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COMPARISON OF TWO-FLUID MODELS ON STEAM-WATER TRANSIENTS
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Abstract. This paper is devoted to the comparison of three two-fluid models in steam-water ap-
plications involving phase transition and shock waves. The three models are presented in a common
formalism that helps to underline their shared properties. A numerical method based on previous work
is extended to all models and to more complex Equations Of State. Particular attention is paid to the
verification of every step of the method so that convergence studies can be carried out. Afterwards,
models are compared with each other and with experimental data in two different cases of steam-
water transients. The first one is Simpson water-hammer experiment and the second one is a rapid
depressurization with flashing studied in Canon experiment.
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1. Introduction

Two distinct approaches are commonly used in order to model two-phase flows: the homogeneous approach
and the two-fluid one. Homogeneous models consider the mixture as one fluid with its proper thermodynamical
properties based on some hypothesis on the equilibria between phases. On the contrary, the two-fluid approach
studies the evolution of two different fluids including many possible phasic desequilibria. In this paper, we focus
on the second approach which is assumed to be more general.

The construction of two-fluid models is usually based on an averaging procedure of the local conservation
laws [14, 26]. As no phasic equilibrium is assumed, closure laws need to be provided so that the model is fully
defined. A classical approach to obtain those closure laws is to require some properties of the corresponding
model. Thus, we choose to restrict the present work to models that comply with a physically relevant entropy
inequality and exhibit unique jump conditions. We emphasize the fact that both properties are crucial from the
numerical point of view in order to obtain grid converged solutions. Moreover, as pointed out in [5], the classical
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hypothesis of a pressure equilibrium leads to models that don’t comply with those requirements. Therefore, we
will only focus on the class of two-pressure models in this paper. Ransom and Hicks [35] have proposed one of
the first models in this class. More recently, Baer and Nunziato [3] have proposed another model that belongs to
this class in the frame of granular reactive materials. This model has received a lot of attention in the literature
and has been applied to a wide range of applications using different closure laws [7,19,20,28,38]. Among those
different closure laws, the choice proposed by Coquel et al. [7] as well as the one from Baer and Nunziato [3]
comply with the previous requirements. It leads to the three models (one for the first choice of closure laws and
two for the second choice) that will be examined in this paper.

Whereas the three models share similar properties, they show different behaviors from a purely convective
point of view. Those differences are even more striking in the case of vanishing phases since the closure laws
from Baer and Nunziato don’t depend on the void fraction. However, the models not only include convective
terms but also source terms that incorporate the different relaxation phenomena between phases. Thus those
source terms should reduce the gap between the three models depending on the stiffness of the relaxation
process, particularly the velocity relaxation. Unlike most of the available work in the literature, we consider
non-instantaneous relaxations with physical evaluations of corresponding time scales so that the consequence
on the gap between the models is more intricate. Once again, we underline the fact that we don’t consider an
instantaneous pressure relaxation which could induce numerical instabilities [17].

Based on previous work [24], a fractional step method has been used to approximate solutions of the three
models. The first step of the method is an evolution step that takes into account the convective part of the model.
In the case of the Baer and Nunziato models, lots of convective solvers have been proposed [1, 2, 8, 12, 39, 41]
unlike in the case of the model from Coquel et al. [7]. We choose to use a simple Rusanov scheme so that it could
be easily applied for all models and should not interfere in the comparisons. The second step of the method
is dedicated to the treatment of relaxation phenomena. The approach used in this step is similar to the one
proposed in [24] for Baer and Nunziato models but the remaining model [7] requires specific work. For example,
the pressure relaxation step involves a more complex scheme in this case. Extensions of the different substeps
to more general equations of state (EOS) are also proposed. Particular attention is paid to the verification of
each step and substep of the method. Grid convergence studies have been carried out for most of steps of the
method in [24] and similar work is done here for the remaining steps of the different models.

Once the numerical methods for the three models have been verified, the comparison of those two-fluid models
on steam-water transients can be tackled. Two experimental setups involving two-phase water flows with strong
pressure waves have been chosen: the Simpson experiment which is a classical water hammer test case and the
Canon experiment which consists in a sudden depressurization of hot liquid water. Grid convergence studies
have also been carried out in those cases so that we can compare converged results of the different models with
each other and with the experimental data as well.

Hence the paper is organized as follows. We first present the two-fluid models with the different closure laws
and the corresponding source terms. We also recall the main properties of the models. Then the fractional step
method used for the computations is presented. It includes the numerical treatment of convective terms as well
as sources terms. A numerical example where we point out the differences between the convective part of the
models is detailed. The last section of the paper presents the comparisons of the three models on the Simpson
and Canon experiments.

2. Two-fluid models

The derivation of two-fluid models used in the sequel relies on a classical two-step approach [14,26]. The first
step is a statistical averaging of the local conservation equations which provides an open set of equations. The
second step consists in closing this set of equations and the entropy inequality is a major tool to this end. Many
details on this approach for seven-equation models can be found in [25, 32].
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2.1. Governing equations

Throughout the paper, subscript k refers to the indexes of the phase (k = 1, 2). Thus we denote αk ∈ ]0, 1[
the statistical void fraction of phase k, which complies with:

α1 + α2 = 1.

The mean density, mean velocity and mean pressure of phase k are denoted ρk > 0, uk and pk respectively. We
also define the partial masses as:

mk = αkρk.

Moreover the specific total energy of phase k is given by the following equation:

ek = εk +
1
2
u2

k,

where εk is the specific internal energy of phase k, linked to the density and pressure by an Equation Of State
(EOS):

εk = εk(ρk, pk). (2.1)

Once the EOS is given, we can define the celerity ck of acoustics waves in phase k, and its temperature Tk > 0
using the following relations:

ρkc
2
k = (∂pk

εk)−1

(
pk

ρk
− ρk (∂ρk

εk)
)

1
Tk

= (∂pk
εk)−1 (∂pk

sk) ,

where sk is the specific entropy of phase k which complies with:

c2k (∂pk
sk) + (∂ρk

sk) = 0.

Thanks to all those notations, governing equations of the two-fluid models read:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t (αk) + uI ∂x (αk) = S1,k

∂t (αkρk) + ∂x (αkρkuk) = S2,k

∂t (αkρkuk) + ∂x

(
αkρku

2
k + αkpk

)− pI ∂x (αk) = S3,k

∂t (αkρkek) + ∂x (αkρkekuk + αkpkuk) − pIuI ∂x (αk) = S4,k.

(2.2)

The right-hand side terms Sj,k (j = 1, 4) are so-called source terms and represent exchanges between phases.
If no exterior source is considered, they comply with Sj,1 + Sj,2 = 0. Thus the first equation in system (2.2) is
redundant for both phases so those two-fluid models are seven-equation models.

The closure laws for the couple of interfacial quantities (uI , pI) are the following ones:

uI = au1 + (1 − a)u2, a =
χm1

χm1 + (1 − χ)m2
, (2.3)

pI = bp1 + (1 − b) p2, b =
(1 − a)T2

aT1 + (1 − a)T2
· (2.4)

They are a generalization of those proposed by Coquel et al. [7, 16] which are based on two important require-
ments: the enforcement of a relevant entropy inequality and a linearly degenerate field associated with λ = uI .
Many other closure laws could be found in references [6,20,27,38] and some generalisations to a larger number
of components have been recently proposed [22, 33]. The classical choice of Baer and Nunziato [3] where the
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interfacial velocity is equal to the velocity of one of the phase corresponds to χ = 0 or χ = 1. We denote
respectively BN1 model and BN2 model, the case when (uI , pI) = (u1, p2) and (uI , pI) = (u2, p1). The case
when χ = 1

2 corresponds to the model proposed in [7, 16] and will be denoted as CGHS model in reference to
the authors. In the sequel, we will restrict our attention to those three models (χ = 0, 1

2 , 1). Another possible
choice would have been to consider χ as another variable which would require another evolution law then. It
leads to a class of two-fluid models that has been proposed in [23] and which is briefly presented in Appendix A.

At this stage, it only remains to define the source terms. For CGHS and BN models, we have the following
relations:

S1,k = Φk,

S2,k = Γk,

S3,k = Dk + UΓk,

S4,k = Qk + UDk + HΓk − pIΦk,

(2.5)

where U = 1
2 (u1 + u2) and H = 1

2 (u1u2). The contribution Φk verifies Φ1 + Φ2 = 0, as well as the interfacial
mass transfer Γk, the drag effects Dk and the interfacial heat transfer Qk. All those contributions are written
as relaxation phenomena:

Φk =
1

τppref
αkαj (pk − pj) ,

Γk =
1

τμμref

mkmj

mk +mj
(μj − μk) ,

Dk =
1
τu

mkmj

mk +mj
(uj − uk) ,

Qk =
1
τT

mkCV kmjCV j

mkCV k +mjCV j

(Tj − Tk) ,

j = 3 − k (2.6)

where μk is the chemical potential of phase k which depends on the specific Gibbs enthalpy gk:

μk =
gk

Tk
with gk = εk +

pk

ρk
− Tksk

CV k represents the heat capacity of phase k, pref and μref are respectively a reference pressure and a reference
chemical potential. All relaxation phenomena involve relaxation time scales τϕ which lead physical quantity
ϕ = p, μ, u, T towards equilibrium. The evaluation of such time scales will be discussed later on in the paper.
Readers are also refered to [3, 4] for slightly different forms of source terms in the field of granular reactive
materials.

2.2. Main properties of the models

We may now recall the main properties of the three models defined earlier (BN1, BN2 and CGHS). Due to a
similar construction with the same requirements, the three models share the same properties. More details on
the CGHS model, which is the most difficult case, could be found in [16] with all proofs, comments and details.

• Entropy inequality
Smooth solutions of system (2.2) with closure laws of CGHS or BN models comply with an entropy inequality:

∂t

(∑
k

mksk

)
+ ∂x

(∑
k

mkskuk

)
= (μ2 − μ1)Γ1 +

(
1 − b

T1
+

b

T2

)
(p1 − p2)Φ1

+
(

1
2T1

+
1

2T2

)
(u2 − u1)D1 +

(
1
T1

− 1
T2

)
Q1 ≥ 0. (2.7)
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• Hyperbolicity and structure of waves
The convective part of system (2.2):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂t (αk) + uI ∂x (αk) = 0

∂t (αkρk) + ∂x (αkρkuk) = 0

∂t (αkρkuk) + ∂x

(
αkρku

2
k + αkpk

)− pI ∂x (αk) = 0

∂t (αkρkek) + ∂x (αkρkekuk + αkpkuk) − pIuI ∂x (αk) = 0

(2.8)

is hyperbolic. It admits seven real eigenvalues:

λ1 = uI ,

λ2 = u1 − c1, λ3 = u1, λ4 = u1 + c1, (2.9)
λ5 = u2 − c2, λ6 = u2, λ7 = u2 + c2

and associated righteigenvectors span the whole space R
7 if |uk − uI | �= ck. Fields associated with eigenvalues

λ1,3,6 are linearly degenerate (LD) whereas fields associated with eigenvalues λ2,4,5,7 are genuinely non linear
(GNL).

• Jump conditions
Unique jump conditions hold within each isolated field. Moreover, classical single phase jump relations hold
in the GNL fields: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[αk] = 0

−σ [ρk] + [ρkuk] = 0

−σ [ρkuk] +
[
ρku

2
k + pk

]
= 0

−σ [ρkek] + [ρkekuk + pkuk] = 0

(2.10)

where [ϕ] = ϕR − ϕL is the jump between the Left and Right states on each side of a shock wave traveling
at speed σ.

Though BN and CGHS models have the same properties, we emphasize the fact that they are quite different
from a purely convective point of view. Indeed, the structure of waves is slightly different in the case of BN
models since two LD waves collapse in that case. Thus jump conditions across the 1-field highly depend on
the model. We also underline that the LD structure of the 1-field is crucial in order to obtain unique jump
conditions. Otherwise the computation of grid converged shock solutions may differ, depending on the inner
numerical viscosity of the scheme, due to the occurence of the “true” non-conservative products (i.e. active in
GNL fields). This point is not clearly addressed in the literature on two-fluid models but interesting examples
can be found in [21].

2.3. Equation Of State and relaxation time scales

Before presenting the numerical methods, we provide remaining closure laws. So far, models have been
presented using a general EOS so we need to precise the EOS used in the computations. Besides we also explain
the estimations of the different relaxation time scales τϕ.

To describe steam-water transients, we used the Stiffened Gas EOS within each phase. It requires 5 thermo-
dynamical constants γk, p

∞
k , qk, CV k and q′k [30] to provide the following thermodynamical quantities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

εk = ((γk − 1)ρk)−1 (pk + γkp
∞
k ) + qk

Tk = (CV k(γk − 1)ρk)−1 (pk + p∞k )

sk = CV k ln
(
(CV k (γk − 1)ρk)−γk (pk + p∞k )

)
+ q′k.

(2.11)
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Moreover, Stiffened Gas EOS are only defined if γk > 1, CV k > 0 and p∞k > 0. We also require Xk = pk+p∞k > 0
in order to guarantee positivity of some thermodynamical quantities.

Evaluations of relaxation time scales are difficult to provide. Most available work in the literature deals
with instantaneous relaxation [11,31,34] although the underlying physical phenomena could be less fast. In our
case, we only consider non-instantaneous relaxations so that we need estimations of relaxation time scales. For
pressure and velocity relaxations, which should reduce the differences between CGHS and BN models, we use
physical approximations of the relaxation time scales. The other two relaxation time scales are linked together
and more complex to evaluate. In particular, only a few approximations of the chemical potential relaxation
time scale, which drives the mass transfer, could be found in reference [13]. Moreover, those approximations
only deal with homogeneous models. Therefore chemical potential and temperature relaxation time scales will
be assumed constant in the present simulations.

In the case of pressure relaxation, the evaluation of the time scale is based on the Rayleigh–Plesset
equation [18], which considers the evolution of a bubble in an infinite medium. It provides the following
approximation:

τppref =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4
3η2 if α1 < 0.2

4
3η1 if α1 > 0.8(

0.8−α1
0.8−0.2

)
4
3η2 +

(
α1−0.2
0.8−0.2

)
4
3η1 otherwise

(2.12)

where ηk is the dynamic viscosity of phase k.
In the case of velocity relaxation, the approach is really similar. The behavior of a bubble in an infinite

medium is given by the drag equation which leads to an approximation of the relaxation time scale. In the
NEPTUNE-CFD code [29], the following model is proposed for liquid-gas separated flows:

Dk = αkαjFD(α1) (uj − uk) , j = 3 − k (2.13)

where the function FD of α1 is defined as follows:

FD(α1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
FD,1(1 − α1) if α1 < 0.2

FD,2(α1) if α1 > 0.8(
0.8−α1
0.8−0.2

)
FD,1(1 − 0.2) +

(
α1−0.2
0.8−0.2

)
FD,2(0.8) otherwise.

The function FD is equal to the function FD,p(αq) in the case of isolated spherical inclusions of phase p in the
continuous phase q. The following classic correlations are used [29, 36]:

FD,p(αq) =
3
4
ρq

αq

CD,p

dp
|up − uq| , q = 3 − p

with:
CD,p =

24
Rep

(
1 + 0.15 (Rep)

0.687
)

and Rep =
ρqdp

ηq
|up − uq| ,

where dp is a characteristical diameter of the inclusion that needs to be defined in [29]. In our case, we choose
to define it using the critical Weber number We = 10 (see [36]):

We =
ρqdp

σ
|up − uq|2 ,

where σ is the surface tension of the liquid phase. Thus, we obtain the following approximation for the velocity
relaxation time scale using (2.6) and (2.13):

τu =
ρ1ρ2

m1 +m2

1
FD(α1)

· (2.14)
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3. Numerical methods

An entropy-consistent fractional step method is used to compute approximations of the whole system. This
algorithm was first detailed in [24] for BN models without mass transfer. Two steps are used to compute
approximate solutions of system (2.2). The first step is an evolution step where we compute approximate
solutions of the homogeneous system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂t (αk) + uI ∂x (αk) = 0

∂t (αkρk) + ∂x (αkρkuk) = 0

∂t (αkρkuk) + ∂x

(
αkρku

2
k + αkpk

)− pI ∂x (αk) = 0

∂t (αkρkek) + ∂x (αkρkekuk + αkpkuk) − pIuI ∂x (αk) = 0

(3.1)

through the time interval [tn, tn +Δt] with given initial values ϕn of the seven variables. Thus, we obtain
approximations ϕ̃ which are used as initial values in the second step of the method. This second step is called
relaxation step and takes into account the source terms. We compute approximate solutions of the following
system: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂t (αk) = S1,k

∂t (αkρk) = S2,k

∂t (αkρkuk) = S3,k

∂t (αkρkek) = S4,k

(3.2)

with Sj,k defined by equations (2.5) and (2.6). Finally, we obtain the approximations ϕn+1. As in [24], the
relaxation time step is divided into different substeps to treat the different relaxation phenomena. In the sequel,
we detail all steps and substeps of the method and we respect the order of the algorithm to present them.

3.1. Evolution step

The first step of the fractional step method is an evolution one. It consists in using finite volume methods
to solve the convective system (3.1). In the case of the BN models, several finite volume schemes have been
proposed up to now. Many of them are approximate or exact Riemann solvers. Schwendeman et al. [39] propose
a Godunov scheme that approximates the LD 1-wave as a layer of vaninshingly small thickness across which the
solution is assumed to be smooth. This hypothesis has been also used by Tokareva and Toro [41] to build an
HLLC-type Riemann solver. Deledicque and Papalexandris [12] as well as Andrianov and Warnecke [2] propose
exact Riemann solvers based on different approaches. Relaxation solvers have also been used in [8] to handle
vanishing phases.

In the case of the CGHS model, very few solvers could be found in the literature. Relaxation techniques have
been applied in [1] and extensions of both Rusanov and VFRoe schemes to non-conservative systems have been
proposed in [16]. Among those three schemes, we choose to use a Rusanov scheme for all models for simplicity.

Moreover, grid convergence studies of the Rusanov scheme for BN model can be found in [9] where first-order
and second-order schemes have been verified. The expected rate of convergence which is 1/2 in the case of the
first-order scheme (and 2/3 in the case of the second-order scheme) is retrieved. Those rates of convergence
are due to the occurence of contact discontinuities in the exact solutions. In the case of smooth solutions, the
first-order (or second-order) should be obtained. We underline the fact that only a few grid convergence studies
in order to verify convective schemes could be found in reference [8, 21, 24]. Thus, we propose to carry out a
grid convergence study on a Riemann problem to verify the Rusanov scheme for the CGHS model. We set
particular thermodynamical parameters for both phases (see Tab. 1) in order to obtain an analytical solution.
Once the Left state is set, the Right state is calculated so that the Riemann invariants of the LD 1-wave are
preserved, leading to the initial states recalled in Table 2. Therefore the analytical solution of this first Riemann
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Table 1. EOS parameters for the first Riemann problem.

γk p∞
k qk CV k q′k

(Pa) (J kg−1) (J kg−1 K−1) (J kg−1 K−1)
Phase 1 2. 10 000.00 2 000 000.00 1500.00 2000.00
Phase 2 2. 200 000.00 1000.00 1500.00 25 000.00

Table 2. Initial conditions for the first Riemann problem.

αk ρk pk uk

(kg m−3) (Pa) (m s−1)

Left state
Phase 1 0.8 2.00 100 000.00 100.00
Phase 2 0.2 1000.00 300 000.00 100.00

Right state
Phase 1 0.3 1.47780679 71 279.3734 100.00
Phase 2 0.7 738.903394 169 451.697 100.00

-15 -10 -5
ln(dx)

-5

0

5

10

ln
(e

rr
)

α1
ρ1
ρ2
p

1
p

2
u

1
u

2

C dx
1/2

Figure 1. Convergence study of the Rusanov scheme for the CGHS model on the first Riemann
problem: L1 norm of the error vs. Δx at tf = 1.5 × 10−3 s with a 0.5 CFL condition.

problem only exhibits the LD 1-wave. Figure 1 shows the results of the grid convergence study and we retrieve
the expected rate of convergence 1/2 as explained before.

Once again, the LD-structure of the 1-field should be highlighted. Indeed, due to this property, the non-
conservative products are not active in GNL fields and so the three models exhibit unique jump conditions. It
is of major importance to obtain unique analytical solutions of Riemann problems so that convective schemes
could be verified.

As we emphasize it earlier, the three models are quite different when looking at the convective part of the
models which is exactly the part we solve in the evolution step. An interesting test case proposed in [1] (Test 3)
gives an illustration of those differences. This test case is a Riemann problem with two gases. Thermodynamical
parameters of those gases are recalled in Table 3 and both initial states of the test case are presented in Table 4.
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Table 3. EOS parameters for the second Riemann problem.

γk p∞
k qk CV k q′k

(Pa) (J kg−1) (J kg−1 K−1) (J kg−1 K−1)
Phase 1 1.4 0.00 0.00 1000.00 0.00
Phase 2 1.4 0.00 0.00 1000.00 0.00

Table 4. Initial conditions for the second Riemann problem.

αk ρk pk uk

(kg m−3) (Pa) (m s−1)

Left state
Phase 1 0.8 1.00 1.00 0.00
Phase 2 0.2 0.20 0.30 0.00

Right state
Phase 1 0.3 1.00 1.00 0.00
Phase 2 0.7 1.00 1.00 0.00

The numerical results given by first-order Rusanov schemes with a CFL condition of 0.5 on a 1D mesh made
of 1000 cells are presented in Figure 2. As expected, the differences between the models are striking. The
intermediate states are totally different in some cases. We can also notice that wave speeds are different as well.
Moreover, the variable ρ2 is a good example to underline the fact that the models don’t have the same number
of waves. In the case of the CGHS model, ρ2 is an invariant of 3 waves (the three waves on Phase 1) among
the 7 waves of the model which gives us the 4 waves (and the 3 intermediate states) that can be observed
on ρ2. For the BN2 model, ρ2 is also an invariant of 3 waves but the model has only 6 waves so this variable
exhibits 3 waves. To finish, ρ2 is an invariant of only 2 waves of the BN1 model (the 2 GNL waves on Phase 1)
so its leads to the 4 waves we can see on ρ2 in Figure 2.

3.2. Relaxation step

The relaxation step is associated to the treatment of the source terms. During that step, we solve system (3.2)
with 4 substeps, one for each relaxation phenomenum. They are treated in the following order: pressure relax-
ation, velocity relaxation, temperature relaxation and chemical potential relaxation. For each substep, we use
the approach proposed in [24] for BN models. Thus, implicit first-order Euler schemes are used with the time
step given by the CFL condition linked to the evolution step. We underline the fact that applying this approach
in the case of the CGHS model requires a specific treatment in the case of the pressure relaxation. Moreover,
we extend all schemes to the case when both phases are governed by Stiffened Gas EOS.

In the sequel, we use the notation ϕ0 to denote the state of a variable ϕ at the end of the previous substep
and ϕ∗ the state of the same variable at the end of the current substep. Δt denotes the time step given by the
CFL condition associated to the evolution step.

3.2.1. Pressure relaxation

In this substep, we compute approximate solutions of the system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t (αk) = Φk,

∂t (αkρk) = 0,

∂t (αkρkuk) = 0,

∂t (αkρkek) = −pI Φk.

(3.3)
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Figure 2. Comparison between numerical solutions of the three models in the second
Riemann problem at time t = 0.2 s on a 1000-cell mesh. From the top to bottom right:
α1, ρ1, ρ2, u1, u2, p1, p2 vs. x.
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Because of the occurence of the interfacial pressure pI , the choice of the model has a major impact in this
substep. We propose the following implicit scheme to solve system (3.3):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α∗
k − α0

k

Δt
= 1

(τppref )
0α∗

kα
∗
j

(
p∗k − p∗j

)
,

m∗
k = m0

k,

u∗k = u0
k,

m∗
kε

∗
k −m0

kε
0
k

Δt
= − (b0p∗1 +

(
1 − b0

)
p∗2
) α∗

k − α0
k

Δt
,

j = 3 − k (3.4)

where the interfacial pressure pI defined by (2.4) is treated in a semi-implicit way. Therefore, the following
non-linear system in α∗

1, p
∗
1 and p∗2 has to be solved in the case of Stiffened Gas:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(τppref)
0

Δt

α∗
1 − α0

1

α∗
1(1 − α∗

1)
− (p∗1 − p∗2) = 0, (3.5a)

γ1 (α∗
1 − αm

1 )X∗
1 − α0

1X
0
1 = (1 − b0)(γ1 − 1)

(
α∗

1 − α0
1

)
(p∗1 − p∗2) , (3.5b)

− γ2

(
α∗

1 − αM
1

)
X∗

2 − α0
2X

0
2 = b0 (γ2 − 1)

(
α∗

1 − α0
1

)
(p∗1 − p∗2) , (3.5c)

where we use the following notations:

Xk = pk + p∞k ,

αm
1 =

(γ1 − 1)α0
1

γ1
and αM

1 = 1 − (γ2 − 1)α0
2

γ2
· (3.6)

Equations (3.5b) and (3.5c) form a linear system in p∗1 and p∗2. Solving this system makes it possible to write
those pressures as functions of α∗

1. Thus equation (3.5a) could be written as a non-linear equation on α∗
1:

G(α∗
1) = 0, (3.7)

where the function G is defined as follows:

G(α∗
1) =

(τppref)
0

Δt

α∗
1 − α0

1

α∗
1(1 − α∗

1)
− (p∗1(α

∗
1) − p∗2(α

∗
1)) . (3.8)

Due to the non-linearities of the function G, we use an iterative procedure to solve this equation. Particular
attention is required to ensure that thermodynamical quantities remain in the admissible range. We can notice
that the linear system in p∗1 and p∗2 made of equations (3.5b) and (3.5c) is easier to solve in the case of BN
models than in the case of the CGHS model. In the sequel, we will examine existence and uniqueness of solution
of equation (3.7) in the case of the CGHS model (i.e. b0 ∈ ]0, 1[). Same results hold for the BN models.

Existence of a solution for equation (3.7) is guaranteed by the following:

Proposition 3.1. Assume that p∗1(α
∗
1) and p∗2(α

∗
1) are continuous functions. The equation G(α∗

1) = 0 has at
least a solution in the interval ]αm

1 , α
M
1 [ and this solution leads to admissible pressures (X∗

1 > 0 and X∗
2 > 0).

Proof. Let us first remark the following results:

αm
1 − α0

1 = −α
0
1

γ1
< 0 and αM

1 − α0
1 =

α0
2

γ2
> 0 (3.9)
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which also gives αm
1 < αM

1 . Using (3.9), the equation (3.5b) gives (p∗1(αm
1 ) − p∗2(αm

1 )) > 0. We deduce that
G(αm

1 ) < 0 by using equation (3.9) again. The same strategy applied on equation (3.5c) gives G(αM
1 ) > 0 and

we obtain that it exists α∗
1 ∈ ]αm

1 , α
M
1

[
such that G(α∗

1) = 0.
The admissibility of pressures is now easy to prove. Equation (3.5a) shows that (p∗1 − p∗2) and

(
α∗

1 − α0
1

)
have the same sign. Hence, the right hand sides of equations (3.5b) and (3.5c) are positive. Therefore, if
α∗

1 ∈ ]αm
1 , α

M
1

[
, then X∗

1 > 0 and X∗
2 > 0. �

Proposition 3.2. If we also assume that functions p∗k(α∗
k) are strictly decreasing, then equation G(α∗

1) = 0 has
a unique solution in

]
αm

1 , α
M
1

[
.

Proof. Thanks to the hypothesis on p∗k(α∗
k), the function (p∗1(α∗

1) − p∗2(α∗
1)) is decreasing. Let’s now remark that

function α∗
1−α0

1
α∗

1(1−α∗
1) is strictly increasing on ]0, 1[ and we can deduce that the function G(α∗

1) is strictly increasing
on
]
αm

1 , α
M
1

[
. Therefore, it admits a unique zero on this interval. �

In practice, the linear system in (p∗1, p
∗
2) composed by equations (3.5b) and (3.5c) can be easily solved in the

case of two perfect gas (p∞k = 0). Then, we can directly check that functions p∗k(α∗
k) are strictly decreasing in

that particular case. The present scheme has been verified, details can be found in Appendix B.

3.2.2. Velocity relaxation

The velocity relaxation substep computes approximations of solutions of the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t (αk) = 0,

∂t (mk) = 0,

∂t (mkuk) = Dk,

∂t (mkek) = UDk.

(3.10)

Solving this system is easier than solving the one of the previous substep. Indeed, we can show that:

∂t (u1 − u2) = − 1
τu

(u1 − u2) .

Hence, if τu is assumed constant, analytical solution of system (3.10) could be provided. Therefore we propose
the following numerical scheme, where τu is treated in an explicit way during the time interval [tn, tn +Δt]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α∗
k = α0

k,

m∗
k = m0

k,

u∗k = u0
k − m0

j

m0
k +m0

j

(
1 − e−Δt/τ0

u

) (
u0

k − u0
j

)
,

ε∗k = ε0k +
1
4

m0
j

m0
k +m0

j

(
1 − e−2Δt/τ0

u

) (
u0

k − u0
j

)2
.

j = 3 − k (3.11)

Note that the internal energy remains positive during this step. Moreover the relaxation effect on the velocities
is ensured without any constraint on the time step. The verification of such a scheme can be found in [24].
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3.2.3. Temperature relaxation

In this substep, we compute approximate solutions of the following system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t (αk) = 0,

∂t (αkρk) = 0,

∂t (αkρkuk) = 0,

∂t (αkρkek) = Qk.

(3.12)

As in the previous substep, the relaxation phenomenum is given by a simple equation:

∂t (T1 − T2) = − 1
τT

(T1 − T2) .

Thus, we use the following numerical scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α∗
k = α0

k,

m∗
k = m0

k,

u∗k = u0
k,

T ∗
k = T 0

k − m0
jCV j

m0
kCV k +m0

jCV j

(
1 − e−Δt/τ0

T

) (
T 0

k − T 0
j

)
.

j = 3 − k (3.13)

We underline the fact that the temperatures remain positive and their relaxation is ensured without any con-
straint on the time step. This numerical scheme corresponds to the one proposed in [24] in the case of Stiffened
Gas EOS.

3.2.4. Chemical potential relaxation

The last substep corresponds to the numerical treatment of the mass transfer. We compute approximate
solutions of the system: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂t (αk) = 0,

∂t (αkρk) = Γk,

∂t (αkρkuk) = U Γk,

∂t (αkρkek) = H Γk.

(3.14)

Thanks to simple manipulations, it could be written in the following way:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂t (αk) = 0,

∂t (mk) = Γk,

∂t (mkuk) = U Γk,

∂t (mkεk) = 0.

(3.15)
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An implicit scheme is used to approximate solutions of that system, which is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α∗
k = α0

k, (3.16a)

m∗
k −m0

k

Δt
=

1
(τμμref)

0

m∗
km

∗
j

m∗
k +m∗

j

(
μ∗

j − μ∗
k

)
, (3.16b)

m∗
ku

∗
k −m0

ku
0
k

Δt
=
u∗k + u∗j

2
m∗

k −m0
k

Δt
, (3.16c)

m∗
kε

∗
k = m0

kε
0
k. (3.16d)

Equation (3.16b) is written as follows:
H(m∗

1) = 0, (3.17)

where we use the following notations:

H(m∗
1) = MT

(τμμref)
0

Δt

m∗
1 −m0

1

m∗
1 (MT −m∗

1)
+ (μ∗

1(m
∗
1) − μ∗

2(MT −m∗
1)) ,

MT = m0
1 +m0

2 = m∗
1 +m∗

2. (3.18)

Chemical potentials μ∗
k may be seen as functions of m∗

k thanks to equations (3.16a) and (3.16d). Indeed, we
have:

μ∗
k = μ∗

k (ρ∗k, ε
∗
k) = μ∗

k

(
m∗

k

α0
k

,
m0

kε
0
k

m∗
k

)
.

Once equation (3.17) has been solved, velocities u∗k are calculated by solving the linear system made of equa-
tion (3.16c) for both phases. Its determinant is strictly positive: Δ = 1

2

(
m0

1m
∗
2 +m0

2m
∗
1

)
. Thus, the main

difficulty of the scheme lies in solving non-linear equation (3.17). In the numerical scheme, this difficulty is
overcomed by using an iterative solver. As it happens for the pressure relaxation, specific attention is required
to ensure that thermodynamical quantities remain in the admissible range. This is guaranteed by the following
property:

Proposition 3.3. The equation H(m∗
1) = 0 has a unique solution with positive partial masses and temperatures.

Proof. First, we focus on the constraint on the signs of the temperatures. Let us first express temperatures as
functions of partial masses thanks to the EOS (2.11):

T ∗
k (m∗

k) =
1

CV k

(
m0

kε
0
k − α0

kp
∞
k

m∗
k

− qk

)
.

If qk �= 0, we introduce ϕk as follows:

ϕk =
m0

kε
0
k − α0

kp
∞
k

qk
·

It results in the following expressions of temperatures:

T ∗
k (m∗

k) =
qk

CV km
∗
k

(ϕk −m∗
k) .

So we can define the intervals Ik that ensure that temperatures T ∗
k remain positive:

I1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

]
0, ϕ1

[
if q1 > 0]

0,+∞[ if q1 = 0]
ϕ+

1 ,+∞[ if q1 < 0

and I2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

]
(MT − ϕ2)+,+∞[ if q2 > 0]

0,+∞[ if q2 = 0]
0, (MT − ϕ2)

[
if q2 < 0
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where we use the classical notation ψ+ = max(0, ψ). Then we define the interval ]mmin
1 ,mmax

1 [ that ensure that
all temperatures and partial masses remain positive:]

mmin
1 ,mmax

1

[
= ]0,MT [ ∩ I1 ∩ I2.

In each case, depending on the signs of qk, we can prove that
]
mmin

1 ,mmax
1

[ �= ∅. We skip the details for
simplicity but we can also prove the following limits:

lim
m∗

1→mmin
1

(μ∗
1(m

∗
1) − μ∗

2(MT −m∗
1)) = −∞ and lim

m∗
1→mmax

1

(μ∗
1(m

∗
1) − μ∗

2(MT −m∗
1)) = +∞

where:

μ∗
k(m∗

k) = γkCV k +
qk

T ∗
k (m∗

k)
− CV k ln

(
T ∗

k (m∗
k)
)

+ (γk − 1)CV k ln(m∗
k)

+ (γk − 1)CV k ln
(

(γk − 1)CV k

1
α0

k

)
− q′k.

Then, it is easy to deduce the limits of the function H(m∗
1):

lim
m∗

1→mmin
1

H(m∗
1) = −∞ and lim

m∗
1→mmax

1

H(m∗
1) = +∞.

Hence, the continuous function H(m∗
1) has at least one zero in ]mmin

1 ,mmax
1 [.

Then, we focus on the monotonicity of H in order to prove that such a zero is unique. We have the following
derivative:

μ∗
k
′(m∗

k) =
(γk − 1)CV k

m∗
k

+
1

CV k

(
T ∗

k (m∗
k)
)2
(
m0

kε
0
k − α0

kp
∞
k

)2
m∗

k
3 ·

So the function (μ∗
1(m∗

1) − μ∗
2(MT −m∗

1)) is strictly increasing on
]
mmin

1 ,mmax
1

[
. Moreover, the function

m∗
1−m0

1

m∗
1(MT −m∗

1)
is also strictly increasing on ]0,MT [. Thus, H(m∗

1) is strictly increasing on
]
mmin

1 ,mmax
1

[
and

the equation H(m∗
1) = 0 has a unique solution in that interval. �

Appendix C provides a verification of the scheme. Note that the present scheme is an extension of the one
proposed in [10] for Stiffened Gas EOS.

4. Comparison of two-fluid models on steam-water transients

This section is devoted to the comparison of the three different models described earlier. We focus in this
paper on steam-water applications involving mass transfer. Two experimental configurations have been selected
so that we could compare models with each other but also with experimental data. The first one is the Simpson
experiment, a classical water hammer test case and the second one is the Canon experiment consisting in the
rapid depressurization of hot liquid water in a horizontal pipe. An important guideline of our work is that we
focus on the comparison of the three models and not on the comparison of numerical schemes used for those
models. Therefore, the following section also includes grid convergence studies in order to reduce the numerical
approximations as far as possible.

4.1. Simpson’s column-separation water hammer

The Simpson facility [40] consists of a 36 m long horizontal pipe linked to a tank and ending with a valve
(see Fig. 3). Initially, a liquid water flow fills the pipe with a given velocity. At time zero, the valve is suddenly
closed, thus generating a pressure wave that propagates towards the tank. Pressure is measured along the pipe
at differents locations denoted P1, P2 and P3 in Figure 3. Due to the reflections at both ends of the pipe
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Figure 3. Schematic of Simpson test facility.

Table 5. Stiffened gas EOS parameters for Simpson experiment.

γk p∞
k qk CV k q′k

(Pa) (J kg−1) (J kg−1 K−1) (J kg−1 K−1)
Vapor 1.34 0.00 2 009 800.00 1344.06 1977.08
Liquid 2.27 692 754 002.87 −1 142 331.00 1840.48 24 218.87

Table 6. Initial conditions for Simpson experiment.

αk ρk pk uk

(kg m−3) (bar) (m s−1)

Vapor 10−6 2.53 3.419 0.401
Liquid 1–10−6 997.90 3.419 0.401

(the tank and the closed valve), different pressure peaks appear on the measurements. Moreover, if the initial
velocity is high enough, pressure decreases towards the saturation pressure at the valve and a vapor pocket
appears. This vapor pocket has a significant influence on the reflections of the pressure waves. Experimental
measurements are compared to the results of 1D simulations of the two-fluid models.

An important conclusion of Simpson’s work is that the influence of the elasticity of the pipe on the effec-
tive speed of sound must be taken into account in order to obtain a fair agreement between simulations and
experimental data. Thus we use the Stiffened Gas EOS parameters presented in [11] which are chosen to re-
cover the experimental speed of sound (see Tab. 5). The initial conditions used in the simulations are presented
in Table 6. They are the same in the pipe and in the tank, and they correspond to the temperature of the
experiment T = 296.3 K in both phases. The temperature is assumed to be constant in the simulation so we
neglect the temperature relaxation: τT = +∞. The chemical relaxation time scale is set to τμ = 10−3 s with
μref = |μ1| + |μ2|. We recall that τp and τu are respectively defined by equations (2.12) and (2.14).

First of all, different mesh refinements have been used in order to carry out a grid convergence study with the
CGHS model. As it is shown in Figure 4, grid independance is obtained with 50 000 cells: only a few differences
on the second pressure peak (occuring around 300 ms) can be observed between the two finest grids. Similar grid
sensitivy has been observed for the BN models. Note that all results have been obtained with a CFL condition
of 0.99 on 1D meshes thanks to the Europlexus fast transient dynamics software [15] where all the previous
models and algorithms have been implemented. Then results for all models on the mesh made of 50 000 cells
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Figure 4. Influence of the grid refinement on the history of the mean pressure p = αlpl +αvpv

at P1 in Simpson water hammer experiment for CGHS model.
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Figure 5. Mean pressure p = αlpl+αvpv vs. time at P1 in Simpson water hammer experiment:
comparison between the CGHS model, the BN models and the experiment.

could be compared with the experimental results. Figure 5 provides us the comparison of the mean pressure
p = αlpl +αvpv history at the valve. We first notice that we are not able to distinguish the results of the different
models. Close results are expected, especially with pressure and velocity relaxations, however the convective
parts of the models are so different (see Fig. 2) that it is rather surprising. Then, we compare the numerical
results with the experimental ones. If we focus on the pressure peak at 125 ms, we have an excellent agreement
on the times when pressure waves reach the valve. However the amplitude of the peak is a bit overestimated
but we think that the addition of a wall friction model could drive it closer to the experimental results.
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Figure 6. Mean pressure p = αlpl +αvpv vs. time at P1 in Simpson water hammer experiment
with a smaller initial velocity (u0 = 0.239 m s−1): comparison between the CGHS model, the
BN models and the experiment.

Simpson also provides experimental results with other initial velocities. For smaller initial velocities (u0 =
0.239 m s−1 for example), mass transfer no longer occurs so that the water hammer is purely monophasic.
Obviously, the overall phenomenum is much easier to understand in this case, but it is also a good opportunity
to highlight the lack of a wall friction model in our simulations. Figure 6 shows the comparison between the
CGHS model, the BN models and the experiment in the monophasic case. As expected in a monophasic case,
the results of the different models look the same. If we compare them to the experimental results, we see a
very good agreement on the period of pressure peaks but their amplitudes are also slightly overestimated. It
underlines the lack of physical dissipative phenomena in the present simulations.

4.2. Discharge of a hot liquid from Canon experiment

The Canon experiment [37] consists in the fast depressurization of water contained in a 4.389 m long pipe.
The initial pressure and temperature of the water are high: 32 bar and 493.15 K. At time zero, a membrane
located at the end of the pipe is fully broken. It generates a rarefaction wave propagating along the pipe and the
liquid water flashes. As detailed in Figure 7, several pressure transducers are disposed along the pipe (from P1
to P5) and a void fraction transducer is used at point Pt (between P2 and P3). Experimental results show that
the liquid fully flashes therefore this is an excellent test case with vanishing phases. We emphasize the fact that
the CGHS model makes more sense than the BN model in those cases from a theoretical point of view since
the interfacial velocity uI of this model depends on the void fraction unlike the interfacial velocity of the BN
models. The computations are still performed with the Europlexus fast transient dynamics software [15].

Computational domains used in Canon test case are similar to those used for Simpson test case: a 1D grid with
a tank at one side and a closed end at the other. However, it should be emphasized that the initial conditions (see
Tab. 8) are different in the tank and in the pipe unlike in Simpson experiment. Indeed, atmospheric conditions
are applied in the tank in this case. Table 7 provides the Stiffened Gas EOS parameters. They are chosen to
recover the water phase diagram as in [11]. Moreover the relaxation time scales τp and τu are respectively defined
by equations (2.12) and (2.14). We also set τT = 10−7 s and τμ = 5 × 10−5 s with μref = |μ1| + |μ2|.

As in the previous experimental test case, a grid convergence study of the numerical results is carried out.
Figure 8 shows the results for the CGHS model with a 0.9 CFL condition: beyond 5000 cells, results are no
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Figure 7. Schematic of Canon test facility.

Table 7. EOS parameters for Canon experiment.

γk p∞
k qk CV k q′k

(Pa) (J kg−1) (J kg−1 K−1) (J kg−1 K−1)
Vapor 1.34 0.00 2 032 350.00 1162.00 2351.11
Liquid 1.66 769 317 123.86 −1 359 570.00 2807.61 11 671.61

Table 8. Initial conditions for Canon experiment.

αk ρk pk uk

(kg m−3) (bar) (m s−1)

Pipe
Vapor 10−3 16.72 32 0.00
Liquid 1–10−3 841.12 32 0.00

Tank
Vapor 1–10−3 0.52 1 –
Liquid 10−3 837.74 1 –

longer sensitive to the mesh refinement. Thus results on the finest grid (10 000 cells) are then compared to
the experimental data. As it is shown in Figures 9 and 10, numerical results of the different models are also
completely similar in this case. Like the experimental data, numerical models show the sudden pressure drop,
then the pressure remains constant around the saturation pressure value during the vaporization and slowly
decreases to reach the atmospheric pressure. The main difference between the numerical simulations and the
experimental results is that the vaporization process is predicted earlier in the simulations but apart from that
a good agreement is observed.

Although pressure and velocity relaxations are expected to lead to similar results for all models, the fact
that no visible difference can be observed on the numerical results of this test case with vanishing phases is
surprising. In order to investigate in more depth the effect of the relaxation terms, Figure 11 shows normalized
pressure and velocity differences between phases over time at Pt (p0 = 32 bar is the initial pressure in the
pipe and c0 = 1234 m s−1 the celerity of pressure waves in liquid water at 32 bar). Thus, we observe that
the normalized pressure and velocity differences are respectively lower than 1‰ and 3%. We can also evaluate
the order of magnitude of both τp and τu. If we assume that pref = 1 bar and the dynamic viscosities are
η1 = 10−5 kg m−1 s−1 and η2 = 10−4 kg m−1 s−1, equation (2.12) gives:

10−10 s ≤ τp ≤ 10−9 s.

If we also assume that the surface tension σ = 5× 10−2 N m−1, the densities ρ1 = 20 kg m−3, ρ2 = 800 kg m−3

and the velocity difference |u1 − u2| = 10 m s−1 (thanks to Fig. 11), equation (2.14) gives:

6 × 10−9 s ≤ τu ≤ 8 × 10−4 s.
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Figure 8. Influence of the grid refinement on the history of the void fraction at Pt in Canon
experiment for CGHS model.
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Figure 9. Void fraction vs. time at Pt in Canon experiment: comparison between the CGHS
model, the BN models and the experiment.

We can notice that unlike τp, the order of magnitude of τu strongly depends on the void fraction because of
the difference of densities between the two phases. Both those relaxation time scales need to be compared with
the time step given by the CFL condition which is Δt ≈ 3 × 10−7 s initially. Therefore, τp is small compared
to the time step and it leads to the small pressure difference which can be observed in Figure 11. In the case
of τu, the effect of the relaxation during the transient is less clear since τu can become greater than the time
step when the flow is mainly made of vapor. This can be observed in Figure 11 after 300 ms, at the end of
the vaporization, τu grows and so does the velocity difference. However, it does not exceed 3% as pointed out
before. On the whole, pressure and velocity differences remain small due to small relaxation time scales hence
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Figure 10. Mean pressure p = αlpl + αvpv vs. time at Pt in Canon experiment: comparison
between the CGHS model, the BN models and the experiment.
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Figure 11. Normalized pressure (left, p0 = 32 bar) and velocity (right, c0 = 1234 m s−1)
differences between phases vs. time at Pt in Canon experiment.

the numerical results of the different models are similar on this test case. Unfortunately, this result can not
easily be extended to other applications, even other steam-water applications, due to the strong dependance
of τu on the void fraction. Indeed the mass transfer, which is a complex phenomenum in steam-water flows, has
a significant effect on the void fraction and thus on the relaxation effects.

5. Conclusion

Different two-phase flow models have been presented and compared with each other in steam-water transient
applications. They all are two-fluid models and they exhibit the same mathematical properties. Thus, similar
approaches have been used to compute numerical approximations of those models. It is based on a fractional
step method that complies with the key property of all models, an overall entropy inequality. For each step
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and substep of the method, rather simple numerical schemes have been used and particular attention have
been paid to their verification with grid convergence studies. We emphasize this point because it is of major
importance if we want a comparison between models with only a few numerical approximations. We also recall
that schemes for relaxation terms proposed in [24] have been extended to Stiffened Gas EOS and that pressure
relaxation in the case of the CGHS model has required the proposition of a new scheme.

From a theoretical point of view, pressure and velocity relaxation phenomena are expected to drive models
closer to each other. Therefore we require physically relevant implementations of those two substeps and of the
corresponding approximations of the relaxation time scales. For both test cases involving steam-water transients
with mass transfer, the three models give a fair agreement with experimental data. An important conclusion
of the present work is that all three models provide almost the same converged numerical results on those test
cases, even with vanishing phases. It is surprising regarding the differences between the convective part of the
models. Further work should be devoted to confirm this trend and also to improve the modelling of the mass
transfer in order to obtain numerical results closer to the experimental data. The chemical potential relaxation
time scale seems to be a key parameter in the current models, however only little attention has been paid to
this for non-homogeneous models in the literature.

Appendix A. A class of two-fluid models

The new framework proposed in [23] considers the scalar χ which is introduced in the closure law of the
interfacial velocity uI as a new variable of a class of two-fluid models. This variable is a non-dimensional scalar
lying in [0, 1] that characterizes the flow regime. The corresponding set of equations reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t (χ) + ω ∂x (χ) = χ (χ− 1)
(
χ− 1

2

)
Sχ

∂t (αk) + uI ∂x (αk) = S1,k

∂t (αkρk) + ∂x (αkρkuk) = S2,k

∂t (αkρkuk) + ∂x

(
αkρku

2
k + αkpk

)− pI ∂x (αk) = S3,k

∂t (αkρkek) + ∂x (αkρkekuk + αkpkuk) − pIuI ∂x (αk) = S4,k.

(A.1)

The same closure laws as in Section 2.1 are used:

uI = au1 + (1 − a)u2 a =
χm1

χm1 + (1 − χ)m2
,

pI = bp1 + (1 − b) p2 b =
(1 − a)T2

aT1 + (1 − a)T2
,

and the source terms Sj,k are defined by equations (2.5) and (2.6). The velocity ω is closed so that the field
associated with λ = ω is linearly degenerate. Two different approaches are proposed in [23]:

ω =
m1u1 +m2u2

m1 +m2
or ω = 0. (A.2)

The first choice ensures that the corresponding field is linearly degenerate and follows a moving interface between
two domains. The second choice is rather equivalent to user-defined domains where particular models are used,
depending on the dominant phase for example. In that case, it is important to note that the BN and CGHS
models (χ = 0, 1

2 , 1) provide particular solutions of the first equation of system (A.1). We briefly recall the
properties of this class of models. Details and proofs can be found in [23].
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• Entropy inequality
Smooth solutions of system (A.1) with the previous closure laws comply with an entropy inequality:

∂t

(∑
k

mksk

)
+ ∂x

(∑
k

mkskuk

)
≥ 0.

• Hyperbolicity and structure of waves
The convective part of system (A.1) is hyperbolic and admits eight real eigenvalues:

λ1 = ω, λ2 = uI ,

λ3 = u1 − c1, λ4 = u1, λ5 = u1 + c1,

λ6 = u2 − c2, λ7 = u2, λ8 = u2 + c2.

Associated righteigenvectors span the whole space R
8 if |uk − uI | �= ck and |uk − ω| �= ck. Fields associated

with eigenvalues λ1,2,4,7 are linearly degenerate (LD) whereas fields associated with eigenvalues λ3,5,6,8 are
genuinely non linear (GNL).

• Jump conditions
Unique jump conditions hold within each isolated field. Moreover, classical single phase jump relations hold
in the GNL fields: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[χ] = 0,

[αk] = 0,

−σ [ρk] + [ρkuk] = 0,

−σ [ρkuk] +
[
ρku

2
k + pk

]
= 0,

−σ [ρkek] + [ρkekuk + pkuk] = 0.

Appendix B. Verification of the pressure relaxation scheme

This appendix is dedicated to the verification of the pressure relaxation scheme presented in Section 3.2.1.
In the case of BN models, it can be found in [24] so we focus on the case of the CGHS model. Thus, we recall
that approximate solutions of the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂t (αk) = Φk,

∂t (αkρk) = 0,

∂t (αkρkuk) = 0,

∂t (αkρkek) = −pI Φk,

(B.1)

are computed using the following scheme:⎧⎪⎪⎨⎪⎪⎩
α∗

k − α0
k

Δt
=

1
(τppref)

0α
∗
kα

∗
j

(
p∗k − p∗j

)
,

m∗
kε

∗
k −m0

kε
0
k

Δt
= − (b0p∗1 +

(
1 − b0

)
p∗2
) α∗

k − α0
k

Δt
,

j = 3 − k (B.2)

which is equivalent to a non-linear system in α∗
1, p

∗
1 and p∗2. The parameters of the Stiffened Gas used in the

verification test case (see Tab. B.1) are chosen so that an analytical solution of system (B.1) could be provided.
The initial conditions of the test case are presented in Table B.2 and the pressure relaxation time scale is set in
the following way: τppref = 4

3μ with μ = 10−3 kg m−1 s−1. Figure B.1 shows that a first-order of convergence
is retrieved, as expected.
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Table B.1. EOS parameters for the pressure relaxation test case.

γk p∞
k qk CV k q′k

(en Pa) (J kg−1) (J kg−1 K−1) (J kg−1 K−1)
Phase 1 2 0.00 0.00 1500 0
Phase 2 2 0.00 0.00 1500 0

Table B.2. Initial conditions for the pressure relaxation test case.

αk ρk pk uk

(kg m−3) (Pa) (m s−1)
Phase 1 0.8 2 100 000 50
Phase 2 0.2 1000 1 600 000 −20

-15 -10 -5 0
ln(dt)

-20

-10

0

10

20

ln
(e

rr
)

α1
p

1
p

2

C dt

Figure B.1. Convergence study of the pressure relaxation scheme: L1 norm of the error vs.
Δt at tf = 10−9 s.

Appendix C. Verification of the chemical potential relaxation scheme

This appendix is dedicated to the verification of the chemical potential relaxation scheme presented in Sec-
tion 3.2.4. Approximate solutions of the following system are computed:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂t (αk) = 0,

∂t (mk) = Γk,

∂t (mkuk) = U Γk,

∂t (mkεk) = 0.

(C.1)



COMPARISON OF TWO-FLUID MODELS ON STEAM-WATER TRANSIENTS 1655

To that end, an implicit scheme is used. First, m∗
k is determined by solving the following non-linear equations:

m∗
k −m0

k

Δt
=

1
(τμμref)

0

m∗
km

∗
j

m∗
k +m∗

j

(
μ∗

j − μ∗
k

)
, j = 3 − k. (C.2)

Then, u∗k can be easily computed as the solution of a linear system:

m∗
ku

∗
k −m0

ku
0
k

Δt
=

u∗k + u∗j
2

m∗
k −m0

k

Δt
, j = 3 − k. (C.3)

As in the case of pressure relaxation, we provide a verification test case with a particular choice of the EOS
parameters (Tab. C.1) in order to have an analytical solution of system (C.1). Table C.2 gathers the initial
conditions of the test case. The chemical potential relaxation time scale is set to τμ = 10−3 s and the reference
chemical potential to μref = 104 J kg−1 K−1. As we can see in Figure C.1, we retrieve the expected first order
of convergence.

Table C.1. EOS parameters for the chemical potential relaxation test case.

γk p∞
k qk CV k q′k

(Pa) (J kg−1) (J kg−1 K−1) (J kg−1 K−1)
Phase 1 1.4 100 000 0 3125 2000
Phase 2 2.5 7 000 000 0 1750 25 000

Table C.2. Initial conditions for the chemical potential relaxation test case.

αk ρk pk uk

(kg m−3) (Pa) (m s−1)
Phase 1 0.2 2.5 2 800 000 50
Phase 2 0.8 995 3 400 000 20

-15 -10 -5 0
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5

ln
(e

rr
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C dt
v
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Figure C.1. Convergence study of the chemical potential relaxation scheme: L1 norm of the
error vs. Δt at tf = 5 × 10−3 s.
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