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GRADIENT SCHEMES: GENERIC TOOLS FOR THE NUMERICAL ANALYSIS
OF DIFFUSION EQUATIONS

Jérome Droniou1, Robert Eymard2 and Raphaèle Herbin3

Abstract. The gradient scheme framework is based on a small number of properties and encompasses
a large number of numerical methods for diffusion models. We recall these properties and develop some
new generic tools associated with the gradient scheme framework. These tools enable us to prove that
classical schemes are indeed gradient schemes, and allow us to perform a complete and generic study
of the well-known (but rarely well-studied) mass lumping process. They also allow an easy check of
the mathematical properties of new schemes, by developing a generic process for eliminating unknowns
via barycentric condensation, and by designing a concept of discrete functional analysis toolbox for
schemes based on polytopal meshes.
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1. Introduction

A wide variety of schemes have been developed in the last few years for the numerical simulation of anisotropic
diffusion equations on general meshes, see [23, 35, 47] and references therein. The rigorous analysis of these
methods is crucial to ensure their robustness and convergence, and to avoid the pitfalls of methods seemingly
well-defined but not converging to the proper model ([43], Chap. III, Sect. 3.2). The necessity to conduct this
analysis for each method and each model has given rise to a number of general ideas which are re-used from
one study to the other; a set of rather informal techniques has thus emerged over the years.

It is tempting to push further this idea of “set of informal similar techniques”, to try and make it a formal
mathematical theory. This boils down to finding common factors in the studies for all pairs (method,model),
and to extract the core properties that ensure the stability and convergence of numerical methods for a variety
of models. Identifying these core properties greatly reduces the work, which then amounts to two tasks:

Task (1). Establish that a given numerical method satisfies the said properties;
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Task (2). Prove that these properties ensure the convergence of a method for all considered models.

Thus, the number of convergence studies is reduced from [Card(methods)× Card(models)] – which corresponds
to one per pair (method,model) – to [Card(methods) + Card(models)]. Card(methods) studies are needed to
prove that each method satisfies the core properties, and Card(models) studies are required to prove that an
abstract method that satisfies the core properties is convergent for each model.

Attempts at designing rigorous theories of unified convergence analysis for families of numerical methods are
not new, see e.g. [9, 11, 16, 21] for finite element, discontinuous Galerkin methods and compatible discretisa-
tion operators. Recently, the gradient scheme framework was developed [28, 36]. Not only does this framework
provide a unifying framework for a number of methods (Task 1) – conforming and non-conforming finite ele-
ments, finite volumes, mimetic finite differences, . . . – but it also enables complete convergence analyses for a
wide variety of models of 2nd order diffusion PDEs (Task 2) – linear, non-linear, non-local, degenerate, etc.
[5, 13, 15, 26, 28–30,39, 40, 42] – through the verification of a very small number of properties (3 for linear models,
4 or 5 for non-linear models).

The purpose of this article is to bring gradient schemes one step further towards a unification theory. Indeed,
we develop a set of generic tools that make Task (1) extremely simple for a great variety of methods. In other
words, using these tools we can produce short but complete proofs that several numerical methods for 2nd order
diffusion problems are gradient schemes.

The paper is organised as follows. In Section 2, we present the gradient scheme framework. This framework
is based on the notion of gradient discretisation, which defines discrete spaces and operators, and on five
core properties, presented in Section 2.1: coercivity, consistency, limit-conformity, compactness, and piecewise
constant reconstruction. A gradient scheme is a gradient discretisation applied to a given diffusion model,
consisting in a set of second order partial differential equations and boundary conditions. Depending on the
considered model, a gradient discretisation must satisfy three, four or five of these core properties to give rise to
a convergent gradient scheme. In the sections following Section 2.1, we develop generic notions that are useful to
establish that particular methods fit into the framework. More precisely, in Section 2.2 we introduce the concept
of local and linearly exact gradients, and we show that it implies one of the core properties – the consistency of
gradient discretisations. Section 2.3 deals with the barycentric condensation of gradient discretisations, which
is a classical way to eliminate degrees of freedom. The gradient scheme framework enables us, in Section 2.4, to
rigorously define the well-known technique of mass lumping, and to show that this technique does not affect the
convergence of a given scheme. In Section 2.5 we provide an analysis toolbox for schemes based on polytopal
meshes, and we introduce the novel notion of control of a gradient discretisation by this toolbox. This notion
enables us to establish three of the main properties (coercivity, limit-conformity and compactness) and therefore
completes the notion of local and linearly exact gradient discretisations.

In Section 3, we show that all methods in the following list are gradient schemes and satisfy four of the five
core properties (coercivity, consistency, limit-conformity, compactness): conforming and non conforming finite
elements, RTk mixed finite elements, multi-point flux approximation MPFA-O schemes, discrete duality finite
volume (DDFV) schemes, hybrid mimetic mixed methods (HMM), nodal mimetic finite difference (nMFD)
methods, vertex average gradient (VAG) methods. For these methods, the fifth property (piecewise constant
reconstruction) is either satisfied by definition, or can be satisfied by a mass-lumped version in the sense of
Section 2.4. The mass-lumped versions are only detailed in the important cases of the conforming and non-
conforming P1 finite elements. We show that the notions of local and linearly exact gradient discretisations, and
of control by polytopal toolboxes, apply to most of the considered methods, and therefore provide very quick
proofs that these methods satisfy the consistency, coercivity, limit-conformity and compactness properties. Some
of the schemes have already been more or less formally shown to be gradient schemes in [28,36], but the proofs
provided here thanks to the new generic tools developed in Section 2 are much more efficient and elegant than
in previous works, and can be easily extended to other schemes.

A short conclusion is provided in Section 4.
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2. Gradient discretisations: Definitions and analysis tools

For simplicity we restrict ourselves to homogeneous Dirichlet boundary conditions; all other classical boundary
conditions (non-homogeneous Dirichlet, Neumann, Fourier or mixed) can be dealt with seamlessly in the gradient
schemes framework [30]. The principle of gradient schemes is to write the weak formulation of the PDE by
replacing all continuous spaces and operators by discrete analogs. These discrete objects are described in a
gradient discretisation. Once a gradient discretisation is defined, its application to a given problem then leads
to a gradient scheme.

For linear models, the convergence of gradient schemes is obtained via error estimates based on the consistency
and limit-conformity measures SD and WD. For non-linear models, whose solutions may lack regularity or even
be non-unique, error estimates may not always be obtained; however, convergence of approximate solutions can
be obtained via compactness techniques such as those developed in the finite volume framework [23, 31, 32].
Even though they do not yield an explicit rate of convergence, these compactness techniques provide strong
convergence results – such as uniform-in-time convergence [26] – under assumptions that are compatible with
field applications (discontinuous data, fully non-linear models, etc.).

2.1. Definitions

Definition 2.1 (Gradient discretisation for homogeneous Dirichlet boundary conditions). Let p ∈ (1,∞) and
let Ω be a bounded open subset of Rd, where d ∈ N\{0} is the space dimension. The triplet D = (XD,0, ΠD,∇D)
is a gradient discretisation for problems posed on Ω with homogeneous Dirichlet boundary conditions if:

(1) XD,0 is a finite dimensional space encoding the degrees of freedom (and accounting for the homogeneous
Dirichlet boundary conditions),

(2) ΠD : XD,0 → Lp(Ω) is a linear mapping reconstructing a function in Lp(Ω) from the degrees of freedom,
(3) ∇D : XD,0 → Lp(Ω)d is a linear mapping defining a discrete gradient from the degrees of freedom,
(4) ‖∇D · ‖Lp(Ω)d is a norm on XD,0.

Here are the three properties a gradient discretisation needs to satisfy to enable the analysis of the corresponding
gradient scheme on linear problems:

• The coercivity ensures uniform discrete Poincaré inequalities for the family of gradient discretisations; this
is essential to obtain a priori estimates on the solutions to gradient schemes.

• The consistency states that the family of gradient discretisations “covers” the whole energy space of the
model (e.g. H1

0 (Ω) for the linear Eq. (2.1)).
• The limit-conformity ensures that the family of gradient and function reconstructions asymptotically satisfies

the Stokes formula.

Definition 2.2 (Coercivity). Let D be a gradient discretisation in the sense of Definition 2.1 and let CD be
the norm of the linear mapping ΠD defined by

CD = max
u∈XD,0\{0}

‖ΠDu‖Lp(Ω)

‖∇Du‖Lp(Ω)d

·

A sequence (Dm)m∈N of gradient discretisations in the sense of Definition 2.1 is said to be coercive if there
exists CP ∈ R+ such that CDm ≤ CP for all m ∈ N.

Definition 2.3 (Consistency). Let D be a gradient discretisation in the sense of Definition 2.1 and let SD :
W 1,p

0 (Ω) → [0,+∞) be defined by

∀ϕ ∈ W 1,p
0 (Ω) , SD(ϕ) = min

u∈XD,0

(
‖ΠDu− ϕ‖Lp(Ω) + ‖∇Du−∇ϕ‖Lp(Ω)d

)
.

A sequence (Dm)m∈N of gradient discretisations in the sense of Definition 2.1 is said to be consistent if for all
ϕ ∈W 1,p

0 (Ω) we have limm→∞ SDm(ϕ) = 0.
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Definition 2.4 (Limit-conformity). Let D be a gradient discretisation in the sense of Definition 2.1. We set
p′ = p

p−1 , the dual exponent of p, and W div,p′
(Ω) = {ϕ ∈ Lp′

(Ω)d , divϕ ∈ Lp′
(Ω)}, and we define

∀ϕ ∈W div,p′
(Ω) , WD(ϕ) = sup

u∈XD,0\{0}

1
‖∇Du‖Lp(Ω)d

∣∣∣∣∫
Ω

(∇Du(x) · ϕ(x) +ΠDu(x)divϕ(x)) dx

∣∣∣∣ .
A sequence (Dm)m∈N of gradient discretisations is said to be limit-conforming if for all ϕ ∈ W div,p′

(Ω) we have
limm→∞WDm(ϕ) = 0.

To give an idea of how a gradient discretisation gives a converging gradient scheme for diffusion equations,
let us consider the case of a linear elliptic equation{

−div(A∇u) = f in Ω,
u = 0 on ∂Ω, (2.1)

where A : Ω 	→ Md(R) is a measurable bounded and uniformly elliptic matrix-valued function such that A(x)
is symmetric for a.e. x ∈ Ω, and f ∈ L2(Ω). The solution to problem (2.1) is understood in the weak sense:

Find u ∈ H1
0 (Ω) such that, for all v ∈ H1

0 (Ω),
∫

Ω

A(x)∇u(x) · ∇v(x)dx =
∫

Ω

f(x)v(x)dx. (2.2)

If D is a gradient discretisation with p = 2, then the corresponding gradient scheme for (2.1) consists in writing

Find u ∈ XD,0 such that, for all v ∈ XD,0,
∫

Ω

A(x)∇Du(x) · ∇Dv(x)dx =
∫

Ω

f(x)ΠDv(x)dx. (2.3)

As seen here, (2.3) consists in replacing in (2.1) the continuous space H1
0 (Ω) and the continuous gradient and

function by their discrete reconstruction from D. Reference [36] proves the following error estimate between the
solution to (2.2) and its gradient scheme approximation (2.3):

‖∇u−∇Du‖L2(Ω)d + ‖u−ΠDu‖L2(Ω) ≤ C1 [WD(A∇u) + SD(u)] , (2.4)

where C1 only depends on A and an upper bound of CD in Definition 2.2. This shows that if a sequence (Dm)m∈N

of gradient discretisations is coercive, consistent and limit-conforming, and if (um)m∈N is a sequence of solutions
to the corresponding gradient schemes for (2.1), then ΠDmum → u in L2(Ω) and ∇Dmum → ∇u in L2(Ω)d.
The study of a scheme for (2.1) then amounts to finding a gradient discretisation D such that the scheme can
be written under the form (2.3), and to proving that sequences of such gradient discretisations satisfy the above
described properties. Establishing the consistency and limit-conformity usually consists in obtaining estimates
on SD and WD that give explicit rates of convergence in (2.4).

Dealing with non-linear problems might additionally require one or both of the following properties.

• The compactness is used to deal with low-order non-linearities – e.g. in semi- or quasi-linear equations.
• The piecewise constant reconstruction corresponds to mass-lumping and is required to manage certain mono-

tone non-linearities, or non-linearities on the time derivative as in Richards’ model.

Definition 2.5 (Compactness). A sequence (Dm)m∈N of gradient discretisations in the sense of Definition 2.1 is
said to be compact if, for any sequence (um)m∈N such that um ∈ XDm,0 for m ∈ N and (‖∇Dmum‖Lp(Ω)d)m∈N

is bounded, the sequence (ΠDmum)m∈N is relatively compact in Lp(Ω).

Definition 2.6 (Piecewise constant reconstruction). Let D = (XD,0, ΠD,∇D) be a gradient discretisation in
the sense of Definition 2.1. The linear mapping ΠD : XD,0 → Lp(Ω) is a piecewise constant reconstruction if
there exists a finite set B, a basis (ei)i∈B of XD,0 and a family of (possibly empty) disjoint subsets (Vi)i∈B of
Ω such that for all u =

∑
i∈B uiei ∈ XD,0 we have ΠDu =

∑
i∈B uiχVi , where χVi is the characteristic function

of Vi.
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Remark 2.7. Piecewise constant reconstructions generally use as set B the set I of geometrical entities attached
to the degrees of freedom of the method (see Def. 2.11); in this case (ei)i∈B is the canonical basis of XD,0. Note
that it is possible, starting from a generic gradient discretisation D, to replace the original reconstructionΠD by
a reconstruction that is piecewise constant; the new gradient discretisation thus obtained is called a mass-lumped
version of D (see Sect. 2.4).

As an illustration of the use of the importance of these properties for nonlinear problems, let us consider the
following semi-linear modification of (2.1):{

−div(A∇u) + β(u) = f in Ω,
u = 0 on ∂Ω, (2.5)

for some function β such that β(s)s ≥ 0 for all s ∈ R. The gradient discretisation of this problem is pretty
straightforward: find u ∈ XD,0 such that, for all v ∈ XD,0,∫

Ω

A(x)∇Du(x) · ∇Dv(x)dx +
∫

Ω

β(ΠDu(x))ΠDv(x)dx =
∫

Ω

f(x)ΠDv(x)dx. (2.6)

The compactness property implies that an estimate on a sequence of discrete gradient (∇Dmum)m∈N will yield
relative compactness of the corresponding sequence of reconstructions (ΠDmum)m∈N, thus enabling a passing
to the limit in the nonlinearity β.

The formulation (2.6) ensures a priori estimates on the solution since, taking v = u, the term β(ΠDu)ΠDu is
non-negative. However, in practical implementation, computing

∫
Ω
β(ΠDu(x))ΠDv(x)dx might be problematic;

even if ΠDu and ΠDv are polynomials on each cell of a mesh (as in finite element schemes), β(ΠDu)ΠDv is
locally not polynomial and no exact quadrature rule might exist to compute its integral. An alternative scheme
consists in replacing, in (2.6), the term ∫

Ω

β(ΠDu(x))ΠDv(x)dx (2.7)

with ∫
Ω

ΠDβ(u)(x)ΠDv(x)dx, (2.8)

where β(u) ∈ XD,0 is defined degree-of-freedom per degree-of-freedom, that is (β(u))i = β(ui) for all i ∈ B with
the notations of Definition 2.6. For finite element methods, (2.8) consists in integrating polynomials on cells,
and exact quadrature rules can be used. However, this alternative scheme does not ensure a priori estimates on
the solution since, with the choice v = u, the term ΠDβ(u)ΠDu might be negative in some part of the domain.
Hence, we have to choose between unconditional stability (a priori estimates) with (2.7), or a scheme that is
practical to implement with (2.8).

One of the interests of piecewise constant reconstructions is to solve this apparent contradiction. If ΠD is a
piecewise constant reconstruction then

ΠD(β(u)) = β(ΠDu). (2.9)

Hence (2.7) and (2.8) are identical, and both stability and computational practicality are satisfied. The second
interest of piecewise constant resconstructions can be found in the analysis of time-dependent problems. The
discretisation of ∂tu leads to a term of the form∫

Ω

ΠDu
n+1(x) −ΠDu

n(x)
δt

ΠDv(x)dx. (2.10)

If ΠD is a piecewise constant reconstruction, the mass matrix multiplying the coordinates (un+1
i )i∈B of un+1

in (2.10) is diagonal, and its inversion is therefore trivial.
As shown in [26, 39, 40], piecewise constant reconstructions ensure the stability and convergence of gradient

schemes for a variety of non-linear elliptic and parabolic equations.
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Remark 2.8.

(1) The consistency, limit-conformity and compactness of gradient discretisations may be defined in other
equivalent ways [30]. Moreover, the consistency of a sequence of gradient discretisations only needs to be
checked for ϕ in a dense set of the domain of SD (e.g. C∞

c (Ω)). The limit-conformity of a coercive sequence
of gradient discretisations only needs to be checked for ϕ in a dense set of the domain of WD (e.g. C∞

c (Rd)d,
which is indeed dense in W div,p′

(Ω) when Ω is locally star-shaped, which is the case if Ω is polytopal).
Finally, the compactness of a sequence of gradient discretisations implies its coercivity.

(2) Gradient discretisations for time-dependent problems can be easily deduced from the gradient discretisations
for steady-state problems [28, 30].

2.2. Local and linearly exact gradients

Most numerical methods for diffusion equations are based, explicitly or implicitly, on local linearly exact
reconstructed gradients. The following definition gives a precise meaning to this.

Definition 2.9 (Linearly exact gradient reconstructions). Let U be a bounded set of Rd, let I be a finite set
and let S = (xi)i∈I be a family of points of Rd. A linear mapping G : RI 	→ L∞(U)d is a linearly exact gradient
reconstruction upon S if, for any affine function L : Rd → R, if ξ = (L(xi))i∈I then Gξ = ∇L on U . The norm
of G is defined by

‖G‖∞ = diam(U) max
ξ∈RI\{0}

||Gξ||L∞(U)d

maxi∈I |ξi|
. (2.11)

As expected, linearly exact gradient reconstructions enjoy nice approximation properties when computed
from interpolants of smooth functions.

Lemma 2.10 (Estimate for linearly exact gradient reconstructions). Let U be a bounded set of Rd, let S =
(xi)i∈I ⊂ Rd, and let G : RI 	→ L∞(U)d be a linearly exact gradient reconstruction upon S in the sense of
Definition 2.9. Let ϕ ∈W 2,∞(Rd) and define v ∈ RI by vi = ϕ(xi) for any i ∈ I. Then

|Gv −∇ϕ| ≤
(

1 +
1
2
‖G‖∞

(
maxi∈I dist(xi, U)

diam(U)
+ 1
)2
)

diam(U)||ϕ||W 2,∞(Rd) a.e. on U.

Proof. Take xU ∈ U and let L(x) = ϕ(xU )+∇ϕ(xU ) · (x−xU ) be the first order Taylor expansion of ϕ around
xU . Let ξ = (L(xi))i∈I . By linear exactness of G we have Gξ = ∇L = ∇ϕ(xU ) on U . Hence,

|Gξ −∇ϕ| ≤ diam(U)||ϕ||W 2,∞(Rd) on U. (2.12)

For any i ∈ I we have (v − ξ)i = ϕ(xi) − L(xi) = ϕ(xi) − ϕ(xU ) − ∇ϕ(xU ) · (xi − xU ). Since |xi − xU | ≤
dist(xi, U) + diam(U), we get |(v − ξ)i| ≤ 1

2 (dist(xi, U) + diam(U))2||ϕ||W 2,∞(Rd). The linearity of G and the
definition of its norm therefore imply, for a.e. x ∈ U ,

|Gv(x) − Gξ(x)| = |G(v − ξ)(x)| ≤ ‖G‖∞
diam(U)

1
2

(
max
i∈I

dist(xi, U) + diam(U)
)2

||ϕ||W 2,∞(Rd)

≤ 1
2
‖G‖∞diam(U)

(
maxi∈I dist(xi, U)

diam(U)
+ 1
)2

||ϕ||W 2,∞(Rd).

Combined with (2.12), this completes the proof of the lemma. �

The consistency of gradient discretisations based on linearly exact gradient reconstructions follows. Let us
first give the the definition of such gradient discretisations.
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Definition 2.11 (LLE gradient discretisation). The triplet D = (XD,0, ΠD,∇D) is an LLE (for “local and
linearly exact”) gradient discretisation if there exists a finite partition U of Ω, a set I of geometrical entities
attached to the degrees of freedom (dof), a finite family of approximation points S = (xi)i∈I ⊂ Rd and, for any
U ∈ U , a subset IU ⊂ I such that:

(1) XD,0 = RIΩ × {0}I∂Ω , where the set I is partitioned into IΩ (interior geometrical entities attached to the
dof) and I∂Ω (boundary geometrical entities attached to the dof).

(2) There exists a family (αi)i∈I such that, for all i ∈ I, αi ∈ L∞(Ω) and

(a) ∀i ∈ I, ∀U ∈ U , if i /∈ IU then αi = 0 on U,
(b) for a.e. x ∈ Ω,

∑
i∈I

αi(x) = 1 and ∀v ∈ XD,0, ΠDv(x) =
∑
i∈I

αi(x)vi. (2.13)

(3) There exists a family (GU )U∈U such that, for all U ∈ U , GU : RIU 	→ L∞(U)d is a linearly exact gradient
reconstruction upon (xi)i∈IU , in the sense of Definition 2.9, and ∇Dv = GU

(
(vi)i∈IU

)
on U , for all v ∈ XD,0.

(4) ‖∇D · ‖Lp(Ω)d is a norm on XD,0.

In that case, we define the LLE regularity of D by

regLLE(D) = max
U∈U

(
‖GU‖∞ + max

i∈IU

dist(xi, U)
diam(U)

)
+ esssup

x∈Ω

∑
i∈I

|αi(x)|. (2.14)

Remark 2.12. As implied by the terminology, an LLE gradient discretisation is a gradient discretisation in
the sense of Definition 2.1. Note that the existence of i, j ∈ I with i �= j and xi = xj is not excluded (see, e.g.,
Sect. 3.4).

Remark 2.13. We do not request ΠDv to be linearly exact (αi is not necessarily affine in each U); this
reconstruction just needs to be computable from local degrees of freedom, and exact on interpolants of constant
functions. This enables us to consider mass-lumped gradient discretisations.

In a number of cases, estimating
∑

i∈I |αi(x)| for a.e. x ∈ Ω is trivial. For example, if for a.e. x ∈ Ω there
is exactly one i ∈ I such that αi(x) = 1 and αj(x) = 0 for all j ∈ I \ {i}, we get

∑
i∈I |αi(x)| = 1 a.e. (then

D has a piecewise constant reconstruction and the set B defined in Definition 2.6 is identical to I). Another
example is the case where, for a.e. x ∈ U , ΠDv(x) is a convex combination of the dof (vi)i∈IU (which is the
case, e.g., if ΠDv is linear on U , vi = ΠDv(xi) and (xi)i∈IU are extremal points of U); then αi ≥ 0 for all i ∈ I
and

∑
i∈I |αi(x)| = 1.

Proposition 2.14 (LLE gradient discretisations are consistent). Let (Dm)m∈N be a sequence of LLE gra-
dient discretisations, associated for any m ∈ N to a partition Um. If (regLLE(Dm))m∈N is bounded and if
max

U∈Um

diam(U) → 0 as m→ ∞, then (Dm)m∈N is consistent in the sense of Definition 2.3.

Proof. Let ϕ ∈ C∞
c (Ω) and let vm = (ϕ(xm

i ))i∈Im ∈ XDm,0, where Sm = (xm
i )i∈Im is the family of approxima-

tion points of Dm. Owing to Lemma 2.10 we have, for U ∈ Um and a.e. x ∈ U ,

|∇Dmv
m(x) −∇ϕ(x)| = |Gm

U ((vm
i )i∈Im

U
)(x) −∇ϕ(x)|

≤
(

1 +
1
2

regLLE(Dm)(regLLE(Dm) + 1)2
)

diam(U)||ϕ||W 2,∞(Rd). (2.15)

Let us now evaluate |ΠDmv
m − ϕ|. Since any (xm

i )i∈Im
U

is within distance regLLE(Dm)diam(U) of U , for all
i ∈ Im

U and all x ∈ U we have |vm
i − ϕ(x)| ≤ (1 + regLLE(Dm))diam(U)||ϕ||W 1,∞(Rd). By (2.13), we infer that

for a.e. x ∈ U

|ΠDmv
m(x) − ϕ(x)| =

∣∣∣∣∣∣
∑
i∈Im

U

αm
i (x)(vm

i − ϕ(x))

∣∣∣∣∣∣ ≤
∑
i∈Im

U

|αm
i (x)| sup

i∈Im
U

|vm
i − ϕ(x)|

≤ regLLE(Dm)(1 + regLLE(Dm))diam(U)||ϕ||W 1,∞(Rd). (2.16)
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Estimates (2.15) and (2.16) and the assumptions on (Dm)m∈N show that ∇Dmv
m → ∇ϕ in L∞(Ω)d and

ΠDmv
m → ϕ in L∞(Ω) as m→ ∞. Remark 2.8 then concludes the proof. �

2.3. Barycentric elimination of degrees of freedom

The construction of a given scheme often requires several interpolation points. However, some of these points
can be eliminated afterwards to reduce the computational cost. A classical way to perform this reduction of
degrees of freedom is through barycentric combinations, by replacing certain unknowns with averages of other
unknowns. We describe here a way to perform this reduction in the general context of LLE gradient discretisa-
tions, while preserving the required properties (coercivity, consistency, limit-conformity and compactness).

Definition 2.15 (Barycentric condensation of an LLE gradient discretisation). Let D be an LLE gradient
discretisation. We denote by S = (xi)i∈I ⊂ Rd the family of approximation points of D and by U its partition.
A gradient discretisation DBa is a barycentric condensation of D if there exists IBa ⊂ I and, for all i ∈ I\IBa, a
set Hi ⊂ IBa and real numbers (βi

j)j∈Hi satisfying∑
j∈Hi

βi
j = 1 and

∑
j∈Hi

βi
jxj = xi, (2.17)

such that

• I∂Ω ⊂ IBa.
• XDBa,0 = RIBa∩IΩ × {0}I∂Ω .
• For all v ∈ XDBa,0 we have ΠDBav = ΠDV and ∇DBav = ∇DV , where V ∈ XD,0 = RIΩ × {0}I∂Ω is defined

by

∀i ∈ I , Vi =
{
vi if i ∈ IBa,∑

j∈Hi
βi

jvj if i ∈ I \ IBa.
(2.18)

(We note that V is indeed in XD,0 since I∂Ω ⊂ IBa and vi = 0 if i ∈ I∂Ω.)

We define the regularity of the barycentric condensation DBa by

regBa(DBa) = 1 + max
i∈I\IBa

⎛⎝∑
j∈Hi

|βi
j | + max

U∈U | i∈IU

max
j∈Hi

dist(xj ,xi)
diam(U)

⎞⎠ ·

It is clear that the above defined barycentric condensation DBa is a gradient discretisation. Indeed, if ∇DBav = 0
on Ω then ∇DV = 0 on Ω and thus Vi = 0 for all i ∈ S (since D is a gradient discretisation and therefore
||∇D · ||Lp(Ω)d is a norm on XD,0). This shows that vi = 0 for all i ∈ IBa, and thus that ||∇DBa · ||Lp(Ω)d is a
norm on XDBa,0.

Remark 2.16 (Localness of the barycentric elimination). Bounding the last term in regBa(DBa) consists in
requiring that, if i ∈ I \ IBa is involved in the definition of GU , then any degree of freedom j ∈ Hi used to
eliminate the degree of freedom i lies within distance O(diam(U)) of U . This ensures that, after barycentric
elimination, GU is still computed using only degrees of freedom in a neighborhood of U .

Barycentric elimination expresses some degrees of freedom by combinations that are linearly exact. As a
consequence, the LLE property is preserved in the process, and the consistency of barycentric condensations of
LLE gradient discretisations is ensured by Proposition 2.14.

Lemma 2.17 (Barycentric elimination preserves the LLE property). Let D be an LLE gradient discretisation
in the sense of Definition 2.9, and let DBa be a barycentric condensation of D. Then DBa is an LLE gradient
discretisation on the same partition as D, and regLLE(DBa) ≤ regBa(DBa) regLLE(D) + regBa(DBa) + regLLE(D).
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Proof. Obviously, IBa = (IBa ∩IΩ)�I∂Ω forms the geometrical entities attached to the dof of DBa since XDBa,0 =
RIBa∩IΩ ×{0}I∂Ω . Let U be the partition corresponding to D, and let U ∈ U . Take v ∈ XDBa,0 and let V ∈ XD,0

be defined by (2.18). We notice that, for any U ∈ U , the values (Vi)i∈IU are computed in terms of (vi)i∈IBa
U

with
IBa

U = (IU ∩ IBa) ∪
⋃

i∈IU\IBa Hi.
We have, for x ∈ U ,

ΠDBav(x) = ΠDV (x) =
∑
i∈IU

αi(x)Vi =
∑

i∈IU∩IBa

αi(x)vi +
∑

i∈IU\IBa

αi(x)
∑
j∈Hi

βi
jvj =

∑
i∈IBa

U

α̃i(x)vi

with
α̃i(x) = αi(x) +

∑
k∈IU\IBa | i∈Hk

βk
i αk(x) if i ∈ IU ∩ IBa,

α̃i(x) =
∑

k∈IU\IBa | i∈Hk

βk
i αk(x) if i ∈ IBa

U \IU .

Thanks to (2.17) and (2.13) we have∑
i∈IBa

U

α̃i(x) =
∑

i∈IU∩IBa

αi(x) +
∑

i∈IBa
U

∑
k∈IU\IBa | i∈Hk

βk
i αk(x)

=
∑

i∈IU∩IBa

αi(x) +
∑

k∈IU\IBa

αk(x)
∑

i∈Hk

βk
i =

∑
i∈IU∩IBa

αi(x) +
∑

k∈IU\IBa

αk(x) = 1. (2.19)

Hence, ΠDBav has the required form. The gradient (∇DBav)|U = GU ((Vi)i∈IU ) only depends on (vi)i∈IBa
U

and can

thus be written G̃U ((vi)i∈IBa
U

). By (2.17) the reconstruction v 	→ V is linearly exact, that is if v interpolates the
values of an affine mapping L at the points (xi)i∈IBa

U
then V interpolates the same mapping L at the points

(xi)i∈IU . Hence, the linear exactness of GU gives the linear exactness of G̃U . This completes the proof that DBa

is an LLE gradient discretisation.
Let us now establish the upper bound on regLLE(DBa). For all i ∈ IU\IBa we have |Vi| ≤

∑
j∈Hi

|βi
j | |vj | ≤

regBa(DBa)maxj∈IBa
U

|vj |. This also holds for i ∈ IU ∩ IBa since regBa(DBa) ≥ 1. Hence, a.e. on U ,∣∣∣G̃U

(
(vi)i∈IBa

U

)∣∣∣ = |GU ((Vi)i∈IU )| ≤ ‖GU‖∞ regBa(DBa)
diam(U)

max
i∈IBa

U

|vi|

and thus
‖G̃U‖∞ ≤ ‖GU‖∞ regBa(DBa). (2.20)

Reproducing the reasoning in the first two equalities in (2.19) with absolute values and inequalities, we see that∑
i∈IBa

U

|α̃i(x)| ≤
∑

i∈IU∩IBa

|αi(x)| +
∑

k∈IU\IBa

|αk(x)|
∑

i∈Hk

|βk
i | ≤ regBa(DBa)

∑
i∈IU

|αi(x)|. (2.21)

Finally, for j ∈ IBa

U we estimate dist(xj ,U)
diam(U) by studying two cases. If j ∈ IU then dist(xj , U) ≤ regLLE(D)diam(U).

If j �∈ IU then there exists i ∈ IU\IBa such that j ∈ Hi, and thus dist(xj ,xi) ≤ regBa(DBa)diam(U); this gives
dist(xj , U) ≤ (regBa(DBa)+regLLE(D))diam(U). Combined with (2.20) and (2.21), these estimates on dist(xj , U)
prove the bound on regLLE(DBa) stated in the lemma. �

Barycentric condensations of LLE gradient discretisations satisfy the same properties (coercivity, consistency,
compactness, limit-conformity) as the original gradient discretisation. The coercivity, limit-conformity and com-
pactness properties result from the fact that XDBa,0 is (roughly) a subspace of XD,0, and the consistency is a
consequence of Lemma 2.17 and Proposition 2.14.
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Theorem 2.18 (Properties of barycentric condensations of gradient discretisations). Let (Dm)m∈N be a sequen-
ce of LLE gradient discretisations that is coercive, consistent, limit-conforming and compact in the sense
of the definitions in Section 2.1. Let Um be the finite partition of Ω corresponding to Dm. We assume that
maxU∈Um diam(U) → 0 as m→ ∞, and that (regLLE(Dm))m∈N is bounded. For any m ∈ N we take a barycen-
tric condensation DBa

m of Dm such that (regBa(DBa
m))m∈N is bounded.

Then (DBa
m)m∈N is coercive, consistent, limit-conforming and compact.

Proof. For any v ∈ XDBa
m ,0, with V defined by (2.18) we have

||ΠDBa
m
v||Lp(Ω) = ||ΠDmV ||Lp(Ω) ≤ CDm ||∇DmV ||Lp(Ω)d = CDm ||∇DBa

m
v||Lp(Ω)d ,

which shows that CDBa
m

≤ CDm and thus that (DBa
m)m∈N is coercive. To prove the compactness, we take

(∇DBa
m
vm)m∈N = (∇DmVm)m∈N bounded in Lp(Ω)d, and we use the compactness of (Dm)m∈N to see that

(ΠDmVm)m∈N = (ΠDBa
m
vm)m∈N is relatively compact in Lp(Ω). The limit conformity follows by writing

1
||∇DBa

m
v||Lp(Ω)d

∣∣∣∣∫
Ω

(
∇DBa

m
v(x) · ϕ(x) +ΠDBa

m
v(x)divϕ(x)

)
dx

∣∣∣∣
=

1
||∇DmV ||Lp(Ω)d

∣∣∣∣∫
Ω

(∇DmV (x) · ϕ(x) +ΠDmV (x)divϕ(x)) dx

∣∣∣∣ ,
which shows that WDBa

m
(ϕ) ≤ WDm(ϕ). Finally, by Lemma 2.17 each DBa

m is an LLE gradient discretisation
and the boundedness of (regLLE(Dm))m∈N and (regBa(DBa

m))m∈N show that (regLLE(DBa
m))m∈N is bounded.

Proposition 2.14 then gives the consistency of (DBa
m)m∈N. �

2.4. Mass lumping and comparison of reconstruction operators

“Mass-lumping” is the generic name of the process applied to modify schemes that do not have a built-
in piecewise constant reconstruction, say for instance the P1 finite element scheme (see Sect. 3.1). This is
often done on a case-by-case basis, with ad hoc studies. The gradient scheme framework provides an efficient
generic setting for performing this mass-lumping. The idea is to modify the reconstruction operator so that
it becomes a piecewise constant reconstruction; under an assumption that is easy to verify in practice, this
“mass-lumped” gradient discretisation can be compared with the original gradient discretisation, which ensures
that all properties required for the convergence of the mass-lumped scheme are satisfied.

Definition 2.19 (Mass-lumped gradient discretisation). Let D = (XD,0, ΠD,∇D) be a gradient discretisation
in the sense of Definition 2.1. A mass-lumped version of D is a gradient discretisation DML = (XD,0, Π

ML

D ,∇D)
such that ΠML

D is a piecewise constant reconstruction in the sense of Definition 2.6.

In all the cases of mass-lumping considered in this paper, we show that the following theorem applies to
D�

m = DML
m . This theorem states that, if two sequences of gradient discretisations share the same space and

reconstructed gradients, one inherits the properties from the other provided that their reconstruction operators
are close to each other (condition (2.22)). Moreover, it also establishes that the sufficient condition (2.22) is also
necessary for the mass-lumped schemes to satisfy the compactness and limit-conformity properties, since these
properties are satisfied by all the considered initial schemes.

Theorem 2.20 (Comparison of reconstruction operators). Let (Dm)m∈N be a sequence of gradient discretisa-
tions in the sense of Definition 2.1. For any m ∈ N, let D�

m be a gradient discretisation defined from Dm by
D�

m = (XDm,0, Π
�
Dm

,∇Dm), where Π�
Dm

is a linear operator from XDm,0 to Lp(Ω).

(1) We assume that there exists a sequence (ωm)m∈N such that

limm→∞ ωm = 0, and
∀m ∈ N , ∀v ∈ XDm,0 , ||Π�

Dm
v −ΠDmv||Lp(Ω) ≤ ωm||∇Dmv||Lp(Ω)d .

(2.22)
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If (Dm)m∈N is coercive (resp. consistent, limit-conforming, or compact – in the sense of the definitions in
Sect. 2.1), then (D�

m)m∈N is also coercive (resp. consistent, limit-conforming, or compact).
(2) Reciprocally, if (Dm)m∈N and (D�

m)m∈N are both compact and limit-conforming in the sense of the defini-
tions in Section 2.1, then there exists (ωm)m∈N such that (2.22) holds.

Proof. Let us prove the first item of the theorem. We let M = supm∈N ωm, and we use the triangular inequality
to write, from (2.22), for any v ∈ XDm,0,

||Π�
Dm

v||Lp(Ω) ≤ ||Π�
Dm

v −ΠDmv||Lp(Ω) + ||ΠDmv||Lp(Ω) ≤M ||∇Dmv||Lp(Ω)d + ||ΠDmv||Lp(Ω). (2.23)

Coercivity: let us assume that (Dm)m∈N is coercive with constant CP . Using (2.23) we find ||Π�
Dm

v||Lp(Ω) ≤
(M + CP )||∇Dmv||Lp(Ω)d and the coercivity of (D�

m)m∈N follows.
Consistency: let us assume that (Dm)m∈N is consistent. Using the triangular inequality and (2.22), we

write, for any v ∈ XDm,0 and ϕ ∈W 1,p
0 (Ω),

SD�
m

(ϕ) ≤ ||ΠD�
m
v − ϕ||Lp(Ω) + ||∇Dmv −∇ϕ||Lp(Ω)d

≤ ωm||∇Dmv||Lp(Ω)d + ||ΠDmv − ϕ||Lp(Ω) + ||∇Dmv −∇ϕ||Lp(Ω)d

≤ ωm||∇ϕ||Lp(Ω)d + ||ΠDmv − ϕ||Lp(Ω) + (1 + ωm)||∇Dmv −∇ϕ||Lp(Ω)d

≤ ωm||∇ϕ||Lp(Ω)d + (1 +M)(||ΠDmv − ϕ||Lp(Ω) + ||∇Dmv −∇ϕ||Lp(Ω)d).

Hence SD�
m

(ϕ) ≤ ωm||∇ϕ||Lp(Ω)d +(1+M)SDm(ϕ) and the consistency of (D�
m)m∈N follows from the consistency

of (Dm)m∈N and from limm→∞ ωm = 0.
Limit-conformity: let us now assume that (Dm)m∈N is limit-conforming. By the triangular inequality and

(2.22), for any ϕ ∈ W div,p′
(Ω),∣∣∣∣∣

∫
Ω

(
∇Dmv(x) · ϕ(x) +Π�

Dm
v(x)divϕ(x)

)
dx

∣∣∣∣∣
≤ ||divϕ||Lp′(Ω)ωm||∇Dmv||Lp(Ω)d +

∣∣∣∣∫
Ω

(∇Dmv(x) · ϕ(x) +ΠDmv(x)divϕ(x)) dx

∣∣∣∣ .
Using (2.22), we infer that WD�

m
(ϕ) ≤ ωm||divϕ||p′(Ω)d +WDm(ϕ) → 0 as m→ ∞, and the limit conformity of

(D�
m)m∈N is established.
Compactness: we now assume that (Dm)m∈N is compact. If (∇Dmvm)m∈N is bounded in Lp(Ω)d, then

the compactness of (Dm)m∈N ensures that (ΠDmvm)m∈N is relatively compact in Lp(Ω). Since ||Π�
Dm

vm −
ΠDmvm||Lp(Ω) → 0 as m→ ∞ by (2.22), we deduce that (Π�

Dm
vm)m∈N is relatively compact in Lp(Ω).

Let us now turn to the proof, by way of contradiction, of the second item. We therefore assume that (Dm)m∈N

and (D�
m)m∈N are both compact and limit-conforming, and that

ωm := max
v∈XDm,0\{0}

‖ΠDmv −Π�
Dm

v‖Lp(Ω)

‖∇Dmv‖Lp(Ω)d

�−→ 0 as m→ ∞. (2.24)

Then we can find ε0 > 0, a subsequence of (Dm,D�
m)m∈N (not denoted differently) and for each m ∈ N an

element vm ∈ XDm,0\{0} such that ||Π�
Dm

vm − ΠDmvm||Lp(Ω) ≥ ε0||∇Dmvm||Lp(Ω)d . Since vm �= 0, we can
consider ṽm = vm

||∇Dmvm||
Lp(Ω)d

, which satisfies ||∇Dm ṽm||Lp(Ω)d = 1 and

||Π�
Dm

ṽm −ΠDm ṽm||Lp(Ω) ≥ ε0. (2.25)

We extract another subsequence such that ∇Dm ṽm weakly converges to some G in Lp(Ω)d, and, using the
compactness of (Dm)m∈N and (D�

m)m∈N, ΠDm ṽm → v in Lp(Ω) and Π�
Dm

ṽm → v� in Lp(Ω). Passing to the
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limit in (2.25) we find ||v − v�||Lp(Ω) ≥ ε0. Extending the functions ∇Dm ṽm, ΠDm ṽm and Π�
Dm

ṽm by 0 outside
Ω, we see that, for any ϕ ∈W div,p′

(Rd),∣∣∣∣∫
Rd

(
∇Dm ṽm(x) · ϕ(x) +Π�

Dm
ṽm(x)divϕ(x)

)
dx

∣∣∣∣ ≤WD�
m

(ϕ|Ω),

and ∣∣∣∣∫
Rd

(∇Dm ṽm(x) · ϕ(x) +ΠDm ṽm(x)divϕ(x)) dx

∣∣∣∣ ≤WDm(ϕ|Ω).

By limit-conformity of both sequences of gradient discretisations, we can let m→ ∞ and we find∫
Rd

(G · ϕ(x) + v�(x)divϕ(x)) dx =
∫
Rd

(G · ϕ(x) + v(x)divϕ(x)) dx = 0.

This proves that v, v� ∈ W 1,p
0 (Ω) and that G = ∇v = ∇v�. Poincaré’s inequality then gives v = v�, which

contradicts ||v − v�||Lp(Ω) ≥ ε0. Therefore the sequence (ωm)m∈N defined by (2.24) satisfies (2.22). �

2.5. Polytopal meshes and discrete functional analysis

Although gradient discretisations are not limited to mesh-based methods (for example it is easy to include
spectral methods in this framework), a large number of schemes for (2.1) are built on meshes.

Definition 2.21 (Polytopal mesh). Let Ω be a bounded polytopal open subset of Rd (d ≥ 1). A polytopal
mesh of Ω is given by T = (M, E ,P ,V), where:

(1) M is a finite family of non empty connected polytopal open disjoint subsets of Ω (the cells) such that
Ω = ∪K∈MK. For any K ∈ M, |K| > 0 is the measure of K and hK denotes the diameter of K.

(2) E is a finite family of disjoint subsets of Ω (the edges of the mesh in 2D, the faces in 3D), such that any
σ ∈ E is a non empty open subset of a hyperplane of Rd and σ ⊂ Ω. We assume that for all K ∈ M there
exists a subset EK of E such that ∂K = ∪σ∈EKσ. We then set Mσ = {K ∈ M : σ ∈ EK}. We assume that,
for all σ ∈ E , Mσ has exactly one element and σ ⊂ ∂Ω, or Mσ has two elements and σ ⊂ Ω. We let Eint

be the set of all interior faces, i.e. σ ∈ E such that σ ⊂ Ω, and Eext the set of boundary faces, i.e. σ ∈ E
such that σ ⊂ ∂Ω. For σ ∈ E , the (d− 1)-dimensional measure of σ is |σ|, the centre of gravity of σ is xσ

(3) P = (xK)K∈M is a family of points of Ω indexed by M and such that, for all K ∈ M, xK ∈ K (xK is
sometimes called the “centre” of K). We then assume that all cells K ∈ M are strictly xK-star-shaped,
meaning that if x is in the closure of K then the line segment [xK ,x) is included in the interior of K.

(4) V is the set of vertices of the mesh. The vertices that belong to K, for K ∈ M, are gathered in VK ; the set
of vertices of σ ∈ E is denoted by Vσ.

For all K ∈ M and for any σ ∈ EK , we denote by nK,σ the (constant) unit vector normal to σ outward to K.
We also let dK,σ be the signed orthogonal distance between xK and σ (see left part of Figure 1), that is:

dK,σ = (x − xK) · nK,σ , ∀x ∈ σ (2.26)

(note that (x − xK) · nK,σ is constant for x ∈ σ). The fact that K is strictly star-shaped with respect to xK

is equivalent to dK,σ > 0 for all σ ∈ EK . For all K ∈ M and σ ∈ EK , we denote by DK,σ the cone with apex
xK and base σ, that is DK,σ = {txK + (1 − t)y : t ∈ (0, 1), y ∈ σ}. The diamond associated to a face σ ∈ E is
Dσ =

⋃
K∈Mσ

DK,σ.
The size of the discretisation is hM = sup{hK : K ∈ M} and the regularity factor θT is

θT = max
{
hK

dK,σ
+

|K|
|DK,σ|

: K ∈ M , σ ∈ EK

}
+ max

{
dK,σ

dL,σ
: σ ∈ Eint , Mσ = {K,L}

}
. (2.27)
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dK,σ′

xK

dK,σ
nK,σ′

nK,σ

K

σ′

σ

Figure 1. A cell K of a polytopal mesh (left). Two neighbouring generalised hexahedra (right).

Remark 2.22 (Generalised hexahedra). This definition covers a wide variety of meshes, including those with
non-convex cells and cells sharing more than one face; in particular, “generalised hexahedra” with non planar
faces can be handled; such cells have 12 faces (if each non planar face is split in two triangles), but only 6
neighbouring cells. See right of Figure 1.

Remark 2.23. Since minσ∈EK dK,σ is smaller than the radius of the largest ball centred at xK and contained
in K, an upper bound on θT imposes that the interior and exterior diameters of each cell are comparable.

We now introduce a “polytopal toolbox”, used in the statement of discrete functional analysis results.

Definition 2.24 (Polytopal toolbox). Let Ω be a bounded polytopal open subset of Rd (d ≥ 1) and let T be a
polytopal mesh in the sense of Definition 2.21. The quadruplet (XT ,0, ΠT ,∇T , ‖ · ‖T ,0,p) is a polytopal toolbox
if:

(1) the set XT ,0 is the vector space of degrees of freedom attached to cells and edges (with homogeneous
Dirichlet boundary conditions):

XT ,0 = {v = ((vK)K∈M, (vσ)σ∈E) : vK ∈ R , vσ ∈ R , vσ = 0 if σ ∈ Eext}. (2.28)

(2) The mapping ΠT : XT ,0 → L∞(Ω) is defined by

∀v ∈ XT ,0, ∀K ∈ M, ΠT v = vK on K. (2.29)

(3) The discrete gradient ∇T : XT ,0 	→ Lp(Ω)d is defined by

∀K ∈ M , ∇T v =
1
|K|

∑
σ∈EK

|σ|(vσ − vK)nK,σ =
1
|K|

∑
σ∈EK

|σ|vσnK,σ on K (2.30)

(the second equality follows from the property
∑

σ∈EK
|σ|nK,σ = 0, a consequence of Stokes’ formula).

(4) The space XT ,0 is endowed with the following discrete W 1,p
0 norm, for some p ∈ (1,∞):

∀v ∈ XT ,0 , ||v||pT ,0,p =
∑

K∈M

∑
σ∈EK

|σ|dK,σ

∣∣∣∣vσ − vK

dK,σ

∣∣∣∣p · (2.31)

In the sequel, T refers to both the polytopal mesh and to the quadruplet (XT ,0, ΠT ,∇T , ‖ · ‖T ,0,p).

The discrete gradient ∇T satisfies, thanks to Hölder’s inequality and to
∑

σ∈EK
|σ|dK,σ = d|K|,

‖∇T v‖Lp(Ω)d ≤ d
p−1

p ||v||T ,0,p. (2.32)
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Remark 2.25. Note that a polytopal toolbox is not a gradient discretisation, since ‖∇T · ‖Lp(Ω)d is not a norm
on XT ,0 (consider v ∈ XT ,0 such that vσ = 0 for all σ ∈ E but vK �= 0 for some K ∈ M).

The following lemmas, whose proof can be found in [30, 33], are used to establish Proposition 2.31 below.

Lemma 2.26 (Discrete Poincaré inequality). Let T be a polytopal toolbox of Ω in the sense of Definition 2.24,
and let θ ≥ θT . There exists C2 only depending on Ω, θ and p such that, for all v ∈ XT ,0, we have ||ΠT v||Lp(Ω) ≤
C2||v||T ,0,p.

Lemma 2.27 (Discrete Rellich theorem). Let (Tm)m∈N be a sequence of polytopal toolboxes of Ω in the sense
of Definition 2.24, such that (θTm)m∈N is bounded. If vm ∈ XTm,0 is such that (||vm||Tm,0,p)m∈N is bounded,
then (ΠTmvm)m∈N is relatively compact in Lp(Ω).

Lemma 2.28 (Discrete approximate Stokes formula). Let T be a polytopal toolbox of Ω in the sense of Defini-
tion 2.24. If ϕ ∈ C∞

c (Rd)d and v ∈ XT ,0, then∣∣∣∣∫
Ω

[∇T v(x) · ϕ(x) +ΠT v(x)divϕ(x)] dx

∣∣∣∣ ≤ (d|Ω|)
p−1

p ||ϕ||W 1,∞(Rd)d ||v||T ,0,phM. (2.33)

Moreover, if (vσ)σ∈EK are the exact values at (xσ)σ∈EK of an affine mapping L, then ∇T v = ∇L on K.

The preceding discrete functional analysis results are useful for the analysis of a wide number of numerical
methods, thanks to the notion of control of gradient discretisations by polytopal toolboxes.

Definition 2.29 (Control of a gradient discretisation by a polytopal toolbox). Let Ω be a bounded polytopal
open subset of Rd (d ≥ 1), let D be a gradient discretisation in the sense of Definition 2.1, and let T be a
polytopal toolbox of Ω in the sense of Definition 2.24. A control of D by T is a linear mapping Φ: XD,0 −→ XT ,0.
We then define

||Φ||D,T = max
v∈XD,0\{0}

‖Φ(v)‖T ,0,p

‖∇Dv‖Lp(Ω)d

,

ωΠ(D, T ,Φ) = max
v∈XD,0\{0}

‖ΠDv −ΠT Φ(v)‖Lp(Ω)

‖∇Dv‖Lp(Ω)d

,

ω∇(D, T ,Φ) = max
v∈XD,0\{0}

∑
K∈M

∣∣∣∣∫
K

[∇Dv(x) −∇T Φ(v)(x)] dx

∣∣∣∣
‖∇Dv‖Lp(Ω)d

·

In most of the examples of gradient discretisations in Section 3, the following definition and proposition are
used to establish the coercivity, compactness and limit-conformity.

Definition 2.30 (Regularity of a sequence of polytopal meshes). A sequence of polytopal meshes (Tm)m∈N in
the sense of Definition 2.21 is regular if (θTm)m∈N is bounded and if hMm → 0 as m→ +∞.

Proposition 2.31 (Properties of gradient discretisations controlled by polytopal toolboxes). Let Ω be a boun-
ded polytopal open subset of Rd (d ≥ 1). Let (Dm)m∈N be a sequence of gradient discretisations in the sense of
Definition 2.1, and let (Tm)m∈N be a sequence of polytopal toolboxes of Ω in the sense of Definition 2.24 such
that the corresponding sequence of polytopal meshes is regular in the sense of Definition 2.30. We take, for all
m ∈ N, a control Φm of Dm by Tm in the sense of Definition 2.29, and we assume that

There exists Cctrl > 0 such that, for all m ∈ N, ||Φm||Dm,Tm ≤ Cctrl, (2.34)

lim
m→∞

ωΠ(Dm, Tm,Φm) = 0, (2.35)

lim
m→∞

ω∇(Dm, Tm,Φm) = 0. (2.36)
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Then (Dm)m∈N is coercive in the sense of Definition 2.2, limit-conforming in the sense of Definition 2.4, and
compact in the sense of Definition 2.5.

Proof. We let ωm = max[ωΠ(Dm, Tm,Φm), ω∇(Dm, Tm,Φm)] and M = maxm∈N ωm.
Coercivity: using (2.35) and Lemma 2.26, we observe that, for any v ∈ XDm,0,

||ΠDmv||Lp(Ω)d ≤M ||∇Dmv||Lp(Ω)d + ‖ΠTmΦm(v)‖Lp(Ω) ≤M ||∇Dmv||Lp(Ω)d + C2||Φm(v)||T ,0,p.

Property (2.34) therefore give ||ΠDmv||Lp(Ω)d ≤ (M + C2Cctrl)||∇Dmv||Lp(Ω)d , and the coercivity follows.
Limit-conformity: as stated in Remark 2.8, since Ω is polytopal and therefore locally star-shaped, we only

need to consider ϕ ∈ C∞
c (Rd)d. By the triangular inequality, (2.35) and (2.33), we have∣∣∣∣∣

∫
Ω

(
∇Dmv(x) · ϕ(x) +ΠDmv(x)divϕ(x)

)
dx

∣∣∣∣∣
≤
∣∣∣∣∫

Ω

[∇Dmv(x) −∇TmΦm(v)(x)] · ϕ(x)dx

∣∣∣∣+ ||divϕ||Lp′(Ω)ωm||∇Dmv||Lp(Ω)d

+
∣∣∣∣∫

Ω

[∇TmΦm(v)(x) · ϕ(x) +ΠTmΦm(v)(x)divϕ(x)] dx

∣∣∣∣
≤
∣∣∣∣∫

Ω

[∇Dmv(x) −∇TmΦm(v)(x)] · ϕ(x)dx

∣∣∣∣+ ||divϕ||Lp′(Ω)ωm||∇Dmv||Lp(Ω)d

+ (d|Ω|)
p−1

p Cϕ||Φm(v)||Tm,0,phMm (2.37)

where Cϕ = ||ϕ||W 1,∞(Rd)d . We define ϕK = 1
|K|
∫

K
ϕ(x)dx and notice that |ϕK | ≤ Cϕ and |ϕ(x) − ϕK | ≤

CϕhMm for all x ∈ K. Therefore, since ∇TmΦm(v) is constant in each cell,∣∣∣∣∣
∫

Ω

[∇Dmv(x) −∇TmΦm(v)(x)] · ϕ(x)dx

∣∣∣∣∣ =
∣∣∣∣∣ ∑

K∈Mm

∫
K

[∇Dmv(x) −∇TmΦm(v)(x)] · ϕ(x)dx

∣∣∣∣∣
=

∣∣∣∣∣ ∑
K∈Mm

(∫
K

∇Dmv(x) · [ϕ(x) − ϕK ]dx + ϕK ·
∫

K

(∇Dmv(x) −∇TmΦm(v)(x))dx

) ∣∣∣∣∣
≤ Cϕ

∑
K∈Mm

(
hMm

∫
K

|∇Dmv(x)|dx +
∣∣∣∣∫

K

(∇Dmv(x) −∇TmΦm(v)(x))dx

∣∣∣∣)
≤ Cϕ

(
hMm |Ω|

p−1
p + ωm

)
‖∇Dmv‖Lp(Ω)d .

We used Hölder’s inequality and (2.36) in the last line. Plugged into (2.37) and using (2.34) this gives

WDm(ϕ) ≤ Cϕ

(
hMm |Ω|

p−1
p + ωm

)
+ ||divϕ||Lp′(Ω)ωm + (d|Ω|)

p−1
p CϕCctrlhMm .

The limit conformity of (Dm)m∈N follows.
Compactness: by (2.34), if (∇Dmvm)m∈N is bounded in Lp(Ω)d then ||Φm(vm)||Tm,0,p is bounded. Ap-

plying Lemma 2.27, we obtain the relative compactness of (ΠTmΦm(v))m∈N in Lp(Ω). Since ||ΠDmvm −
ΠTmΦm(v)||Lp(Ω) → 0 as m→ ∞ by (2.35), we deduce that (ΠDmvm)m∈N is relatively compact in Lp(Ω). �

3. Review of gradient discretisations

We now study a number of known methods among finite element, finite volume methods, mimetic methods
and related discretisation schemes which are all based on polytopal meshes. Each of the following sections is
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devoted to a particular method which is shown to be the gradient scheme of a gradient discretisation referred to
as D; for each method we define a regular sequence (Dm)m∈N of gradient discretisations, based on the method
itself and on the regularity of a polytopal mesh (Def. 2.30), and we show the following property.

The regular sequence (Dm)m∈N is coercive, consistent, limit-conforming and compact in the
sense of the definitions in Section 2.1.

(P)

The proof of (P) relies on the notions of LLE gradient discretisations (Sect. 2.2), barycentric condensation
(Sect. 2.3), mass lumping (Sect. 2.4) and polytopal toolbox (Sect. 2.5).

3.1. Pk finite element methods

3.1.1. Conforming methods: Pk finite elements

Let T be a simplicial discretisation of Ω, that is a polytopal discretisation in the sense of Definition 2.21 such
that for any K ∈ M we have Card(EK) = d+ 1. Let k ∈ N \ {0}. We follow Definition 2.11 for the construction
of D = (XD,0,∇D, ΠD) by describing the partition of Ω, the functions αi and the local linearly exact gradients
in the elements of the partition.

(1) The set I of geometrical entities attached to the dof is I = V(k), and the set of approximation points is
S = I, where V(k) =

⋃
K∈M V(k)

K and V(k)
K is the set of points x of the form

x =
∑

v∈VK

iv
k

v with (iv)v∈VK ∈ {0, . . . , k}VK such that
∑

v∈VK

iv = k. (3.1)

Then IΩ = V(k)
int (the subset of the interior vertices) and I∂Ω = V(k)

ext (boundary vertices), and the partition
of Ω is given by U = M. For U = K ∈ U , we let IU = V(k)

K .
(2) The reconstruction operator ΠD in (2.13) is defined using the basis functions (αv)v∈V(k)

K

, called in this
particular case the Lagrange interpolation operators and defined the following way: in each K, αv is the
polynomial function of x with degree k, such that αv(v) = 1 and αv(v′) = 0 for all v′ ∈ V(k)

K \ {v}. This
leads to

∀v ∈ XD,0, ∀x ∈ Ω, ΠDv(x) =
∑

v∈V(k)

vvαv(x).

(3) The linearly exact gradient reconstruction in K is

∀x ∈ K, GKv(x) =
∑

v∈V(k)
K

vv∇αv(x) = ∇(ΠDv)(x).

(4) We have ΠDv ∈ W 1,p
0 (Ω) so the Poincaré’s inequality in W 1,p

0 (Ω) implies that ‖∇D · ‖Lp(Ω)d is a norm on
XD,0.

Defining the regularity of a sequence of Pk discretisations (Dm)m∈N merely as the regularity of the underlying
polytopal meshes (Def. 2.30) is sufficient to obtain the boundedness of (regLLE(Dm))m∈N; hence Proposition 2.14
implies the consistency. Since ∇ΠDv = ∇Dv we have WD ≡ 0 and the limit conformity is trivial; the coer-
civity and the compactness are consequences of the Poincaré inequality and the Rellich’s theorem in W 1,p

0 (Ω)
respectively. This establishes (P) for Pk gradient discretisations.
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VK,v

Vv

v

σ

Figure 2. Partitions for mass-lumping of the P1 (left) and non-conforming P1 (right) finite
element methods.

3.1.2. Mass-lumped P1 finite elements

We construct a mass-lumped version of the P1 gradient discretisation as per Definition 2.19, with the natural
geometrical entities attached to the dof V(1) = V . Subdomains (Vv)v∈V with points of V as centres can be
constructed in various ways. One way is to define Vv as the set of all y ∈ Ω such that αv(y) > αv′(y) for any
other v′ ∈ V . The left part of Figure 2 illustrates the construction of the partitions (Vv)v∈V in the case d = 2
(then (Vv)v∈V is sometimes called the barycentric dual mesh of T ).

A Taylor expansion in each Vv ∩ K then shows that Estimate (2.22) holds with ωm = hMm , and thus by
Theorem 2.20 we see that the mass-lumped P1 gradient discretisation satisfies the property (P).

3.2. Non-conforming P1 finite elements

3.2.1. Standard non-conforming P1 reconstruction

Non-conforming P1 finite elements consist in approximating the solution to (2.2) by functions that are piece-
wise linear on triangles and continuous at the edge midpoints – but not necessarily continuous on the whole
edge. These approximating functions therefore do not lie in H1

0 (Ω), and do not satisfy the exact Stokes formula;
hence the name “non-conforming”.

Let T be a simplicial mesh of Ω, that is a polytopal mesh in the sense of Definition 2.21 such that for any
K ∈ M we have Card(EK) = d+ 1. We refer to Definition 2.11 for the construction of D.

(1) The set of geometrical entities attached to the dof is I = E and the approximation points are S = (xσ)σ∈E .
Then IΩ = Eint and I∂Ω = Eext, and the partition of Ω is given by U = M. For all U = K ∈ U , we let
IU = EK .

(2) The reconstruction ΠD in (2.13) is defined using the affine non-conforming finite element basis functions
(ασ)σ∈E defined by: ασ is linear in each simplex, ασ(xσ) = 1 and ασ(xσ′) = 0 for all σ′ ∈ E\{σ}. This leads
to

∀v ∈ XD,0, ∀x ∈ Ω, ΠDv(x) =
∑
σ∈E

vσασ(x).

(3) The linearly exact gradient reconstruction in K is defined by the constant value

∀x ∈ K , GKv(x) =
∑

σ∈EK

vσ∇ασ(x).

(4) The fact that ‖∇D · ‖Lp(Ω)d is a norm on XD,0 is deduced from the injectivity of the mapping Φ, defined in
the course of the proof of the property (P) below.

The regularity of the non-conforming P1 gradient discretisations is then defined as the regularity of the under-
lying polytopal discretisations (Tm)m∈N (see Def. 2.30).
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Proof of the property (P) for non-conforming P1 gradient discretisations. We drop the index m from time to
time for sake of legibility, and all constants below do not depend on m or the considered cells/edges. Let us
define a control of D by T in the sense of Definition 2.29, where T is the simplicial mesh associated to D, with
xK = xK = 1

d+1

∑
σ∈EK

xσ the centres of gravity of the cells K. We define the linear (injective) mappings
Φ : XDm,0 −→ XTm,0 by Φ(u)K = 1

d+1

∑
σ∈EK

uσ = ΠDu(xK) and Φ(u)σ = uσ = ΠDu(xσ).
Since Φ(u)K = ΠDu(xK) and GKu = ∇(ΠDu) in K, we get

Φ(u)σ − Φ(u)K = GKu · (xσ − xK). (3.2)

Therefore, since |xσ−xK |
dK,σ

≤ hK

dK,σ
≤ θT ,

∑
σ∈EK

|σ|dK,σ

∣∣∣∣Φ(u)σ − Φ(u)K

dK,σ

∣∣∣∣p ≤ θp
T d|K| |GKu|p.

This implies (2.34). We now observe that the affine function ασ reaches its extremal values at the vertices of
K. It is easy to see that ασ(vσ) = 1− d, where vσ is the vertex opposite to the face σ, and that ασ(vσ′ ) = 1 for
all σ′ �= σ. Therefore, for x ∈ K,

|ΠDu(x) − Φ(u)K | =

∣∣∣∣∣ ∑
σ∈EK

(Φ(u)σ − Φ(u)K)ασ(x)

∣∣∣∣∣ ≤ (d+ 1)max(1, d− 1) max
σ∈EK

|GKu · (xσ − xK)|.

This inequality implies ωΠ(D, T ,Φ) ≤ (d+1)max(1, d−1)hM and therefore (2.35) holds. Finally, recalling that
ΠDu is affine in each simplex K and that ∇T is exact on interpolants of affine functions (cf. Lem. 2.28), we
see that ∇Du = ∇T Φ(u) in Ω. Hence ω∇(D, T ,Φ) = 0 and (2.36) holds. Proposition 2.31 therefore shows that
(Dm)m∈N is coercive in the sense of Definition 2.2, limit-conforming in the sense of Definition 2.4, and compact
in the sense of Definition 2.5.

Since non-conforming P1 gradient discretisations are LLE gradient discretisations, the consistency of
(Dm)m∈N follows from Proposition 2.14 by noticing that regLLE(Dm) is controlled by θTm . �

3.2.2. Mass-lumped non-conforming P1 reconstruction

Let us recall that, in the case d = 2, for all pair (σ, σ′) ∈ E2 with σ �= σ′, there holds∫
Ω

ασ(x)ασ′(x)dx = 0.

This property ensures that the non-conforming P1 method has a diagonal mass matrix, which is useful for
computing (2.10). However, property (2.9) is not satisfied, which might prevent the usage of the non-conforming
P1 scheme for some nonlinear problems. To recover a piecewise constant reconstruction, and thus (2.9), we apply
to the preceding gradient discretisation the mass lumping process as in Definition 2.19. Recalling that the set
of geometrical entities attached to the dof is I = E , we define the subdomains (Vi)i∈I of Definition 2.19 as the
diamonds (Dσ)σ∈E around the edges. The right part of Figure 2 illustrates the construction of this partition.
Since ΠDv is linear and ∇(ΠDv) = ∇Dv in each cell, and since ΠDMLv = ΠDv(xσ) on Dσ, an order one Taylor
expansion immediately provides Estimate (2.22). Property (P) for the mass-lumped non-conforming P1 gradient
discretisation is then a consequence of Theorem 2.20.

3.3. Mixed finite element RTk schemes

The RTk method is the only one presented here for which the gradient discretisation is only constructed for
p = 2. All the other gradient discretisations are constructed for any p ∈ (1,∞).



GRADIENT SCHEMES: GENERIC TOOLS FOR THE NUMERICAL ANALYSIS OF DIFFUSION EQUATIONS 767

Let T be a simplicial discretisation of Ω as for the non-conforming P1 scheme. We fix k ∈ N and introduce
the following spaces

V h = {w ∈ (L2(Ω))d : w|K ∈ RTk(K), ∀K ∈ M}, V div
h = V h ∩Hdiv(Ω),

Wh = {p ∈ L2(Ω) : p|K ∈ Pk(K), ∀K ∈ M}, M0
h =

{
μ :

⋃
σ∈E

σ → R, μ|σ ∈ Pk(σ), μ|∂Ω = 0

}
,

where

• Pk(K) is the space of polynomials of d variables on K of degree less than or equal to k.
• Pk(σ) is the space of polynomials of d− 1 variables on σ of degree less than or equal to k.
• RTk(K) = Pk(K)d + xPk(K) is the Raviart-Thomas space of order k defined on K. Here, Pk(K) ⊂ Pk(K)

is the set of homogeneous polynomials of degree k.

We construct a gradient discretisation (for p = 2 only) inspired by the dual mixed finite element formulation of
problem (2.1) as in [8]. Assuming that A is constant in each cell K, the dual mixed finite element formulation
of (2.1) is

(v, q, λ) ∈ V h ×Wh ×M0
h,∫

K

w(x) · A(x)−1v(x)dx −
∫

K

q(x)divw(x)dx +
∑

σ∈EK

∫
σ

λ(x)w|K(x) · nK,σds(x) = 0, ∀w ∈ V h,∫
K

ψ(x)divv(x)dx =
∫

K

ψ(x)f(x)dx, ∀ψ ∈Wh, ∀K ∈ M,∫
σ

μ(x)v|K(x) · nK,σds(x) +
∫

σ

μ(x)v|L(x) · nL,σds(x) = 0, ∀σ ∈ Eint with Mσ = {K,L}, ∀μ ∈M0
h .

(3.3)

We again refer to Definition 2.11 for the construction of D = (XD,0,∇D, ΠD). We consider (ψi)i∈IW the standard
basis of Wh, and (ξj)j∈IM the standard basis of M0

h . These two standard bases are respectively associated to
the set of points IW located in the cells and the set of points IM located on the faces of the cells. These points
are defined in a similar way as (3.1).

(1) The set of geometrical entities attached to the dof is I = IW ∪ IM , and the set of approximation points is
also S = IW ∪ IM . Then IΩ = IW ∪ IM

int and I∂Ω = IM
ext, where IM

int = IM ∩ Ω and IM
ext = IM ∩ ∂Ω. The

partition of Ω is given by U = M. We denote by IW
K the set of all points of IW which are in K, and by IM

σ

the set of all points of IM which are in σ. Then, for all U = K ∈ U , IU = IW
K ∪

⋃
σ∈EK

IM
σ .

(2) The reconstruction (2.13) is applied with αi = ψi for all i ∈ IW
K and αi = 0 for all i ∈

⋃
σ∈EK

IM
σ . This

leads to
∀v ∈ XD,0, ∀x ∈ Ω, ΠDv(x) =

∑
i∈IW

viψi(x).

(3) For all K ∈ M, the linearly exact gradient reconstruction is locally defined in K by: GKv is the function
such that AGKv ∈ RTk(K) and

∀w ∈ RTk(K) ,
∫

K

w(x) · GKv(x)dx +
∫

K

⎛⎝∑
i∈IW

K

viψi(x)

⎞⎠ divw(x)dx

−
∑

σ∈EK

∫
σ

⎛⎝∑
j∈IM

σ

vjξj(x)

⎞⎠w|K(x) · nK,σdγ(x) = 0.

(4) If ‖∇Du‖Lp(Ω)d = 0 then GKu = 0, and (v, q, λ) defined by v|K = AGKu, q =
∑

i∈IW uiψi, λ =
∑

j∈IM ujξj
is a solution to (3.3) with f = 0. The invertibility of this system implies that q = 0 and λ = 0, and therefore
ui = 0 for i ∈ IW and uj = 0 for j ∈ IM . Therefore ‖∇D · ‖Lp(Ω)d is a norm on XD,0.
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v
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nK,σ
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nK,σ

σ

σv

VK,v

Figure 3. Notations for MPFA-O schemes defined on Cartesian (left) and simplicial (right)
meshes.

The proof of the equivalence between the corresponding gradient scheme (2.3) and the Arnold–Brezzi mixed
hybrid formulation (3.3) is found in [41], along with the proof of the property (P) for a regular sequence of
polytopal meshes in the sense of Def. 2.30. Note that, in the case k = 0, the property of piecewise constant
reconstruction holds.

3.4. Multi-point flux approximation MPFA-O scheme

We consider in this section two particular cases of the MPFA-O scheme [1]. They are based on particular
polytopal meshes of Ω in the sense of Definition 2.21: Cartesian for the first case, and simplicial for the second
case. In each of these cases, for K ∈ M we let xK = xK be the centre of gravity of K and we define a partition
(VK,v)v∈VK of K the following way (see Fig. 3):

• Cartesian meshes: VK,v is the parallelepipedic polyhedron whose faces are parallel to the faces of K and
that has xK and v as vertices. We define, for σ ∈ E and v ∈ Vσ, x(σ,v) = xσ (note that these points are
identical for all v ∈ Vσ, see Rem. 2.12).

• Simplicial meshes: We denote by (βK
v (x))v∈VK the barycentric coordinates of x in K (that is x − xK =∑

v∈VK
βK

v (x)(v′ − xK), βK
v (x) ≥ 0 and

∑
v′∈VK

βK
v′ (x) = 1) and we define VK,v as the set of x ∈ K whose

barycentric coordinates (βK
v′ (x))v′∈VK satisfy βK

v (x) > βK
v′ (x) for all v′ ∈ VK \ {v}. For σ ∈ E and v ∈ Vσ,

x(σ,v) is the point of σ whose barycentric coordinates in σ are βσ
v′(x(σ,v)) = 1/(d + 1) for all v′ ∈ Vσ \ {v},

and βσ
v (x(σ,v)) = 2/(d+ 1).

We then follow the notations in Definition 2.11 to construct the MPFA-O gradient discretisations in both
cases:

(1) The set of geometrical entities attached to the dof is I = M∪ {(σ, v) : σ ∈ E , v ∈ Vσ} and the family of
approximation points is S = ((xK)K∈M, (x(σ,v))σ∈E, v∈Vσ ). We define IΩ = M∪{(σ, v) : σ ∈ Eint, v ∈ Vσ}
and I∂Ω = {(σ, v) : σ ∈ Eext, v ∈ Vσ}. The partition is U = (VK,v)K∈M, v∈VK . For any U = VK,v, we set
EK,v = {σ ∈ EK : v ∈ Vσ} and IU = {K} ∪ {(σ, v) : σ ∈ EK,v}.

(2) The functions αi are defined by αi = 1 for i = K and αi = 0 for i = (σ, v), which means that

∀v ∈ XD,0 , ∀K ∈ M , ∀x ∈ K , ΠDv(x) = vK .

(3) Setting σv = VK,v ∩ σ, the gradient reconstruction on U = VK,v is

∀x ∈ VK,v , GVK,vv(x) =
1

|VK,v|
∑

σ∈EK,v

|σv|(v(σ,v) − vK)nK,σ.

(4) As in the case of the non-conforming P1 element, the fact that ‖∇D · ‖Lp(Ω)d is a norm on XD,0 is deduced
from the injectivity of the mapping Φ defined in the course of the proof of the property (P) below.
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For such a gradient discretisation, the gradient scheme (2.3) is a finite volume scheme. Indeed, by selecting a
test function with only non-zero value vK = 1 in (2.3), we obtain the flux balance

∑
σ∈EK

∑
v∈Vσ

FK,σ,v(u) =
∫

K

f(x)dx, where FK,σ,v(u) =
∫

σv

GVK,vu(x) · nK,σdγ(x). (3.4)

Selecting a test function with only non-zero value v(σ,v) = 1 in (2.3) leads to the conservativity of the fluxes:

FK,σ,v(u) + FL,σ,v(u) = 0 for all σ ∈ Eint with Mσ = {K,L}, and all v ∈ Vσ. (3.5)

We can also locally express the degree of freedom u(σ,v) in terms of (uK)K|v∈VK
. For a given v ∈ V this is

done by solving the local linear system issued from (3.5) written for all σ such that v ∈ Vσ. After these local
eliminations of u(σ,v), the resulting linear system only involves the cell unknowns. This discretisation of (2.1) by
writing the balance and conservativity of half-fluxes FK,σ,v, constructed via a local linearly exact gradients, is
identical to the construction of the MPFA-O method in [1]. This demonstrates that the gradient discretisation
constructed above indeed gives the MPFA-O method when used in the gradient scheme (2.3).

Remark 3.1. The identification of MPFA-O schemes as gradient schemes is, to our knowledge, restricted to the
two cases considered in this section (Cartesian and simplicial meshes). In the case of more general meshes for the
approximation of (2.1), the discrete gradient defined by the MPFA-O scheme can be used in the finite volume
scheme (3.4)−(3.5); however, the gradient scheme (2.3) built upon this discrete gradient cannot be expected to
converge, since the corresponding gradient discretisation may fail to be limit-conforming and coercive.

The regularity of the MPFA-O gradient discretisations is defined as the regularity of T (see Def. 2.30).
Although references [38, 42] include proofs of the property (P), let us show how the generic tools presented in
Section 2.5 enable very quick proofs of this result.

Proof of the property (P) for MPFA-O gradient discretisations. We drop the indices m for sake of legibility. We
consider the polytopal mesh T = (M, E ′,P ,V ′) where the sets (M,P) are those of the original polytopal mesh,
E ′ = {σv ; σ ∈ E , v ∈ V}, and V ′ is the set of all vertices of the elements of E ′. We define a control of D by T
(in the sense of Def. 2.29) as the isomorphism Φ : XD,0 −→ XT ,0 given by Φ(u)K = uK and Φ(u)σv = u(σ,v).
We observe that ∫

K

|∇Du(x)|pdx ≥ C3

∑
σ∈EK

∑
v∈Vσ

|σv|dK,σ

∣∣∣∣u(σ,v) − uK

dK,σ

∣∣∣∣p ,
with C3 = 1 for parallelepipedic meshes, and C3 > 0 depends on an upper bound of the regularity of the mesh
for simplicial meshes. Therefore ‖∇Du‖p

Lp(Ω)d ≥ C3‖Φ(u)‖p
T ,0,p and (2.34) is proved. Since ΠDu = ΠT Φ(u), we

get ωΠ(D, T ,Φ) = 0, which proves (2.35). Finally, we have∫
K

∇Du(x)dx =
∑

σ∈EK

∑
v∈Vσ

|σv|(uσ,v − uK)nK,σ =
∑

σ′∈E′
K

|σ′|(Φ(u)σ′ − Φ(u)K)nK,σ′ = |K| ∇T Φ(u)|K .

This shows that ω∇(D, T ,Φ) = 0, which establishes (2.36). Proposition 2.31 therefore shows that (Dm)m∈N is
coercive in the sense of Definition 2.2, limit-conforming in the sense of Definition 2.4, and compact in the sense
of Definition 2.5.

It is proved in [38, 42] that the definitions of the approximation points S give the LLE property in both the
Cartesian and simplicial cases. Hence, the consistency of (Dm)m∈N follows from Proposition 2.14. �
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3.5. Discrete duality finite volumes

The principle of discrete duality finite volume (DDFV) schemes [4, 12, 17, 22, 44, 45] is to design discrete
divergence and gradient operators that are linked in duality through a discrete Stokes formula. Since discrete
operators and an asymptotic Stokes formula are at the core of gradient schemes (see Defs. 2.1 and 2.4), it is not
a surprise that they should contain DDFV methods. This was already noticed without proof in [36]; we give
here a precise construction and proof of this result in the 3D case. Note that the same tools can be used for the
2D case [30].

Two 3D DDFV versions have been developed: the CeVe-DDFV, which uses cell and vertex unknowns [2,18,46],
and the CeVeFE-DDFV, which uses cell, vertex, faces and edges unknowns [17, 19]. The coercivity properties
of the two methods differ: the CeVe-DDFV does not seem to be unconditionally coercive on generic meshes,
whereas the CeVeFE-DDFV scheme is unconditionally coercive [23]. We show here that this latter method is
a gradient scheme. To do so, we introduce a gradient discretisation on a general octahedral mesh (possibly
including degenerate cells), and we show that when the octahedral cells of this mesh are the “diamond cells”
of a CeVeFE-DDFV method, the gradient scheme corresponding to this gradient discretisation is the CeVeFE-
DDFV scheme. The standard CeVeFE-DDFV scheme corresponds to hexahedral meshes, which can be seen as
degenerate octahedral meshes (each cell has six vertices, but three of them are aligned so only six physical faces
are apparent). Although it was known to specialists that, as done here, the construction could be performed
on general octahedral meshes (and that the corresponding DDFV method satisfies the discrete duality formula
[7]), this was not reported before. It should also be noticed that our presentation gives a complete description of
the CeVeFE-DDFV method using only one mesh instead of the usual four meshes. As shown in ([6], Sect. IX.B)
for 2D DDFV methods, the other three meshes can be reconstructed from the ocatahedral (“diamond”) mesh.
However these three meshes are not used to construct the method here. The vision of DDFV methods based
solely on one mesh (the “diamond” mesh, or octahedral mesh here) actually corresponds to the vision adopted
in the implementation of the schemes.

Let T = (M, E ,P ,V) be a polytopal mesh of Ω in the sense of Definition 2.21, such that the elements of M are
octahedra (open polyhedra with eight triangular faces and six vertices, not necessarily convex; five vertices may
be coplanar), and the element of E are the triangular faces of the elements of M. Each EK has 8 elements, each
VK has 6 elements, and each Vσ has 3 elements. For any K ∈ M, the centre of K is defined by xK = 1

6

∑
v∈VK

v.
We use Definition 2.11 to construct an “octahedral” gradient discretisation D = (XD,0,∇D, ΠD) (see Fig. 4 for
some notations):

(1) The set of geometrical entities attached to the dof is I = V , the set of approximation points is S = V . We
let IΩ = V ∩Ω and I∂Ω = V ∩ ∂Ω, and the partition is U = M. For U = K ∈ U we define IU = VK .

(2) For K ∈ M and v ∈ VK , we denote by VK,v the octahedron formed by xK , v, and the four other vertices of
K that share a face of K with v. We then use the reconstruction (2.13) with the functions (αv)v∈IK defined
by

∀x ∈ K, ∀v ∈ VK , αv(x) =
1
3
χVK,v(x), (3.6)

where χVK,v denotes the characteristic function of VK,v. This leads to

∀u ∈ XD,0 , ∀K ∈ M , ∀x ∈ K , ΠDu(x) =
1
3

∑
v∈VK

uvχVK,v(x). (3.7)

(3) For K ∈ M and u ∈ XD,0, the cell gradient is defined by

∀x ∈ K, GKu(x) =
1
|K|

∑
σ∈EK

|σ|uσnK,σ , where uσ =
1
3

∑
v∈Vσ

uv for all σ ∈ EK . (3.8)

(4) The proof that ‖∇D · ‖Lp(Ω)d is a norm on XD,0 is done in Lemma 3.4.
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Figure 4. Left: octahedral cell K for the CeVeFE-DDFV scheme. Center: illustration of VK,v.
Right: construction of a degenerate octahedron from a non-conforming hexahedral mesh in
a heterogeneous medium (CDEF is the intersection of the boundaries of two non-matching
hexahedral cells).

Remark 3.2 (Octohedra and heterogeneous media). An octahedral mesh of Ω can be obtained in the case
where the domain Ω is the disjoint union of star-shaped hexahedra, considering the octahedra obtained from
the centres of neighbourhing hexahedral cells, and the four vertices of their interface. This also works for non-
conforming hexahedral meshes, for which interfaces between cells may be different from the physical faces of
the cells.

In the case of a heterogeneous media, in which the material properties (e.g. the permeability A in (2.1)) are
constant inside each hexahedral cell but may be discontinuous from one cell to the other, it is usually preferable
to construct octahedral cells that are compatible with these heterogeneities (i.e. such that the material properties
are constant inside each octahedron). This prevents from introducing a non-physical average of A in the gradient
scheme (2.3), which would lead to a loss of accuracy of the approximate solutions. Such an octahedral mesh can
be constructed fairly easily as illustrated in Figure 4 (right). Each of these octahedra is built from the centre of
an hexahedral cell, the four vertices of the interface between this cell and a neighbouring hexahedral cell, and
a point selected on this interface. This interface need not be planar.

Remark 3.3 (Reconstruction operator). The choice (3.6) of ΠD is driven by our desire to construct a gradient
discretisation whose gradient scheme is exactly the CeVeFE-DDFV method, for particular octahedral meshes.
This choice ensures that the discrete duality formula holds true but, as explained in Section 2.1 (and as already
noticed in ([3], Appendix C) for CeVe-DDFV methods), it is not adapted to certain non-linear models.

The following lemma proves that the previous construction gives an LLE gradient discretisation. It will also
prove useful to show that this gradient discretisation gives back the CeVeFE-DDFV method, and to establish
property (P).

Lemma 3.4. Let D be an octahedral gradient discretisation defined as above. For any u ∈ XD,0 and any
K ∈ M, the constant discrete gradient GKu is characterised by

For all opposite vertices (v, v′) of K, GKu · (v − v′) = uv − uv′ . (3.9)

As a consequence, ‖∇D · ‖Lp(Ω)d is a norm on XD,0.
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Remark 3.5. The opposite vertices in the octahedra in Figure 4 are (A,B), (C,D) and (E,F ).

Proof. We first note that, since the three directions defined by the three pairs of opposite vertices in K are
linearly independent, (3.9) indeed characterises one and only one vector GKu ∈ R3. We therefore just have to
show that the gradient defined by (3.8) satisfies (3.9). We have

GKu =
1
|K|

1
3

∑
v∈VK

uv

∑
σ∈EK |v∈Vσ

|σ|nK,σ. (3.10)

Let us consider for example the case where v = A in Figure 4. For a triangular face σ we can write |σ|nK,σ as
the exterior product of two of the edges of σ (with proper orientation). This gives∑

σ∈EK |v∈Vσ

|σ|nK,σ =
1
2
(
−→
AC ×−→

AF +
−→
AF ×−−→

AD +
−−→
AD ×−→

AE +
−→
AE ×−→

AC)

=
1
2
(
−−→
DC ×−→

AF +
−−→
CD ×−→

AE) = −1
2
−−→
CD ×−−→

EF.

Applying this to all vertices of K, and since |K| = 1
6ΔK with ΔK = det(

−−→
AB,

−−→
CD,

−−→
EF ), we deduce from (3.10)

that
GKu =

1
ΔK

(
(uB − uA)

−−→
CD ×−−→

EF + (uD − uC)
−−→
EF ×−−→

AB + (uF − uE)
−−→
AB ×−−→

CD
)
.

Property (3.9) is then straightforward. Considering for example the case (v, v′) = (B,A), the formula follows
from (

−−→
EF ×−−→

AB) · −−→AB = (
−−→
AB ×−−→

CD) · −−→AB = 0 and (
−−→
CD ×−−→

EF ) · −−→AB = det(
−−→
CD,

−−→
EF,

−−→
AB) = ΔK .

Let us now prove that ‖∇D ·‖Lp(Ω)d is a norm on XD,0. Assume that ‖∇Du‖Lp(Ω)d = 0. Then for any K ∈ M,
GKu = 0. Let us take a boundary octahedron K. One of its faces σ is entirely contained in ∂Ω and thus by the
boundary conditions all (uv)v∈Vσ vanish. Using (3.9) we infer that all values of u at vertices opposite to Vσ also
vanish. Since any vertex in K either belong to Vσ or is opposite to a vertex in Vσ, this shows that u vanishes
on all vertices of K. We then conclude by induction on the number of octahedra in the mesh that u = 0. �

It is now easy to detail the relationship between the octahedral gradient discretisation D and the CeVeFE-
DDFV scheme.

Lemma 3.6 (CeVeFE-DDFV is a gradient scheme). For any polytopal mesh T̃ of Ω, there exists an octahedral
mesh T of Ω such that, if D is the octahedral gradient discretisation defined as above from T , then the gradient
scheme (2.3) for D is the CeVeFE-DDFV method on T̃ .

Proof. The CeVeFE-DDFV method on T̃ has cell, vertices, edge and face unknowns, and its discrete gradient is
piecewise constant on so-called “diamond cells”. A diamond cell is an octahedra as in Figure 4 (left), but with
E chosen on the segment [A,B] – hence, the octahedra actually degenerates into an hexahedra. The segment
[A,B] corresponds to an edge of the primal mesh of the CeVeFE-DDFV method, F is a point on a face of this
mesh that contains [A,B], and D and C are points inside the cells on each side of this face. Let us take T the
polytopal mesh of Ω made of the diamond cells (degenerate octahedra). It is proved in ([17], Lem. 3.1) that the
CeVeFE-DDFV discrete gradient satisfies (3.9); hence, this gradient is ∇D. It is then just a matter of applying
the discrete duality formula ([17], Thm. 4.1) on the formulation ([17], Eq. (5.4)) of the scheme to see that the
CeVeFE-DDFV scheme for (2.1) is indeed the gradient scheme (2.3) for D. �

Remark 3.7 (CeVeFE-DDFV and heterogeneities). Except on the boundary of the domain, the diamond cells
of the CeVeFE-DDFV method are always spread on two neighbouring cells. If the primal mesh is aligned
with heterogeneities of the medium, then these heterogeneities are actually averaged in the formulation of the
CeVeFE-DDFV scheme (see [17], Eq. (5.2)). An option to better deal with heterogeneities is to use the m-DDFV
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method [12,20]. Additional unknowns are introduced and eliminated by writing local flux conservativity. These
eliminations are easy to perform for linear models, but require solving local nonlinear equations in the case of
nonlinear models.

As shown in Remark 3.2, even starting from a primal hexahedral mesh aligned with the ground properties
it is possible to construct a (degenerate) octahedral mesh that is also aligned with the heterogeneities of the
medium. Using this octahedral mesh ensures a better accuracy than the “standard” CeVeFE-DDFV method, at
a reduced computational cost compared to the m-DDFV method in the case of nonlinear models (no nonlinear
local equation to solve).

Let us now turn to the analysis of the properties of the octahedral gradient discretisation. The regularity of
a sequence of octahedral gradient discretisations (Dm)m∈N is merely defined as the regularity of the underlying
octahedral meshes (Tm)m∈N of Ω in the sense of Definition 2.30. With this definition of regularity, the property
(P) holds for octahedral gradient discretisations.

Proof of the property (P) for octahedral gradient discretisations. As usual, we sometimes drop the indices m for
sake of legibility. Let us define a control Φ : XD,0 −→ XT ,0 of D by T in the sense of Definition 2.29, where T
is the octahedral mesh with, for all K ∈ M, the centre of K defined by xK = 1

6

∑
v∈VK

v. We set

∀K ∈ M , Φ(u)K =
1
6

∑
v∈VK

uv and ∀σ ∈ E , Φ(u)σ =
1
3

∑
v∈Vσ

uv. (3.11)

Let σ ∈ EK , and let us denote by (vi)i=1,2,3 the three vertices of σ and by v′i the vertex opposite to vi in K. We
then have, for u ∈ XD,0,

Φ(u)σ − Φ(u)K =
1
3
(uv1 + uv2 + uv3) −

1
6
(uv1 + uv2 + uv3 + uv′1

+ uv′2
+ uv′3

)

=
1
6
(uv1 − uv′1

) +
1
6
(uv2 − uv′2

) +
1
6
(uv3 − uv′3

) =
1
6

3∑
i=1

GKu · (vi − v′i),

thanks to Lemma 3.4. Therefore, since |vi−v′i|
dK,σ

≤ hK

dK,σ
≤ θT , we have

∑
σ∈EK

|σ|dK,σ

∣∣∣Φ(u)σ−Φ(u)K

dK,σ

∣∣∣p ≤
1
2p θ

p
T d|K| |GKu|p and (2.34) follows.

For K ∈ M and a.e. x ∈ K there are three vertices (vi)i=1,2,3 ⊂ VK such that x ∈ VK,vi . Denoting by v′i the
vertex in K opposite to vi, Lemma 3.4 again gives

ΠDu(x) −ΠT Φ(u)(x) =
1
6
(uv1 − uv′1

) +
1
6
(uv2 − uv′2

) +
1
6
(uv3 − uv′3

) =
1
6

3∑
i=1

GKu · (vi − v′i).

This shows that |ΠDu(x) − ΠD′Φ(u)(x)| ≤ 1
2hM|GKu| and thus that ‖ΠDu − ΠT Φ(u)‖Lp(Ω) ≤

1
2hM‖∇Du‖Lp(Ω)d . Hence ωΠ(D, T ,Φ) ≤ hM

2 and (2.35) holds. The definition (3.8) implies that ∇Du =
∇T Φ(u), and therefore ω∇(D, T ,Φ) = 0, which implies (2.36). By Proposition 2.31 we deduce that (Dm)m∈N

is coercive in the sense of Definition 2.2, limit-conforming in the sense of Definition 2.4, and compact in the
sense of Definition 2.5.

The bound on θT forces the three vectors (v − v′)(v,v′) opposite in K to be of similar length and “really non-
coplanar” – that is to say with a determinant of order the cube of their similar length – which gives an estimate
on ||GK ||∞. Hence, the regularity factor regLLE(Dm) is bounded and Lemma 3.4 proves the consistency. �

3.6. Hybrid mimetic mixed schemes

3.6.1. Fully hybrid scheme

Since the 50’s, several schemes have been developed with the objective to satisfy some form of calculus
formula at the discrete level. These schemes are called mimetic finite difference (MFD) or compatible discrete
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operator (CDO) schemes. Contrary to DDFV methods that design a discrete operators and duality products
to satisfy fully discrete calculus formula, MFD/CDO methods design discrete operators that satisfy a Stokes
formula that involves both continuous and discrete functions. Depending on the choice of the location of the
main geometrical entities attached to the dof (faces or vertices), two different MFD/CDO families exist. We
refer to [47] for a review on MFD methods, and to [10, 11] (and reference therein) for CDO methods.

A first MFD method, hereafter called hybrid MFD (hMFD), is designed by using the fluxes through the
mesh faces as initial unknowns. This requires to recast (2.1) in a mixed form, i.e. to write q = A∇u and
div(q) = f , and to discretise this set of two equations. The resulting scheme takes a form that is apparently
far from the gradient scheme (2.3). It was however proved in [27] that this hMFD can be actually embedded
in a slightly larger family that also contains hybrid finite volume (HFV) methods [33] and mixed finite volume
(MFV) methods [24]. This family has been called hybrid mimetic mixed (HMM) schemes; each scheme in this
family can be written in three different ways, depending on the considered approach (hMFD, HFV or MFV).
The HFV formulation of an HMM scheme is very close to the weak formulation (2.2) of the elliptic PDE; it
actually consists in writing this weak formulation with a discrete gradient and a stabilisation term (bilinear
form on (u, v)). It was proved in [28] that the discrete gradient can be modified to include the stabilisation
terms, and thus that all HMM methods – which means all hMFD methods also – are actually gradient schemes.

The discrete elements that define an HMM gradient discretisation are the following. We again refer to Defi-
nition 2.11 for the construction of D.

(1) Let T be a polytopal mesh of Ω as in Definition 2.21. The geometrical entities attached to the dof are
I = M ∪ E and the approximation points are S = ((xK)K∈M, (xσ)σ∈E ). We let IΩ = M ∪ Eint and
I∂Ω = Eext, and we have XD,0 = XT ,0 as defined by (2.28). The partition is U = {DK,σ : K ∈ M, σ ∈ EK}
and, for U = DK,σ ∈ U , we set IU = {K} ∪ EK .

(2) The reconstruction (2.13) is defined by the functions αK ≡ 1 in K and αK ≡ 0 outside K, for all K ∈ M,
and ασ ≡ 0 for σ ∈ EK . Recalling the definition (2.29) we therefore have

∀v ∈ XD,0, ∀K ∈ M, ∀x ∈ K, ΠDv(x) = ΠT v(x) = vK .

(3) Recalling the definition of the polytopal gradient (2.30), we start the construction of the discrete gradient
by setting

∀v ∈ XD,0 , ∀K ∈ M , ∇Kv = (∇T v)|K =
1
|K|

∑
σ∈EK

|σ|vσnK,σ. (3.12)

This gradient is linearly exact, but it does not lead to the norm property: it can vanish everywhere even
for v �= 0 (it suffices to take vσ = 0 for all σ ∈ E). We therefore add a stabilisation that is constant in each
half-diamond, and that vanishes on interpolations of affine functions:

∀v ∈ XD,0 , ∀DK,σ ∈ U , ∀x ∈ DK,σ , GDK,σv(x) = ∇Kv +

√
d

dK,σ
[LKRK(QK(v))]σnK,σ, (3.13)

where
• QK(v) = (vσ − vK)σ∈EK ,
• RK : REK 	→ REK is the linear mapping defined by RK(ξ) = (RK,σ(ξ))σ∈EK with

RK,σ(ξ) = ξσ −
(

1
|K|

∑
σ′∈EK

|σ′|ξσ′nK,σ′

)
· (xσ − xK),

• LK is an isomorphism of the vector space Im(RK) ⊂ REK .
(4) The norm property of ‖∇D · ‖Lp(Ω)d on XD,0 follows from the estimate (see ([28], Lem. 5.3))

‖u‖T ,0,p ≤ C4‖∇Du‖Lp(Ω)d , (3.14)
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where C4 ≥ 0 depends on an upper bound on the regularity factor θT of the polytopal mesh and on the
regularity factor ζD. This last factor is defined as the smallest number such that, for all K ∈ M and all
ξ ∈ REK ,

ζ−1
D

∑
σ∈EK

|DK,σ|
∣∣∣∣RK,σ(ξ)
dK,σ

∣∣∣∣p ≤
∑

σ∈EK

|DK,σ|
∣∣∣∣ [LKRK(ξ)]σ

dK,σ

∣∣∣∣p ≤ ζD
∑

σ∈EK

|DK,σ|
∣∣∣∣RK,σ(ξ)
dK,σ

∣∣∣∣p .
Remark 3.8. The face degree of freedom vσ corresponds to the hybridisation of the hMFD methods.

The freedom of choice of the isomorphisms (LK)K∈M ensures that all hMFD, HFV and MFV schemes are
covered by the framework (there are several such schemes, due to different possible stabilisation parameters).
More precisely, [28] proves that for any HMM scheme S on T there exists a family of isomorphism (LK)K∈M
such that, if D is defined as above, then the gradient scheme (2.3) is S.

The proof of the property (P) for HMM methods was originally given in [28]. We show here how the notion of
gradient discretisations controlled by polytopal toolboxes notably simplifies this proof. We say that a sequence
of HMM gradient discretisations (Dm)m∈N is regular if the sequence of underlying polytopal meshes (Tm)m∈N

is regular in the sense of Definition 2.30, and if (ζDm)m∈N is bounded.

Proof of the property (P) for HMM gradient discretisations. Let (Dm)m∈N be HMM gradient discretisations
built on polytopal meshes (Tm)m∈N, and let us define a control of Dm by Tm in the sense of Definition 2.29.
We drop the index m from time to time. Since XD,0 = XT ,0, we can take Φ = Id. Estimate (2.34) is given by
(3.14). Relation (2.35) follows immediately since ωΠ(D, T ,Φ) = 0, owing to ΠDu = ΠT u = ΠT Φ(u). Recalling
that |DK,σ| = |σ|dK,σ

d we have∫
K

∇Du(x)dx = |K|∇Ku+
1√
d

∑
σ∈EK

|σ|[LKRK(QK(u))]σnK,σ. (3.15)

The definition of RK and the property
∑

σ∈EK
|σ|nK,σ(xσ − xK)T = |K|Id (a consequence of Stokes’ formula)

show that for any η ∈ Im(RK) we have
∑

σ∈EK
|σ|ησnK,σ = 0. Hence, since Im(LK) = Im(RK), (3.15) gives∫

K

∇Du(x)dx = |K|∇Ku = |K|∇T Φ(u)|K ,

which shows that ω∇(D, T ,Φ) = 0, and thus that (2.36) holds. The coercivity, limit-conformity and compactness
of (Dm)m∈N therefore follow from Proposition 2.31. Since HMM gradient discretisations are LLE gradient dis-
cretisations, the consistency of (Dm)m∈N readily follows from Proposition 2.14, after noticing that the regularity
assumption on (Dm)m∈N gives a bound on (regLLE(Dm))m∈N. �

3.6.2. The SUSHI scheme

With the notations of Section 2, the SUSHI scheme [33] is the gradient scheme obtained by a barycentric
condensation of the HMM gradient discretisation. For simplicity, we only consider here the case when all face
unknowns are eliminated (the “SUCCES” version in [33]), although more accurate methods could be used in
the case of coarse meshes in heterogeneous domains.

(1) Let T be a polytopal toolbox of Ω in the sense of Definition 2.24. We first define an HMM gradient
discretisation D = (XD,0,∇D, ΠD), as in the section above, for which I = M∪ E .

(2) We introduce IBa = M∪Eext, and for all σ ∈ Eint we select Hσ ⊂ IBa and introduce barycentric coefficients
βσ

i such that ∑
i∈Hσ

βσ
i = 1 and xσ =

∑
i∈Hσ

βσ
i xi,

which corresponds to (2.17).
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(3) The SUSHI gradient discretisation is the corresponding barycentric condensation DBa of D in the sense of
Definition 2.15.

(4) We have ΠDBa = ΠD since this reconstruction is only built from the values at the centres of the cells.

The property (P) for this barycentric condensation of the HMM method is a consequence of the property (P)
for the HMM method and of Theorem 2.18, assuming that (regBa(DBa

m) + ζDm + θTm)m∈N is bounded.

3.7. Nodal mimetic finite difference methods

The nodal MFD method (nMFD) is described in [14]. We present here a gradient discretisation which enables
us to write the nMFD method for (2.1) as the gradient scheme (2.3). Let T be a polytopal mesh of Ω in the
sense of Definition 2.21. For each K ∈ M we choose non-negative weights (ωv

K)v∈VK such that the quadrature∫
K

w(x)dx ≈
∑

v∈VK

ωv
Kw(v) (3.16)

is exact for constant functions w, which means that
∑

v∈VK
ωv

K = |K|. For each face σ ∈ EK ∩ Eint, we also
choose non-negative weights (ωv

σ)v∈Vσ such that the quadrature∫
σ

w(x)ds(x) ≈
∑
v∈Vσ

ωv
σw(v) (3.17)

is exact for affine functions w. This is equivalent to
∑

v∈Vσ
ωv

σ = |σ| and
∑

v∈Vσ
ωv

σv = |σ|xσ. We will assume
the following property on these weights. This property is not required in the construction of the nMFD, but
it is used to identify the nMFD with a gradient scheme. We note that this assumption is not very restrictive,
since it holds for any natural choice of weights for (3.17).

∀K ∈ M , ∀v ∈ VK , ∃σ ∈ EK,v such that ωv
σ �= 0, (3.18)

where EK,v = {σ ∈ EK : v ∈ Vσ} is the set of faces of K that have v as one of their vertices. For each cell
K ∈ M, we define its centre as

xK =
1
|K|

∑
v∈VK

ωv
Kv (3.19)

and we select a partition (VK,v)v∈VK such that

∀v ∈ VK , |VK,v| =
∑

σ∈EK,v

ωv
σ

|DK,σ|
|σ| =

1
d

∑
σ∈EK,v

ωv
σdK,σ. (3.20)

We can then again use Definition 2.11 to construct the gradient discretisation D = (XD,0,∇D, ΠD) corre-
sponding to the nMFD scheme.

(1) The set of geometrical entities attached to the dof is I = V and the set of approximation points is S = I.
We set IΩ = V ∩ Ω and I∂Ω = V ∩ ∂Ω. The partition is U = (VK,v)K∈M, v∈VK , and for U = VK,v we let
IU = VK .

(2) For U = VK,v we choose in the reconstruction (2.13) the functions

∀x ∈ U , ∀v′ ∈ VK , αv′(x) :=
1
|K|ω

v′

K . (3.21)

This leads to
∀v ∈ XD,0, ∀K ∈ M, ∀x ∈ K, ΠDv(x) = vK :=

1
|K|

∑
v∈VK

ωv
Kvv. (3.22)



GRADIENT SCHEMES: GENERIC TOOLS FOR THE NUMERICAL ANALYSIS OF DIFFUSION EQUATIONS 777

(3) In a similar way as for the HMM method, the reconstructed gradient is the sum of a constant gradient in
each cell and of stabilisation terms in each VK,v. We set

∀v ∈ XD,0 , ∀K ∈ M , ∇Kv =
1
|K|

∑
σ∈EK

(∑
v∈Vσ

ωv
σvv

)
nK,σ. (3.23)

and
∀v ∈ XD,0 , ∀VK,v ∈ U , ∀x ∈ VK,v , GVK,vv(x) = ∇Kv +

1
hK

[LKRK(QK(v))]vNK,v (3.24)

where
• NK,v = hK

d|VK,v|
∑

σ∈EK,v
ωv

σnK,σ,
• QK(v) = (vv − vK)v∈VK with vK = 1

|K|
∑

v∈VK
ωv

Kvv as in (3.22),
• RK : RVK 	→ RVK is the linear mapping described by RK(ξ) = (RK,v(ξ))v∈VK with

RK,v(ξ) = ξv −∇Kξ · (v − xK), (3.25)

where ∇Kξ is defined as in (3.23), and xK is the centre of K defined by (3.19),
• LK is an isomorphism of the space Im(RK) ⊂ RVK .

(4) The proof that ‖∇D · ‖Lp(Ω)d is a norm on XD,0 is the consequence of the following inequality, which is
obtained in the same way as in ([28], Lem. 5.3): defining uK = 1

|K|
∑

v∈VK
ωv

Kuv (see (3.22)), we have

∑
v∈VK

|VK,v|
∣∣∣∣uv − uK

hK

∣∣∣∣p ≤ C5||∇Du||pLp(K)d , (3.26)

with C5 only depending on an upper bound on θT and on the regularity ζD. This factor is defined as the
smallest number such that, for all K ∈ M and all ξ ∈ RVK ,

ζ−1
D

∑
v∈VK

|VK,v|
∣∣∣∣RK,v(ξ)

hK

∣∣∣∣p ≤
∑

v∈VK

|VK,v|
∣∣∣∣ [LKRK(ξ)]v

hK

∣∣∣∣p ≤ ζD
∑

v∈VK

|VK,v|
∣∣∣∣RK,v(ξ)

hK

∣∣∣∣p . (3.27)

Under assumption (3.18) it is proved in [30] that the gradient scheme (2.3) obtained from this gradient discreti-
sation is identical to the nMFD method of [14] for (2.1).

Remark 3.9. The second equality in (3.20) comes from |DK,σ| = |σ|dK,σ

d , and this choice of |VK,v| is compatible
with the requirement that

∑
v∈VK

|VK,v| = |K|. The detailed construction and geometric properties of VK,v are
not needed for the analysis of the method or for its implementation. The only required information is the
measure of this set.

Other choices of VK,v are possible. For example, we could take all (VK,v)v∈VK of the same measure |K|
Card(VK) ,

and property (P) would still be valid. However, a stronger assumption than (3.18) would be required to ensure
the coercivity of the corresponding gradient discretisations; we would need

∑
σ∈EK,v

ωv
σ ≥ chd−1

K with c > 0 not
depending on K or v.

Remark 3.10. Contrary to the HMM gradient discretisation, the nMFD gradient discretisation does not have
a piecewise constant reconstruction for the natural choice of unknowns, nor for any obvious choice of unknowns.
It should therefore be modified, e.g. by mass-lumping as in Section 2.4, to be applicable in practice to certain
non-linear models.

Remark 3.11. In the case of octahedral meshes, if the stabilisation term in ∇D is set to 0, then the discrete
space and gradient of the nMFD gradient discretisation are identical to the discrete space and gradient of the
octahedral gradient discretisation (and thus of the CeVeFE-DDFV method on degenerate octahedra). The only
difference remains in the definition of the reconstruction ΠD.
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Remark 3.12. In [11], the authors construct a vertex-based compatible discrete operator scheme; they show
that it belongs to the nMFD family of schemes ([11], Sect. 3.5) and that it satisfies the coercivity, consistency
and limit-conformity properties ([11], Sect. 4.5).

The regularity of sequences of nMFD gradient discretisations (Dm)m∈N is defined as the regularity of the
underlying polytopal meshes (Tm)m∈N (see Def. 2.30) and the boundedness of (ζDm)m∈N.

Proof of the property (P) for the nMFD gradient discretisation. As in previous proofs, we drop indices m from
time to time. We define a control Φ of D by T , in the sense of Definition 2.29, by

∀K ∈ M, Φ(u)K = uK =
1
|K|

∑
v∈VK

ωv
Kuv and ∀σ ∈ E , Φ(u)σ =

1
|σ|

∑
v∈Vσ

ωv
σuv. (3.28)

Let us prove (2.34). Since
∑

v∈Vσ
ωv

σ = |σ| we have Φ(u)σ − Φ(u)K = 1
|σ|
∑

v∈Vσ
ωv

σ(uv − uK). Therefore, using
Jensen’s inequality and the fact that 1

dK,σ
≤ θT

hK
we find

∑
σ∈EK

|σ|dK,σ

∣∣∣∣Φ(u)σ − Φ(u)K

dK,σ

∣∣∣∣p ≤
∑

σ∈EK

dK,σ

∑
v∈Vσ

ωv
σ

∣∣∣∣uv − uK

dK,σ

∣∣∣∣p ≤ θp
T
∑

σ∈EK

dK,σ

∑
v∈Vσ

ωv
σ

∣∣∣∣uv − uK

hK

∣∣∣∣p

≤ θp
T
∑

v∈VK

⎛⎝ ∑
σ∈EK,v

dK,σω
v
σ

⎞⎠∣∣∣∣uv − uK

hK

∣∣∣∣p = θp
T d

∑
v∈VK

|VK,v|
∣∣∣∣uv − uK

hK

∣∣∣∣p .
We conclude the proof of (2.34) thanks to (3.26). Since ΠDu = ΠT Φ(u), we have ωΠ(D, T ,Φ) = 0 and (2.35)
follows. For K ∈ M we have ∇Ku = (∇T Φ(u))|K . Therefore∫

K

∇Du(x)dx = |K|(∇T Φ(u))|K +
1
d

∑
v∈VK

[LKRK(QK(v))]v
∑

σ∈EK,v

ωv
σnK,σ. (3.29)

Similarly as for the HMM method, for any η ∈ Im(RK) we have
∑

v∈VK
ηv

∑
σ∈EK,v

ωv
σnK,σ = 0. Hence, the last

term in (3.29) vanishes and (2.36) holds since ω∇(D, T ,Φ) = 0. Hence the hypotheses of Proposition 2.31 are
verified, which shows that (Dm)m∈N is coercive, limit-conforming and compact.

By noticing that regLLE(Dm) remains bounded by regularity assumption on (Dm)m∈N, the consistency of
(Dm)m∈N is an immediate consequence of Proposition 2.14 since nMFD gradient discretisations are LLE gradient
discretisations. �

3.8. Vertex approximate gradient (VAG) methods

Successive versions of the VAG schemes have been described in several papers [36, 37]. VAG methods stem
from the idea that it is often computationally efficient to have all unknowns located at the vertices of the
mesh, especially with tetrahedral meshes (which have much less vertices than cells). It is however known that
schemes with degrees of freedom at the vertices may lead to unacceptable results for the transport of a species
in a heterogeneous domain, in particular for coarse meshes (one layer of mesh for one homogeneous layer, for
example). The VAG schemes are an answer to this conundrum. After all possible local eliminations, the VAG
schemes only has vertex unknowns, and it has been shown to cure the numerical issues for coarse meshes and
heterogeneous media [34, 37, 40]; this is due to a specific mass-lumping that spreads the reconstructed function
between the centre of the control volumes and the vertices. Let us remark that the original version of the VAG
scheme in [36] uses the same nodal formalism as Section 3.7, but has been shown in the FVCA6 3D Benchmark
[35] to be less precise than the version presented here.

The VAG scheme is defined as a barycentric condensation and mass-lumping of the P1 gradient discretisation
on a sub-tetrahedral mesh.
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v′

v

xK

xσK
TK,σ,v,v′

Figure 5. Definition of tetrahedron TK,σ,v,v′ in a mesh cell K.

(1) Let T = (M, E ,P ,V) be a polytopal mesh of Ω in the sense of Definition 2.21, except the hypothesis
that the faces σ ∈ E are planar which is not necessary here. We define a tetrahedral mesh by the following
procedure. For any K ∈ M, σ ∈ EK , and v, v′ ∈ Vσ such that [v, v′] is an edge of σ, we define the tetrahedron
TK,σ,v,v′ by its four vertices xK ,xσ, v, v

′ (see Figure 5), where the point xσ corresponding to the face σ is

xσ =
1

Card(Vσ)

∑
v∈Vσ

v. (3.30)

We denote by T T the simplicial mesh corresponding to these TK,σ,v,v′ .
(2) We let D = (XD,0,∇D, ΠD) be the P1 gradient discretisation defined from T T as in Section 3.1.1 for k = 1.

For the gradient discretisation D, the set I of geometrical entities attached to the dof is I = M∪ V ∪ E ,
and the set of S of approximation points of is S = ((xK)K∈M, (v)v∈V , (xσ)σ∈E). We define DBa

as the
barycentric condensation of D (see Def. 2.15) such that IBa = M∪V and the degrees of freedom attached
to E are eliminated by setting Hσ = Vσ and the coefficients βσ

v = 1/Card(Vσ) for all v ∈ Vσ, which are
precisely the coefficients in (3.30).

(3) The VAG scheme is the gradient discretisation D obtained from the gradient discretisation DBa

by per-
forming a mass-lumping in the sense of Definition 2.19. We split each tetrahedron TK,σ,v,v′ into three parts
TK

K,σ,v,v′ , T
v
K,σ,v,v′ , and T v′

K,σ,v,v′ (whose detailed geometry is not needed), and we let VK be the union of all
(TK

K,σ,v,v′)σ,v,v′ and Vv be the union of all (T v
K,σ,v,v′)K,σ,v′ . This leads to

∀v ∈ XD,0 : ΠDv =
∑

K∈M
vKχVK +

∑
v∈V

vvχVv .

The regularity of a sequence of VAG gradient discretisations is defined as the regularity of the underlying
tetrahedral meshes T T in the sense of Definition 2.30. We can check that regBa(DBa

) remains bounded by a
non-decreasing function of θT T , and the proof of the property (P) for VAG gradient discretisation is thus a direct
consequence of the results in Section 2, especially Theorem 2.18 (properties of the barycentric condensation)
and Theorem 2.20 (properties of mass-lumped gradient discretisations).

4. Conclusion

We gave here a brief presentation of gradient schemes, a generic framework for the convergence analysis
of several numerical methods for various diffusion models. This framework is based on the notion of gradi-
ent discretisations (a triplet of discrete space, reconstructed gradient and reconstructed function) and on core
properties they must satisfy to ensure the convergence of the corresponding gradient schemes. We provided
generic tools to prove that given numerical schemes can be associated with gradient discretisations that satisfy
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the core properties: local linearly exact gradients, barycentric condensation, mass lumping and control by poly-
topal toolboxes. We then showed that several classical methods are gradient schemes: conforming Pk finite
elements (and mass-lumped P1 finite elements), non-conforming P1 finite elements (with or without mass-
lumping), RTk mixed finite elements, multi-point flux approximation O-scheme, discrete duality finite volumes,
hybrid mimetic mixed methods (which contains hybrid mimetic finite differences), nodal mimetic finite differ-
ences, and the vertex approximate gradient scheme. All these schemes have been shown to be associated with
gradient discretisations that satisfy the required core properties.

Ongoing works concern the adaptation of the gradient scheme framework to some more general operators. In
the case of the incompressible Stokes equations [29], it has been possible to obtain convergence results which
simultaneously hold for the Taylor–Hood scheme, the Crouzeix–Raviart scheme and the MAC scheme. Results
in this direction have also been obtained on the elasticity problems [25]. Some interesting questions remain open
even in the case of the Laplace equation. For example, it is still not known whether discontinuous Galerkin
schemes fall into the gradient scheme framework, i.e. if it is possible to construct a gradient that gathers the
consistent part of the discontinuous Galerkin gradient and the jumps penalisation. As shown in the study of
HMM methods ([28], Eq. (5.11)), such a construction would require some form of orthogonality property between
these two components of discontinuous Galerkin schemes; further investigation is necessary.

Acknowledgements. the authors would like to thank Boris Andreianov for insightful discussions during the course of this
research.

References

[1] I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous,
anisotropic media. J. Comput. Phys. 127 (1996) 2–14.

[2] B. Andreianov, M. Bendahmane and K.H. Karlsen, Discrete duality finite volume schemes for doubly nonlinear degenerate
hyperbolic-parabolic equations. J. Hyperbolic Differ. Equ. 7 (2010) 1–67.

[3] B. Andreianov, M. Bendahmane and F. Hubert, On 3D DDFV discretization of gradient and divergence operators: discrete
functional analysis tools and applications to degenerate parabolic problems. Comput. Methods Appl. Math. 13 (2013) 369–410.

[4] B. Andreianov, M. Bendahmane and K. Karlsen, A Gradient Reconstruction Formula for Finite-volume Schemes and Discrete
Duality. In Proc. of Finite Volumes for Complex Applications V. ISTE, London (2008) 161–168.

[5] Y. Alnashri and J. Droniou, Gradient schemes for variational inequalities (2014). Submitted.

[6] B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on
general 2D meshes. Numer. Methods Partial Differ. Eqs. 23 (2007) 145–195.

[7] B. Andreianov and F. Hubert, Personal communication (2015).

[8] D.N. Arnold and F. Brezzi, Mixed and conforming finite element methods; implementation, postprocessing and error estimates.
Model. Math. Anal. Num. 19 (1985) 7–32.

[9] D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer.
Math. Soc. (N.S.) 47 (2010) 281–354.

[10] J. Bonelle, Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations. Ph.D. thesis, Uni-
versity of Paris-Est (2014).

[11] J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM:
M2AN 48 (2014) 553–581.

[12] F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J.
Numer. Anal. 46 (2008) 3032–3070.

[13] K. Brenner, M. Groza, C. Guichard, G. Lebeau and R. Masson, Gradient discretization of hybrid dimensional darcy flows in
fractured porous media. To appear in: Numer. Math. (2015). Doi:10.1007/s00211-015-0782-x

[14] F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295.

[15] C. Cancès and C. Guichard, Numerical analysis of a robust entropy-diminishing Finite Volume scheme for parabolic equations
with gradient structure (2015).

[16] P.G. Ciarlet, The finite element method for elliptic problems. Access Online via Elsevier (1978).

[17] Y. Coudière and F. Hubert, A 3d discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comp.
33 (2011) 1739–1764.

[18] Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, A 2D/3D discrete duality finite volume scheme. Application to ECG
simulation. Int. J. Finite 6 (2009) 24.

[19] Y. Coudière, F. Hubert and G. Manzini, A CeVeFE DDFV scheme for discontinuous anisotropic permeability tensors. In Proc.
of Finite volumes for complex applications VI. Vol. 4 of Springer Proc. Math. Springer, Heidelberg (2011) 283–291.

http://dx.doi.org/10.1007/s00211-015-0782-x


GRADIENT SCHEMES: GENERIC TOOLS FOR THE NUMERICAL ANALYSIS OF DIFFUSION EQUATIONS 781

[20] Y. Coudière, F. Hubert and G. Manzini, A CeVeFE DDFV Scheme for Discontinuous Anisotropic Permeability Tensors. In
Finite Volumes for Complex Applications. VI. Problems & Perspectives. Vol. 4 of Springer Proc. Math. Springer, Heidelberg
(2011) 283–291.

[21] D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69. Springer (2012).

[22] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids.
ESAIM: M2AN 39 (2005) 1203–1249.

[23] J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods. Special issue
on Recent Techniques for PDE Discretizations on Polyhedral Meshes. M3AS: Math. Models Methods Appl. Sci. 24 (2014)
1575–1619.

[24] J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105
(2006) 35–71.

[25] J. Droniou and B.P. Lamichhane, Gradient schemes for linear and non-linear elasticity equations. Numer. Math. 129 (2015)
251–277.

[26] J. Droniou and R. Eymard, Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations.
Numer. Math. 132 (2016) 721–766.
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