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THE ARBITRARY ORDER MIXED MIMETIC FINITE DIFFERENCE METHOD
FOR THE DIFFUSION EQUATION

Vitaliy Gyrya1, Konstantin Lipnikov1 and Gianmarco Manzini1,2,3

Abstract. We propose an arbitrary-order accurate mimetic finite difference (MFD) method for the
approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes.
As usual in the mimetic numerical technology, the method satisfies local consistency and stability
conditions, which determines the accuracy and the well-posedness of the resulting approximation. The
method also requires the definition of a high-order discrete divergence operator that is the discrete
analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic
methods is proved theoretically to be convergent and optimal error estimates for flux and scalar variable
are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy
of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that
the approximation of the scalar variable presents a superconvergence effect.
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1. Introduction

In the last decade, there has been a huge amount of work aimed at designing new discretization methods
for PDEs that work on unstructured polygonal and polyhedral meshes. General unstructured meshes appear in
various engineering applications, either as a flexible way to capture complex geometries (modeling of fluid flows in
porous medium) or as a product of mesh optimization algorithms (mesh reconnection in arbitrarily Lagrangian–
Eulerian methods). Major challenges for numerical solution of PDEs on general meshes are simplicity of extension
of two dimensional schemes to three dimensions and to arbitrarily order of accuracy.

Successful discretization methods on general meshes were developed using both finite volume (FV) [32] and
finite element (FE) frameworks [15, 16]. FV methods are natural for general meshes but historically, they were
low-order methods. Examples of FV methods for elliptic PDEs include the multi-point flux approximation
(MPFA) method [1, 2], the hybrid FV method [33] (the resulting scheme is also know as SUSHI), the discrete
duality finite volume (DDFV) method [24, 28, 35], the gradient method [31]; see also the recent review [29].
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Extension of FV methods to higher order is done either by extending the discretization stencil or by enriching
the local approximation space, in a spirit of the FE method. For the elliptic PDEs, symmetry and positive
definiteness of the resulting matrices are the properties that are difficult to achieve for higher-order schemes.

On the other hand, the conventional arbitrarily order FE method on simplicial meshes preserves all fun-
damental properties of elliptic PDEs. However, its extension to general meshes is a work in progress that is
based on the new idea of the virtual finite element space [5]. Other FE methods that work on general meshes
include the polygonal/polyhedral finite element method (PFEM) [46,49–51], hybrid high-order method [26,27],
the discontinuous Galerkin (DG) method [25], hybridized discontinuous Galerkin (HDG) method [23], and the
weak Galerkin (wG) method [38,52, 53].

In between these two general frameworks, we find the mimetic finite difference (MFD) method [11,14, 41, 48]
which combines best properties of both frameworks. Similar to FV methods, the MFD method imposes no
critical constraints on the computational mesh which may contain all types of polygonal and polyhedral ele-
ments, including non-convex elements. Similar to FE methods, a duality argument is the essential part of the
MFD construction which implies symmetry and positivity of matrices for schemes of any order of accuracy.
Construction of stiffness and mass matrices is unique for the mimetic framework and is based on the stability
and local consistency conditions. A by-product of these conditions is that there exists a rich family of schemes
with similar approximation properties. This remains true for mimetic schemes of simplicial meshes. In many
cases this family contains schemes with additional properties such as the discrete maximum principle [42].

In recent years, the MFD method has been extensively developed for the solution of a wide range of scientific
and engineering problems in continuum mechanics [47], discretization of differential forms [14, 18, 48], electro-
magnetics [36,40], diffusion [37], convection-diffusion [6], steady Stokes [7,10], elasticity [4], elliptic obstacles [3],
Reissner–Mindlin plates [13], eigenvalues [21], and two-phase flows in porous media [44]. An extensive list of
references can be found in book [11] and review paper [41]. Connection of low-order MFD schemes for elliptic
problems with two FV schemes has been established in [6, 30].

The MFD method considered in the aforementioned applications typically provides a low-order approximation
of the unknowns with, at the best, the second-order convergence for scalar unknowns. An open issue in the
development of the mimetic technology is the construction of high-order schemes, which is still a challenging
task even for two-dimensional and three-dimensional second-order elliptic problems. For pure diffusion problems
in primal form, the mimetic method in [9] is the extension to arbitrary order of accuracy of the low-order method
proposed in [17]. However, for pure diffusion problems in mixed form, a high-order accurate formulation is still
missing in the literature, although a first attempt to this direction was done in [8, 12, 34]. In these papers, the
authors present an improvement from first- to second-order accurate discretization of the flux unknown of the
MFD method in [19]. A second major issue, which impacts also the other methods mentioned above, is the
treatment of non-constant coefficients like a varying diffusion tensor while preserving the high-order of accuracy
of the approximation. To this end, we apply the technique that was proved successful in [8, 39] for both the
mixed low-order method and the high-order primal formulation in two- and three-dimensional elliptic problems.

The goals of this work are (a) to develop a new family of arbitrary-order mimetic schemes for mixed formu-
lation of the elliptic PDE; (b) to present a solid theoretical framework where the convergence of the method is
proved and error estimates are derived; (c) to investigate the performance of the method numerically by solving
diffusion problems with a smoothly variable full tensor diffusion coefficient on different types of unstructured
polygonal meshes.

Flexibility on the MFD framework for selecting non-standard degrees of freedom and non-standard approxima-
tions of primary operators allows us to develop and analyze mimetic schemes tailored for particular applications
such as the Lagrangian gasdynamics [20, 41] and nonlinear elliptic PDEs with degenerate coefficients [43].

The approximation of the scalar unknown and the flux is seeked in finite dimensional linear spaces of grid
functions whose definition relies on polynomial moments of degree k ≥ 0 inside each cell and of degree k+ 1 on
each cell interface. We equip these finite dimensional linear spaces with suitable mimetic inner products, whose
construction is detailed in the paper. Error estimates are derived by using the mesh dependent norms induced
by these inner products and assuming that the scalar unknown is in Hk+3(Ω). These result is in agreement
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with the analysis of the method considered in [8], which coincide with the method presented in this paper for
k = 0, where the scalar unknown was assumed in H3(Ω).

In this work we also present a novel ultraconvergence phenomenon that we think is related to the special
selection of the degrees of freedom. It was discovered in our numerical experiments and still needs a theoretical
explanation.

The paper outline is as follows. The formulation of the MFD method is presented in Section 2. Preliminary
results on the approximation properties of interpolation and projection operators are reviewed in Section 3. The
convergence analysis is carried out in Section 4 for the flux variable and in Section 5 for the scalar variable.
The expected convergence rates are confirmed with the numerical experiments in Section 6. Final remarks and
conclusions are given in Section 7.

2. Mimetic finite difference formulation

Let Ω ⊂ �d be a polygonal domain for d = 2 or a polyhedral domain for d = 3 with Lipschitz boundary Γ .
We consider the mimetic approximation of the steady diffusion problem in mixed form for the scalar variable p
and its vector flux u:

u = −K∇p in Ω, (2.1a)
divu = f in Ω, (2.1b)

p = g on Γ. (2.1c)

The functions f and g are, respectively, the source term and the boundary data and K is a full symmetric tensor
describing the material properties.

We set the mixed variational formulation using the functional space L2(Ω) for the scalar variable and
H(div, Ω) for the flux variable. Here, L2(Ω) is the standard space of square integrable functions defined on Ω,
and H(div, Ω) is the Sobolev space of vector-valued functions in (L2(Ω))d with square integrable divergence.

The mixed variational formulation of problems (2.1a)–(2.1c) reads as [15]:

find (u, p) ∈ H(div, Ω) × L2(Ω) such that(
K−1u,v

)− (p, divv) = −〈g,n · v〉 ∀v ∈ H(div, Ω) (2.2a)

(divu, q) = (f, q) ∀q ∈ L2(Ω). (2.2b)

Dirichlet boundary conditions are expressed in the right-hand side of (2.2a) throughout the boundary functional

〈g,n · v〉 =
∑
e⊂Γ

∫
e

gne · v dS, (2.3)

where ne represents the unit normal to the boundary face e ⊂ Γ pointing out of the polygonal domain Ω.
Both problems (2.1a)–(2.1c), (2.2a) and (2.2b) with (2.3) are well-posed and admits a unique solution under

the usual assumptions: f ∈ L2(Ω), g ∈ H
1
2 (Γ ), K strongly elliptic with the components in L∞(Ω). We recall

that the tensor field K is strongly elliptic if there are two positive constants κ∗ and κ∗ such that:

κ∗ ||v||2 ≤ vT Kv ≤ κ∗ ||v||2 ∀v ∈ �d. (2.4)

For the convergence analysis of Sections 4 and 5, we need the stronger regularity assumption that for every
mesh cell the components of K is locally in W k+2,∞.

To formulate the mixed mimetic approximation of problems (2.2a) and (2.2b), we need to introduce a few
mathematical objects, whose precise definition will be presented in the rest of this section. On a sequence of
mesh partitions of Ω satisfying some regularity assumptions and characterized by the mesh size parameter h,
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we consider the discrete analogs ph, qh and fh of the scalar functions p, q and f , and uh, vh of the vector
functions u, v. We assume that ph and qh belong to the linear space Qh, which is referred to as the space of
the scalar grid functions, and that uh and vh belong to the linear space Xh, which is referred to as the space
of the flux grid functions. The grid functions in Qh and Xh are vectors of numbers, the degrees of freedom,
and will be used to approximate pressure and flux, respectively. We equip Xh and Qh with the mimetic inner
products [·, ·]Xh

and [·, ·]Qh
. The discrete mimetic gradient operator GRAD : Qh → Xh can be introduced to

approximate the gradient operator ∇ and defined as GRAD = −DIV ∗, i.e., as the adjoint DIV ∗ of the discrete
divergence operator DIV : Xh → Qh that approximates the divergence operator div . As it was show in [19],
the discrete gradient operator leads to an equivalent weak formulation that has a saddle-point structure. For
this reason, we do not introduce the discrete gradient operator here, but we consider the formulation with the
discrete divergence operator.

Now, the mixed MFD method reads as:

find (uh, ph) ∈ Xh ×Qh such that

[uh,vh]Xh
− [ph,DIV vh]Qh

= −〈g,vh〉h ∀vh ∈ Xh, (2.5a)

[DIVuh, qh]Qh
= [fh, qh]Qh

∀qh ∈ Qh. (2.5b)

The Dirichlet boundary condition (2.1c) is expressed in the right-hand side of (2.5a) by

〈g,vh〉h =
∑
e⊂Γ

∫
e

g ṽ e
h dS, (2.6)

where the boundary function ṽ e
h is the polynomial interpolation in �k+1(e) built using the degrees of freedom

of vh on e.

2.1. Notation and basic assumptions

Let Ωh be a partition of the domain Ω consisting of polygons for d = 2 and polyhedra for d = 3. We denote
by Eh the set of all the edges/faces in Ωh, and let Eh

0 = Eh\∂Ω the set of all interior edges/faces. For every
polygon/polyhedron E ∈ Ωh, we denote by |E| its Lebesgue measure (area/volume), by ∂E its boundary, and
by hE its diameter. Similarly, for every edge/face e ∈ Eh, we denote by |e| the measure (lenght/area) of e, by he

its characteristic lenght, and by ne its unit normal vector, whose orientation is assumed once and for all. When
e is considered on the boundary of cell E, its normal vector is denoted by nE,e and is always pointing out of E.
When d = 2, we take he = |e|, while, for d = 3, we take he equal to the diameter of the polygonal face e. We
use ξ and (ξ, η) to denote local Cartesian coordinates defined on e for d = 2 and 3, respectively. We also set as
usual the mesh size of Ωh by

h = max
E∈Ωh

hE .

We assume that all the elements of Ωh are closed and simply connected subset of �d, all polyhedral faces are
flat and all mesh edges are straight segments.

The analysis of the mimetic finite difference method requires some regularity assumptions for the sequence
of partitions {Ωh}h when h → 0, which we list below only for d = 3 (for d = 2 they are readily obtained by
reduction).

– (HG) Star-shape regularity: there exist a positive integer number Ns and a positive real number ρs > 0 such
that every mesh Ωh admits a sub-partition Sh into shape-regular tetrahedra such that:
– (HG1) every polyhedron E ∈ Ωh has Lipschitz boundary ∂E and admits a decomposition Sh

E made of
less than Ns tetrahedra.
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– (HG2) the shape regularity of the tetrahedra E ∈ Sh
E is defined as follows: the ratio between the radius

rT of the inscribed ball and the diameter hT of the tetrahedron T is bounded from below by ρs.
– (HG3) There exists a positive number τ∗ such that each element is star-shaped with respect to all points

of a ball of radius τ∗hE centered at an internal point of E.

From the above assumptions several properties of the mesh, which are useful in the analysis of the MFD
scheme, can be derived. We list them below for the sake of the reader’s convenience and for future reference in
the paper; proofs can be found in [11].

– (M1) There exist two integer numbers NF and NE such that every element E has at most NF faces and
every face has at most NE edges.

– (M2) There exists a constant a∗ independent of hE and the mesh Ωh such that

a∗hd−1
E ≤ |e| , a∗hE ≤ he, a∗hE ≤ |l | ,

where l ∈ ∂E is an edge of the polygonal boundary of face e. Roughly speaking, we state that for every
element the area of each element’s face and the lenght of each element’s edge scale properly with respect to
the element’s diameter.

– (M3) Agmon inequality: there exists a constant CAgm independent of hE and the mesh Ωh such that∑
e∈∂E

||φ||20,e ≤ CAgm
(
h−1

E ||φ||20,E + hE |φ|21,E

)

for any function φ ∈ H1(E).
– (M4) Local interpolation: let m ≥ 0 be an integer number. For any function q ∈ Hm+3(E) there exists a

local polynomial approximation of degree m+2 defined on E, which we denote by q̂ . The following estimate
of the interpolation error also holds

||q − q̂ ||0,E +
m+2∑
l=1

hl
E |q − q̂ |l,E ≤ CIntphk+3

E |q|m+3,E , (2.7)

where CIntp > 0 is a constant independent of hE .

Remark 2.1. The constantsNF ,NE , a∗, CAgm and CIntp, which appear in (M1)–(M4) above, may only depend
on the constants Ns and ρs of (HG) and the shape of the domain Ω. Assumption (HG3) is used in the analysis
section, e.g. in Lemma 3.1.

Throughout the paper, we will make use of the standard notation for Sobolev spaces; hence, if l > 0 is an
integer number and D is Ω or a cell E, then H l(D) denotes the space of square integrable functions with square
integrable derivatives up to order l defined on D.

The usual definition also holds for L2(D), ||·||0,D, |·|0,D, and H(div, D). We will also use the functional space
of vector fields:

VΩh
=
{
v ∈ H(div, Ω) such that v|E ∈ H(div, E) ∩ (Ls(E)

)d with s > 2 for every E ∈ Ωh

}
, (2.8)

where v|E is the restriction of v to E. The regularity that is required to the vector fields in VΩh
is stronger

than just being in H(div, Ω) and is needed to define the interpolation of ne ·v on a single edge/face e ∈ Eh. An
explanation can be found in [15].
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2.2. Polynomial spaces and orthogonal basis functions

We will find it convenient to consider two different kinds of polynomial spaces, respectively defined on the
mesh cells and the mesh edges/faces.

For the mesh cell E and the non-negative integer number l, �l(E) is the space of the polynomial functions
defined on E with degree at most l. The dimension of �l(E) is equal to nE

l = (l + 1)(l + 2)/2 for d = 2
and nE

l = (l + 1)(l + 2)(l + 3)/6 for d = 3. The set of nE
l basis functions {ϕE,i}i=0,...,nE

l −1 that satisfies the
orthogonality condition ∫

E

ϕE,iϕE,j dV = |E| δij

generates �l(E). We assume that ϕE,0 = 1. The polynomial functions ϕE,i are practically built by the Gram–
Schmidt orthogonalization process applied to the monomials 1, x, y, x2, etc., after translation to the barycenter
xE and rescaling by hE .

We define the projection ΠE
l (φ) ∈ �l(E) of a scalar function φ ∈ L2(E) by the orthogonality relation∫

E

(
ΠE

l (φ) − φ
)
ϕdV = 0 for every ϕ ∈ �l(E),

and the projection ΠE
l (φ) ∈ (�l(E))d of the vector function φ ∈ (L2(E))d by the orthogonality relation∫

E

(
ΠE

l (φ) − φ
) · ϕ dV = 0 for every ϕ ∈ (�l(E)

)d
(for simplicity of notation, we use the same symbol “ΠE

l ”).
Likewise, for the mesh edge/face e and the non-negative integer number l, �l(e) is the space of the polynomial

functions defined on e with degree at most l. The dimension of �l(e) is equal to ne
l = l + 1 for d = 2 and

ne
l = (l+1)(l+2)/2 for d = 3. The set of ne

l functions {ϕe,i}i=0,...,ne
l
−1 that satisfies the orthogonality condition∫

e

ϕe,iϕe,j dS = |e| δij

generates �l(e). For d = 2, the polynomial functions ϕe,i are practically built by translating and rescaling the
Legendre polynomials, which are normally defined on the interval [−1, 1], over the edge e. For d = 3, on each
two-dimensional face we apply the Gram–Schmidt orthogonalization process to the monomials 1, ξ, η, ξ2, etc.,
where (ξ, η) are the local coordinates of the face.

We define the projection Πe
l (φ) ∈ �l(e) of the scalar function φ ∈ L2(e) by the orthogonality relation∫

e

(
Πe

l (φ) − φ
)
ϕdS = 0 for every ϕ ∈ �l(e).

Remark 2.2. Using orthogonal basis functions to generate �l(E),
(
�l(E)

)d, and �l(e) significantly simplifies
the implementation and calculation of the projection operators ΠE

l and Πe
l .

2.3. Scheme formulation

2.3.1. Degrees of freedom

Hereafter, we denote the degree of the polynomials that are used in each cell to construct Qh and Xh by k
and on each mesh edge/face by k+ 1, where k is a non-negative integer number. Scalar variables and fluxes are
represented in the discrete setting by the elements of Qh and Xh, respectively, which are linear spaces with the
usual rules of addition and multiplication by a scalar number. The degrees of freedom are associated with the
edges/faces and the interior of the cells as follows. The meaning of these degrees of freedom will become clear
in the next subsection, when we define the interpolation operators.
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1=k0=k

3=k2=k

Figure 1. Degrees of freedom for 0 ≤ k ≤ 3 on a polygonal cell; for each polynomial degree k
we show the flux degrees of freedom on the left and the scalar degrees of freedom on the right.
The edge/face moments of the normal component of the flux are denoted by a vertical line; the
cell moments are denoted by a bullet.

– Scalar variables. We associate the degrees of freedom of the scalar variable to the mesh cells so that

qh ∈ Qh means that qh =
{{qE,0, · · · qE,nE

k −1}E∈Ωh

}
(2.9)

with qE,i ∈ �. The dimension of Qh is equal to nE
k × number of cells. The restriction of the grid function

qh to cell E is given by the set of nE
k real numbers

{
qE,0, · · · qE,nE

k
−1

}
and denoted by qE . The restriction

operator that gives the “E, i”th degree of freedom of qh is denoted by ( · )E,i, i.e., qE,i = (qh)E,i.

– Fluxes. We associate the degrees of freedom of the flux field to the mesh edges/faces and the mesh cells
so that

vh ∈ Xh means that vh =
{{
ve,0, . . . ve,ne

k+1−1

}
e∈Eh

,
{
vE,1, . . . , vE,nE

k −1

}
E∈Ωh

}
(2.10)

with ve,i, vE,i ∈ �. The dimension of Xh is given by ne
k+1 × number of edges (2D) or faces (3D) + (nE

k −
1)× number of cells. The edge/face degrees of freedom of the flux grid function vh related to e form the set
of real numbers

{
ve,0, . . . ve,ne

k+1−1

}
, which we denote by ve. Similarly, cell degrees of freedom of vh related

to the cell E form the set of real numbers
{
vE,1, . . . , vE,nE

k −1

}
, which we denote by vE . The restriction of vh

to the mesh cell E, denoted by vE , consists of both cell and edge/face degrees of freedom, i.e., vE = vh|E =
({ve}e∈∂E , vE). The restriction operators that give the “E, i”th and “e, i”th degrees of freedom of the vector
grid function vh are respectively denoted by ( · )E,i and ( · )e,i, i.e., vE,i = (vh)E,i and ve,i = (vh)e,i.

2.3.2. Interpolation operators

The local interpolant of the scalar function q ∈ L2(E) is the grid function qIE ∈ QE whose components are
the moments of q with respect to the orthogonal polynomials ϕE,i of degree up to k:

qIE,i :=
(
qI
)
E,i

=
1
|E|

∫
E

q ϕE,i dV for i = 0, . . . , nE
k − 1, ∀E ∈ Ωh. (2.11)

The global interpolant of q is the grid function qI of Qh whose restriction to each cell E coincides with the local
interpolant qIE .
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The local interpolant of the vector field v ∈ H(div, E) ∩ (Ls
(
E)
)d with s > 2 is the grid function vI

E ∈ XE

whose components are

– the moments of v with respect to ∇ϕE,i, the gradients of the orthogonal polynomials forming a basis of
�k(E):

vIE,i :=
(
vI
)

E,i
=

1
|E|

∫
E

v · ∇ϕE,i dV, for i = 1, . . . , nE
k − 1, ∀E ∈ Ωh; (2.12)

– the moments of ne · v for each edge/face e ∈ ∂E with respect to the orthogonal polynomials {ϕe,i} forming
a basis of �k+1(e):

vIe,i :=
(
vI
)
e,i

=
1
|e|
∫

e

ne · vϕe,i dS, for i = 0, . . . , ne
k+1 − 1, ∀e ∈ Eh. (2.13)

The moments considered in (2.12) and (2.13) provide as many independent conditions on v as the dimension
of Xh|E, the restriction of Xh to cell E. The global interpolant of v ∈ VΩh

is the grid function vI of Xh whose
restriction to each cell E coincides with the local interpolant vI

E (we recall that VΩh
is defined in (2.8)).

Remark 2.3. The degrees of freedom associated with edge/face e are the discrete representation of the normal
flux associated with that edge/face. For each internal edge/face e ⊆ ∂E′ ∩ ∂E′′, i.e., shared by the polygons E′

and E′′, the degrees of freedom are the same for both adjacent polygons and the continuity of the normal flux
across e is automatically satisfied. This construction is consistent with the continuity of the normal component
ne · v of a vector function v ∈ H(div, Ω).

Remark 2.4. The definition of the interpolation operator for the scalar variable suggests the following piecewise
polynomial representation using the degrees of freedom of the grid function qh and the orthogonal polynomials
ϕE,i inside each cell E ∈ Ωh:

q̃h(x) =
nE

k −1∑
i=0

qE,iϕE,i(x) for x ∈ E. (2.14)

Obviously, it holds that qh = (q̃h)I. When qh = qI, the restriction of q̃h to E is the L2 orthogonal projection
of q onto �k(E), i.e., (̃qIE) = ΠE

k (q). Hereafter, the symbol “tilde”, e.g., ·̃ indicates a polynomials that is built
by linear combination of the orthogonal basis functions using the degrees of freedom as coefficients.

Remark 2.5. The definition of the interpolation operator for the flux variable suggests the following piece-
wise polynomial representation on each edge/face e using the corresponding degrees of freedom of vh and the
orthogonal polynomials ϕe,i

ṽ e
h (ξ) =

ne
k+1−1∑
i=0

ve,iϕe,i(ξ) for ξ ∈ e.

When vh = vI, the polynomial ṽ e
h is the L2 orthogonal projection of ne · v onto �k+1(e), i.e., ˜(nE,e · v)I =

Πe
k+1(nE,e · v).

2.3.3. Discrete divergence operator

The discrete divergence operator DIV : Xh → Qh is defined cell-wise from the commutation property:

DIV vI =
(
divv

)I for every v ∈ VΩh
. (2.15)
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The right-hand side of (2.15) is computable on each cell E by using only the degrees of freedom of vI
E . Indeed,

an integration by parts yields:

(
divv

)I
E,i

=
1
|E|

∫
E

(
divv

)
ϕE,i dV =

1
|E|

(
−
∫

E

v · ∇ϕE,i dV +
∑

e∈∂E

∫
e

nE,e · vϕE,i dS

)
,

for i = 0, . . . , nE
k − 1. Moreover, taking i = 0 in the development above shows that our definition is consistent

with the Gauss divergence theorem. Since
(DIV vh

)
E

, the restriction of DIV vh to E, belongs to QE , we can
consider the polynomial representation in �k(E) given by

˜DIV vh(x) =
nE

k −1∑
i=0

(DIV vh

)
E,i
ϕE,i(x) for x ∈ E,

and, clearly, when vh = vI it holds that ˜DIV vI|E = ΠE
k (divv).

Finally, suppose that uh is the mimetic flux solving (2.5a) and (2.5b) and uI is the interpolant of the flux u
solving problems (2.1a)–(2.1c). For every qh ∈ Qh it holds that

[DIV uh, qh]Qh
=
[
f I, qh

]
Qh

=
[(

divu
)I
, qh

]
Qh

=
[DIV uI, qh

]
Qh

,

from which we obtain the orthogonality property:[DIV (uh − uI), qh
]
Qh

= 0 for every qh ∈ Qh. (2.16)

This property is used in the error analysis of Section 4.

2.3.4. Mimetic inner product for scalar grid functions

We define the mimetic inner product in Qh by assembling the mimetic inner products that are locally defined
on every cell E:

[ph, qh]Qh
=
∑

E∈Ωh

[ph, qh]E =
∑

E∈Ωh

|E|
nE

k −1∑
i=0

pE,iqE,i for every ph, qh ∈ Qh. (2.17)

We also denote the mesh-dependent norm induced by the local mimetic inner product in QE by |||·|||
E

and the
mesh-dependent norms induced by the global inner product in Qh by |||·|||

Qh
.

Relation (2.17) corresponds to the L2-scalar product for piecewise polynomial functions of degree k associated
with ph and qh. Indeed,

∫
E

q̃h p̃h dV =
nE

k −1∑
i,j=0

qE,ipE,i

∫
E

ϕE,i ϕE,j dV =
nE

k −1∑
i,j=0

qE,ipE,i |E| δij = |E|
nE

k −1∑
i=0

pE,iqE,i. (2.18)

Consequently, for any pair of square integrable functions q and p, the mimetic inner product of their local
interpolants qIE and pIE is equal to the L2 inner products of their orthogonal projection on the polynomial space
�k(E). Using the global interpolations, we have the formal relation

[
pI, qI

]
Qh

=
∑

E∈Ωh

∫
E

ΠE
k (p)ΠE

k (q) dV for every p, q ∈ L2(Ω). (2.19)
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2.3.5. Mimetic inner product for flux grid functions

We define the mimetic inner product in Xh by assembling the element-wise contribution from each mesh
element E

[uh,vh]Xh
=
∑

E∈Ωh

[uh,vh]E for every uh,vh ∈ Xh. (2.20)

We also denote the mesh-dependent norm induced by the local mimetic inner product in XE by |||·|||
E

and the
mesh-dependent norm induced by the global inner product in Xh by |||·|||

Xh
.

Remark 2.6. We abuse the notation by using the same symbols [·, ·]E and |||·|||
E

to denote the local inner
products and norms for scalar and vector grid functions. Note that these operators are contextually determined
by the nature of their arguments without any ambiguity.

Moreover, both [ ·, · ]E and ||| · |||
E

only depends on the degrees of freedom of cell E. We will keep this
dependence implicit through the more elegant notation [ph, qh]E and |||qh|||

E
for scalars and [uh,vh]E and

|||vh|||
E

for vectors instead of [(ph)E , (qh)E ]E , [(uh)E , (vh)E ]E or [pE , qE ]E , [uE ,vE ]E , and |||(qh)E |||
E
, |||qE |||

E

or |||(vh)E |||
E
, |||vE |||

E
, which are more precise but also more cumbersome.

Now, we present the construction of the local mimetic inner product for fluxes. Consider the cell E and the
functional space of vector fields SΩh

, which is a sub-space of VΩh
and is defined as

SΩh
=
{
v ∈ VΩh

such that (divv)E ∈ �k(E), nE,e · v ∈ �k+1(e) for every E ∈ Ωh

}
.

The local inner product [·, ·]E is required to satisfy the two following conditions:

– (S1) stability: there exist two constants σ∗, σ∗ > 0 independent of h such that

σ∗ |E| |vh|2E ≤ [vh,vh]E ≤ σ∗ |E| |vh|2E (2.21)

for all vh ∈ XE , where

|vh|2E = h2
E

nE
k −1∑
i=0

|vE,i|2 +
∑

e∈∂E

ne
k+1−1∑
i=0

|ve,i|2 . (2.22)

– (S2) local consistency: for every polynomial q ∈ �k+2(E) and every function v ∈ SΩh
it holds:[(

ΠE
k+1

(
K∇q))I,vI

]
E

=
∫

E

∇q · v dV. (2.23)

Since v ∈ SΩh
, we integrate by parts (2.23) on cell E and note that in the right integrals we can substitute

divv and v · nE,e with the projections ΠE
k (divv) and ΠE

k+1(v · nE,e) and then with ˜DIV vI and (ṽI)e:[(
ΠE

k+1

(
K∇q))I,vI

]
E

= −
∫

E

qdivv dV +
∑

e∈∂E

∫
e

v · nE,e q dS

= −
∫

E

qΠE
k (divv) dV +

∑
e∈∂E

∫
e

Πe
k+1(v · nE,e) q dS

= −
∫

E

q ˜DIV vI dV +
∑

e∈∂E

∫
e

(ṽI)e q dS.

Thus, for any grid function vh ∈ XE , we consider the formula:[(
ΠE

k+1

(
K∇q))I,vh

]
E

= −
∫

E

q ˜DIV vh dV +
∑

e∈∂E

∫
e

ṽ e
h q dS. (2.24)
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Remark 2.7. Local consistency can also be defined by directly assuming that[(
ΠE

k+1

(
K∇q))I,vI

]
E

= −
∫

E

q ˜DIV vI dV +
∑

e∈∂E

∫
e

(ṽI)e q dS. (2.25)

for every polynomial q ∈ �k+2(E) and every function v ∈ VΩh
. This definition is equivalent to (S2) as it leads

to the same family of mimetic schemes and is the straightforward generalization of the consistency condition
that was considered in [8, 19]. Condition (S2) emphasizes the fact that the local consistency is an exactness
property while (2.25) emphasizes the connection with a discrete integration by parts formula. Moreover, it
is worth noting that the definition of the weak gradient in the weak Galerkin method is very similar to the
right-hand side of (2.25), cf . [52].

The mimetic inner product in XE is given by the nE
k+1 × nE

k+1 symmetric and positive definite matrix ME:

[uh,vh]E = (uE)T MEvE , (2.26)

where uE and vE are the vectors of degrees of freedom of uh and vh pertinent to E. The convergence properties
of the MFD method only depend on the fact that the local scalar product satisfies assumptions (S1) and (S2),
and not on the specific form of matrix ME . The construction of matrix ME is carried out through the auxiliary
matrices N and R. The ith columns of N (for i = 1, . . . , nE

k+2 − 1), denoted by Ni, is given by:

Ni =
(
ΠE

k+1

(
K∇ϕE,i

))I
. (2.27)

The ith columns of R (for i = 1, . . . , nE
k+2 − 1), denoted by Ri, is such that

vT
ERi = −

∫
E

˜DIV vhϕE,i dV +
∑

e∈∂E

∫
e

ṽ e
h ϕE,i dS for every vE ∈ XE . (2.28)

Matrix ME is given by the usual formula for the mimetic inner product matrix:

M = M0 + M1 = R(NT R)−1RT + μE(I − N(NT N)−1NT ), (2.29)

where μE is a scalar factor, usually the trace of matrix M0. Matrices M0 and M1 ensure the consistency and
stability properties of the method stated in (S2) and (S1), respectively. Formula (2.29) provides a convenient
choice of the mimetic inner product for the practical implementation in a computer code. Nonetheless, a wider
family of mimetic inner products exists that satisfies the stability and consistency conditions above [11].

Remark 2.8. For constant tensors K, we can further simplify (2.23) by removing the projection ΠE
k+1 from

the left-hand side: [(
K∇q)I,vI

]
E

=
∫

E

∇q · v dV. (2.30)

Take q = ϕE,i and v = ∇ϕE,j in (2.23) or (2.30); as NT MN = NT R we immediately have the identities∫
E

∇ϕE,i · ∇ϕE,j dV = (NT R)ij = NT
i Rj.

Since i and j start from 1, matrix NT R is symmetric and positive definite and, thus, non-singular. Hence,
(NT R)−1 is well-defined in formula (2.29).
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Remark 2.9. The factor h2
E that multiplies each |vE,i|2 in (2.22) is needed to make the two summation

terms in the right-hand side to scale consistently with respect to hE . This requirement is a consequence of
the normalization of the orthogonal polynomials that we use to define the cell and the edge/face degrees of
freedom. We could remove this factor by renormalizing ∇ϕe,i in the definition of vI

e,i in (2.13). However, the
normalization of the same polynomial basis of �k(E) would be different in the definition of QE and XE , which
might be source of errors and confusion.

Remark 2.10. The mimetic inner product between the two flux grid functions uI and vI that interpolate the
vector fields u and v is an approximation of the K−1-weighted L2-scalar product between these two vectors for
any cell E ∈ Ωh: [

uI,vI
]
E
≈
∫

E

K−1u · v dV,

and, consequently, for the whole domain Ω:[
uI,vI

]
Xh

≈
∫

Ω

K−1u · v dV.

From the previous discussion, it should be clear that for a constant K this approximation is exact whenever both
vectors are the gradient of a polynomial of degree k+1. The information about K−1 is embedded inside [·, ·]Xh

.
In the matrix formula (2.29), K−1 affects matrix M0 through (NT R)−1, since N contains K in its definition, and
matrix M1 through the choice of the scaling factor μE .

2.4. Well-posedness

Since the bilinear form [·, ·]Xh
in (2.20) is an inner product, it is coercive on the whole space Xh, and therefore

on the kernel of the discrete divergence operator DIV . The well-posedness of the mimetic method follows from
this fact and the discrete inf-sup condition that will be proved in Section 5.2 (see [15]).

3. Estimates for interpolation and projection operators

To ease the notation, we use the symbol “�” to denote “≤ C”, i.e., “less than or equal to up to the
constant C”, where C is strictly positive and independent of the mesh size h, variables or other parameters of
the inequality. By accurately tracing back the different constants as they appear in the proofs, it is immediate
to see that all such constants may depend only on the mesh regularity constants in (M1)–(M4), the strong
ellipticity constants κ∗ and κ∗, the norm ||K||k+2,∞,E , and the stability constants σ∗ and σ∗.

Lemma 3.1. Let E be a mesh element of Ωh, e a mesh edge/face in Eh, l a non-negative integer and q a
function in H l+1(E). Under assumption (HG), we have∣∣∣∣q −ΠE

l (q)
∣∣∣∣

0,E
+ hE

∣∣∣∣∇(q −ΠE
l (q)

)∣∣∣∣
0,E

� hl+1
E |q|l+1,E

||q −Πe
l (q)||0,e � hl+1

e |q|l+1,e .

Proof. These estimates are the consequence of the mesh regularity assumptions that make it possible to use
standard results from polynomial approximation in Sobolev spaces in star-shaped domains [16]. �
Lemma 3.2. Let E be a mesh element, e be a mesh edge/face that belongs to ∂E, and q be a function in
Hk+3(E) for k non-negative integer. From assumption (HG) and Kij ∈ W k+2,∞(E), it follows that

||q − q̂ ||20,E + hE

∑
e∈∂E

||q − q̂ ||20,e � h
2(k+3)
E ||q||2k+3,E (3.1a)

∣∣∣∣K∇q −ΠE
k+1(K∇q̂ )

∣∣∣∣2
0,E

+ hE

∑
e∈∂E

∣∣∣∣K∇q −ΠE
k+1(K∇q̂ )

∣∣∣∣2
0,e

� h
2(k+2)
E ||q||2k+3,E (3.1b)

where q̂ is the polynomial interpolant of degree k + 2 of q on E defined in (M4).
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Proof. Inequality (3.1a) follows directly from combining (M3) and (M4).
To prove inequality (3.1b) we add and subtract K∇q̂ to the two terms of the left-hand side and use the

triangle inequality to obtain:∣∣∣∣K∇q −ΠE
k+1(K∇q̂ )

∣∣∣∣2
0,E

� ||K∇(q − q̂ )||20,E +
∣∣∣∣K∇q̂ −ΠE

k+1(K∇q̂ )
∣∣∣∣2

0,E
(3.2)

and, similarly, ∣∣∣∣K∇q −ΠE
k+1(K∇q̂ )

∣∣∣∣2
0,e

� ||K∇(q − q̂ )||20,e +
∣∣∣∣K∇q̂ −ΠE

k+1(K∇q̂ )
∣∣∣∣2

0,e
. (3.3)

The right-hand side of (3.2) is bounded by applying standard estimates from polynomial interpolation theory
and noting that ||q̂ ||k+2,E � ||q||k+2,E (recall that q̂ is the polynomial interpolant of q of degree k + 2):

||K∇(q − q̂ )||20,E +
∣∣∣∣K∇q̂ −ΠE

k+1(K∇q̂ )
∣∣∣∣2

0,E
� h

2(k+2)
E (κ∗)2 ||q||2k+3,E + h

2(k+2)
E ||K∇q̂ ||2k+2,E

� h
2(k+2)
E max(κ∗, ||K||k+2,∞,E)2 ||q||2k+3,E .

The first term in the right-hand side of (3.3) is bounded by applying the Agmon inequality with φ = K∇(q− q̂ )
and then using the estimate for the interpolation error:∑

e∈E

||K∇(q − q̂ )||20,e � h−1
E ||∇(q − q̂ )||20,E + hE |∇(q − q̂ )|21,E � h−1

E

(
hk+2

E |q|k+3,E

)2 + hE

(
hk+1

E |q|k+3,E

)2
� h2k+3

E |q|2k+3,E .

The second term in the right-hand side of (3.3) is bounded by applying the Agmon inequality with φ = K∇q̂ −
ΠE

k+1(K∇q̂ ), applying the error estimate for ΠE
k+1 of the previous lemma, and noting that Kij ∈W k+2,∞(E):∑

e∈∂E

∣∣∣∣K∇q̂ −ΠE
k+1(K∇q̂ )

∣∣∣∣2
0,e

� h−1
E

∣∣∣∣K∇q̂ −ΠE
k+1(K∇q̂ )

∣∣∣∣2
0,E

+ hE

∣∣K∇q̂ −ΠE
k+1(K∇q̂ )

∣∣2
1,E

� h−1
E

(
hk+2

E |K∇q̂ |k+2,E

)2 + hE

(
hk+1

E |K∇q̂ |k+2,E

)2
� h2k+3

E ||K||2k+2,∞,E ||q||2k+2,E .

To estimate the norms and seminorms of K∇q̂ we needed the stronger regularity of K, which we indicates
explicitly through the factor ||K||k+2,∞,E . The quantity max(κ∗, ||K||k+2,∞,E) that would appear in the final
inequality is absorbed by the � notation in the assertion of the lemma. �

Lemma 3.3. Let E be a mesh element, v a function in
(
H1(E)

)d and vI its interpolation in XE. Then, it
holds that ∣∣∣∣∣∣vI

∣∣∣∣∣∣2
E

� ||v||20,E + hE

∑
e∈∂E

||v||20,e � ||v||20,E + h2
E |v|21,E . (3.4)

Proof. In view of (S1), we only need to prove that

|E| ∣∣vI
∣∣2
E

� ||v||20,E + hE

∑
e∈∂E

||v||20,e � ||v||20,E + h2
E |v|21,E ,
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where |vI|E is defined in (2.22) (take vh = vI). First, note that

|E|h2
E

∣∣vIE,i

∣∣2 = |E|h2
E

∣∣∣∣ 1
|E|

∫
E

v · ∇ϕE,i dV
∣∣∣∣2 ≤ ||v||20,E

h2
E

|E| ||∇ϕE,i||20,E � ||v||20,E ,

since h2
E ||∇ϕE,i||20,E � |E|. From the orthogonality of the basis functions ϕe,i it follows that:

|e|
ne

k+1−1∑
i=0

∣∣vIe,i

∣∣2 =
ne

k+1−1∑
i,j=0

vIe,iv
I
e,j |e| δij =

ne
k+1−1∑
i,j=0

vIe,iv
I
e,j

∫
e

ϕe,iϕe,j dS

=
∫

e

( ne
k+1−1∑
i=0

vIe,iϕe,i

)( ne
k+1−1∑
j=0

vIe,jϕe,j

)
dS =

∫
e

∣∣(ṽI)e
∣∣2 dS =

∣∣∣∣∣∣(ṽI)e
∣∣∣∣∣∣2

0,e
.

The mesh regularity implies that |E| � |e|hE . Therefore, as (ṽI)e is the L2 projection of ne · v in �k+1(e), we
obtain:

|E|
ne

k+1−1∑
i=0

∣∣vIe,i

∣∣2 � hE

∣∣∣∣∣∣(ṽI)e
∣∣∣∣∣∣2

0,e
� hE

∣∣∣∣Πe
k+1(nE,e · v)

∣∣∣∣2
0,e

� hE ||nE,e · v||20,e � hE ||v||20,e .

The second inequality in (3.4) is a consequence of Agmon inequality. �

Lemma 3.4. Let E be a mesh element, e be a mesh edge/face that belongs to ∂E, and q be a function in
Hk+3(E) for k non-negative integer. From assumption (HG) and Kij ∈ W k+2,∞(E), it follows that∣∣∣∣∣∣∣∣∣(K∇q −ΠE

k+1(K∇q̂ )
)I∣∣∣∣∣∣∣∣∣

E

� hk+2
E ||q||k+3,E (3.5)

where q̂ is the polynomial interpolant of degree k + 2 of q on E defined in (M4).

Proof. Combine the first inequality of Lemma 3.3 with v = K∇q −ΠE
k+1(K∇q̂ ) and estimate (3.1b):∣∣∣∣∣∣∣∣∣(K∇q −ΠE

k+1(K∇q̂ )
)I∣∣∣∣∣∣∣∣∣2

E

�
∣∣∣∣K∇q −ΠE

k+1(K∇q̂ )
∣∣∣∣2

0,E
+ hE

∑
e∈∂E

∣∣∣∣K∇q −ΠE
k+1(K∇q̂ )

∣∣∣∣2
0,e

� h
2(k+2)
E ||q||2k+3,E .

This ends the proof of the lemma. �

4. Convergence of the flux variable

The result of this section is the following convergence theorem for the approximation of the flux variable.

Theorem 4.1. Let (u, p) be the exact solution of problem (2.1a)–(2.1c) with p ∈ Hk+3(Ω), where k is a non-
negative integer number. Let (uh, ph) ∈ Xh ×Qh be the solution of (2.5a) and (2.5b) under assumption (HG).
Then, ∣∣∣∣∣∣uI − uh

∣∣∣∣∣∣
Xh

� hk+2 ||p||k+3,Ω . (4.1)



THE ARBITRARY ORDER MIXED MIMETIC FINITE DIFFERENCE METHOD FOR THE DIFFUSION EQUATION 865

Proof. Denote εh = uI − uh. Using the orthogonality property (2.16) in (2.5a) (with vh = uI − uh) yields:

[uh, εh]Xh
= −〈g, εh〉h (4.2)

Let p̂ be the piecewise polynomial interpolant of degree k+ 2 of p defined on Ωh in accordance with (M4), i.e.,
p̂E = p̂ |E interpolates the restriction of p to E in �k+2(E). Starting from the definition of the norm |||·|||

Xh
we

have the development:

|||εh|||2
Xh

= [uI, εh]Xh
− [uh, εh]Xh

[
use (4.2)

]
= [uI, εh]Xh

+ 〈g, εh〉h
[
use uI = (−K∇p)I]

= [(−K∇p)I, εh]Xh
+ 〈g, εh〉h

[
use (2.20)

]
=
∑

E∈Ωh
[(−K∇p)I, εh]E + 〈g, εh〉h

[
add and subtract

(
ΠE

k+1(∇p̂ )
)I]

= A1 + A2

where

A1 =
∑

E∈Ωh

[
(−K∇p)I +

(
ΠE

k+1(K∇p̂ )
)I
, εh

]
E
,

A2 = −
∑

E∈Ωh

[(
ΠE

k+1(K∇p̂ )
)I
, εh

]
E

+ 〈g, εh〉h .

The proof continues by estimating the error terms A1 and A2 separately.
We first derive an upper bound for A1. From the Cauchy–Schwartz inequality and Lemma 3.4 it follows that[

(−K∇p)I +
(
ΠE

k+1(K∇p̂ )
)I
, εh

]
E
≤
∣∣∣∣∣∣∣∣∣(−K∇p)I +

(
ΠE

k+1(K∇p̂ )
)I∣∣∣∣∣∣∣∣∣

E

|||εh|||
E

� hk+2
E ||p||k+3,E |||εh|||

E
.

(4.3)

Then, we sum over all the mesh cells and use again the Cauchy–Schwarz inequality to estimate A1:

|A1| �
∑

E∈Ωh

hk+2
E ||p||k+3,E |||εh|||

E
� hk+2

( ∑
E∈Ωh

||p||2k+3,E

)1/2( ∑
E∈Ωh

|||εh|||2
E

)1/2

� hk+2 ||p||k+3,Ω |||εh|||
Xh
. (4.4)

To derive an upper bound for term A2, first observe that the consistency condition (S2) and the orthogonality
property (2.16) imply that [(

ΠE
k+1(K∇p̂ )

)I
, εh

]
E

=
∑

e∈∂E

∫
e

p̂ ε̃ e
h dS. (4.5)

Furthermore, the trace of p ∈ Hk+3(Ω) is continuous at every internal face and ε̃ e
h takes opposite values at the

sides of every internal face so that

∑
E∈Ωh

∑
e∈∂E

∫
e

pε̃ e
h dS = 〈p, εh〉h . (4.6)
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Now, we use (2.20) and identities (4.6) and (4.5) and the Cauchy–Schwarz inequality twice to obtain[(
ΠE

k+1(K∇p̂ )
)I
, εh

]
Xh

− 〈p, εh〉h =
∑

E∈Ωh

[(
ΠE

k+1(K∇p̂ )
)I
, εh

]
E
−
∑

E∈Ωh

∑
e∈∂E

∫
e

pε̃ e
h dS

=
∑

E∈Ωh

∑
e∈∂E

∫
e

(
p̂ − p

)
ε̃ e

h dS ≤
∑

E∈Ωh

∑
e∈∂E

||p̂ − p||0,e ||εh||0,e

≤
∑

E∈Ωh

( ∑
e∈∂E

||p̂ − p||20,e

)1/2( ∑
e∈∂E

||ε̃ e
h ||20,e

)1/2

.

From Remark 2.4 and the orthogonality of ϕe,i(ξ) it follows that

||ε̃ e
h ||20,e =

∫
e

|ε̃ e
h |2 dξ =

ne
k+1−1∑
i,j=0

(εh)e,i(εh)e,j

∫
e

ϕe,i(ξ)ϕe,j(ξ)dξ =
ne

k+1−1∑
i,j=0

(εh)e,i(εh)e,j |e| δij

=
ne

k+1−1∑
i

|(εh)e,i|2 |e| .

This relation, assumption (S1) and hE � |e| /|E| from (M2) imply that

∑
e∈∂E

||ε̃ e
h ||20,e =

∑
e∈∂E

|e|
ne

k+1−1∑
i=0

|(εh)e,i|2 � h−1
E |||εh|||2

E
. (4.7)

Since g = p on boundary Γ , inequality (4.7) combined with inequality (3.1a) and the Cauchy–Schwarz inequality
yields the estimate:

|A2| =
∣∣∣∣ ∑

E,∈Ωh

[(
ΠE

k+1(K∇p̂ )
)I
, εh

]
E
− 〈g, εh〉h

∣∣∣∣ �
∑

E∈Ωh

h
k+5/2
E ||p||k+3,E h

−1/2
E |||εh|||

E

� hk+2

( ∑
E∈Ωh

||p||2k+3,E

)1/2( ∑
E∈Ωh

|||εh|||2
E

)1/2

� hk+2 ||p||k+3,Ω |||εh|||
Xh
. (4.8)

The assertion of the theorem follows from combining the estimates for A1 and A2 in (4.4) and (4.8). �

5. Convergence of the scalar variable

The main result of this section is the following convergence theorem for the approximation of the scalar
variable.

Theorem 5.1. Let k be a non-negative integer number and p ∈ Hk+3(Ω) be the exact solution of prob-
lem (2.1a)–(2.1c). Let ph ∈ Qh be the solution of (2.5a) and (2.5b) under assumption (HG). Then, there
holds ∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣
Qh

� hk+2 ||p||k+3,Ω . (5.1)

The proof of this theorem is postponed to Section 5.3 as it requires the lifting operator and the discrete
inf-sup condition, which are presented in Sections 5.1 and 5.2.
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5.1. Lifting operator

Consider E ∈ Ωh. There exists a local lifting operator RE : XE → H(div, E) such that:

(R1) for every vh ∈ Xh it holds:

divRE(vh) = ˜DIVvh in E (5.2a)

nE,e · RE(vh) = ṽ e
h on every e ∈ ∂E (5.2b)

(R2) for every vector field whose components have a (k + 1)-degree polynomial restriction on E, i.e., v|E ∈(
�k+1(E)

)d, it holds:

RE((v|E )I) = v|E

(R3) for every vh ∈ Xh, it holds

ρ∗ |E| |vh|2E ≤ ||RE(vh)||20,E ≤ ρ∗ |E| |vh|2E ,

where |vh|2E is defined in (2.22).

Remark 5.2. The locally lifted field RE(vh) only depends on the degrees of freedom of vh of cell E. Here, as
before, we prefer to use the more elegant notation RE(vh) instead of RE((vh)E) or RE(vE).

Remark 5.3. In view of the stability condition (S1), condition (R3) is equivalent to

ρ∗
σ∗ |||vh|||2

E
≤ ||RE(vh)||20,E ≤ ρ∗

σ∗
|||vh|||2

E
. (5.3)

By combining the local lifting operators, we define a global lifting operator R : Xh → (
L2(Ω)

)d, which is
such that R(vh)|E = RE(vh). As is usual in the mimetic technology, the lifting operator is a valuable tool
in the convergence analysis, but is not needed in any practical implementation of the method. Furthermore, a
lifting operator satisfying the conditions listed above is not unique; however, only its existence is needed in the
analysis. The existence can be proved as in ([11], Chap. 3) or through direct construction by solving numerically
the system of equations (5.2a) and (5.2b), for example, by the BDMk+1 − Pk scheme, on the sub-partition Sh

of assumption (HG).
Using the lifting operator we can prove this lemma, which will be useful in the proof of Theorem 5.1.

Lemma 5.4. Let (u, p) be the exact solution of problem (2.1a)–(2.1c) with p ∈ Hk+3(Ω), where k is a non-
negative integer number. Let (uh, ph) ∈ Xh ×Qh be the solution of (2.5a) and (2.5b) under assumption (HG).
Then, for every vh ∈ Xh it holds that[

ph − pI,DIV vh

]
Qh

� hk+2 ||p||k+3,Ω |||vh|||
Xh

(5.4)

Proof. We decompose the inner product as in (2.17), we note that DIVvh =
(

˜DIVvh

)I, we use (2.19) and we

note that ˜DIV vh|E is a polynomial of degree k on E to obtain:

[
pI,DIV vh

]
Qh

=
∑

E∈Ωh

[
pI,DIVvh

]
E

=
∑

E∈Ωh

∫
E

p ˜DIV vh dV. (5.5)
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We substitute (5.2a) above and integrate by parts on each cell, we sum over all the cells and note that nE,e ·
RE(vh) only depends on the degrees of freedom of edge/face e and takes opposite signs on the two sides of each
internal edge/face:

∑
E∈Ωh

∫
E

p ˜DIV vh dV =
∑

E∈Ωh

(
−
∫

E

∇p ·RE(vh) dV +
∑

e∈∂E

∫
e

nE,e · RE(vh)p dS
)

= −
∫

Ω

∇p ·RE(vh) dV +
∑

e∈Eh∩Γ

∫
e

nE,e · RE(vh)p dS. (5.6)

The last term above is further developed by using (5.2b) and (2.6) (with the boundary condition g = p|Γ ):

∑
e∈Eh∩Γ

∫
e

nE,e ·RE(vh)p dS =
∑

e∈Eh∩Γ

∫
e

ṽ e
hp dS = 〈p,vh〉h . (5.7)

Combining (5.6) and (5.7) in (5.5) yields

[
pI,DIV vh

]
Qh

= −
∫

Ω

∇p · RE(vh) dV + 〈p,vh〉h . (5.8)

Using scheme’s equation (2.5a) and (5.8), we transform the left-hand side of (5.4) as follows

[
ph − pI,DIV vh

]
E

= [uh,vh]E + 〈p,vh〉h − [pI,DIV vh

]
E

= [uh,vh]E +
∫

Ω

∇p · RE(vh) dV.

We add and subtract ∇p̂ , where p̂ is the (k + 2)-interpolant of p as in (M4):∫
E

∇p ·RE(vh) dV =
∫

E

∇p̂ · RE(vh) dV +
∫

E

∇(p− p̂ ) · RE(vh) dV. (5.9)

We integrate by parts, use again (5.2a), (5.2b) and (2.24) to develop the first term in the right-hand side of (5.9):∫
E

∇p̂ ·RE(vh) dV = −
∫

E

p̂ divRE(vh) dV +
∑

e∈∂E

∫
∂e

p̂nE,e · RE(vh) dS

= −
∫

E

p̂ ˜DIVvh dV +
∑

e∈∂E

∫
e

p̂ ṽh dS

=
[(
ΠE

k+1(K∇p̂ )
)I
,vh

]
E
. (5.10)

We substitute (5.10) in (5.9) and add and subtract uI to obtain the final expression:

∑
E

(
[uh,vh]E +

∫
E

∇p ·RE(vh) dV
)

=
∑

E∈Ωh

([
uh − uI,vh

]
E

+
[(

u +ΠE
k+1(K∇p̂ )

)I
,vh

]
E

+
∫

E

∇(p− p̂ ) · RE(vh) dV
)

= T1 + T2 + T3. (5.11)
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To evaluate term T1, we apply the Cauchy–Schwarz inequality, definition (2.20) and the result of Theorem 4.1:

T1 ≤
∑

E∈Ωh

∣∣∣∣∣∣uh − uI
∣∣∣∣∣∣

E
|||vh|||

E
≤
( ∑

E∈Ωh

∣∣∣∣∣∣uh − uI
∣∣∣∣∣∣2

E

)1/2 ( ∑
E∈Ωh

|||vh|||2
E

)1/2

=
∣∣∣∣∣∣uh − uI

∣∣∣∣∣∣
Xh

|||vh|||
Xh

� hk+2 ||p||k+3,Ω |||vh|||
Xh
.

To evaluate term T2, we apply the Cauchy–Schwarz inequality, definition (2.20), substitute u = −K∇p, and
apply Lemma 3.4:

T2 ≤
∑

E∈Ωh

∣∣∣∣∣∣∣∣∣(u +ΠE
k+1(K∇p̂ )

)I∣∣∣∣∣∣∣∣∣
E

|||vh|||
E

≤
( ∑

E∈Ωh

∣∣∣∣∣∣∣∣∣(− K∇p+ΠE
k+1(K∇p̂ )

)I∣∣∣∣∣∣∣∣∣2
E

)1/2 ( ∑
E∈Ωh

|||vh|||2
E

)1/2

=

( ∑
E∈Ωh

h
2(k+2)
E ||p||2k+3,E

)1/2

|||vh|||
Xh

� hk+2 ||p||k+3,Ω |||vh|||
Xh
.

To evaluate term T3, we apply the Cauchy–Schwarz inequality twice, the error estimate in (M4) and the
equivalence in (5.3):

T3 ≤
∑

E∈Ωh

||∇(p− p̂ )||0,E ||RE(vh)||0,E ≤
( ∑

E∈Ωh

||∇(p− p̂ )||20,E

)1/2( ∑
E∈Ωh

||RE(vh)||20,E

)1/2

�
( ∑

E∈Ωh

h
2(k+2)
E |p|2k+3,E

)1/2( ∑
E∈Ωh

|||vh|||2
E

)1/2

� hk+2 ||p||k+3,Ω |||vh|||
Xh
.

The assertion of the lemma follows by combining the estimates for T1, T2, and T3 in (5.11). �

5.2. Discrete inf-sup condition

Lemma 5.5. For any scalar grid function qh ∈ Qh, there exists a vector grid function vq
h ∈ Xh such that

[DIV vq
h, qh]Qh

= |||qh|||2Qh
(5.12a)

|||vq
h|||Xh

� |||qh|||
Qh

(5.12b)

Proof. The inf-sup condition can be proved by adapting a similar proof from [45]. Consider qh ∈ Qh and
q̃h ∈ L2(Ω), which is the piecewise k-degree polynomial on Ωh given by (2.14). We recall that (q̃h)I = qh and
that ||q̃h||0,Ω = |||qh|||

Qh
. Consider a ball B that contains domain Ω and the function q̃ ext

h that extends q̃h by
zero in the region B\Ω. Now, let ψ ∈ H2(B) be the solution of Δψ = q̃ ext

h in B with homogeneous conditions
on the boundary ∂B. Since B is H2-regular and q̃ ext

h is zero outside Ω, we have that

||ψ||2,Ω ≤ ||ψ||2,B ≤ C∗
B

∣∣∣∣q̃ ext
h

∣∣∣∣
0,B

= C∗
B ||q̃h||0,Ω = C∗

B |||qh|||
Qh
, (5.13)

where constant C∗
B is a positive constant independent of ψ and h. Since ψ ∈ H2(B) we have that ∇ψ ∈ (H1(B))d

and ∇ψ|Ω ∈ (H1(Ω))d ⊂ VΩh
, and, thus, the interpolant of ∇ψ in Xh is well-defined. Take vq

h = (∇ψ)I. We
immediately have that

DIV vq
h = DIV (∇ψ)I = (Δψ)I = (q̃h)I = qh,
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which proves (5.12a). Then, Lemma 3.3 implies that

|||vq
h|||2E =

∣∣∣∣∣∣(∇ψ)I
∣∣∣∣∣∣2

E
� ||∇ψ||20,E + h2

E |∇ψ|21,E � ||ψ||22,E .

Summing over all E ∈ Ωh and using the H2-regularity inequality (5.13) prove (5.12b):

|||vq
h|||2Xh

=
∑

E∈Ωh

|||vq
h|||2E �

∑
E∈Ωh

||ψ||22,E � ||ψ||22,Ω � ||q̃h||20,Ω � |||qh|||2
Qh
.

This concludes the proof of the Lemma. �

Now, consider the mesh-dependent norm in Xh defined as |||vh|||2DIV = |||vh|||2
Xh

+ |||DIV vh|||2
Qh

. If vq
h is the

flux associated with qh through the proof of Lemma 5.5 we know that DIVvq
h = qh. We add |||DIVvq

h|||Qh

=
|||qh|||

Qh
to both sides of (5.12b) and we have that |||vq

h|||DIV
� |||qh|||

Qh
. Using this inequality and both (5.12a)

and (5.12b) we immediately find that

sup
vh∈Xh\{0}

[DIV vh, qh]Qh

|||vh|||DIV

≥ [DIV vq
h, qh]Qh

|||vq
h|||DIV

=
|||qh|||2

Qh

|||vq
h|||DIV

� |||qh|||
Qh
.

Dividing both sides by |||qh|||
Qh

and taking the infimum on qh ∈ Qh gives the standard form for the discrete
inf-sup inequality. We formally state this result, which can be seen as a corollary of Lemma 5.5, as follows by
introducing the “inf-sup constant” β∗ > 0.

Corollary 5.6. There exists a strictly positive constant β∗, which is independent of h, such that

inf
qh∈Qh\{0}

sup
vh∈Xh\{0}

[DIV vh, qh]Qh

|||vh|||DIV |||qh|||
Qh

≥ β∗.

5.3. Proof of Theorem 5.1

Let vq
h ∈ Xh be the flux corresponding to qh = ph − pI in the discrete inf-sup condition of Lemma 5.5. Using

Lemmas 5.4 and 5.5 we have that∣∣∣∣∣∣ph − pI
∣∣∣∣∣∣2

Qh

=
[
ph − pI,DIV vq

h

]
Qh

� hk+2 ||p||k+3,Ω |||vq
h|||Xh

� hk+2 ||p||k+3,Ω

∣∣∣∣∣∣ph − pI
∣∣∣∣∣∣

Qh

, (5.14)

which implies the assertion of Theorem 5.1.

5.4. Error estimates for the polynomial approximation of the scalar unknown

According to Remark 2.4, we can compute the polynomial p̃h inside each cell E through (2.14) by using only
the degrees of freedom of the mimetic solution ph pertinent to that cell. This polynomial provides a pointwise
approximation of the exact solution p for k ≥ 0 and its gradient ∇p for k > 0. The accuracy of such an
approximation is stated in the following theorem.

Theorem 5.7. Let k be a non-negative integer number and p ∈ Hk+3(Ω) the exact solution of problem (2.1a)–
(2.1c). Let ph ∈ Qh be the solution of (2.5a) and (2.5b) under assumption (HG), and p̃h the piecewise polynomial
function that in each cell E is given by (2.14). Then, it holds:

||p− p̃h||0,Ω + h |p− p̃h|1,Ω � hk+1 ||p||k+3,Ω .
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Proof. Adding and subtracting p̃IE and using the triangle inequality yield:

||p− p̃h||20,Ω =
∑

E∈Ωh

||p− p̃h||20,E �
∑

E∈Ωh

( ∣∣∣∣∣∣p− p̃IE

∣∣∣∣∣∣2
0,E

+
∣∣∣∣∣∣p̃IE − p̃h

∣∣∣∣∣∣2
0,E

)
.

Consider cell E. As noted in Remark 2.4, we have that p̃IE = ΠE
k (p). Using the estimate for the projection

operator yields ∣∣∣∣∣∣p− p̃IE

∣∣∣∣∣∣
0,E

=
∣∣∣∣p−ΠE

k (p)
∣∣∣∣

0,E
� hk+1

E ||p||k+1,E ,

so that ∑
E∈Ωh

∣∣∣∣∣∣p− p̃IE

∣∣∣∣∣∣2
0,E

� h2(k+1)
∑

E∈Ωh

||p||2k+1,E � h2(k+1) ||p||2k+1,Ω .

The second term can be estimated by first noting that∣∣∣∣∣∣p̃IE − p̃h

∣∣∣∣∣∣2
0,E

=
∣∣∣∣∣∣ ˜(pI − ph)

∣∣∣∣∣∣2
0,E

=
∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣2
E

and, then, using the result of Theorem 5.1:∑
E∈Ωh

∣∣∣∣∣∣p̃IE − p̃h

∣∣∣∣∣∣2
0,E

=
∑

E∈Ωh

∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣2
E

=
∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣2
Qh

� h2(k+2) ||p||2k+3,Ω .

An O(hk) estimate can be derived for |p− p̃h|1,Ω by repeating the same argument since a standard inverse
inequality implies that ∣∣∣∣∣∣∇ ˜(pI − ph)

∣∣∣∣∣∣
0,E

� h−1
E

∣∣∣∣∣∣ ˜(pI − ph)
∣∣∣∣∣∣

0,E
� h−1

E

∣∣∣∣∣∣pI − ph

∣∣∣∣∣∣
E
.

The assertion of the theorem follows by combining together these estimates. �

Remark 5.8. The piecewise polynomial approximation offered by p̃h does not use the information provided
by the flux approximation uh. A better pointwise approximation to the exact solution p and its gradients could
be given by devising some special post-processing technique as was done for the low-order MFD method in [22]
and for the lowest-order version of this method (i.e., for k = 0) in [8, 12]. Post-processing for arbitrary k is
currently under development and will be the content of a future paper.

6. Numerical experiments

The numerical experiments presented in this section are aimed to confirm the a priori analysis of Sections 4
and 5. We consider here only the case d = 2; for d = 3 we expect to see the same behavior. In a preliminary stage,
the consistency of the method i.e., the exactness of these methods for polynomial solutions, has been tested
numerically by solving problem (2.1a)–(2.1c) with boundary and source data determined by p(x, y) = xm + ym

on different set of polygonal meshes and for m = 1 to 5. In all the cases, the method based on polynomials of
degree k ≥ m provided errors whose magnitude was of the order of the arithmetic precision, thus confirming
this property. These results are not reported here.

To study the accuracy of the method we solve the diffusion equation on the domain Ω =]0, 1[×]0, 1[ using
the variable diffusion coefficient:

K(x, y) = ex+y I +

(
1 + y2 −xy
−xy 1 + x2

)
.
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(M1) (M2 () M3)

Figure 2. The first mesh of mesh families M1 (left panel), M2 (middle panel), M3 (right
panel) that are used in the convergence and comparison tests of the numerical experiment
section. The mesh cells in M1 are randomized quadrilaterals. The mesh cells in M2 are mainly
smoothly remapped hexagons: two quadrilateral cells close the domain at opposite bottom-
left and top-right-corners, while all the other cells are hexagons with possible degeneracy (two
parallel edges) on the domain boundary. The mesh cells in M3 are regular non-convex octagons,
cut at right and top boundaries to fit into the unit square domain.

The forcing term in (2.1b) and the Dirichlet boundary condition on ∂Ω are set in accordance with the exact
solution:

p(x, y) = e−2πy sin(2πx) + cos(2π(x + 2y)).

The performance of the mixed mimetic method are investigated by evaluating the rate of convergence on
three different sequences of five meshes, labeled by M1, M2, and M3, respectively. Figures 2a–2c show the
first mesh of each sequence. The meshes in M1 are built by partitioning the domain Ω into square cells and
relocating each interior node to a random position inside a square box centered at that node. The sides of this
square box are aligned with the coordinate axis and their lenght is equal to 0.8 times the minimum distance
between two adjacent nodes of the initial square mesh.

The meshes in M2 are built as follows. First, we determine a primal mesh by remapping the position (x̂ , ŷ ) of
the nodes of an uniform square partition of Ω by the smooth coordinate transformation (see, for example, [19]):

x = x̂ + 0.1 sin(2πx̂ ) sin(2πŷ ),
y = ŷ + 0.1 sin(2πx̂ ) sin(2πŷ ).

The corresponding mesh of M2 is built from the primal mesh by splitting each quadrilateral cell into two triangles
and connecting the barycenters of adjacent triangular cells by a straight segment. The mesh construction is
completed at the boundary by connecting the barycenters of the triangular cells close to the boundary to the
midpoints of the boundary edges and these latters to the boundary vertices of the primal mesh.

The meshes in M3 are obtained by filling the unit square with a suitably scaled non-convex octagonal
reference cell, which is cut at the right and top domain boundaries to fit the unit square domain Ω.

All the meshes are parametrized by the number of partitions in each direction. The starting mesh of every
sequence is built from a 5 × 5 regular grid, and the refined meshes are obtained by doubling this resolution.

For each calculation we consider the relative errors

EXh
=

|||uI − uh|||
Xh

|||uI|||
Xh

, EQh
=

|||pI − ph|||
Qh

|||pI|||
Qh

, EL2 =
||p− p̃h||0,Ω

||p||0,Ω

, EH1 =
|p− p̃h|1,Ω

|p|1,Ω

·
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Figure 3. Error curves EXh
(left plot) and EQh

(right plot) with respect to the mesh size h
using mesh family M1 of randomized quadrilaterals. The MFD method uses polynomials of
degree k = 0 (circles), k = 1 (squares), k = 2 (diamonds), k = 3 (up triangles), k = 4 (down
triangles). Slopes proportional to hk+2 are shown in the left plot. As a superconvergence effect
is present in the scalar approximation, for k ≥ 1, in the right plot we show the slope for h2

(k = 0) and the slopes proportional to hk+3 for k ≥ 1.
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Figure 4. Error curves EXh
(left plot) and EQh

(right plot) with respect to the mesh size h
using mesh family M2 of smoothly remapped hexagons. The MFD method uses polynomials of
degree k = 0 (circles), k = 1 (squares), k = 2 (diamonds), k = 3 (up triangles), k = 4 (down
triangles). Slopes proportional to hk+2 are shown in the left plot. As a superconvergence effect
is present in the scalar approximation, for k ≥ 1, in the right plot we show the slope for h2

(k = 0) and the slopes proportional to hk+3 for k ≥ 1.

Errors EXh
and EQh

are both expected to decrease to zero proportionally to O(hk+2) in accordance with
Theorems 4.1 and 5.1. Errors EL2 and EH1 are expected to decrease to zero proportionally to O(hk+1) and
O(hk), respectively, in accordance with Theorem 5.7.

In Figures 3–5 we report the log-log plots of EXh
(left plots) and EQh

(right plots) versus the mesh size
parameter h for calculations using mesh families M1, M2, and M3. In Figure 6 we report the log-log plots
of EL2 and EH1 versus the mesh size parameter h for calculations using the meshes in M1. All calculations were
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Figure 5. Error curves EXh
(left plot) and EQh

(right plot) with respect to the mesh size h
using mesh family M3 of regular non-convex octagons. The MFD method uses polynomials of
degree k = 0 (circles), k = 1 (squares), k = 2 (diamonds), k = 3 (up triangles), k = 4 (down
triangles). Slopes proportional to hk+2 are shown in the left plot. As a superconvergence effect
is present in the scalar approximation, for k ≥ 1, in the right plot we show the slope for h2

(k = 0) and the slopes proportional to hk+3 for k ≥ 1.
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Figure 6. Error curves EL2 (left plot) and EH1 (right plot) with respect to the mesh size h
using mesh family M1 of randomized quadrilaterals. The MFD method uses polynomials of
degree k = 0 (circles), k = 1 (squares), k = 2 (diamonds), k = 3 (up triangles), k = 4 (down
triangles). Slopes proportional to hk+1 and hk are shown in the left and right plot, respectively.
The error curves for the gradient approximation measured by EH1 starts at k = 1.

carried out by using the mixed MFD method based on polynomials of degree from k = 0 to 4 as indicated in
the captions.

The convergence rates are reflected by the slope of each error curve, which has to be compared with the
exact slope shown in the plot by a triangle closed to each curve and indicated by the corresponding integer
number. The rates observed experimentally for the flux approximation are always in good agreement with the
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estimate of Theorem 4.1 and the errors measured in the Xh-norm decrease proportionally to hk+2. Also, the
approximation of the exact solution and its gradient that are provided by the piecewise polynomial function p̃h

and ∇p̃h behaves as expected from Theorem 5.7, and the errors measured in the L2- and energy- norm decrease
proportionally to hk+1 and hk. We show these error plots only for the calculations using M1 as for the other
meshes the behavior is the same. Instead, the approximation error EQh

behaves as stated by Theorem 5.1 only
for the lowest-order accurate scheme, i.e., for k = 0, where error EQh

decreases like O(h2). For k ≥ 1, an
ultraconvergence effect is visible for the three mesh families M1, M2, M3, as error EQh

decreases like O(hk+3)
instead of O(hk+2) as we would expect from Theorem 5.1. An extensive validation on different kind of meshes,
exact solutions and constant and variable diffusion tensors (results are not reported here) confirms that this
effect seems to persist, and, therefore, to be quite general. Currently, we do not have a theoretical explanation
of this phenomenon even if we may conjecture a connection with the nature of the degrees of freedom of the
scalar variable ph. In fact, error EQh

is a straightforward measure of how well the polynomial moments pI of
the exact solution p are approximated by the degrees of freedom of the mimetic approximation ph.

7. Conclusions

We presented the new family of mimetic finite difference schemes that extends to arbitrary order of accuracy
the approximation of the scalar unknown and the flux of [19]. The well-posedness of the method and the
convergence of the approximation are proved theoretically and convergence estimates for both the scalar and
the flux variable are derived. The behavior of the method in solving diffusion problems with variable diffusion
tensor is investigated experimentally and the numerical results confirm the convergence rates that are expected
from the theory. An ultraconvergence effects is visible for the scalar variable when the error is measured in the
mesh-dependent norm induced by the mimetic inner product for scalar functions. A complete understanding of
this phenomenon will be the topic of a future work.
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[30] J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and
mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295.
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