . , xJ∗ . Accordingly, if U = [−1, 1]J , prior to
application of the adaptive Smolyak quadrature algorithm, we rescale the integration coordinates according to

x̂j := xjξj , ξj :=
(
μj/Γ

2| ln τ |
)1/2

, j = 1, . . . , J∗ (4.9)

and set x̂j := xj for j > J∗. Then, truncate the integration domains to Ij(τ, λ) for dimensions j = 1, . . . , J∗:

V̌τ :=
∏

1≤j≤J∗

Ij(τ, λ) ×
∏
j>J∗

V̌j . (4.10)

For the resulting truncation error holds the error bound∣∣∣∣
∫
V̌

f(x)dπ0(x) −
∫
V̌τ

f(x)dπ0(x)
∣∣∣∣ ≤ π0(V̌ \V̌τ ) sup

y∈U
‖φ(y)‖S ≤ τ sup

y∈U
‖φ(y)‖S .

The variable metric adaptive Smolyak quadrature algorithm consists in applying the adaptive Smolyak algorithm
from [30] to the rescaled integrand function where coordinates (y1, . . . , yJ∗) are transformed with (4.5).

Remark 4.2. The proof of Theorems 4.1 and (4.9) show that, asymptotically as Γ ↓ 0, at any fixed, finite
truncation dimension J , the posterior density eventually concentrates in all coordinates yj, j = 1, . . . , J .

The compactness of the Hessian S′′
yy(y0) shown in Proposition B.1 implies that, generically, {μj}j≥1 accu-

mulates at 0 for increasing J . Proposition B.1 implies that for every fixed obervation noise covariance Γobs > 0
and for every prescribed truncation parameter τ > 0 exists a finite “crossover dimension” J∗(Γobs, τ) such that
μj/Γobs ≤ 1 for all j ≥ J∗. The compactness and the spectrum of the Hessian S′′

yy(y0) provide for every Γobs > 0
a (finite!) bound on the dimension of the parameter space where the Bayesian posterior can concentrate. We also
refer to the survey [1] for discussion of second order information at the MAP point and of “effective” dimension
in importance sampling acceleration of MCMC methods.
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Theorem 4.1 implies that the curvature-rescaling (4.5) in conjunction with the adaptive Smolyak quadratures
from [29,30] in rescaled coordinates for ZΓ and Z ′

Γ will converge with rate and constants which are independent
of Γ .

4.3. Extrapolation to observation noise covariance 0 ≤ Γobs � 1

The previous regularizations required nondegeneracy and explicit knowledge of the Hessian at the critical
point y0 ∈ U . We therefore present an alternative approach which avoids explicitly accessing curvature infor-
mation, which is mathematically justified for both, regular as well as degenerate Hessians S′′(y0). It is based
on generalized Richardson extrapolation with respect to Γ of Bayesian estimates to observation noise variance
0 ≤ Γobs � 1.

This approach is justified by the asymptotic expansions (3.7) with respect to Γ ↓ 0 which in turn are based
on Propositions A.3 and A.4. We emphasize that only the existence of an asymptotic expansion such as (A.5) is
used, and no explicit expressions of coefficients in these expansions is required in our computational strategy.
We present the details, for simplicity only in the case K = 1, following the generalized Richardson extrapolation
algorithm developed and analyzed in [34].

4.3.1. Generalized Richardson extrapolation

Let B(Γ ) : R> �→ R be a scalar function of a continuous variable Γ > 0, defined on 0 < Γ ≤ Γ0 <∞. Assume
that there exist constants B and βk, k = 1, 2, . . ., which are independent of Γ and functions �k(Γ ) which form
an asymptotic sequence in the sense that

�k+1(Γ ) = o(�k(Γ )) as Γ ↓ 0

and assume that B(Γ ) admits the asymptotic expansion

B(Γ ) ∼ B +
∞∑
k=1

βk�k(Γ ) as Γ ↓ 0. (4.11)

For a strictly monotonically decreasing sequence Γ0 > Γ1 > Γ2 > . . . in (0, Γ0] with 0 = limk→∞ Γk and for
each pair (j, q) of positive integers, define the sequence β̄0, β̄1, . . . , β̄q as solution of the linear system of q + 1
equations for the q + 1 unknowns βjq0 , . . . , β

jq
q which is given by

B(Γl) =
q∑

k=0

βjqk �k(Γl), j ≤ l ≤ j + q. (4.12)

Then the βjq0 obtained in (4.12) are approximations of limΓ↓0B(Γ ); specifically, there holds (cf. [34], Thm. 2.2):

Proposition 4.3. Assume that B(Γ ) admits the asymptotic expansion (4.11). Then, for some monotonically
decreasing sequence {Γk}k≥1, accumulating at Γ = 0 such that

lim
l→∞

�k(Γl+1)
�k(Γl)

= ck �= 1 and cj �= ck for j �= k, (4.13)

for every q ∈ N fixed, the βjq0 and B = limΓ↓0 B(Γ ) in (4.12) satisfy

βjq0 − B ∼ βq+1

[
q∏
i=1

(
βq+1 − βi

1 − βi

)]
�q+1(Γj) as j → ∞. (4.14)

Under condition (4.13), {βjq0 }j≥1 tends to B faster than {βj,q−1
0 }j≥1, i.e.

βjq0 −B

βj,q−1
0 −B

= O

(
�q+1(Γj)
�q(Γj)

)
= o(1) as j → ∞.
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4.3.2. Extrapolation to observation noise covariance 0 ≤ Γobs � 1

Comparing the preceding result on generalized Richardson extrapolation with the asymptotic expansions (3.5)
in the regular case (where, according to Theorem 3.1, we have �k(Γ ) = Γ k), we see immediately that in the
regular case (3.5), Assumption (4.13) is satisfied.

Proposition 4.4. Assume that G(·) and δ are such that all Assumptions of Proposition A.3 hold. Then, for the
monotonically decreasing sequence (Γk)k≥1 with Γk = h0ρ

k, 0 < ρ < 1, h0 > 0, Assumption (4.13) is fulfilled.

Proof. In the nondegenerate case, Theorem 3.1 and (3.5) imply �k(Γ ) = Γ k. Therefore, there holds

lim
l→∞

�k(Γl+1)
�k(Γl)

= lim
l→∞

(
Γl+1

Γl
)k = ρk < 1.

Therefore, the assumptions of Proposition 4.3 are satisfied, and (4.14) holds. �

Even without explicit knowledge of coefficients and exponents in the asymptotic expansions (3.5), we may
therefore apply (4.12) in order to extrapolate to the limit Γ ↓ 0 as follows.

Given one set of data δ, the Bayesian estimate (2.16) is approximated numerically for a sequence Γ = {Γk}Kk=1

of synthetic (i.e. larger than Γobs) variances which decrease monotonically. Owing to numerical instability in
the extrapolation of ZΓ and Z ′

Γ in (2.16) for positive, but small observation noise covariance Γobs, according
to [34] the sequence Γ = {Γk}k≥1 should be chosen as

Γ : Γk = 2−k+1 (geometric sequence). (4.15)

We note in passing that other sequences with slower than geometric decrease (4.15) are infeasible even in the
nondegenerate case, as they violate the stability conditions in [34].

To avoid ambiguity in the notation of the observational noise and of the artificial noise, we will denote in the
following the variance in the additive Gaussian noise η in the measurement data δ in (2.2) by Γobs. Generalized
extrapolation to small Γobs > 0 or to the limit Γobs = 0 then proceeds by interpolating the Bayesian predictions
Z ′
Γk

computed for different values of k with a high order polynomial, and evaluating at the actual given variance
Γobs ≥ 0.

The extrapolation approach is also viable for small, positive observation noise variance Γobs > 0 for which a
direct quadrature evaluation would be infeasible due to concentration phenomena.

Extrapolation to small observation noise covariance Γobs ≥ 0 is based on:

(a) for one given set of data δ, the Smolyak quadrature algorithm can be executed separately and in parallel
for each synthetic observation variance Γk,

(b) the integrand functions which are to be evaluated in the adaptive Smolyak quadrature approximation of
the integral(s) ZΓk

and Z ′
Γk

in (2.16) depend on Γk only via the Bayesian potential ΦΓk
in (2.4). Therefore,

given a set of quadrature points in U , one numerical evaluation of the uncertainty-to-observation map G(·)
per quadrature point is necessary to compute both quadrature approximations ZΓk

and Z ′
Γk

in (2.16).

While the generalized Richardson extrapolation to the limit is mathematically justified by the asymptotic
expansions (3.5), (3.7) and by the analysis in [34], we remind that the present setting will require their use for
positive, small but fixed observation noise covariance Γobs > 0; the next result is analogous to (4.14).

Proposition 4.5. Assume that the quantity B(Γ ) ∈ C([0, Γ0]) ∩ Cq+1(0, Γ ]) for some integer q ≥ 1 and
that it admits an asymptotic expansion (4.11) with �k(Γ ) = Γ k as in (3.5) for the Bayesian estimate in the
nondegenerate case.

Given an integer j ∈ N and a sequence of (synthetic) observation noise covariances 1 = Γ0 > Γ1 > . . . >
Γj > . . . > Γj+q � Γobs ≥ 0 (which are algorithmic parameters unrelated to the given observation noise
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variance Γobs) with q ≥ 1 fixed and with Γj+q (substantially) larger than the actual observation noise covariance
Γobs ≥ 0, compute the coefficients (βjqk )qk=0 in (4.12). Then, there holds the asymptotic error bound

|B(Γobs) −
q∑

k=0

βjqk �k(Γobs)| = O(|Γj − Γobs|q+1).

Here, the constant implied in O() depends on q and on B(Γ ), but is independent of j.

Proof. For Γobs = 0, the assertion is Proposition 4.3. We may therefore assume that Γobs > 0. The continuity
B ∈ C([0, Γ0]) and the monotonicity of the sequence {Γk}k≥0 imply that for q ≥ 1, and for every q + 1
tuple {Γk}j+qk=j , there is a unique interpolation polynomial πq(Γ ; {Γk}j+qk=j) which interpolates B(Γ ) in the tuple
{Γk}j+qk=j . For the interpolation error at the point Γobs holds

B(Γobs) − πq(Γobs; {Γk}j+qk=j) =
B(q+1)(ξ)
(q + 1)!

ωq+1(Γobs), ξ ∈ conv{Γobs, Γj , Γj+1, . . . , Γj+q}

with ωq+1(x) =
∏

0≤k≤q(x − Γj+k). The error representation remains valid in the case (of main interest to us)
that Γobs �∈ conv{Γk}j+qk=j . Since, for 0 ≤ Γobs < Γj+q < . . . < Γj ≤ Γ0, this polynomial satisfies the error
representation, we estimate

|B(Γobs) − πq(Γobs; {Γk}j+qk=j)| ≤
1

(q + 1)!
‖B(q+1)‖L∞(Γobs,Γj)|Γj − Γobs|q+1

and the assertion follows for Γobs > 0. The preceding argument remains valid even for Γobs = 0 which concludes
the proof. For the limiting case Γobs = 0, (4.14) provides information about the asymptotic behaviour. �

5. Numerical experiments

We illustrate the foregoing results for the model parametric elliptic boundary value problem

−div(u∇p) = f in D := [0, 1] , p = 0 in ∂D , (5.1)

with f(x) = 100 · x. The diffusion coefficient is assumed to be affine-parametric, i.e.

u(x, y) = 0.15 + y1ψ1(x) + y2ψ2(x) ,

with J = 2, J = {1, 2}, 〈u〉 = 0.15, ψ1(x) = 0.1 sin(πx), ψ2(x) = 0.025 cos(2πx) and with yj ∼ U [−1, 1], j ∈ J.
The forward problem is numerically solved by a finite element method using continuous, piecewise linear

shape functions on a uniform mesh with meshwidth h = 2−8. The quantity of interest φ is assumed to be the
solution of the forward problem at the midpoint of the domain and we assume that the solution of the forward
problem can be observed at x = 0.25 and x = 0.75, i.e. the observation operator O consists of Kobs system
responses at Kobs = 2 observation points at x = 0.25 and x = 0.75. The goal of computation is, for given (noisy)
data δ,

δ = G(u) + η ,

with η ∼ N (0, Γ ) and G : X → RKobs , with Kobs = 2NK − 1 , NK = 2, the expectation of the observed solution
of the forward model, i.e. our aim is to approximate

Z ′ =
∫
U

exp
(−Φ(u; δ)

)
φ(u)
∣∣∣
u=〈u〉+∑2

j=1 yjψj

π0(dy) ,
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Figure 1. Contour plot of the posterior density ΦΓobs with isotropic Gaussian observational
noise with mean zero and with covariances Γobs = 0.52I (left), Γobs = 0.252I (middle) and
Γobs = 0.052I (right). The concentration of the posterior as well as its anisotropy are clearly
visible.

with the QoI φ given by the solution p at the midpoint x = 0.5 and with the normalization constant

Z =
∫
U

exp
(−Φ(u; δ)

)∣∣∣
u=〈u〉+∑ 2

j=1 yjψj

π0(dy) ,

so that the expected QoI is Z ′/Z. The noise η = (ηj)j=1,...,Kobs is assumed independent and identically dis-
tributed. The concentration effect of the posterior and numerical instability of the adaptive Smolyak quadrature
schemes is due to the covariance Γobs = γI with γ = 0.252.

We observe a strong concentration effect of the posterior density and identify a unique maximizer of the
posterior in the interior of the parameter domain, cf. Figure 1. Further decrease of the parameter γ controlling
the synthetic covariance of the observational noise clearly exhibits the asymptotic behavior according to Theo-
rem 3.1. Figure 1 shows the consistent concentration of the posterior around the reference parameter value used
to generate the (synthetic) measurement data.

The first strategy which we will apply to overcome the difficulties arising from the concentration effect
due to small observation noise covariance will be the curvature rescaling regularization. I.e., the Smolyak
quadrature will be “preconditioned” by shifting the origin to the maximizer of the posterior and by rescaling
the integrand using second order information at the extremal point. As Γobs is isotropic, the maximizer y0 of
the posterior density ΘΓobs(y) in (2.13) can be computed by minimizing 1

2 (δ − G(u))�(δ − G(u))
∣∣∣
u=
∑ 2

j=1 yjψj

using a trust-region Quasi-Newton approach with SR1 updates as described for example in [9,10] (see also [31],
Appendix C). The trust-region subproblems are iteratively solved by a CG-Steihaug iteration (e.g. [28]). The
results presented in ([31], Appendix C) ensure (locally superlinear) convergence of symmetric rank-1 (SR1)
Hessian updates to the exact Hessian of the Bayesian posterior at MAP. The approximated Hessian HSR1 is
diagonalized HSR1 = QMQ� and the integrand is regularized by the curvature-rescaling transformation (4.5),
i.e.

y → y0 +QM−1/2Γ 1/2z, z ∈ RJ. (5.2)

The transformed posterior shown in Figure 2 suggests that the most significant contributions of the posterior
can be captured by a quadratic approximation, consistent to the analysis presented in Section 3. By Theo-
rem 4.1, the domain of analyticity after the curvature-rescaling transformation (4.5) is independent of Γobs.
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Figure 2. Contour plot of the posterior density with observation noise Γobs = 0.252I (left),
contour plot of the curvature rescaled posterior (middle) and truncated domain of integra-
tion (4.10) in the original coordinate system (right) with τ = 0.16.

Thus, the preconditioned Smolyak quadrature is expected to converge with rates independent of the observa-
tional noise covariance Γobs.

Comparing the estimated, absolute error curves using the Smolyak approach for the original integrand and
the transformed integrand, shown in Figure 3, we observe that the error indicator of the Smolyak algorithm
fails. This leads to premature termination of the adaptive Smolyak algorithm, a well known problem of greedy
adaptation strategies for integrands concentrated on a small region of the integration domain. The adaptive
Smolyak algorithm applied after the reparametrization converges as expected by Theorem 4.1. Comparison to a
reference solution computed by a full tensor grid based on Clenshaw−Curtis points of order 14 gives a relative
error of 8.28036e−4.

Next, we discuss the extrapolation method presented in Section 4.3. We consider the synthetic variances

Γk = γkI with γk = 2−(k−1) 1 ≤ k ≤ 11. (5.3)

The conditional expectation Eπ
δ

[φ] is approximated by extrapolation to the observation variance Γobs of the
Bayesian estimates for the synthetic observation noise variances Γk = γkI > Γobs. Specifically, we construct a
sequence of synthetic noise variances Γk and apply the Smolyak quadrature to approximate the sequence Eπ

δ

Γk
[φ];

we then extrapolate the resulting sequence of Bayesian estimates to the observation noise variance 0<Γobs�1
by the generalized Richardson extrapolation described in Proposition 4.3.

Choosing large, synthetic variances Γk regularizes posterior densities, but to estimate the Bayesian quantity
by extrapolation, the computation of Bayesian estimates also for small synthetic variances is needed. To avoid
the issues of the error estimator caused by the concentration effects, the greedy strategy is enforced to iterate for
a prescribed number of iterations. Figure 4 shows the (absolute) error curves of the adaptive Smolyak algorithm
with same data δ, for synthetic observational noise variance Γk = 2−(k−1)I, where the error in each iteration
is computed by a tensor grid reference solution. Considering the asymptotic expansion (3.5) of the Bayesian
estimate

Eπ
δ

[φ]
Z ′
Γ

ZΓ
∼ a0 + a1Γ

1 + a2Γ
2 + . . .

with a0 = φ(y0), (generalized) Richardson extrapolation with (5.3) yields Table 1.
The next example is the model parametric elliptic boundary value problem (5.1) with Gaussian prior and with

lognormal diffusion coefficient (2.12) defined as ln(u(x, y)) = y1ψ1(x) + y2ψ2(x), where with J = 2, J = {1, 2},
ψ1(x) = 0.1 sin(πx), ψ2(x) = 0.025 cos(2πx) and with yj ∼ N (0, 1), j ∈ J. Under the assumption that the
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Figure 3. Comparison of the estimated (absolute) error curves using the dimension-adaptive
Smolyak approach (based on univariate Clenshaw−Curtis points) for the original integrand
(gray) and the curvature rescaled integrand (black) for the computation of ZΓobs (left) and
Z ′
Γobs

(right) with observational noise Γobs = 0.252I. Posterior reparametrization (5.2) clearly
improves convergence behaviour of the adaptive Smolyak quadrature. Nonmonotonic error be-
haviour due to dimension and order adaptation.
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Figure 4. Comparison of the (absolute) error curves using dimension adaptive Smolyak
quadrature (based on univariate Clenshaw−Curtis points) for the computation of the quantities
ZΓk

(left) and Z ′
Γk

(right) with synthetic noise variances (5.3).
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Table 1. Estimated relative errors for extrapolation to observation noise variance Γobs. Ref-
erence value from direct overintegration using tensor product quadrature.

# Synthetic Variances Γ1, . . . , Γk

1 0.02070011

2 0.01193666 0.00317320

3 0.00612788 0.00031911 0.00063226

4 0.00277697 0.00057394 0.00087162 0.00090582

5 0.00112845 0.00052006 0.00050210 0.00044932 0.00041888

6 0.00043617 0.00025612 0.00016814 0.00012043 0.00009850 0.00008817

7 0.00017238 0.00009141 0.00003651 0.00001770 0.00001086 0.00000803 0.00000676

8 0.00007256 0.00002726 0.00000588 0.00000150 0.00000042 0.00000008 0.00000004 0.00000010

9 0.00003256 0.00000743 0.00000082 0.00000010 0.00000001 0.00000001 0.00000001 0.00000001 0.00000001

10 0.00001531 0.00000195 0.00000013 0.00000003 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002

11 0.00000739 0.00000052 0.00000037 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002

random variables yj are independent, the prior π0 is given by the two-dimensional Gaussian measure N (0, I)
on R2, i.e. the parameter domain is U = R2. Before discussing further details, we remark that the unbounded
parameter domain U = RJ violates the requirements for the Laplace asymptotics in Section 6. The exponential
decay of the Gaussian density as |y| → ∞ and nondegeneracy of the potential Φ in (3.1) allow the “localization”
of the argument in the proof of Proposition A.3 to a compact subset Ũ ⊂ U = R2.

We adopt the setting of the uniform test case, i.e. the solution is computed by a finite element method
using continuous, piecewise linear ansatz functions on a uniform mesh in the spatial domain D with meshwidth
h = 2−8 and we assume that the observation operator O consists of Kobs = 2 system responses ok(·) (being
point evaluations at x = 0.25 and x = 0.75, respectively) and the quantity of interest φ is defined as the solution
of the forward problem at x = 0.5.

For given (noisy) data δ as in (2.3) with η ∼ N (0, Γobs) and G : X → RKobs , with Kobs = 2, we are interested
in the behaviour of the posterior density

Θ(y) = exp
(
−ΦΓobs(u; δ)

∣∣∣
u=
∑ 2

j=1 yjψj

−1
2
‖y‖2

2

)
, (5.4)

where the extra term 1
2‖y‖2

2 is due to the Gaussian prior density wr. to dy. The observation noise covariance
Γobs is assumed to be of the form Γobs = γI with γ = 0.012, cf. Figure 5.

To apply the curvature rescaling regularization, we solve the following minimization problem

min
y∈R2

1
2
(
(δ − G(u))�Γ−1

obs

(
δ − G(u)

∣∣∣
u=
∑ 2

j=1 yjψj

)
+ ‖y‖2

2

)
by the trust-region Quasi-Newton approach with SR1 updates. The nondegeneracy of S at y0 implies locally
superlinear convergence of both, function values and Hessian, of the potential at the extremal point y0. The
Hessian is used to regularize the integrand by the curvature-rescaling (5.2). Due to the unbounded parameter
domain, for the Gaussian prior, there is no additional approximation error introduced by truncation of parameter
domains while rescaling the integrand.

As in the uniform case, curvature rescaling (4.5) results in near quadratic behavior of the posterior density,
cf. Figure 5, which suggests convergence of the Smolyak algorithm independent of the observational noise
covariance Γobs. Figure 6 confirms that curvature rescaling (4.5) of the integrand functions prior to adaptive
Smolyak quadrature restores robust w.r. to Γobs convergence, in accordance with Theorem 4.1.

To further reduce the number of quadrature points, we exploit the knowledge of y0 and Theorem 4.1, (4.7),
which implies asymptotically, as Γ → 0, quadratic behaviour of the rescaled posterior densities. We propose
a quadrature scheme in spherical polar coordinates: discretizing the radial coordinate by the Gauss-Laguerre
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transformed posterior

Figure 5. Contour plot of the posterior density with observational noise Γobs = 0.012I (left),
the minimizer of the potential (middle) and contour plot of the transformed posterior (right).
Asymptotically spherical level-lines of the rescaled posterior density shown in right subfigure
are in agreement with Theorem 4.1 and (4.6), (4.7).
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Figure 6. Comparison of the estimated (absolute) error using the dimension adaptive Smolyak
quadrature (based on univariate Gauss–Hermite points) for the original integrand (gray) and
the transformed integrand (black) for the computation of ZΓobs (left) and Z ′

Γobs
(right) with

observational noise Γobs = 0.012I. Posterior reparametrization (5.2) clearly improves conver-
gence behaviour of the adaptive Smolyak quadrature. Nonmonotonic error behaviour due to
dimension and order adaptation, and the nonnested univariate quadrature points.
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Figure 7. Comparison of the estimated (absolute) error using dimension and order adaptive
Smolyak quadrature (based on univariate Gauss–Hermite points) for the computation of the
quantities ZΓk

(left) and Z ′
Γk

(right) with synthetic noise variances Γk = 2−(k−1). Nonmono-
tonic error behaviour due to dimension and order adaptation, and the nonnested univariate
quadrature points.

abscissas of order 2 and the angular coordinate by a trapezoidal rule with 3 grid points, the relative error of the
numerical approximation of Eπ

δ

[φ] is below 3e−5 and the quadrature effort is reduced to 6 forward simulations,
cf. ([31], Fig. 7). We remark that the use of the trapezoidal rule for the angular integral is specific to the
case J = 2 parameters. For J ≥ 3, we propose approximation of the angular integral over SJ−1 by adaptive
Smolyak quadrature based on tensorized Gauss-Jacobi rules in hyperspherical coordinates as detailed in ([31],
Appendix D).

Finally, we discuss the extrapolation method based on the sequence of synthetic variances defined in (5.3).
Figure 7 indicates the convergence rate of the adaptive Smolyak algorithm with same data δ, for synthetic
observational noise variance Γk = 2−(k−1). As the Smolyak algorithm fails to converge for small synthetic
observational noise variances (Γ7, . . . , Γ11), only the first six approximated values of the normalization constant
Z (corresponding to large observation noise covariance) and the quantity Z ′ are used for the extrapolation based
approach. Figure 7 plots the corresponding values for the quantities Zk, Z ′

k.

Using as reference value the approximation of Eπ
δ

[φ] computed by curvature-rescaled, adapative Smolyak
quadrature (with absolute error tolerances 1e−10), the results of the extrapolation based on (3.5) are summarized
in Table 2.

Due to the convergence problems of the adaptive Smolyak quadrature caused by the concentration in the
posterior densities in the presence of small observation noise covariance Γk, we additionally use the curvature-
rescaling of the densities to enhance the convergence of the adaptive Smolyak quadrature for the sequence of
synthetic noise variances Γk. We verify the performance of the extrapolation strategy. Specifically, for each
value of the variance, we compute the optimal parameters of the least-squares problem and rescale accordingly.
Figure 8 shows the improvement in convergence gained by the “curvature-rescaling” preconditioning of the
adaptive Smolyak quadrature. The approximated values of the normalization constant ZΓk

, k > 7 and the
quantity Z ′

Γk
, k > 7 are used to construct the sequence of conditional expectations Eπ

δ

Γk
[φ]. The numerical

results are presented in Table 3.
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Table 2. Relative errors for generalized Romberg extrapolation to small observation noise
variance Γobs > 0.

# Synthetic Variances Γ1, . . . , Γk

1 0.00864275

2 0.00828207 0.00792139

3 0.00763215 0.00698223 0.00666917

4 0.00657289 0.00551363 0.00502409 0.00478908

5 0.00511237 0.00365186 0.00303127 0.00274658 0.00261041

6 0.00350889 0.00190542 0.00132327 0.00107927 0.00096812 0.00091514

7 0.00212986 0.0007508 0.00036607 0.00022921 0.00017254 0.00014688 0.00013468

Table 3. Relative errors for generalized Romberg extrapolation to small observation noise
variance Γobs > 0.

# Synthetic Variances Γ1, . . . , Γk

1 0.00864275

2 0.00828207 0.00792139

3 0.00763215 0.00698223 0.00666917

4 0.00657289 0.00551363 0.00502409 0.00478908

5 0.00511237 0.00365186 0.00303127 0.00274658 0.00261041

6 0.00350889 0.00190542 0.00132327 0.00107927 0.00096812 0.00091514

7 0.00212986 0.00075083 0.00036597 0.00022921 0.0001725 0.00014688 0.00013468

8 0.00116504 0.00020022 0.00001669 0.00003321 0.00005071 0.00005791 0.00006116 0.00006270

9 0.00057981 0.00000542 0.00007397 0.00008692 0.00009050 0.00009179 0.00009233 0.00009257 0.00009269

10 0.00025547 0.00006885 0.00090000 0.00009227 0.00009265 0.00009271 0.00009273 0.00009273 0.00009273 0.00009273

11 0.00009002 0.00007544 0.00007763 0.00007586 0.00007477 0.00007419 0.00007390 0.00007375 0.00007368 0.00007364 0.00007362
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Figure 8. Comparison of the estimated (absolute) error using the (curvature-preconditioned)
adaptive Smolyak approach (Gauss–Hermite points) for the computation of ZΓk

(left) and Z ′
Γk

(right) for synthetic observation noise variances Γk in Table 2.
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Figure 9. Comparison of the estimated (absolute) error using the dimension and order adap-
tive Smolyak quadrature (based on univariate Gauss–Hermite points) for the original integrand
(gray) and the transformed integrand (black) for the computation of ZΓobs (left) and Z ′

Γobs

(right) with observation noise variance Γobs = 0.012I, J = 5. Posterior reparametrization (5.2)
clearly improves convergence behaviour of the adaptive Smolyak quadrature. Nonmonotonic er-
ror behaviour due to dimension and order adaptation, and the nonnested univariate quadrature
points.

In summary, rescaling of the posterior densities (2.13), (2.15) in the Bayesian estimate (2.16) based on
second order information at the extremum of these (assumed unimodal) posterior densities to “precondition” the
adaptive Smolyak quadrature allows for dimension-, and Γ -independent convergence rates of adaptive Smolyak
quadrature. In particular, under a dimension truncation and a nondegeneracy assumption, this “curvature-
rescaling” of the posterior renders the parametric integrands analytic with Γ -independent domains of analyticity.
The adaptive Smolyak quadrature approach is robust in the limit of vanishing observation noise covariance. The
extrapolation approach per se does not require the solution of an additional minimization problem and shows
satisfactory approximation results in the considered test example, cf. Table 3. However, the extrapolation
method requires the approximation of the normalization constant ZΓ and of the quantity Z ′

Γ for several large,
synthetic variances Γk monotonically decreasing to zero. Computing these estimates could be done in parallel.
Without curvature-based rescaling, extrapolation in general will encounter numerical stability problems for
small observation noise covariances Γk, as observed in Figure 7.

To investigate the performance of the preconditioned Smolyak approach when the posterior concentrates
only in a (lower-dimensional) subspace (determined, for example, by dominant eigenspaces of the Hessian of
S(y0)), we consider Bayesian inversion of the model parametric elliptic boundary value problem (2.9), as defined
above, in the 5-parameter setting ln(u(x, y)) =

∑5
j=1 ψj(x)yj with ψj(x) = 0.1/2j−1 sin(2j−1πx), j = 1, 3, 5,

ψj(x) = 0.1/2j−1 cos(2j−1πx), j = 2, 4 and with yj ∼ N (0, 1), j ∈ J = {1, . . . , 5}.
The eigenvalues of the approximated Hessian of the Bayesian potential by QN with SR1 updates indicate

that the posterior concentrates in two coordinates. According to the strategy discussed in Section 4.1, we shift
the origin to the maximizer of the posterior density (the minimizer of the potential Φ), rotate the coordinate
system and rescale the two integration coordinates to remove the degeneracy of the integrand. The superior
performance of the preconditioned, adaptive Smolyak algorithm, compared to its performance applied to the
original integrand is shown in Figure 9.
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6. Discussion and conclusions

We proposed and analyzed an adaptive, deterministic quadrature approach to Bayesian inversion for high-
dimensional, holomorphic-parametric operator equations, extending [29,30]. It is based on a deterministic repre-
sentation of the uncertain input data as well as of the Bayesian posterior densities; specifically, as a holomorphic
function of possibly countably many parameters. We considered two particular prior measures π0: uniform prior
πunif

0 and Gaussian prior πgauss0 . Being product measures of probability measures on the coordinates yj ∈ y this
implies statistical independence of these coordinates. All methods and results of the present work extend to
prior measures π0 which are absolutely continuous w.r. to πunif

0 , with density �(y), i.e. dπ0(y) = �(y)dπunif
0 (y),

provided that �(y) is independent of Γ and holomorphic w.r. to the coordinates yj ∈ y. This allows to encode
prior knowledge and correlation structure among the coordinates yj .

We propose the use of QN methods with symmetric low-rank updates to identify computationally MAP
points as well as second order information on the Bayesian posterior density at these points. We proposed,
based on this computed second order information and a given observation noise covariance Γobs > 0 a notion
of numerical concentration dimension of the Bayesian posterior. This information is used to effect a change of
coordinates which we proved to resolve the concentration of the posterior: the curvature-based coordinate change
renders all derivatives of the rescaled Bayesian posterior density bounded independently of the observation
noise covariance Γ , so that dimension-adaptive Smolyak quadratures applied to the rescaled posterior converge
independently of the observation noise covariance Γ .

We also established, under certain nondegeneracy assumptions of the covariance weighted least-squares
potential, an asymptotic expansion of the Bayesian estimate with respect to vanishing observation noise
(co)variance Γobs. We use this asymptotic expansion as basis for an extrapolation of the Bayesian estimate
to the limit which reduces estimates for small noise covariances to a few, possibly parallel, computations for
larger, synthetic covariances for one given set of data δ. In the case of vanishing observational noise, an important
aspect in Bayesian statistics is the study of posterior consistency, i.e. the recovery of the truth in the limit. The
analysis presented here focuses solely on the numerical behavior of the posterior for fixed observational data and
varying noise covariance, with the goal to design methods computing a Bayesian estimate with computational
costs independent on the size of the noise covariance. However, the insight gained by the analysis presented
here can be useful to study the posterior consistency in the small noise and large observational data limit.
The uniform with respect to Γ analyticity of the curvature-rescaled posterior density implies Γ -independent
convergence rates also for higher-order, Quasi Monte-Carlo integration methods analyzed in [15].

The present analysis did not account for discretization errors in the forward problems which can, in general,
not be solved in closed form. Only discretizations of the forward problems are computationally accessible. This
introduces an additional discretization error into the estimates of ZΓ , Z ′

Γ defined in (2.16). We expect (for
well-posed forward equations and stable Petrov-Galerkin discretizations) the conclusions of the present analysis
remain valid for sufficiently fine discretizations. We refer to [6] for an analysis of such PG discretizations and of
model order reduction on the accuracy of Bayesian estimates, also in the nonlinear case.

Our main results, Theorems 3.1 and 4.1, did not use the affine-parametric structure (2.6) in an essential way;
all results will remain valid for general, holomorphic-parametric forward models as considered, for example, in [7].

Generalized Richardson extrapolation in the case of degenerate asymptotics (3.7) is not applicable as soon as
log(Γ )-terms are present, as then even geometric sequences {Γj}j≥0 of synthetic variances violate the stability
condition (4.13) in case that (A.8) holds with N > 0. For N = 0 in (A.8), however, geometric synthetic
observation noise covariance sequences {Γj}j≥0 will result in a stable extrapolation scheme for the leading term
in (3.7), even without explicit knowledge of the exponents rk ∈ Q.

Appendix A: Laplace’s method

The asymptotic structure of integrals of the form

F (λ) =
∫
U

φ(y) exp[λS(y)]dy (A.1)
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as the parameter λ → ∞ is obtained by Laplace’s method. In (A.1), U is a bounded domain in RJ , with
parameter dimension J <∞, and y = (y1, . . . , yJ) ∈ U , λ ∈ R is a parameter and S(y) is a sufficiently smooth,
real-valued function.

We first consider the nondegenerate case, and address briefly the degenerate case in Section A.3. The proof
proceeds recursive by dimension with the recursion based on the univariate result from ([16], Chap. II.2.1) for
parametric integrand functions; we present this case first.

A.1. Parametric one-dimensional case

For J = 1, we consider the asymptotics of integrals of the form

F (λ, α) =
∫ b

a

f(x, α) exp(λS(x, α))dx, λ→ ∞, (A.2)

where α = (α1, . . . , αk) ∈ Rk is a parameter vector. If the function S(x, α) admits for every fixed parameter
α ∈ G ⊂ Rk from some bounded parameter domain G a unique, nondegenerate maximum x0(α) ∈ I := [a, b]
and if, for every α ∈ G the point x0(α) does not approach ∂I, the Laplace asymptotics hold uniformly (w.r. to
α ∈ G). Specifically, assume

(A1) in (A.2), f(x, α) and S(x, α) ∈ C(I ×G) ∩ C∞(I ×G) and S is real-valued for (x, α) ∈ I ×G,
(A2) for every fixed α ∈ G the function S(x, α) admits a unique maximum x0(α) ∈ I.
(A3) the maximum x0(α) is nondegenerate uniformly w.r. to α ∈ G: for every α ∈ G holds −Sxx(x0(α), α) ≥

δ0 > 0 and for all α ∈ G holds x0(α) ∈ [a′, b′] ⊂ [a, b] for some fixed a < a′ < b′ < b.

Proposition A.1 ([16], Thm. II.2.1). Assume (A1)−(A3). Then F (λ, α) in (A.2) admits the asymptotic ex-
pansion

F (λ, α) ∼ exp(λS(x0, α))
∞∑
j=0

cj(α)λ−j−1/2, λ→ ∞, (A.3)

where the coefficients cj, j = 0, 1, 2, . . . are given by

cj(α) =
Γ (j + 1/2)

(2j)!

(
d
dx

)j [
f(x, α)

(
2(S(x0, α) − S(x, α))

(x− x0(α))2

)−j−1/2
]
x=x0(α)

·

The first term in the asymptotic expansion (A.3) reads (O(·) uniform w.r. to α ∈ G)

F (λ, α) =
(

2π
−λSxx(x0(α), α)

)1/2

× exp(λS(x0(α), α))
[
f(x0(α), α) +O(λ−1)

]
.

In the context of lognormal Gaussian models, as considered in Section 2.3.2, there arise improper integrals where
the function S(y) in (3.1) depends generally (analytically) on Γ at Γ = 0 (cf. (3.10)). In place of (A.2), we
consider therefore the asymptotics of

F (λ) =
∫ a(λ)

−a(λ)

f(x, λ) exp[S(x, λ)]dx, λ→ ∞ (A.4)

where λ, a, f and S are real-valued, smooth functions. We assume that for all λ, S(·, λ) has a unique, global
maximum at x0(λ) which is nondegenerate, i.e.

S′
x(x0(λ), λ) = 0, S′′

xx(x0(λ), λ) < 0
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Proposition A.2 ([16], Thm. II.2.2). Assume that there exists a real-valued function μ(λ) > 0 with μ(λ) → ∞
as λ→ ∞ such that, as λ→ ∞, in (A.4) holds

S′′
xx(x, λ) = S′′

xx(x0(λ), λ)[1 + o(1)], f(x, λ) = f(x0(λ), λ)[1 + o(1)]

uniformly w.r. to x ∈ U(x0(λ)) where U(x0(λ)) := {x : |x− x0(λ)| ≤ μ(λ)|S′′
xx(x0(λ), λ)|−1/2} ⊂ R. Then,

∫
U(x0(λ))

f(x, λ) exp[S(x, λ)]dx =

(√
− 2π
S′′
xx

f exp[S]

)
|x=x0(λ) [1 + o(1)], as λ→ ∞.

A.2. Nondegenerate case in finite dimension J > 1

We assume that φ is real-valued (i.e. S = R; all assertions hold verbatim when the QoI φ : U �→ S takes
values in a Banach space S) and uniform prior π0.

Proposition A.3 (cf. [16], Thm. II.4.1).
Consider F (λ) as in (A.1) under the assumptions

1. φ, S ∈ C(U ; R) with U a bounded domain in RJ , J <∞,
2. max{S(y) : y ∈ U} is attained only at one isolated point y0 ∈ int(U),
3. S ∈ C3(Bε(y0)) for a closed ball at y0 of radius ε > 0 so small that Bε(y0) ⊂ U ,
4. the maximum at y0 is nondegenerate.

Then there holds, as λ→ ∞, the asymptotic expansion

exp[−λS(y0)]F (λ) ∼ λ−J/2
∞∑
k=0

akλ
−k. (A.5)

In particular, as λ→ ∞ the leading term a0 in (A.5) has the exact representation

F (λ) = exp[λS(y0)](2π/λ)J/2
φ(y0)√| det(S′′(y0))|

(1 +O(λ−1)). (A.6)

Here, S′′(y0) ∈ RJ×Jsym denotes the (negative definite) Hessian of S(y) at y0.

Proof. The proof is recursively by dimension, using the asymptotic expansion in Proposition A.1 of parametric,
univariate integrals. The argument also elucidates the curvature rescaling preconditioning in Section 4.1, so that
we indicate here the derivation of (A.6), from ([16], Chap. II.) Choosing ε > 0 sufficiently small, we partition
the domain U of integration in (A.1) into U = Bε(y0) + (U\Bε(y0)) =: Bε(y0) + Vε and we may write the
integral (A.1) accordingly as F (λ) = Fε(λ)+Gε(λ) with Fε defined as in (A.1) but with the domain of integration
being Bε(y0) in place of U . Using that y0 is the global maximum of the integrand function in U , there exists
δ′ > 0 (depending on ε > 0 and on S but independent of λ > 0) such that |Gε(λ)| = O(exp(λ(S(y0) − δ′))) for
all λ > 0. This integal, being of (exponentially) lower asymptotic order as λ→ ∞, will not contribute to (A.6).
Thus the asmptotics of F (λ) as λ→ ∞ in turn is completely determined by Fε(λ). To prove (A.6), we perform
a C3-diffeomorphic change of variables x = ϕ(y) for all y ∈ Bε(y0) such that a) ϕ(y0) = y0, b) ϕ′(y0) = 1, c)

ϕ(Bε(y0)) = B̃ε(y0) ⊂ U and such that

(S ◦ ϕ)(x) = S(y0) +
1
2

J∑
j=1

μjx
2
j . (A.7)
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Here, μj < 0 are the eigenvalues of the Hessian S′′
yy at y0 (which are negative according to assumptions 2

and 4). The existence of a C3-diffeomorphism ϕ with (A.7) (which, like the function S(y), is independent of λ)
follows from the Morse Lemma by assumption 3. Changing variables in the integral Fε(λ), gives

Fε(λ) = exp(λS(y0))
∫
B̃ε(y0)

exp

⎛
⎝λ

2

J∑
j=1

μj(xj)2

⎞
⎠ (φ ◦ ϕ)(x) (Dyϕ) (x)dx.

Next, we choose 0 < ε′ < ε such that the axiparallel (wr. to the coordinates x) cube C(y0; ε′) ⊂ B̃ε(y0), and
we split as before Fε(λ) = F 1

ε (λ) +G1
ε(λ). The asymptotics as λ→ ∞ are dominated by F 1

ε (λ) which takes the
form

F 1
ε (λ) = exp(λS(y0))

∫
|x1|<ε′/2

exp
(
λμ1

x2
1

2

)
Υ (x1)dx1

where, with the notation x′ = (x2, x3, . . . , xJ),

Υ (x1) :=
∫
|x′|∞<ε′/2

exp

⎛
⎝λ

2

J∑
j=2

μj(xj)2

⎞
⎠ (� ◦ ϕ)(x)(Dyϕ)(x1; x′)dx′.

As λ→ ∞, the Laplace asymptotics Proposition A.1 for the univariate integral apply to F 1
ε (λ). This yields

F 1
ε (λ) = exp(λS(y0))λ

−1/2Υ (y0,1)(1 +O(λ−1)).

Iterating this reasoning for Υ (y0,1) which is a J − 1-dimensional integral of the same type J − 1 times im-
plies (A.5). An analysis of the spherical integral in polar-coordinates finally yields (A.6) (see [16], Prop. 4.1). �

A.3. Degenerate case

The nondegeneracy of S′′(y0) is essential for the validity of the asymptotic expansion (A.5) and for obtaining
the explicit formula (A.6). Based on the (generic) compactness of the Hessian in the countably-parametric setting
(cf. Sect. A.3), for large, finite truncation dimension J , the parametric Hessian will generically degenerate. In
the case when assumption 4. in Proposition A.3 does not hold, (A.6) becomes invalid, but a generalization
of (A.5) can be established. The result is less explicit than (A.5).

Proposition A.4. Under assumptions 1−3 of Proposition A.3, there exists N ∈ N and constants akl ∈ R such
that for λ→ ∞, for F (λ) as in (A.1) there holds the power-logarithmic asymptotics

exp(−λS(y0))F (λ) ∼
∞∑
k=0

(
N∑
l=0

aklλ
−rk(log λ)l

)
. (A.8)

Here, rk ∈ Q with J/2 ≤ r0 ≤ r1 < . . . < rs with rs → ∞ as s→ ∞.

For the proof, we refer to ([16], Sect. II.3.4). The derivation and justification of (A.8) is considerably more
involved than the classical asymptotics (A.5) as its proof is based on “resolution of singularities” [2] (see also [16],
Thm. II.4.3). We also remark that, contrary to (A.5), to date the leading term a00 in (A.8) is not known in
closed form, in general, and the exponents rk ∈ Q in (A.8) depend on J .

Appendix B: Compactness of the Hessian for uniform prior π0

For uniform prior π0 on the parameter sequences y with bounded ranges, i.e. U = [−1, 1]N, we investigate
the Hessian S′′(y) in (3.1), (3.2). At a critical point y0 ∈ int(U) we have r′(y0) = 0 so that we find, in the
case (3.3) of incompatible data, i.e. when ΦΓ (y0, δ) > 0, since G depends linearly on f

S′′(y0) = −r(y0)r
′′(y0) = −r(y0)O(G′′(y0)) = −r(y0)O(q′′(y0)).
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For the following result, we assume J = N, X is a separable Hilbert space and (ϕ)j∈N is a countable ONB.
Then, X is isomorphic to the sequence space �2(N) and we may identify, via the ONB (ϕ)j∈N, any bounded,
linear operator B ∈ L(�2(N), �2(N)) with the associated bi-infinite matrix (Bij)i,j∈N given by Bij = 〈ϕi, Aϕj〉X .
In particular, the Hessian (D2

uq)(u) ∈ X ×X �→ X is associated with the bilinear mapping �2(N) × �2(N) �→ X
induced by the bi-infinite matrix (∂2

yiyj
q(y))i,j∈N ∈ XN×N.

Proposition B.1. Assume that the set of uncertainties is contained in a separable Hilbert space X with X-ONB
(ϕj)j∈N. Assume further that the distributed parameters u ∈ X admit the representation (2.5) with |yj | ≤ 1 and
ψj = cjϕj where, for some C, η > 0, there holds the bound (which implies (2.18))

∀j ∈ N : cj := ‖ψj‖X ≤ Cj−1−η. (B.1)

Then, for every y ∈ U , and for every observation functional O(·) ∈ X ′, the bi-infinite matrix
(O((∂2

yiyj
q)(y)))i,j∈N corresponding to the second differential (D2

uG)(u) of the uncertainty-to-observation map
with u as in (2.5) induces a compact operator on �2(N).

Proof. Fix y ∈ U arbitrary. The assumed X orthonormality of the basis (ϕj)j∈N of X and the (isometric)
identification of X with �2(N) implies that it remains to verify that the bi-infinite Hessian of the parametric
uncertainty-to-observation map H(y) := (O((∂2

yiyj
q)(y)))i,j∈N can be approximated, in norm, by a sequence

(HJ (y))J∈N of matrices of finite rank J .
Since there holds, for every B ∈ L(�2(N), �2(N)) and for every x ∈ �2(N), ‖Bx‖�2(N) ≤ ‖B‖F‖x‖�2(N) with

the “Frobenius-norm” ‖ ◦ ‖F given by ‖B‖2
F =

∑
i,j |Bij |2 (which majorizes the induced spectral-norm), it is

sufficient to approximate H(y) in ‖ ◦ ‖F by a sequence {HJ}J∈N ⊂ L(�2(N), �2(N)) of operators whose ranks
are bounded by J . To this end, we choose HJ as finite sections of the bi-infinite matrix H , i.e.

HJ
ij(y) :=

{
Hij(y) = (∂2

yiyj
G)(y) = O((∂2

yiyj
q)(y)), 1 ≤ i, j ≤ J

0 else

and estimate, for y ∈ U ,

‖H(y) −HJ(y)‖2
F =

∑
i,j>J

|(Hij −HJ
ij)(y)|2 ≤ ‖O‖2

X ′
∑
i,j>J

‖∂2
yiyj

q(y)‖2
X .

Using that there exists C > 0 such that with cj as in (B.1) holds

sup
y∈U

‖∂2
yiyj

q(y)‖X ≤ Ccicj ∀i, j ∈ N

we find with the assumption (B.1) on the size of cj that

‖H(y) −HJ(y)‖2
F ≤ C2‖O‖2

X ′
∑
i,j>J

i−2(1+η)j−2(1+η).

We set i = r cos θ, j = r sin θ and majorize the double sum by a Riemann integral,

‖H(y) −HJ(y)‖2
F � ‖O‖2

X ′

∫ ∞

r=J

∫ π/2

θ=0

r−2−2η

(
1

(sin θ)2+2η
+

1
(cos θ)2+2η

)
rdrdθ � ‖O‖2

X ′

∫ ∞

r=J

r−1−2ηdr

for every η > 0, which implies the bound

sup
y∈U

‖H(y) −HJ(y)‖F � ‖O‖X ′J−η J → ∞. (B.2)

�
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Remark B.2. Condition (B.1) implies that the sequence c = (cj)j≥1 ∈ �p(N) for 1/(1 + η) < p < 1, i.e. for
η < 1/p−1 which, for small η > 0, is close to the minimal condition p = 1 for the parametrization (2.5) to remain
meaningful. Compare to condition (2.8) in (iii) of the affine perturbation Assumption 2.1. We also note that
the truncation HJ(y) of the Hessian corresponds to J-term truncation of the uncertainty parametrization (2.5).
When (2.5) is obtained by a Karhunen−Loève expansion, therefore, HJ contains the curvature information of
the forward mapping restricted to its J principal components with (B.2) providing a quantitative bound on
the truncation error, resp. on the curvature information contained in the omitted part H −HJ . Also note the
analogy of the bound (B.2) with (2.17), (2.18).

Remark B.3. Compactness of the Hessian has been observed to play a crucial role for the efficiency of com-
putational Bayesian inversion in several applications recently; we refer to ([26], Sects. 4.3 and 4.4) for numerical
evidence and to [3] for an analogous compactness result in Bayesian shape inversion problems in two space
dimensions, for acoustic scattering; both these applications are covered by Proposition B.1.
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