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NUMERICAL ANALYSIS OF DARCY PROBLEM ON SURFACES
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Abstract. Surface problems play a key role in several theoretical and applied fields. In this work the
main focus is the presentation of a detailed analysis of the approximation of the classical porous media
flow problem: the Darcy equation, where the domain is a regular surface. The formulation considers the
mixed form and the numerical approximation adopts a classical pair of finite element spaces: piecewise
constant for the scalar fields and Raviart–Thomas for vector fields, both written on the tangential
space of the surface. The main result is the proof of the order of convergence where the discretization
error, due to the finite element approximation, is coupled with a geometrical error. The latter takes into
account the approximation of the real surface with a discretized one. Several examples are presented
to show the correctness of the analysis, including surfaces with boundary.
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1. Introduction

In several application, like biology [5] or geophysics, the domains where some or part of problems have to be
solved are surfaces or lines. In this particular framework several works in literature are present, mainly focused
on the derivation and approximation of diffusive processes. Normally the resulting mathematical equations
considered involve the classical Laplace–Beltrami operator [11]. A numerical approximation of this problems is
presented in [1, 3, 10, 12] where standard Lagrangian finite element spaces are considered.

With this choice only the primary unknown field is computed directly, while a possible secondary unknown,
like the tangential gradients, should be computed as a post process, often resulting in a poor approximation [4].
In some applications, e.g. in geophysics, the most important unknowns are often the secondary ones, which
represent the fluxes or a macroscopic velocity, which play as a transport fields for advected quantities. Conse-
quently, we are interested in problems where both the primary and secondary unknowns are computed directly.
This is possible by employing a mixed formulation of the differential problem.

An important example of this choice, which is part of the motivations of this paper, are presented
in [7, 15, 17, 18, 20]. In this series of papers a reduced model is considered to approximate the flow and pres-
sure fields in fractures. The fractures are represented as object of co-dimension one and the reduced models
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considered are Darcy-type equations written in the tangential spaces of each fracture. Assuming that the porous
matrix is impervious, like in [15], the resulting problem is only written for the fractures.

In this work we propose and analyse a mathematical approach to the formulation of Darcy problems on
surfaces embedded in R

3. The main part of the paper is devoted to the derivation of a proper framework for
the numerical approximation of such problems. The finite element spaces considered are the classical piecewise
constant for scalar fields and Raviart–Thomas for vector fields, but projected on the approximated surface.
Particular attention is devoted to the well posedness of the resulting discrete problem and to prove the order
of convergence including also the geometrical error in the estimation. We allow the surface to be closed so no
boundary conditions can be imposed and then suitable additional conditions should be taken into consideration,
such as zero-mean pressure.

We mention that mixed surface FEM have been recently analyzed in Holst and Stern [19] in a rather abstract
setting and using exterior calculus techniques. In this paper we focus on a more standard analysis of mixed
finite elements for Darcy flow, with several numerical results to support the theoretical findings.

The paper is organized as follow. Section 2 introduces the notation used in the paper as well as the physical
problem with some assumptions on the data. The weak formulation of the physical problem and the correct
functional setting is described in Section 3, where also the inf-sup condition is proved. Section 4 introduces,
describes and analyses the numerical approximation where the discrete inf-sup condition is presented. An error
estimation, from the chosen discretization, is derived in Section 5. In Section 6 a collection of examples highlights
the potentiality of the proposed methods and gives a numerical validation of the derived theoretical results.
Finally, Section 7 is devoted to the conclusions.

2. The governing equations

We assume that the physical domain Γ is a C3 compact, connected orientable manifold embedded in R
3

described by a signed distance function d : R
3 → R such that

Γ = {x ∈ U : d(x) = 0},

where U is an open subset of R
3 containing Γ . If Γ is an open manifold the boundary is indicated by ∂Γ .

The outward-pointing normal is defined as n(x) := ∇d(x)/ |∇d(x)|,where ∇d(x) �= 0 almost everywhere on Γ .
Another quantity that will be useful afterwards is the Hessian matrix H of the distance function d, where
Hij := ∂2d

∂xi∂xj
.

In what follows, given a function u : Γ → R, we will indicate its lifting, on a given open set U containing Γ ,
as ũ such that ũ|Γ = u. The tangential gradient of u will be then defined as

∇Γ u := ∇ũ − (∇ũ · n)n. (2.1)

Note that ∇Γ u is independent from choice of the extension ũ as shown in [9]. Introducing P = I −n⊗n, where
⊗ is the tensor product (a ⊗ b)ij = aibj , we can rewrite (2.1) as ∇Γ u = P∇ũ. The definition of the tangential
divergence is now straightforward, in fact a smooth given vector field u : Γ → R

3 we have ∇Γ · u := P : ∇ũ.
The problem we are interested to solve is the classical Darcy problem [2] defined on the regular surface Γ . The

two unknowns are the tangential Darcy velocity u and the pressure p. The problem is defined in the following
way ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ηu + ∇Γ p = g in Γ

∇Γ · u = f in Γ

p = p̂ on γN

u · μ = b on γD

, (2.2)
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where μ is the outward unit normal of ∂Γ = γN ∪γD, with γN ∩γD = ∅. The main datum in (2.2) is the inverse
of the permeability, defined as

η ∈ L∞ (Γ ) and ∃ηmin ∈ R
+ : η (x) > ηmin ≥ 0 ∀x ∈ Γ. (2.3)

We set ηmax = supessx∈Γ η(x). Moreover the scalar source term is defined as f ∈ L2(Γ ) and the boundary
conditions are imposed on the Darcy velocity u and on the pressure p though sufficiently smooth functions b
and p̂, respectively. Finally, the vector field g may represent a gravity term and the scalar field f may be viewed
as a source or a sink. We also allow ∂Γ = ∅ in which case to have a well posed problem we require the following
condition ∫

Γ

f −∇Γ · η−1gdx =
∫

Γ

pdx = 0.

In the case of permeable rock matrix the velocity field is still tangent to the fracture but the source term f
includes also the flux from the surrounding medium into the fracture, see for example [20]. In the forthcoming
analysis, to ease the presentation, we will assume that some of the aforementioned data are zero.

3. Weak formulation and functional setting

For simplicity we consider Neumann homogeneous boundary conditions, the result may be extended by using
a standard lifting technique to impose the boundary data. We introduce the weak formulation of problem (2.2),
defining a suitable functional setting. First we introduce the following functional space defined on the manifold Γ ,
with its associated norm

Hdiv(Γ ) :=
{
v ∈ [L2(Γ )

]3
, ∇Γ · v ∈ L2(Γ )

}
and

‖v‖2
div,Γ := ‖v‖2

0,Γ + ‖∇Γ · v‖2
0,Γ ,

where ‖·‖0,A is the L2 norm on the domain A. In the following it will be useful to introduce the standard scalar
product in L2(A) as (·, ·)A. We indicate the functional space and the norm for the velocity with W , namely

W :=
{
v ∈ Hdiv(Γ ), v · n = 0 on Γ, v · μ = 0 on γD

}
with ‖v‖W := ‖v‖div,Γ .

For the pressure field we consider the standard L2 space with its classical norm. We have

Q := L2(Γ ) with ‖q‖Q = ‖q‖0,Γ .

If
∣∣γN
∣∣ = 0 the pressure is uniquely defined in the quotient space L2(Γ )/R. Thus, we set

Q := L2
0(Γ ) =

{
v ∈ L2(Γ ) : (v, 1)Γ = 0

}
with ‖q‖Q = ‖q‖0,Γ ,

to select the representative solution in L2(Γ )/R with zero mean.
The derivation of the weak formulation of the problem (2.2) is quite standard except the integration by

part of the tangential gradient of the pressure. Taking a test function v ∈ W and considering the boundary
conditions, following [12] we have that∫

Γ

∇Γ p · vdx = −
∫

Γ

p∇Γ · vdx −
∫

Γ

Kp v · ndx +
∫

∂Γ

p̂v · μdσ,
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where K = ∇Γ ·n is the surface curvature. The term that involves the curvature is zero since we have required
that v · n = 0. We introduce the bilinear forms a(·, ·) : W × W → R and b(·, ·) : W × Q → R, defined as

a(u, v) := (ηu, v)Γ , and b(v, q) := − (p,∇Γ · v)Γ

The functionals are F (·) : Q → R and G(·) : W → R, defined as

F (q) := − (f, q)Γ . and G(v) := − (p̂, v · μ)∂Γ + (g, v)Γ .

The weak formulation of problem (2.2) is

Problem 1 (Weak formulation). Given η as in (2.3), find (u, p) ∈ W × Q such that{
a(u, v) + b(v, p) = G(v) ∀v ∈ W

b(u, q) = F (q) ∀q ∈ Q
. (3.1)

Theorem 3.1 (Well posedness). Under the given hypotheses on the data, Problem 1 is well posed.

Proof. To ease the presentation we consider the case where p̂ and g are zero and γD = ∅. However a similar
result can be obtained in more general cases. Since (3.1) is a saddle-point problem we have to prove the inf-sup
condition [4,14]. We consider the functional space W0 = {v ∈ W , b(v, q) = 0 ∀q ∈ Q} and we introduce v ∈ W0.
Then we have ∇Γ · v = 0 almost everywhere in W0 and for each function in W0 the relation ‖v‖W = ‖v‖L2(Γ )

holds true. Using this result we can prove the coercivity of a(·, ·) on W0

a(u, u) = (ηu, u)Γ ≥ ηmin‖u‖2
L2(Γ ) = ηmin‖u‖2

W ∀u ∈ W0.

Then, thanks to the hypothesis on η and the Schwarz inequality we have the continuity of the bilinear form
a(·, ·) on W

|a(u, v)| ≤ ηmax‖u‖W ‖v‖W ∀u, v ∈ W .

Similarly for the bilinear form b(·, ·) we obtain its continuity using the Schwarz inequality

|b(v, q)| ≤ ‖∇Γ · v‖L2(Γ )‖q‖L2(Γ ) ≤ ‖v‖W ‖q‖Q ∀(v, q) ∈ W × Q.

Finally we need to prove the inf-sup condition, i.e. that there exists a positive constant β ∈ R
+ such that

∀q ∈ Q, ∃v ∈ W such that b(v, q) ≥ β‖v‖W ‖q‖Q.

Given a function q ∈ Q we consider the following auxiliary problem{
−∇Γ · (∇Γ ϕ) = q in Γ

ϕ = 0 on ∂Γ
. (3.2)

Problem (3.2) admits a unique solution ϕ ∈ H2(Γ ) such that ‖ϕ‖H2(Γ ) ≤ C‖q‖L2(Γ ), see [11]. Choosing
v = ∇Γ ϕ, from problem (3.2) we have −∇Γ · v = q. Considering the aforementioned results, the following
inequality holds true

‖v‖2
W = ‖v‖2

L2(Γ ) + ‖∇Γ · v‖2
L2(Γ ) = ‖∇Γ ϕ‖2

L2(Γ ) + ‖q‖2
L2(Γ )

≤ ‖ϕ‖2
H2(Γ ) + ‖q‖2

L2(Γ ) ≤ (C + 1)‖q‖2
L2(Γ ).

Imposing C∗ = (C + 1)
1
2 we finally obtain the inf-sup condition

b(v, q) = − (q,∇Γ · v)Γ = ‖q‖2
L2(Γ ) ≥

1
C∗ ‖v‖W ‖q‖Q,

with β = 1/C∗. Thanks to this results we can conclude that (1) is well posed [4]. �
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4. Numerical discretization

To provide a discrete formulation for Problem 1 we have to introduce a suitable approximation of the sur-
face Γ . Following the approach presented in [11], we consider a polyhedral surface Γh consisting in the union of
non-overlapping triangles K of diameter hK ,with vertices lying on Γ . We denote with h the maximum among
the diameters, h = maxK∈Γh

hK . We also require the resulting grid to be conforming. With the aforementioned
hypotheses the resulting discrete surface Γh is of class C0,1. In the case that the surface is not closed, we indicate
by ∂Γh the boundary of Γh composed by the boundary edges of Γh.

Unlike the classical finite elements method, the discrete domain Γh will not in general be included in Γ , thus
adding to the approximation error a component that accounts for the error introduced by the discretization of
the geometry. To ensure a sufficiently good approximation of the surface Γ we assume Γh ⊂ U , where U is a
strip of width δ > 0 in which the decomposition

x = a(x) + d(x)n(x) x ∈ U, (4.1)

is unique, being a : U → Γ a projection function, d the distance of x from Γ and n its unit normal. We suppose
also that the map a is bijective up to the boundary leading to ∂Γ = a(∂Γh), see [10]. Thanks to the regularity
of the surface there exists a δ such that (4.1) holds.

We set the finite element spaces accordingly with the previous section. We start by defining the space
Hdiv(Γh) as

Hdiv(Γh) := {vh ∈ [L2(Γh)]3, ∇Γh
· vh ∈ L2(Γh)}.

Then, the finite spaces for velocity and pressure are

Wh := {vh ∈ Hdiv(Γh), vh · nh = 0 on Γh, vh · μh = 0 on γN
h , vh|K ∈ RT

0(K)}
Qh := {qh ∈ L2(K) : qh|K ∈ P

0(K)},
where RT

0 is the Raviart–Thomas finite elements space of lowest order degree. If
∣∣γN
∣∣ = 0 to recover the

uniqueness of the discrete solution, we consider the following discrete space for the pressure field

Qh :=
{
qh ∈ L2(K) : qh|K ∈ P

0(K)
} ∩ L2

0(Γh).

We introduce ah(·, ·) : Wh × Wh → R and bh(·, ·) : Wh × Qh → R, defined as

ah(uh, vh) := (ηhuh, vh)Γh
and bh(vh, qh) := −(qh,∇Γh

· vh)Γh
,

and the linear functionals Fh(·) : Qh → R and Gh(·) : Wh → R, given by

Fh(qh) := −(fh, qh)Γh
and Gh(vh) := − (p̂h, vh · μh)∂Γh

+ (gh, vh)Γh
.

Where ηh, fh, p̂h and gh are a suitable approximation of the data problem on Γh and ∂Γh. We will see in the
next section how to choose this approximation. Given the previous definitions, the discrete problem is

Problem 2 (Discrete weak formulation). Find (uh, ph) ∈ Wh × Qh such that{
ah(uh, vh) + bh(vh, ph) = Gh(vh) ∀vh ∈ Wh

bh(uh, qh) = Fh(qh) ∀qh ∈ Qh
. (4.2)

It can be proved that for Problem 2 all results presented in the previous section for the continuous problem are
still valid, using in the proof that |ϕh|H1(Γh) ≤ c‖qh‖L2(Γh) (see [11]).

To compare the exact solution defined on Γ with the discrete one defined on Γh, we consider the projection
of the latter on Γ . As concerns scalar functions we adopt the choice presented in [11], i.e. to lift the functions
qh ∈ Qh as q̃h(a(x)) = qh(x). This kind of lifting, however, does not work properly for the velocity field, in fact
it does not map a function in Hdiv(Γh) in a function of Hdiv(Γ ). In order to preserve this feature, we have used
the so called Piola transformation, refer to [22] for a more detailed presentation.
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K K̃

a

Figure 1. Graphical representation of the map a which transform a triangle K defined in Γh

to a curved triangle K̃ defined in Γ .

Definition 4.1 (Piola transformation). Consider Ω0 ⊂ R
n and let F be a non-degenerate map from Ω0 to

Ω ⊂ R
n. Let also be J = DF (X), with Jij = ∂Fi/∂Xj, and Ψ ∈ [L2(Ω0)]n. The Piola transformation F is

then defined as

F(Ψ ) :=
1

|detJ |JΨ ◦ F−1.

We now consider a triangle K ∈ Γh and its projection on the surface Γ given by the curved triangle K̃ =
{a(x) ∈ Γ : x ∈ K}. We use a coordinate system local to the triangle K, so that a generic point x̂ ∈ K has
coordinates x̂ = (x̂1, x̂2, 0).

We now extend a to R
3 introducing a new map Ψ : R

3 → R
3, defined as

Ψ (x̂) := a(x̂) + x̂3n(x̂). (4.3)

The map Ψ is the one we consider for the construction of the Piola transformation.
The lifting of a scalar function qh : K → R to q̃h : K̃ → R is therefore given by

q̃h(Ψ (x̂)) = qh(x̂) x̂ ∈ K, (4.4)

while, given F := ∇Ψ , the lifting of a vectorial function wh : K → R
3 to w̃h : K̃ → R

3 is defined as

w̃h(Ψ (x̂)) =
1

|detF |Fwh(x̂) x̂ ∈ K. (4.5)

The tensor F has the following structure

F = [t1 t2 n] , (4.6)

where, following [12], ti = ∂a/∂xi, i = 1, 2 has components ti,j = δji − njni − dHji for j = 1, 2, 3 with H the
Hessian of the distance function d.

Remark 4.2. It is immediate to show that ti · n = 0 for i = 1, 2.

Since dσ = |t1 ∧ t2|dσh and detF = (t1 ∧ t2) · n we have dσ = ξhdσh where ξh = |detF |.
Remark 4.3. The matrix F is defined element wise. If we glue together all the local F , we find a global matrix
that, to ease the notation, we will still indicate as F . In the following it will be clear from the domain of
integration if we are referring to the local map or to the global one.
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We recall a useful lemma about the properties of the considered geometry. For a complete proof refer to [12].

Lemma 4.4. Assume Γ and Γh defined as above. Then,

‖d‖L∞(Γh) ≤ ch2.

Moreover, the quotient ξh = dσ/dσh previously defined satisfies

‖1 − ξh‖L∞(Γh) ≤ ch2.

We now deduce an important relationship between functions defined on K and their lifting on K̃. We consider
a couple of functions (wh, qh) ∈ Wh × Qh and the corresponding lifting (w̃h, q̃h) ∈ W̃h × Q̃h, where W̃h and
Q̃h are defined as

W̃h :=
{

w̃h(x) =
1
ξh

Fwh ◦ Ψ−1(x), wh ∈ Wh, x ∈ Γ

}
,

Q̃h :=
{
q̃h(x) = qh ◦ Ψ−1(x), qh ∈ Qh, x ∈ Γ

}
.

From definitions (4.4) and (4.5) we have that W̃h ⊂ W and Q̃h ⊂ Q. For such functions the following relation
holds

(∇Γ · w̃h, q̃h)K̃ = − (w̃h,∇Γ q̃h)K̃ + (w̃h · μ̃K , q̃h)∂K̃

= − (w̃h, (I − n ⊗ n)∇q̃h)K̃ + (w̃h · μ̃K , q̃h)∂K̃ .

For the boundary term we use the relation μ̃K d̃e = ξhF−T μK de (see [6], Thm. 1.7-1), where d̃e (de resp.) is
the infinitesimal boundary element of K̃ (K resp.) and μ̃K (μK resp.) is the outward unit normal to ∂K̃ (∂K
resp.). Therefore we obtain

(∇Γ · w̃h, q̃h)K̃ = − (Fwh, (I − n ⊗ n) F−�∇qh

)
K

+
(

1
ξh

Fwh · ξhF−�μK , qh

)
∂K

= − (wh, F� (I − n ⊗ n) F−�∇qh

)
K

+ (wh · μK , qh)∂K .

In addition we have that

F�n ⊗ nF−� =

⎡⎣0 0 0
0 0 0
0 0 1

⎤⎦ = e3 ⊗ e3.

In the coordinate system local to K, e3 coincides with the normal nh and so we have

F�n ⊗ nF−� = nh ⊗ nh.

Using this last relation we write that

(∇Γ · w̃h, q̃h)K̃ = − (wh, (I − nh ⊗ nh)∇qh)K + (wh · μK , qh)∂K

= (∇Γh
· wh, qh)K =

(
1
ξh

∇Γh
· wh, q̃h

)
K̃

. (4.7)
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Now we are able to prove the following

Lemma 4.5. Given (wh, qh) ∈ Wh×Qh and the corresponding lifting onto Γ (w̃h, q̃h) ∈ W̃h× Q̃h, there exists
some positive constants C1, C2 and C3 such that the following inequalities hold

1
C1

‖qh‖L2(K) ≤ ‖q̃h‖L2(K̃) ≤ C1‖qh‖L2(K)

1
C2

‖wh‖L2(K) ≤ ‖w̃h‖L2(K̃) ≤ C2‖wh‖L2(K)

1
C3

‖∇Γh
· wh‖L2(K) ≤ ‖∇Γ · w̃h‖L2(K̃) ≤ C3‖∇Γh

· wh‖L2(K)

Proof. The first inequality is proved in [11]. For the second inequality we have by the definition of the L2-norm

‖w̃h‖2
L2(K̃) = (w̃h, w̃h)K̃ =

(
1
ξh

F�Fwh, wh

)
K

.

Matrix F�F is given by

F�F =

⎡⎣ |t1|2 t1 · t2 0
t1 · t2 |t2|2 0

0 0 1

⎤⎦ .

From the definition of t1 and t2 it is straightforward that

|ti|2 = 1 + O(h2) and t1 · t2 ≈ −n1n2 + O(h2).

Following [12], we have that exists c ∈ R
+ such that ‖ni‖L∞(K) ≤ ch, i = 1, 2, then

‖t1 · t2‖L∞(K) ≤ ch2.

In conclusion, the following inequality holds∥∥I − F�F
∥∥

L∞(K)
≤ ch2.

Thanks to this last relation and Lemma 4.4 the second estimate immediately follows. The boundary term in (4.7)
is second order in h and can be neglected, then the last inequality of the lemma can be written as

‖∇Γ · w̃h‖2
L2(K̃) = (∇Γ · w̃h,∇Γ · w̃h)K̃ ≤

(
1
ξh

∇Γh
· wh,∇Γ · w̃h

)
K̃

≤ ∥∥ξ−1
h

∥∥
L∞(K̃)

‖∇Γh
· wh‖L2(K̃)‖∇Γ · w̃h‖L2(K̃).

Using the first inequality of the lemma and the estimate for ξh we can obtain the last inequality. �

5. Error analysis

In this section, to ease the analysis and the presentation of the forthcoming results, we consider fully ho-
mogeneous boundary conditions and zero vector source term. Moreover we suppose that η is constant so that
ηh = η. Finally, from (4.7) we can obtain the following useful relation∫

Γ

∇Γ · w̃h q̃h dx =
∫

Γh

∇Γh
· wh qh dxh. (5.1)
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Therefore the approximation of the bilinear form b(·, ·) with bh(·, ·) will not bring any additional error due to
the discretization of the geometry. The additional term is only linked to the approximation of the bilinear form
a(·, ·), in particular from ∫

K

ηuh · vh dxh =
∫

K̃

ηξh

(
F−�F−1ũh

) · ṽh dx. (5.2)

If we define Bh := ξhF−�F−1 we can rewrite the discrete Problem 2 as{
(ηBhũh, ṽh)Γ − (p̃h,∇Γ · ṽh)Γ = 0 ∀ṽh ∈ W̃h

(q̃h,∇Γ · ũh)Γ = (f, qh)Γ ∀q̃h ∈ Q̃h

. (5.3)

In this case we have chosen fh(x̂) = ξhf(Ψ (x̂)) in order to have Fh = F on Γ .

Remark 5.1. In practice is often simpler to compute the source term as fh(x̂) = f(Ψ (x̂)), thus adding an
extra term of order O(h2) to the error given by the difference between f and fh.

Lemma 5.2. If (uh, ph) is solution of (4.2), then its correspondent lift to Γ , indicated with (ũh, p̃h), is solution
of (5.3) and vice versa.

Proof. Thanks to relations (5.1) and (5.2) we immediately get the equivalence between problems (4.2)
and (5.3). �

To provide an error estimate for our problem we need to recall some results on saddle-points problems,
see [4, 21] for a detailed analyses. Introducing the following discrete functional space W̃ f

h := {w̃h ∈ W̃h :
(q̃h,∇Γ · w̃h − f)Γ = 0 ∀q̃h ∈ Q̃h}, Lemma 5.3 holds true [21].

Lemma 5.3. If the spaces W̃h and Q̃h satisfy the inf-sup condition then for each f ∈ L2(Γ ) there exist a
unique w̃f

h ∈ (W̃ 0
h )⊥ such that:

(q̃h,∇Γ · w̃f
h − f)Γ = 0 ∀q̃h ∈ Q̃h (5.4)

and ∥∥∥w̃f
h

∥∥∥
W

≤ 1
β

sup
q̃h∈Q̃h,q̃h �=0

(f, q̃h)Γ

‖q̃h‖Q

· (5.5)

Furthermore if ũh ∈ W̃h satisfies

(ηBhũh, ṽh)Γ = 0 ∀ṽh ∈ W̃ 0
h ,

then there exists a unique p̃h ∈ Q̃h such that

− (p̃h,∇Γ · ṽh)Γ + (ηBhũh, ṽh)Γ = 0 ∀ṽh ∈ W̃h (5.6)

and

‖p̃h‖L2 ≤ 1
β

sup
ṽh∈W̃h,ṽh �=0

(ηBhũh, ṽh)Γ

‖ṽh‖W

· (5.7)
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By setting ũh = ũ0
h + w̃f

h, with ũ0
h ∈ W̃ 0

h and w̃f
h ∈ W̃ f

h , we can rewrite (5.3) as: find ũ0
h ∈ W̃ 0

h such that:(
ηBhũ0

h, ṽh

)
Γ

= −
(
ηBhw̃f

h , ṽh

)
Γ

∀ṽh ∈ W̃ 0
h . (5.8)

Thanks to the Lax–Milgram lemma, it exists a unique solution ũ0
h ∈ W̃ 0

h of (5.8) that satisfies ‖ũ0
h‖W ≤

C‖w̃f
h‖L2, for a C > 0. Then, from (5.5) and (5.7) we have:

‖ũh‖W ≤ C

β
‖f‖L2 and ‖p̃h‖L2 ≤ C

β
‖ũh‖L2. (5.9)

Remark 5.4. From equality (5.1) and from the well-posedness of Problem 2, we have that ∀q̃h ∈ Qh, ∃v ∈ W̃h

such that

b(ṽh, q̃h) ≥ β‖vh‖Hdiv(Γh)‖qh‖L2(Γh), (5.10)

where β is a positive constant. Then, from the inequalities of Lemma (4.5), we can conclude that the spaces
W̃h and Q̃h satisfy an inf-sup condition.

Lemma 5.5. Let (u, p) ∈ W × Q be the solution of the continuous problem (3.1), (uh, ph) ∈ Wh × Qh the
solution of the discrete problem (4.2) and (ũh, p̃h) ∈ W̃h × Q̃h its corresponding lift to Γ , then the following
inequality holds

‖u − ũh‖W + ‖p − p̃h‖Q ≤ C

(
‖I − Bh‖L∞‖f‖L2 + inf

ṽh∈W̃h

‖u − ṽh‖W + inf
q̃h∈Q̃h

‖p − q̃h‖Q

)
. (5.11)

Proof. To find an estimate for the discretization error we write (5.3) in the following form, which highlights the
classical saddle point structure:{

(ηũh, ṽh)Γ − (p̃h,∇Γ · ṽh)Γ = (η(I − Bh)ũh, ṽh)Γ ∀ṽh ∈ W̃h

(q̃h,∇Γ · ũh)Γ = (f, qh)Γ ∀q̃h ∈ Q̃h

. (5.12)

By subtracting (3.1) and (5.12) and adding and subtracting to the result a vector w̃∗
h ∈ W̃ f

h , we obtain

(η(ũh − w̃∗
h), ṽh)Γ + (p − p̃h,∇Γ · ṽh)Γ = (η(u − w̃∗

h), ṽh)Γ + (η(I − Bh)ũh, ṽh)Γ . (5.13)

By choosing ṽh = ũh − w̃∗
h, with ṽh ∈ W̃ 0

h , and using (5.9), we get:

‖ṽh‖W = ‖ṽh‖L2 ≤ C (‖u − w̃∗
h‖L2 + ‖I − Bh‖L∞‖f‖L2) ,

from which it follows that

‖u − ũh‖W ≤ C

(
inf

w̃∗
h∈W̃ f

h

‖u − w̃∗
h‖W + ‖I − Bh‖L∞‖f‖L2

)
. (5.14)

Now we want to show that

inf
w̃∗

h∈W̃ f
h

‖u − w̃∗
h‖W ≤ C inf

ṽh∈W̃h

‖u − ṽh‖W . (5.15)

From Lemma 5.3, for all ṽh ∈ W̃h, there exists a unique z̃h ∈ (W̃ 0
h )⊥ such that

(q̃h,∇Γ · z̃h)Γ = (q̃h,∇Γ · (u − ṽh))Γ ∀q̃h ∈ Qh,
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and ‖z̃h‖W ≤ C‖∇Γ · (u − ṽh)‖L2 . Setting w̃∗
h = z̃h + ṽh, we have w̃∗

h ∈ W̃ f
h and we obtain ‖u − w̃∗

h‖W ≤
‖u − ṽh‖W , from which (5.15) follows. We consider now the term which involves the pressure. From (5.13) by
adding and subtracting the term (q̃h,∇Γ ṽh)Γ , where q̃h ∈ Q̃h, and using (5.10) we obtain

‖q̃h − p̃h‖L2 ≤ C (‖I − Bh‖L∞‖f‖L2 + ‖u − ũh‖W + ‖p − q̃h‖L2) .

By using relation (5.14) and the generality of q̃h we have

‖p − p̃h‖Q ≤ C

(
inf

w̃∗
h∈W̃ f

h

‖u − w̃∗
h‖W + ‖I − Bh‖L∞‖f‖L2 + inf

q̃h∈Q̃h

‖p − q̃h‖L2

)
. (5.16)

Considering the bounds (5.14) and (5.16) we obtain (5.11). �

In (5.11) we observe that, as expected, the error is composed by two different terms, the first related to the
finite element discretization and the second related to the approximation of the geometry of the problem. In
particular, as seen in the previous section for F�F , we can immediately conclude that

‖I − Bh‖L∞(Γ ) ≤ ch2.

Thus the contribution of the geometric error in the Darcy problem is of the second order with respect to the
grid size h. We prove the main result of this section.

Theorem 5.6 (Order of convergence). Let (u, p) ∈ W × Q be the solution of the continuous problem (3.1),
(uh, ph) ∈ Wh × Qh the solution of the discrete problem (4.2) and (ũh, p̃h) ∈ W̃h × Q̃h its corresponding lift
to Γ . Assuming that the solution is regular enough and that ξh ∈ H1(K), then the following inequality holds

‖u − ũh‖W + ‖p − p̃h‖Q ≤ Ch
(
‖∇Γ · u‖H1(Γ ) + ‖u‖H1(Γ ) + |p|H1(Γ )

)
.

Proof. If we neglect in (5.11) the geometric contribution to the error, we have

‖u − ũh‖W + ‖p − p̃h‖Q ≤
(

inf
wh∈W̃h

‖u − w̃h‖W + inf
q̃h∈Q̃h

‖p − q̃h‖Q

)
.

We start considering the estimate for the velocity field and we introduce the function û : Γh → R
3, defined

as follows

û(x̂) := ξh F−1u(Ψ(x̂)) with x̂ ∈ Γh.

So û is the projection of the exact solution on discrete surface. Thanks to lemma (4.5) we have

‖u − w̃h‖Hdiv(K̃) ≤ ‖û − wh‖Hdiv(K).

This relation, together with standard results for Hdiv, gives us

‖u − w̃h‖Hdiv(K̃) ≤ Chk

(
|∇Γh

· û|H1(K) + |û|Hdiv(K)

)
.

We see now how to estimate the right hand side of the inequality. From the definition of the H1 semi-norm it
follows that

|∇Γh
· û|2H1(K) = ‖∇Γh

(∇Γh
· û)‖2

L2(K) = (∇Γh
(∇Γh

· û),∇Γh
(∇Γh

· û))K .
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From ([13], Sect. 4) and (4.7) we obtain ∇Γh
(∇Γh

· û) = Ph(I − dH)∇Γ (ξh∇Γ · u), with Ph = I − nh ⊗ nh,
which inserted in the semi-norm definition gives us

|∇Γh
· û|2H1(K) = (Ah∇Γ (ξh∇Γ · u),∇Γ (ξh∇Γ · u))K ,

where Ah is defined as Ah := P (I−dH)Ph(I−dH)P/ξh. We know that ξ−1
h is bounded and moreover, from ([11],

Sect. 5), we have

P (I − dH)Ph(I − dH)P = PPhP + O(h2).

Then,

PPhP = P − (nh − (nh · n)n)(nh − (nh · n)n)�O(h2).

Because in the reference system local to the triangle K, we have nh = e3, then

|nh − (nh · n)n| = |e3 − n3n| =
√

1 − n2
3 =
√

n2
1 + n2

2 ≈ O(h).

Therefore for matrix Ah holds the relation Ah ≈ P + O(h2), Moreover, thanks to the regularity of the surface
P is bounded and so it is Ah. Then, we can obtain

|∇Γh
· û|H1(K) ≤ ‖Ah‖

1
2

L∞(K̃)
‖∇Γ (ξh ∇Γ · u)‖L2(K̃).

Applying triangular and Schwarz’s inequalities

‖∇Γ (ξh ∇Γ · u)‖L2(K̃) ≤ ‖∇Γ ξh‖L2(K̃)‖∇Γ · u‖L2(K̃) + ‖ξh‖L2(K̃)‖∇Γ (∇Γ · u)‖L2(K̃) ≤ C∗‖∇Γ · u‖H1(K̃),

(5.17)

where C∗ = max
{
‖∇Γ ξh ‖L2(K̃), ‖ξh‖L2(K̃)

}
. Defining C1 = C∗‖Ah‖

1
2

L∞(K̃)
, we have proved that

|∇Γh
· û|H1(K) ≤ C1‖∇Γ · u‖H1(K̃). (5.18)

In analogous way we can show the following inequality for the semi-norm

|û|H1(K) ≤ C2‖u‖H1(K̃). (5.19)

Summing (5.18) and (5.19) over all triangles we obtain the velocity estimate. We consider now the estimate for
pressure and, similarly to what we have done for velocity, we introduce the lift of the exact solution p to Γh as

p̂(x̂) := p(Ψ(x̂)) with x̂ ∈ Γh.

From Lemma 4.5 and standard interpolation results we have

‖p − q̃h‖L2(K̃) ≤ C‖p̂ − qh‖L2(K) ≤ C3hK |p̂|H1(K) .

Finally we exploit the results of ([11], Lem. 3) and we obtain

‖p − q̃h‖L2(K̃) ≤ CC3hK |p|H1(K̃) .

Considering the contribution of all the elements we have the desired estimation for the pressure. �
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Figure 2. Error decay for the sphere and the spherical cup compared with a reference curve
of O (h).

6. Applicative examples

We present in the following sub-sections some examples to show the goodness of the proposed approximation.
In particular we show the error convergence for two different geometries: a sphere and a toroid. The choice is
driven by the analytical solutions proposed in the literature for these geometries. The results are in good
agreement with the theory. The simulations we propose in this paper are based on a code developed inside
the library for finite elements LifeV [16] developed by École Polytechnique Fédérale de Lausanne (CMCS),
Politecnico di Milano (MOX), INRIA under the projects REO and ESTIME and Emory University (Math&CS).
Finally to ensure that the geometrical error is small enough and to increase the accurateness of the numerical
solution, we have used the software presented in [8] to increase grid quality.

6.1. Example 1

We consider problem (2.2) solved on two different domains Γ1 and Γ2, where the former is a unit sphere while
the latter a spherical cup limited by θ ∈ [−π/2, π/2] and φ ∈ [0, 2π]. A unit permeability is considered and
the scalar source term is taken as f(θ, φ) = 2(2 cos2 θ − sin2 θ) such that the exact solution is p(θ, φ) = cos2 θ.
For Γ1 the problem does not require boundary conditions, hence to have a well-posed problem we impose the
solution in one point. While for Γ2 we consider Neumann boundary conditions equal to the exact solution.
The advantage of using a spherical domain, in addition to the use of spherical coordinate in finding the exact
solution, is that we explicitly know the distance function d(x) = |x| − 1.

In Figure 2 we present the error history, for the two problems, decreasing the mesh size. It is clear that in
both cases the error obtained scales at least as O (h), confirming the theoretical result presented in Theorem 5.6.

Observing the solutions reported in Figure 3, for the sphere, and in Figure 4, for the spherical cup, we can
notice that the velocity field obtained is tangent to the surface and flows in the opposite direction of the pressure
gradient, as we expect from the Darcy’s law.
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Figure 3. Numerical solution on the unit sphere. Both pressure and velocity are represented.
The arrows for the latter are coloured and sized as the velocity magnitude. We can notice that
in the two poles of the sphere and in its equator the pressure change slowly so does the velocity.
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Figure 4. Numerical solution on a spherical cup of a unit sphere. Both pressure and velocity
are represented. The arrows for the latter are coloured and sized as the velocity magnitude. We
can see that the solution is smoother when refining the mesh.

6.2. Example 2

In this second example we consider as surface a torus defined by

Γ =
{

(x, y, z) ∈ R
3 :
(√

x2 + y2 − 1
)2

+ z2 − 0.62 = 0
}

.

The exact solution for the pressure, expressed in toroidal coordinates, is given by

p(φ, θ) = sin(3φ) cos(3θ + φ),

and the correspondent source term is equal to

f(φ, θ) =
1
r2

(9 sin(3φ) cos(3θ + φ)) − (−10 sin(3φ) cos(3θ + φ) − 6 cos(3φ) sin(3θ + φ))
(R − r cos(θ))2

− 1
r(R − r cos(θ))

(3 sin(φ) sin(3φ) sin(3θ + φ)),
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Figure 5. Error decay for the torus compared with a reference curve of O (h).
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Figure 6. Numerical solution on the torus. Both pressure and velocity are represented. The
arrows for the latter are coloured and sized as the velocity magnitude.

where r = 0.6 and R = 1. As in the previous case a unique solution is obtained by imposing the exact solution
in one point. In Figure 5 we can observe that, also in this example, the decay of the error confirms the results
presented in the theory. Figure 6 shows the obtained solution.

7. Conclusions

In this work we have presented a framework to solve Darcy problems on regular manifolds. The numerical
discretization chosen is the classical pair of piecewise constant, for the pressure, and lowest order tangential
Raviart–Thomas, for the Darcy velocity, finite element spaces. In this context we have provided an analysis of
the relations between the quantities defined on the real surface and the ones defined on its discretization. Then
we have used this properties in order to prove some results for the convergence of the approximation error. The
numerical experiments proposed have confirmed the estimate presented in the theory.
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A possible development of the work, could be the application of the obtained results to more realistic cases,
for example in solving the Darcy problem defined in a whole basin. In such a case we should introduce suitable
coupling conditions between the domain and the reduced model of the fracture and, in the case of a network of
fractures, we should provide models for the flow along the intersecting curves.

Other possible topics for future extensions include consideration of higher-order surface approximations, more
general classes of finite element spaces, more general differential operators, and/or superconvergent postpro-
cessing techniques.

Acknowledgements. The authors wish to thank Antonio Cervone, Franco Dassi, Guido Iori, Anna Scotti and Marco
Verani for many fruitful discussions. The authors also thank the anonymous reviewers for their helpful suggestions.
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