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CONVERGENCE RATES OF SUPERCELL CALCULATIONS
IN THE REDUCED HARTREE—-FOCK MODEL

DaviD GONTIER! AND SALMA LAHBABI?

Abstract. This article is concerned with the numerical simulations of perfect crystals. We study the
rate of convergence of the reduced Hartree—Fock (rHF) model in a supercell towards the periodic rHF
model in the whole space. We prove that, whenever the crystal is an insulator or a semi-conductor, the
supercell energy per unit cell converges exponentially fast towards the periodic rHF energy per unit
cell, with respect to the size of the supercell.

Mathematics Subject Classification. 35Q40, 65M12.

Received July 8, 2015. Revised October 27, 2015. Accepted October 28, 2015.

1. INTRODUCTION

The numerical simulation of the electronic structure of crystals is a very active research area in solid state
physics, materials science and nano-electronics. When the crystal is perfect, a good approximation of its elec-
tronic ground state density can be obtained by solving a mean-field nonlinear periodic model set on the whole
space. Using the Bloch transform ([14], Chap. XIII), we can recast such a problem as a continuous family of
compact problems indexed by points of the Brillouin-zone. In practice, the compact problems are solved on a
discretization of the Brillouin zone. There is therefore an inherent error coming from the fact that this Brillouin
zone is sampled, and it is not obvious a priori whether this error is small, due to the nonlinearity of the problem.
It has been observed numerically since the work of Monkhorst and Pack [12] that this error is indeed very small
when the discretization is uniform, and when the crystal is an insulator or a semiconductor. To our knowledge,
no rigorous proof of this fact was ever given. This article aims at proving why it is indeed the case in the reduced
Hartree—Fock (rHF) model, which is a Hartree—Fock model where the exchange term is neglected. This model
was studied in [4,5].

A crystal is modeled by a periodic nuclear charge distribution piper. The corresponding rHFE energy per unit
cell is denoted by Ih&". When numerical calculations are performed over a regular discretization of the Brillouin-
zone, this amounts to calculate the energy on a supercell, i.e. on a large box containing L times the periodicity
of piper in each direction (for a total of L? unit cells in the supercell), and with periodic boundary conditions.
The rHF energy on a supercell of size L is denoted by Igper, so that the corresponding energy per unit cell
is L7315,
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It was proved in [4] that L*?’I‘L‘per converges to Ih&™ as L goes to infinity, when the crystal is an insulator
or a semiconductor. However, following the proof in [4], one might find a rate of convergence of order L1,
which is well below what is numerically observed. Our main result is that, if the crystal is an insulator or a
semiconductor, then there exist constants C' € R and « > 0, such that

VL € N*, |L73I[ — Ihrer| < Cem (1.1)

We also prove that the supercell electronic density converges exponentially fast to the periodic rHF electronic
density, in the L>(R®) norm. To prove such rates of convergence, we recast the problem into the difference
between an integral and a corresponding Riemann sum, and show that the integrand is both periodic and
analytic on a complex strip. Similar tools were used in [2,7,8,10,13] to prove that the Wannier functions of
insulators are exponentially localized.

This article is organized as follows. In Section 2, we recall how the rHF model is derived. We present the main
results in Section 3. In Section 4, we apply the Bloch theory for both periodic models and supercell models.
The proofs of the main results are postponed until Sections 5 and 6. Finally, we illustrate our theoretical results
with numerical simulations in Section 7.

Throughout this article, we will give explicit values of the constants appearing in the inequalities. These
values are very crude, but allows one to see how these constants depend on the parameters of the electronic
problem.

2. PRESENTATION OF THE MODELS

A perfect crystal is a periodic arrangement of atoms. Both the nuclear charge density jiper and the electronic
density are R-periodic functions, where R is a discrete periodic lattice of R3. Let I" be the unit cell of the
lattice, and let I'* be the unit cell of the dual lattice R* (or the Brillouin zone). For instance, for R = aZ?,
I' =[-a/2,a/2)3, R* = (2r/a)Z?® and I'* = [-7/a,7/a)3. For R € R, we let Tr be the translation operator
on L%(R3) defined by (trf)(x) := f(x — R).

We will assume throughout the paper that the nuclear charge density fipe, is a real-valued R-periodic function
that is locally square integrable for simplicity, but distributions with singularity points may also be handled [1].

2.1. The supercell rHF model

In a supercell model, the system is confined to a box I', := LI with periodic boundary conditions. We denote
by L2,.(I'r) the Hilbert space of locally square integrable complex-valued functions that are LR-periodic. The

per

normalized Fourier coefficients of a function f € L2_ (I'z) are defined by

1 .
vk e LT'R*, ck(f) = 7/ x)e kx(x,
k(f) ‘FL‘1/2 [‘Lf( )

so that, for any f € L2,.(I'.),

per
1 ik-x .
flx)= m Z cE(f)elx a.e. and in Lf)er(FL).
L keL- 1R

The set of admissible electronic states for the supercell model is
Pr = {'YL S S(Lger(FL)), 0<~ <1, TrLger(FL) (’YL) + TrLgex-(FL) (_AL'YL) < OO} s

where S(H) denotes the space of the bounded self-adjoint operators on the Hilbert space H. Here,
Trrz () (—Aryc) is a shorthand notation for

3

Trrz, () (ZAcye) = ) Trez ) (PryePir) (2.1)
i=1
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where, for 1 < j < 3, P; is the self-adjoint operator on L2, (I'y) defined by cf (P f) = kjcg(f) for all
k = (k1, ko, k3) € L7'R*. Note that ¢L(—ALf) = [k|*cL(f) for all k € L71R*.
We introduce the LR-periodic Green kernel G, of the Poisson interaction [11], solution of

—AG =4n (ZkeR Ok — 1)
G, is L'R-periodic.

The expression of G, is given in the Fourier basis by

A7 ik
GL(X) =cr, + ﬁ Z W’ (22)
Ll ger—1r-\{0}
where ¢y, = |I'p|™! fFL G1. The constant ¢y, can be any fixed constant a priori. In one of the first article on

the topic [11], the authors chose to set ¢, = 0, but other choices are equally valid (see [4] for instance). This is
due to the fact that ¢ does not play any role for neutral systems. We choose to set ¢, = 0 for simplicity. The
supercell Coulomb energy is defined by

V.0 € BalT). Dulfa) = [ (F 4, GL)(xg(x)dx (23)
where (f*p, G1)(x) := [ f(y)Gr(x—y)dy. We recall that the map p — p+*p, G, is continuous from L2 (1)
to Lgoer(FL)
Any ~p € P is locally trace-class, and can be associated an LR-periodic density p,, € Lper(F ). For
vr, € Pr, the supercell reduced Hartree—Fock energy is
1 1
Er7 (1) 1= 5Tre (o) (FALYL) + 5 DL(Pre = Hpers Py — Hiper). (24)

The first term of (2.4) corresponds to the supercell kinetic energy, and the second term represents the supercell
Coulomb energy. The ground state energy of the system is given by the minimization problem

e =t (g onh w e [ o= [ ) (2:5)
FL FL

Using techniques similar to ([4], Thm. 4), the following result holds (we do not prove it, for the arguments are
similar to the ones in [4]).

Theorem 2.1 (Existence of a supercell minimizer). For all L € N*, the minimization problem (2.5) admits
minimizers. One of these minimizers yr o satisfies TRYL,0 = Yr,0TR- All minimizers share the same density
Prr.o» which is R-periodic. Finally, v o satisfies the self-consistent equation

YL,0 =1 HL’0<€IL,4)+(5
Hpo=—-534L+VLo (2.6)
VL,O = (p'yLyo - Mper) *r Gla

where Hy, o acts on Lper(FL) and 0 <0 < 1(Hpo= e%) is a finite rank operator.
Here, e is the Fermi level of the supercell model. It is chosen so that the charge constraint in (2.5) is satisfied.

Remark 2.2. The L'R-periodic density of the minimizers p,, , is actually R-periodic. It is unclear that such a
property should hold for more complex models (e.g. Kohn—Sham models). This is the reason why we state our
results for the rHF model. We believe however that similar results should hold true for more complex systems,
provided that the supercell density is R-periodic for each size of the supercell.
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2.2. The reduced Hartree—Fock model for perfect crystals

The rHF model for perfect crystals, or periodic rHF, has been rigorously derived from the rHF model for
finite molecular systems by means of a thermodynamic limit procedure by Catto, Le Bris and Lions [5]. In [4],
Cances, Deleurence and Lewin proved that the same periodic rHF model is the limit of the rHF supercell model
as the size of the supercell goes to infinity.

We introduce the set of admissible density matrices

Pper = {'Y € S(L}%er(F))a 0< v < 1, VR € R, RY = 7R, E(’Y) +T_I‘(—A’Y) < OO} ) (27)

where Tr denotes the trace per unit volume. For any locally trace class operator A that commutes with
R-translations, it reads
. 1
E(A) = Lhm ETY (I]-LFA]]-LF) . (28)

The trace per unit volume Tr can also be defined wvia the Bloch transform (see Eq. (4.6) below). Here, Tr (— A7)
is a shorthand notation for

Tr (—4y) =Y Tr (PyFy),

j=1

where P; = —i0,,; is the momentum operator in the jth direction. The Coulomb energy per unit volume is
defined by

V.0 € Ba(l). Dalfo) = [ (f +r G))gx)ax (29)

where G was introduced in (2.2).
Any v € Pper is locally trace-class, and can be associated an R-periodic density p, € L%er(F ). For v € Pper,
the reduced Hartree—Fock energy is given by

1 1
Ep (1) 3= 5T (=A%) + 5D1(py = Hpers Py = Hper) - (2.10)

The first term of (2.10) corresponds to the kinetic energy per unit volume, and the second term represents the
Coulomb energy per unit volume. Finally, the periodic rHF ground state energy is given by the minimization
problem

g = inf{gﬁgﬁr(v), Y € Pper, /pr = /Fuper}. (2.11)

It has been proved in [4] that the minimization problem (2.11) admits a unique minimizer -y, which is the
solution of the self-consistent equation

Yo = ]1(H0 < €F) + 6
Hy=—3A+V, (2.12)
= (P'yo - Mper) *r G,

=
|

where Hy acts on L2(R3) and 0 < § < 1(Hp = eF) is a finite rank operator. Here, the Fermi energy e is the
Lagrange multiplier corresponding to the charge constraint [ Py = / I Mper- We make the following assumption:

‘ (A1) The system is an insulator, in the sense that Hy has a spectral gap around ep.

In particular, 6 = 0.
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3. MAIN RESULTS

Our main results are concerned with the rate of convergence of supercell models towards corresponding
periodic models. We first prove the exponential rate of convergence in a linear setting, where the mea-field
potential V' is a fixed bounded R-periodic function: V' € Lg%, (I"). We then extend our result to the nonlinear
rHF model, where the external potential is the solution of the self-consistent equation (2.6) or (2.12).

We start with the linear case. For a trace-class operator A, € &,(L2,,.(I'1)), we denote by Tr ; (AL) the trace
per unit volume of A, defined by (see also Eq. (4.10) below for an alternative definition using supercell Bloch

transforms)
1
Tr, (ArL) = ﬁTrLger(FL)(AL) (3.1)
The proof of the following proposition is given in Section 5.

Proposition 3.1 (Convergence rate of the linear supercell model). Let V' € L35 (I") be such that the operator

H = —%A +V acting on L*(R®) has a gap of size g > 0 centered around the Fermi level ep. Then, for any
L € N*, the operator H- := —%AL +V acting on L2,.(I't) has a gap of size at least g around c. Let

per
y=1(H <ep) and WL:]I(HLgep). (3.2)

Then, v € Pper and v, € Pr, and there exist constants C € RT and o > 0, that depend on the lattice R,
VL=, g and er only, such that

VL eN*, |Tr (vH)—Tr, (VLHL)’ < Ce *E (ground state energy per unit volume) (3.3)

and
VLEN*, |py = pyoll e < Ce ™ (ground state density). (3.4)

In a second step, we will use the projectors v and ~y; obtained for well chosen potentials V' as candidates
for the minimization problems (2.11) and (2.5) respectively. We have the following result (see Sect. 5.5 for the
proof).

Corollary 3.2. With the same notation as in Proposition 3.1, there exist constants C € R and a > 0, that
depend on the lattice R, ||V||L<, g and ep only, such that
VL € N*, |Ehper(y) — LT2Ef (yp)| < Cem L. (3.5)

per

We are now able to state our main result for the rHF model. The proof of the following theorem is given in
Section 6. In the sequel, we denote by B(E) the usual Banach space of bounded operators acting on the Banach
space E.

Theorem 3.3 (Convergence rate of the rHF supercell model).  Under hypothesis (A1), there exist C € RT
and « > 0 independent of L such that the following estimates hold true:

e (Convergence of the ground state energy per unit volume:

< Ce L,

)

VL e N*, [L7°Ipre — Iheer

per

e (Convergence of the ground state density:

VL € N*, ”p’yLn - p’yo”L°C () < Ce_aL§

per

o Convergence of the mean-field Hamiltonian:

VL € N*, ||HL — H0||B(L2(R3)) < C’e_aL,
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where Hy, = —%A + (pnyo - ,uper) +r G1 and H := —%A + (Pyo — Wper) *r G1 are acting on L2(R3).

The fact that the supercell quantities converge to the corresponding quantities of the periodic rHF model
was already proved in ([4],Thm. 4). However, following the proof of the latter article, we only find an O (L™!)
convergence rate.

The proof of Proposition 3.1 and Theorem 3.3 rely on Bloch transforms.

4. BLOCH TRANSFORM AND SUPERCELL BLOCH TRANSFORM

4.1. Bloch transform from L?(R3) to L2_.(I'*,L*(I"))

per

We recall in this section the basic properties of the usual Bloch transform ([14], Chap. XIII). Let (aj, as, a3)
be a basis of the lattice R, so that R = Za; +Zay + Zas. We define the dual lattice R* by R* = Zaj +Za’ + Zaj
where the vectors aj are such that aj - a; = 27d;;. The unit cell and the reciprocal unit cell are respectively
defined by

I == {a1a; + opay + azaz, (a1,02,a3) € [-1/2,1/2)%},

and
I'*:= {aa} + axa} + azal, (o1, a0,a3) € [~1/2,1/2)%}.

Note that I'* differs from the first Brillouin zone when the crystal is not cubic. We consider the Hilbert space
L2(I'*,L?,.(I")), endowed with the normalized inner product

per

(Flax).a@x) ez, = 1. [ Flax(a.x)dxda

per
where we denoted by f,. := [I™*[~! [. The Bloch transform is defined by

Z: LA(R%) — L3I, L2 (1))

w = (2Zw)(q,x) = wg(x) = Z e Ry (x + R). (4.1)
RER

Its inverse is given by

21 (I, L2,(1) — LA(RY)
Wq(X) = (Z271w)(x) ::][ el * g (x) dg.
e

It holds that Z is an isometry, namely

per

2
120l 53,00 = . [ 1E0)@)P dx da = ol ey

For m € R*, we introduce the unitary operator Uy, acting on L?_.(I") defined by

per

Vm e R*, Vfe L2 (D), (Unf)(x)=e ™ f(x). (4.2)

per

(R3,L2,.(I)) such that

From (4.1), it is natural to consider Zw as a function of L? e

loc
vYw e L*(R?), YmeR*, VYqeTl*, (Zw)(q+m,:)=wqim="Unq="Umn(Zw(q,")). (4.3)

Let A with domain D(A) be a possibly unbounded operator acting on L?_ (I"). We say that A commutes with

per
R-translations if TR A = Arr for all R € R. If A commutes with R-translations, then it admits a Bloch decom-

position. The operator ZAZ~! is block diagonal, which means that there exists a family of operators (Aq)qe I
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acting on L2_.(I'), such that, if f € L?(R?) and g € D(A) are such that f = Ag, then, for almost any q € I'*,

per

9q € L2..(I') is in the domain of Aq, and
fa = Aq9q- (4.4)
In this case, we write
@
ZAZT! = Aqdq  (Bloch decomposition of A).
I_‘*
From (4.3), we extend the definition of Aq, initially defined for q € I'*, to q € R?, with

YmeR*, VqeT™, Agim=UnAqUy,', (4.5)

so that (4.4) holds for almost any q € R3. If A is locally trace-class, then A is trace-class on L2_ (I") for almost

per
any q € R3. The operator A can be associated a density p4, which is an R-periodic function, given by

pPA 2][ pagdq,
I—'*

where p, is the density of the trace-class operator Aq. The trace per unit volume of A (defined in (2.8)) is also
equal to

Te(d) = f Tesg, ) (Ag)da (4.6)

4.2. Bloch transform from L2 (I'r) to EZ(AL,LIZ)er(F))

per
We present in this section the “supercell” Bloch transform. This transformation goes from L}%er(f’L) to
(AL, L2 (1)), where Ap, := (L7'R*) NI, i.e.

per

R N —L+n —L+ L+ ?
Ar ::{—1a1+—2a2+—3a3, (kl,kQ,kS)e{ ”,—”+1,...,T77—1} } (4.7)

L L L 2 2

with n = 1 if L is odd, and = 0 if L is even, so that there are exactly L3 points in Ay. Similarly, we define
Rr := R NIy, which contains L? points of the lattice R. The supercell Bloch transform has properties similar
to those of the standard Bloch transform, the main difference being that there are only a finite number of fibers.
We introduce the Hilbert space £2(Ay, L2, (I")) endowed with the normalized inner product

per
Q). 9(Q X)), 1,0 = 15 D [ FQx)g(Qux) .
Qea /T

The supercell Bloch transform is defined by

ZL : Lger(FL) — Kz(AL,Lger(F))
w — (ZLw)(Q,x) == wq(x) == Z QAR (x + R).
ReRL
Its inverse is given by
Zo (A, L2 (1)) — L2, (Ip)
wq(x) (20 w) (%) = % Z ' VX (x).
Qe

It holds that Zp, is an isometry, i.e.

1
ol = 75 X [ 1(E0w) @0 ax.

Qe
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We can extend Z to £ (L~ R*, L2 .(I")) with

per
Vw e L2, (Ip), YmeR*, VQE AL, wqim=Unwq,

where the operator Uy, was defined in (4.2).

Let Ar, with domain D (Af) be an operator acting on L2, (I';). If Ar, commutes with R-translations, then it
admits a supercell Bloch decomposition. The operator Z;, Ay Zy, is block diagonal, which means that there exists
a family of operators (Az,q)qea, acting on L2  (I") such that if f = Apg with f € L2 (I') and g € D(AL),
then for all Q € Ap,

fa = AL.qYq- (4.8)
We write

1
A?_‘,'LALZL_1 = 7 @ Ar q (supercell Bloch decomposition of Ay ).
QeAp

The spectrum of Ay, can be deduced from the spectra of (Aqu)QeAL using the formula

o(A)= |J o(ALq)- (4.9)
Qe

Similarly to (4.5), we extend the definition of Aj, q to L™'R* with
VmeR*, VQe AL, ALqim=UnALqQUy',

so that (4.8) holds for all Q € L™1R*.
Finally, if the operator Ay, is trace-class, the trace per unit volume of Ay, defined in (3.1), is also equal to

1 1
Tr,(AL) = ETTL?,@,(FL)(AL) = 73 Z TrL%;er(F)(AL,Q)’ (4.10)
QeAL

1
and the associated density is given by pa, = — Z PAL.q> Where pa, o is the density of the trace-class

Qe
operator Ay q.

5. PROOF OF PROPOSITION 3.1: THE LINEAR CASE

The proofs of Proposition 3.1 and Theorem 3.3 are based on reformulating the problem using the Bloch
transforms. Comparing quantities belonging to the whole space model on the one hand, and to the supercell
model on the other hand amounts to comparing integrals with Riemann sums. The exponential convergence then
relies on two arguments: quantities of interest are R*-periodic and have analytic continuations on a complex
strip, and the Riemann sums for such functions converge exponentially fast to the corresponding integrals.

We prove in this section the exponential convergence of Proposition 3.1.

5.1. Convergence of Riemann sums
We recall the following classical lemma. For A > 0, we denote by
Sa:={z€C? |Im(z)l <A} =R>+i[-A4, A

If F is a Banach space and d € N*, an E-valued function F : 2 C C¢ — E is said to be (strongly) analytic
if (V,F)(z) exists in B¢ for all z € . In the sequel, we assume without loss of generality that the vectors
spanning the lattice R* are ordered in such a way that |aj| < |a}| < |a}|.
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Lemma 5.1. Let f : R3 — C be an R*-periodic function that admits an analytic continuation on S for some
A > 0. Then, there exists Co € R and o > 0 such that

vLeN. |f flada- 75 Y £(Q) < Co s |

Qe 2E€54

The constants may be chosen equal to

a=(2/3)rAlas "t and Cp=2 (#) : (5.1)

1—e2)?
Proof of Lemma 5.1. Let cr(f) := . f(q)e 'Radq be the Fourier coefficients of f, so that

f@) = 3 er(f)e™.

ReR
It holds
Forada- 15 3 5@ = |l - 15 X X el
r QeAy QeAL RER
s [ e
ReR\{0} Qe

By noticing that

Z WQR _ 0 if R¢ LR
1 L? otherwise ,
Qe

we obtain

‘fp ada- 55 Y F@|=] Y anl)]. (52)

QeAp ReR\{0}

If f is analytic on S4, we deduce from f(q) = > grer cr(f)e'®9 that the analytic continuation of f is given by

VqeR?, Vye[-A AP, fla+iy)= > cr(f)e®de RV,
ReR

so that {CR(f)e*R'y}ReR are the Fourier coefficients of the R*-periodic function q — f(q+1iy). In particular,
VRER, Vye|[-AAP, |er(f)< sup |f(a+iy)[e™. (5.3)
qel™

We make the following choice for y. We write R = r1a; 4+ reas + rsag with r1,79,r73 € Z, and we let 1 <m < 3
be the index such that |r,,| = |R|_ . Choosing y = —sgn(ry,)A|aj|'a}, € [~ A, A]*, leads to

z€ESA z€ESA
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where we used the inequality |R|w > (1/3)|R]1, and we set a = (2/3)7A|aj| L. Note that the Fourier coefficients
of f are exponentially decreasing. We conclude with (5.2) and the inequality

Z CLR(f) < Z ‘CLR(f)‘ < seusp ‘f(Z)| Z efocL\R|1

ReR\{0} ReR\{0} A ReZ3\{0}
3
—aLlr 2(3+e 2@ a
< sup 7@ | [ et < 1] = sup [ (2B ) e 0
zES A rez zES A (1 —e )

5.2. Analyticity and basic estimates

The exponential rates of convergence observed in (3.3), (3.4) and (3.5) will come from Lemma 5.1 for ap-
propriate choices of functions f. In order to construct such functions, we notice that H and H” defined in
Proposition 3.1 commute with R-translations, thus admit Bloch decompositions. From

3
. 2 2 — *
VqeR?, (—A) = |-iVi+q’=> (Pi1+¢)° and VQeL 'R, (-AL)q=(-4)q,
j=1
where V; denotes the gradient on the space L2, (I"), we obtain (recall that A; was defined in (2.1))

per

D

1

ZHZ ' = Hqdq with Hy:=3[-iVi+ a’+v=
F*

(=41 —2iq- Vi + |a) +V, (5.4)

DO =

and

1
Lz—1
ZLHYZ = o5 P Ha.
QeAL
In other words, for all Q in Ay, (HL) = Hgq. In addition, the spectrum of H can be recovered from the spectra

of (Hq) with ([14], Chap. XIII)

Q
qerl™

qel™

Together with (4.9) we deduce that, since H has a gap of size g centered around e, then H” has a gap of size
at least g around ep.
In the sequel, we introduce, for z € C3, the operator (we denote by z? := ijl ij for simplicity)

H, = % (-4 —2iz-V; +2°) +V acting on Lger(l“). (5.5)
With the terminology of ([9], Chap. VII), the map z — H, is a holomorphic family of type (A). Let X := inf o (H)
be the bottom of the spectrum of H. We consider the positively oriented simple closed loop € = 61 UG UG5 UG,
in the complex plane, consisting of the following line segments: €1 = [ep —i,ep +1i], 2 = [er +1, X — 1 + 1],
G=[Y—14+i,Y—1-iand G =[Y—1—icp—il.
The projectors defined in (3.2) can be written, using the Cauchy’s residue theorem, as

R S N _Lyg dA
TS foN—H T S o N —HE

Together with (5.4), it follows that v € Pper and v, € Pr, commute with R-translations, with

*

Zz—l—][63 d ith VqeR? ~—L¢L (5.6)
y = Yqdq W q ) '7q~_21ﬂ_ (g/\_qu .
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(&)
C3 ¢ o(H)
————_—>
by EF
Ca

F1GURE 1. The loop .

and 1
Zim 2t = I3 D ra (5.7)
Qe
For Q € R*, it holds (yz)q = vq- The analytic continuation of (5.6) is formally
1 dA
Vz € C?, v, i=—— -
2e m o Y AT h,

The fact that A — H, is indeed invertible, at least for z in some S4 for A > 0 is proved in the following lemma.
For z € C3, and \ € ¥, we introduce

1
and Ba(A,z) =

Bl()\,Z) = (]. —Al) = N_ H

1
s (1-4,). (5.8)

Lemma 5.2. For all q € R?, and all A\ € €, the operator X — Hy is invertible, and there exists a constant

C1 € R such that,

Vaer”, We?, B\l oy <O and  [BaA sz, ) < O (5.9)

2o
Denoting by ||z :=sup{|d|z2, q € I'*}, we can choose

24 4|73 + 8|V |1~ + 8er

Ci =4
! + min(1, g)

(5.10)

Moreover, there exists A > 0 such that, for all z € Sa and all X € €, the operator A — H, is invertible, and
there ezists a constant Cy € RY such that

Vz € I'* +i[—A,A]3, VA€ E, ||Bl(>‘vz)HB(Lger(F)) <Cy and HBQ()\,Z)HB(LIZW(F)) < (Cs. (5.11)
We can choose

1

A=min(1l, ———
( 201 (1 +|I'*2)

) and Cz = 201. (5.12)

This lemma was proved in the one-dimensional case by Kohn in [10], and similar results were discussed by
Des Cloizeaux in [7,8].

Remark 5.3. The bounds (5.9) and (5.11) are not uniform for q € R? (they are only valid for q € I'*). This
comes from the fact that, for m € R*,

—im-x

e

N < 1- A,
Bz, N2

14 (—iVy + m)?

H 1—4

e im-x 1+ \m|2
14 (-iVy + m)?

DEEVART
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Remark 5.4. From Lemma 5.2, we deduce that (vz),c s, is an analytic family of bounded operators. Since vq

is an orthogonal projector for q € R?, i.e. 7q = 7q7q, We deduce that v, = 7,7, for all z € S4, so that 7, is a
(not necessarily orthogonal) projector. Also, Tr(7,) is a constant independent of z € S4.

Proof of Lemma 5.2. From the inequality |a|? < 2|a+ b|? +2|b|?, we get that, for q € I'*, it holds |-iV; + q|2 "
lq|? > —1A;. We deduce that

1 1
VqerI*, Hg> _ZAl - 5\F*|§ — |V ||lpe- (5.13)

We first consider the part €, of the contour € (see Fig. 1). It holds
VA€, Vqel*, |Hq—M?>|Re (Hq—N|*=|Hq—cr|*. (5.14)

Since |[Hq —er| > g/2, we get
VA€, Yaqel™, |Hq—A>g/2 (5.15)

On the other hand, from (5.13) and (5.14), it holds that
YAEFC!, VqeTl*, |Hq—\N>Hq—cr> —iAl - %|r*|§ —[Vlz> — €F. (5.16)
Combining (5.15) and (5.16) leads to
VM >0, YAe@, VYqel*, (M+4)|Hq— N> -4+ M% — T2 — 4|V g — dep.

Choosing M = (2 +4|I"*|3 + 8||V||L~ + 8er)/g gives

L2 + 4|52, + 8]|V]lL= + 8er

P >_1(1—A1),

YAEE!, qel*, |Hq—\> <4

which proves (5.9) for A € %. The inequalities on the other parts of € are proved similarly, the inequalities (5.15)
and (5.16) being respectively replaced by their equivalent

VAEG UG, |Hq—A?>|Im (Hg—N)|?>1 and |Hq— A > Hq— X —1> Hyq—cp,
VA €%, |Hq—A?>|Re(Hq—N[>>1 and |[Hq—\>Hq—X—1> Hy—cp.

This proves (5.9). We now prove (5.11). For z = q + iy € C? with q € I'* and y € R?, one can rewrite (5.5) as
. 1 1 .
Hy =Hq+y -Vitiq-y—gly["=Hq+y-(Vi-5y+iq).
In particular,

A—H,=A—Hq+ Hq— H, = (A — Hy) <1—(>‘_H‘1)_1 {y' (vl_%yﬂq)])

= (A= Hyq) <1—192(A,q)1_—1A1 {y- (Vl—%y—kiq)]). (5.17)

For |y|eo <1, we have

1 L. V4| 1
' ) < 5 o] o] S 1 r .
e (7 gy ria) ] e ([ + vl + ) < ol 7R
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Together with (5.9), we obtain that for all |y < A :=min (1, (2C1 (1 + [I"*]2)) 1),

1 1 . 1
HBz(MQ)q {y- (Vl - 53’4—@)} H <5

As a result, from (5.17), we get that for all g € I'* and all y € [—A, A], the operator A — H, is invertible, with

1 1
(1—A1) S CQ = 261 and H(l—Al) S CQ. Il
H)\—Hz B(H1) A= Hy g
For z € S4, we introduce the operators E(z) and §2(Z) respectively defined by
Bi(z) :=(1— A1)y, and By(z) := (1 — Ay). (5.18)

In the sequel, for k € N*, we denote by & (H) the kth Schatten class [15] of the Hilbert space H; &1(H) is the
set of trace-class operators, and G2(H) is the set of Hilbert—Schmidt operators. From Lemma 5.2, we obtain
the following result.

Lemma 5.5. There exists a constant C3 € RT such that

Vz € I +i[-A, AP, HB}@)H <C; and HB}(Z)H < Cs.

B(LZ.(I)) B(LZ.(I))
The value of Cs can be chosen equal to

1

Cs = ;Cl B+er+|IV]ze)-
Also, for all z € I'* +i[—A, A]?, the operator v, is trace-class, and
1 2
Izlle, L2,y < Cs with Cy = ct Z <W> : (5.19)

keR*

Proof. The first assertion comes from the fact that
,BS/()—_—¢B()\ )d)\
Z Z
1 2i <g 1 ) )

and the fact that |€| = 6+ 2(ep — X) (sce Fig. 1). Note that since |—iV; 4+ q|* > 0, it holds X > —||V|| 1. To
get the second assertion, we note that =, is a projector, so that

Yo = Y2z = Ba(2) (1 _1A1>2§1(z).

The operator (1 — A;)~2 being trace-class, with

1= 22|, 12 “”:k;* (W) ’

per

we obtain (5.19). O
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5.3. Convergence of the kinetic energy per unit volume
The kinetic energy per unit volume of the states v and 7y, defined in (3.2) are respectively given by
KP :=Tr (—Ay) and KL:=Tr, (-Aryr).
Using the Bloch decomposition of v and ~ in (5.6) and (5.7), and the properties (4.6) and (4.10), we obtain

that
3 3 1
l(perziiz:jeu A&(q)dq and ]{L :Ijzjizg jg: f{ﬂ(%%
j=1

j=1 QeAr
where, for 1 < j < 3, we introduced the function
Kj:qa3R> = Trpe ) (P +45)7a (P +45)) -

Here, we denoted by P; := P;; for simplicity. Recall that the operator P; ; was defined in (2.1). The error
on the kinetic energy per unit volume KP® — KT is therefore equal to the difference between integrals and
corresponding Riemann sums. In the sequel, we introduce, for 1 < 5 < 3, the function

Vz € Sa, Kj(z):=Troz ) (P + 2) 72 (P + %)) -

Lemma 5.6 (Exponential convergence of the kinetic energy). For all 1 < j < 3, the function K is R-periodic,
and admits an analytic continuation on Sya, where A > 0 was defined in (5.12). Moreover, it holds

2
1
sup |Kj(z)| < Cs where Cs= (|F*|2 + A+ 5) C20,. (5.20)
zZES A
As a consequence, from Lemma 5.1, it holds

|err - KL| < Coc5e_aL,
where Co € RT and a > 0 were defined in (5.1).

Proof. The R-periodicity comes from the covariant identity (4.5). To prove the analyticity, it is enough to prove
that 0., ((P; + 2j)v2(Pj + z;)) is a trace-class operator for all z € I'* + i[—A, A]>. We only consider the case
j=1and k =1, the other cases being similar. We have

Oz, (Pr+ 21)72(Pr+ 21)) = 72(Pr + 21) + (P + 21)(02,72) (PL 4+ 21) + (P1 + 21)72- (5.21)
We first show that (P; 4 z1)7, is a bounded operator. We have

(Pr+21) 5

(Prt+21)r = 71— Bi(2),

where By was defined in (5.18). From Lemma 5.5 and the fact that (P 4 z1)(1 — A;)~! is a bounded operator,
we deduce that (P; + z1)7, is bounded. The proof is similar for the operator v,(P; + z1). We now turn to the
middle term of (5.21). Since 7, is a projector, it holds v, = v,7,. We obtain

(Pr+ 21)(02172) (P1 + 21) = (P1 + 21) [V2(02,72) + (02172)7a) (P1 + 21)
= [(P1 + 21)72) V2(02172) (P1 + 21) + (P1 + 21)(02,72) V2 [v2(P1 + 21)] -
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We already proved that the operators (P +21)7, and 7, (P +21) were bounded. Also, 7, is a trace-class operator.
To prove that (P1 + 21) (02,) 72(P1 + 21) is trace class, it is therefore sufficient to show that (P + 21)(9;,7V2) is
bounded. We have

1

(Pl"‘zl)(azl'}/z): (Pl +Zl)

2im <€

(P + 21)

1 1
A—H, A—H,

_ 1 P+

2
Bi(\, z)) dA,

which is a bounded operator. We conclude that 0, ((P1 + 21)7v2(P1 + 21)) is a trace-class operator. Finally, for
1 <j <3, Kj is an analytic function on S4.
To get the bound (5.20), we write that

Kj(z) = Trrz_(r) (Pj + 2j)72(P) + 25)) = Trrz () (P + 2))V27272(P5 + 25))
Pitz~ .~ Ptz
= Trz_(r) (71]_ Af B1(Z)%Bz(z)71]_ Af) :

The bound (5.20) easily follows from Lemma 5.5 and the estimate

Pi+z
1- 4

b
1— A

Vz € I'* +i[—A, AP, H

1
§|zj+H <|Mly+A+ 5 O

B(L3e, (1)) B(L3e, (1))

5.4. Convergence of the ground state density

We now prove (3.4). The densities of v € Pper and vz € Pr, defined in (5.6) and (5.7) are respectively

1
Py ::][ Pvqg dg and p,, = s Z J
- Qe

In particular, if W is a regular R-periodic trial function, it holds that

N 1
MYy ::/ py W :][ TrLf)el- (7q¢W)dgq and M%V = / py W = I3 Z TrLger (v@W),
r r= r QeAy

so that the error Mj;" — MV%, is again the difference between an integral and a corresponding Riemann sum.
We introduce, for W € L (I') the function

per

Vz € Sa, Mw(z):=Trre

per

(v=W) . (5.22)

Lemma 5.7. For all W € L}, (I'), My defined in (5.22) is well-defined R*-periodic analytic function on S,
where A > 0 was defined in (5.12), and it holds that

2
1
sup | M < Cg||W ith Cs = C3 — - 5.23
s Vel < ColWag_qry with Co=C5 3 &= (5.23)
As a consequence, from Lemma 5.1, it holds that
1p7 = e |l oo 1y < CoCoe™F, (5.24)

where Cy and a were defined in (5.1).
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Proof of lemma 5.7. We first prove that My, is well defined whenever W € LL_ (I'). For W € L}_.(I'), we have

My (2) = Trez, (1) (W) = Trez, ) (W) = Trez, ) (Ba@)(1 = 4) "W (1L = A1) Bi(2))

per

According to the Kato—Seiler—Simon inequality ([15], Thm. 4.1)%) the operator (1 — A;)~'\/|[W] is
Hilbert—Schmidt (i.e. in the Schatten space &a(L2.,(I"))), and satisfies

. o\ 1/2
— W17
S2(L3e (D) (k; (1+kl2> ) R

It follows that (1 — A1)~ W (1 — Ay)~tisin & (L2, (I")) with

per

Jo- 207

_ _ 1
||(1_A1) IW(l_Al ||6 (L2,.(I) < (Z (W) > HWHLl(F)v (525)

per
keR*

The proof of (5.23) then follows from Lemma 5.5.
Let us now prove that, for W € LY(I'), My is analytic on S4. To do so, it is sufficient to show that, for
1<k <3, 0, (72Wns) is a trace class operator. We do the proof for k = 1. We have

821 (’VZW’VZ) = (821 'VZ)W'VZ + ’VZW(azl 'Yz)
1

_ 1 1 1 ) /
_(2i7r2§£§£Bz(’\’z)l—Al(Pl+21)BQ(A’Z)1—A1W1—A131(A,Z)dx\dx\

1 1 , 1 ) )
+(2171' ¢¢B2Az)1—A1W1_A1 ()‘vz)(Pl+Z1)1_A131(>\,z)d)\d)\.

We deduce as in the proof of Lemma 5.6 that V,(v,W ) is trace class, which concludes the proof. O

5.5. Proof of Proposition 3.1 and Corollary 3.2

We now proceed with the proof of Proposition 3.1. The assertion (3.4) was proved in Lemma 5.7. To get (3.3),
we write that

1 1
Tr (vH) = 5T (=Ay) +Tx (V) and Trp (veH") = ST (=Awyr) +Trp (Van),
so that

1
| T (yH) = Tep (v H")| < 51 Tx (=Ay) = Trp (—Apyn)l + [Vilzg, o) oy = oozl )

per

The proof of (3.3) then follows from Lemma 5.6 and (5.24).
We now prove Corollary 3.2. We compare the total energies

Lper 1
St () = €7 (1) = 5 (Te(~A9) = Ta (- A1)
1
+ ) (D1 (P"/ — Hper, P — Hper) — D1 (p"/L — Hper; Py, — Pper)) 5 (5.26)
and notice that

‘Dl(pv — Hper, Py — Pper) — Dl(p"m — HMper; Py, — Hper)| = ‘Dl(pv = Py Pyt Py — 2piper)| - (5.27)

3The proof in [15] is actually stated for operators acting on LP(R?). However, the proof applies straightforwardly to our bounded
domain case Lber(I).
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Using for instance the inequality (recall that |aj| < |a3| < |a%])

Vige L), ID(fgl=| Y U@ LS g o )]

k 2 — *12

RER\ {0} K| || RER\{0}
1

<SP 1fllzz,,.cllgllzz,. ), (5.28)
1

and combining (5.26), (5.27) and (5.28), we obtain
’55&” (v) — €7 ('7L)| <o |Te(—Ay) —Tr  (—Ary)
1

2la;]? HPW ~ Pyr HLf)ex-(F) ||,07 + Py — 2HperHLger(p) .
1

+ o=

Corollary 3.2 is therefore a consequence of Lemma 5.6, (5.24) and the embedding L (I") — L2 (I).

per per
6. PROOF FOR THE NONLINEAR REDUCED HARTREE—FOCK CASE

In this section, we prove the exponential rate of convergence of the supercell model to the periodic model in
the nonlinear rHF case (see Thm. 3.3). The proof consists of three steps.

Step 1: Convergence of the ground-state energy per unit volume

In the sequel, we denote by Vo := (py, — pper)*rG1 and Vi o := (py, o — Hper) *rG1 (see also (2.6) and (2.12)).
We recall that

1 .
HO:—§A+VO and 9= 1(Hy <ep) acton Lz(]RS),

1
HL’() = —§AL + VL,O and YL,0 = I].(HL,O < EF) act on L?)er(FL)'
We denote by g > 0 the gap of Hy around the Fermi level ep.

It was proved in [4] that the sequence (V1 0), . converges to Vo in L35 (I7). We will prove later that this
convergence is actually exponentially fast. As a result, we deduce that for L large enough, say L > L8P the
operator Hp, o is gapped around €r, and one may choose the Fermi level of the supercell ef; defined in (2.6)
equal to €. We denote by g7, the size of the gap of Hy, ¢ around €. Without loss of generality we may assume
that L&°P is large enough so that

VL > L¥", gr >

(NS

In the last section, we proved that the constants C' € R* and o > 0 appearing in Proposition 3.1 are functions
of the parameters R, ||[V||L=, g and e of the problem only. In particular, it is possible to choose C' € R and
a > 0 such that, for any choice of potentials V' among {Vi, (V2,0); > jeap }> the inequalities (3.3), (3.4) and (3.5)
hold true.

We first consider V' = Vj in Proposition 3.1. We denote by v € Pr the one-body density matrix defined
in (5.7) for this choice of potential. Together with Corollary 3.2, we get

VL € N*,  L73I/"" = LT3[ (yp,0) < LT2EF (yp) < ELve (o) + Ce™ 0 = Ihzer + Ce™ L.

per

On the other hand, choosing V' = Vo with L > L#P in Proposition 3.1, and denoting by v} € Pper the
one-body density matrix defined in (5.6) for this choice of potential, we get

VL > L8P, Ihre = Ehre (o) < Ehre(vy) < L2EL (p0) + Ce™*F = L7211 4 Ce™®F.

per



1420 D. GONTIER AND S. LAHBABI

Combining both inequalities leads to

VL > L#P, LTI — Theer| < Cem k. (6.1)

This leads to the claimed rate of convergence for the ground-state energy per unit cell.
Step 2: Conwvergence of the ground state density

1
In order to compare p,, and p., ,, it is useful to introduce the Hamiltonian HZ := —§A 1 + Vo acting on

L2,.(I'L). Note that v, = 1(HY < &) is the operator obtained in (5.7) by taking V = V4 in Proposition 3.1.

per

Therefore, according to this proposition, there exist C € RT and a > 0 such that
VL€ LEP, [y — poy () < Cek. (6.2)

In order to compare p,, with p,, ,, we note that, since 7z, o is a minimizer of (2.5), then, using (3.5) and (6.1),
we get that, for any L € N*,

0 < L73E7 (y1) = L7261 (vn,0) = (LTPEL™ () — Eheer (70)) + (Ehee (v0) — LT (v1.0))
< 2Ce oL,

so that
VL eN*, 0< &P () — & (yp0) < LP2Ce < Cle @ F

for some constants C’ € R* and o’ > 0 independent of L. This inequality can be recast into

* ]. 7al
VL eN , 0< EL ((HL,O - 5F) ('VL - ’VL,O)) + §D1(p’7L ~ Pyr,0s Pyr — p"/L,O) < C'e L'

Both terms are non-negative, so each one of them is decaying exponentially fast. From the inequality (recall
that we assumed |af| < |aj| < |a}])

2 2
Vi€ oD NforGillty o= Y XL s U Lop g,

1 > .2 3 -
keR\{0} K| i RER\ {0} k| |aj
we obtain that
* 1 20" _
VL € N¥, H(p’YL - p’)’L‘O) *r GlH%ger(F) < |—a*‘2D1(pL ~ Pyr,0s PL — p'YL,O) < |a*|2€ oL (6'3)
1 1
Consider W € L2_ (I'). It holds that, for any L > L&P,
1
[ =W = 5 3 Tz [(0)a — o)) W1
r Qe
! Z%T L JorGh) — W] dx (6.4)
= T S — - - .
2w L3 o, % L}%er(F) \— (HO)Q Pryr.o Pryr JAR TS| N (HL,O)Q
1 1 1
= — T BY'(\, Q) ——— - BL(\ d\
2ir L3 Q;L ygg Trz (1) ( 2 A\ Q) 1- A, ((pn,o p"/L) *r Gl) 7\, Q) - A, W) ,

where BY®" is the operator defined in (5.8) for H = Hy, and B¥ is the one for H = H, o. Since the constant C4
in (5.10) is independent of L, we deduce that there exists a constant C; € R* such that, for all L > L8P,

VaEe?, VQe AL, |IBFT(NQllsrz, ) < Croand [[BEOA Q)| gz 1y < O

per
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As a result,

1

—~2
€| Cy H 1 W

‘/F(p’m _p’)’L‘O)W‘ < o0 1- A, ((p’)’L‘O _p’YL) *r Gl)

We deduce from the Kato—Seiler—Simon inequality ([15], Thm. 4.1) and the estimate (6.3) that there exists
constant C' € RT and a > 0 independent of W such that,

&(L2,,(I") H 1=A1 ey, (ry)

(P, = Pz o) W| < Ce™ W lpa (-
r per

This being true for all W € L2_ (I"), we obtain

per

< Ce ok,

VL > L&, ||p'YL - p’YL,OHLgex.(F) -

2
per

o]
per

This proves the convergence in L2, (I'). To get the convergence in LS2 (I'), we bootstrap the procedure.

Since (p"/L,D - p’YL) € Lger(F)a then (p"/L,D - p'YL) *r G1 € Lgﬁ,r(F) with
VL > LEP, H(p’wo = Pyu) *r GlHngr (I) < C'e™ek. (6.5)

Consider W € L}.(I'). Performing similar calculations as in (6.4), we get (with obvious notation)

! " ; 1 1
/F(p% Pypo)W = T Qg;h %ngLf,e,-(F) <31 A Q) ((Pyi0 = pru) *r G1) By (X, Q) = W A1> d,

so that

—~2
%|Ch
/(pn W[ < (P10 = Pre) *r Gl e 1y
; om

9

S1(L3e (1)

1 1
‘1—A1W1—A1

and we conclude from (5.25) and (6.5) that there exist constants C' € RT and « > 0 such that

VL = L5, HP% - PVL,oHngr(F) < Ceol

Together with (6.2), we finally obtain

< Ce L,

VL2 L5, s = prsoll s ) <

Step 3: Convergence of the mean-field Hamiltonian
Finally, since
Hp, — Ho = (pyp.0 — Pro) *r G1,
the estimate (6.5) implies the convergence of the operator Hy, — Hy to 0 in B(L?(R?)) with an exponential rate

of convergence.

Remark 6.1. The convergence of the operators implies the convergence of the eigenvalues. More specifically,
from the min-max principle, we easily deduce that

sup sup |en,q[Hr] — en,q[Ho)| < Ce™ "
qel™ neN*

where (g,,,q[H])
multiplicities.

nene denotes the eigenvalues of the operator Hq ranked in increasing order, counting
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7. NUMERICAL SIMULATIONS

In this final section, we illustrate our theoretical results with numerical simulations. The simulations were
performed using a home-made Python code, run on a 32 core Intel Xeon E5-2667.

7.1. The linear model (Prop. 3.1)

We consider crystalline silicon in its diamond structure. A qualitatively correct band diagram of this system

can be obtained from a linear Hamiltonian of the form H = —%A—l—VI}g;, where the potential V% is the empirical
pseudopotential constructed in [6]. The lattice vectors are a; = £(0,1,1)”, a = 2(1,0,1)” and ag = £(1,1,0)”
and the reciprocal lattice vectors are aj = 27”(—1, LT, a3 = 27’“(1, —1,1)T and a} = 27”(17 1,—1)T, where

the lattice constant is a = 10.245 Bohr (that is about a = 5.43 A). The pseudopotential Vgé’; is given by the
expression

. . ki+ ke +k
Vine) = 3 Vie®> with VkeR*, Vi = S[kcos (W) (7.1)
kER*
where
—0.105 if k|2 = 3(27/a)?
0.02 if k|2 = 8(21/a)?
Sk = | - 2
0.04 if |k|* =11(27/a)
0 otherwise.

This system is an insulator when the number of particles (electron pairs) per unit cell is N = 4, so that the
hypotheses of Proposition 3.1 are satisfied. In the sequel, the calculations are performed in the planewave basis

. K
X = €k, keR 5 T < Ecutoff ) (72)

where the cut-off energy is Ecuton = 736 €V. The corresponding size of the basis is | X| = 749.

In Figure 2, we represent the error on the ground state energy per unit cell and the L°°(R?) error on the
ground state density (in log scale) for different sizes of the regular grid. The value of L in (4.7) varies between 4
to 28. The quantities of reference are the ones calculated for the regular grid of size 60. We observe in Figure 2
the exponential convergence for both the energy per unit cell and the density as predicted in Proposition 3.1.

7.2. The rHF model (Thm. 3.3)

We now consider the rHF model. To our knowledge, no pseudopotential has ever been designed for this model.
Since constructing pseudopotentials is a formidable task, we limit ourselves to the following poor man’s solution,
which does not aim at capturing the physics but only at illustrating numerically our theoretical convergence
results. We decompose the potential self-consistent V, appearing in (2.12) into

Vo = (Pyo — tper) ¥ G1 = pryg *1 G1 — fiper *1 G1,

and we make the approximation Vy = Vpl};, where Vplfs’; is the pseudopotential defined in (7.1). This leads to the
rHF pseudopotential of the form
yriE .y lin Po *r G1.

per per

In practice, we calculate VIHF with the potential p., obtained previously for the grid of size 60. The minimization

problem (2.5) and (2.6) is solved self-consistently in the basis X defined in (7.2) (we refer to [3] for a survey on
self-consistent procedures for such problems). We stop the self-consistent procedure when the L>(R3) difference
between two consecutive densities is less than 10~7. The size of the regular mesh varies between 8 to 36.
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FIGURE 2. The error on the ground-state energy (in eV) and the L error on the ground-state
density with respect to the size of the regular mesh for the linear model. The logarithm of the
errors are represented. The linear regression curves are also displayed.
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The quantities of reference are the ones calculated for the regular mesh of size 60. The error on the energy per
unit cell and the L>°(R?) error on the density are displayed in Figure 3.

We observe in Figure 3 the exponential convergence proved in Theorem 3.3.
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