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HOMOGENIZATION OF A SYSTEM OF ELASTIC
AND REACTION-DIFFUSION EQUATIONS MODELLING PLANT CELL WALL

BIOMECHANICS ∗

Mariya Ptashnyk
1

and Brian Seguin
1

Abstract. In this paper we present a derivation and multiscale analysis of a mathematical model
for plant cell wall biomechanics that takes into account both the microscopic structure of a cell wall
coming from the cellulose microfibrils and the chemical reactions between the cell wall’s constituents.
Particular attention is paid to the role of pectin and the impact of calcium-pectin cross-linking chemistry
on the mechanical properties of the cell wall. We prove the existence and uniqueness of the strongly
coupled microscopic problem consisting of the equations of linear elasticity and a system of reaction-
diffusion and ordinary differential equations. Using homogenization techniques (two-scale convergence
and periodic unfolding methods) we derive a macroscopic model for plant cell wall biomechanics.
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1. Introduction

For a better understanding of plant growth and development it is important to analyse the influence of
chemical processes on the mechanical properties (elasticity and extensibility) of plant cells. The main feature of
plant cells are their walls, which must be strong to resist a high internal hydrostatic pressure (turgor pressure)
and flexible to permit growth. Plant cell walls consist of a wall matrix (composed mainly of pectin, hemicellu-
lose, structural proteins, and water) and cellulose microfibrils. It is supposed that calcium-pectin cross-linking
chemistry is one of the main regulators of plant cell wall elasticity and extension [61]. Pectin is deposited into
cell walls in a methylesterified form. In cell walls pectin can be modified by the enzyme pectin methylesterase
(PME), which removes methyl groups by breaking ester bonds. The de-esterified pectin is able to form calcium-
pectin cross-links, and so stiffen the cell wall and reduce its expansion. On the other hand, mechanical stresses
can break calcium-pectin cross-links and hence increase the extensibility of plant cell walls.

To analyse the interactions between calcium-pectin dynamics and the deformations of a plant cell wall,
as well as the influence of the microscopic structure on the mechanical properties of a cell wall, we derive a
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mathematical model for plant cell wall biomechanics at the length scale of cell wall microfibrils. We model the cell
wall as a three-dimensional continuum consisting of a wall matrix and microfibrils. Within the wall matrix, we
consider the dynamics of five chemical substances: the enzyme PME, methylesterfied pectin, demethylesterfied
pectin, calcium ions, and calcium-pectin cross-links. The cell wall matrix is assumed to be isotropic and linearly
elastic, whereas microfibrils are modelled as an anisotropic, linearly elastic material. The interplay between the
mechanics and the cross-link dynamics comes in by assuming that the elastic properties of the matrix depend on
the density of the cross-links and that strain or stress within the cell wall can break calcium-pectin cross-links.
The strain- or stress-dependent opening of calcium channels in the cell plasma membrane is addressed in the flux
boundary conditions for calcium ions. We consider two different cases, one in which the calcium-pectin cross-links
diffuse and another in which they do not diffuse. Thus the microscopic problem is a strongly coupled system
of reaction-diffusion equations or reaction-diffusion and ordinary differential equations, with reaction terms
depending on the displacement gradient, and the equations of linear elasticity, with elastic moduli depending
on the density of calcium-pectin cross-links.

To analyse the macroscopic behaviour of plant cell walls, comprising a complex microscopic structure, we
rigorously derive a macroscopic model for plant cell wall biomechanics. As there are thousands of microfibrils in a
plant cell wall, the derivation of the macroscopic equations is also important for effective numerical simulations.
The two-scale convergence, e.g. [3, 42], and the periodic unfolding method, e.g. [12, 13], are applied to obtain
the macroscopic equations. Some previous results on the homogenization of problems in linear elasticity can be
found in [4, 5, 28, 43, 53] (and the references therein). A multiscale analysis of microscopic problems comprising
the equations of linear elasticity for a solid matrix or cells combined with the Stokes equations for the fluid part
was considered in [23, 27, 39].

The main novelty of this paper is twofold: (i) we derive a new model for plant cell wall biomechanics where
the mechanical properties and biochemical processes in a cell wall are considered on the scale of its structural
elements (on the scale of the microfibrils) and (ii) using homogenization techniques we obtain a macroscopic
model for plant cell wall biomechanics from a microscopic description of the mechanical and chemical processes.
This approach allows us to take into account the complex microscopic structure of a plant cell wall and to analyze
the impact of the heterogeneous distribution of cell wall’s structural elements on the mechanical properties and
development of plants.

The main mathematical difficulty arises from the strong coupling between the equations of linear elasticity
for cell wall mechanics and the system of reaction-diffusion and ordinary differential equations for the chemical
processes in the wall matrix. The Galerkin method together with classical fixed-point approaches are used to
prove the existence of a unique solution of the microscopic problem. However, since the reaction terms depend
on the displacement gradient and the elasticity tensor is a function of the density of chemical substances, the
derivation of a contraction inequality is non-standard and relies on estimates for the L∞-norm of the solutions
of the reaction-diffusion and ordinary differential equations in term of the L2-norm of the displacement gradient.
The theory of positively invariant regions [51, 55] and the Alikakos [2] iteration techniques are applied to show
the non-negativity and uniform boundedness of solutions of the microscopic model. The iteration technique [2]
is also used to derive a contraction inequality.

The analysis of the coupled system also depends strongly on the microscopic model for the chemical processes.
For the chemical processes in the cell wall matrix we consider two situations: (i) chemical processes are described
by a system of reaction-diffusion and ordinary differential equations and (ii) all chemical processes are modelled
by reaction-diffusion equations.

In the first situation, the solutions of the ordinary differential equation have the same regularity with respect
to the spatial variables as the reaction terms. Thus, for the proof of the well-posedness results for the microscopic
problem and for the rigorous derivation of the macroscopic equations, the dependence of the reaction terms on
a local average of the displacement gradient is essential. The well-posedness of the microscopic problem can be
proven by considering an ε-average, where the small parameter ε characterizes the microscopic structure of the
cell wall. However, the proof of the strong convergence for a sequence of solutions of the ordinary differential
equation, which is necessary for the homogenization of the microscopic problem, relies on the fact that the local



HOMOGENIZATION OF A SYSTEM OF ELASTIC AND REACTION-DIFFUSION EQUATIONS 595

average is independent of ε. Also, in the proof of the strong convergence we apply the unfolding operator to map
solutions of the ordinary differential equation, defined in a perforated ε-dependent domain, to a fixed domain.

In the second case when all chemical substances diffuse, solutions of the reaction-diffusion equations have
higher regularity with respect to the spatial variables and a point-wise dependence of the reaction terms on the
displacement gradient can be considered. In this situation in order to pass to the limit in the nonlinear reaction
terms we prove the strong two-scale convergence for the displacement gradient.

Similar to the microscopic problems, the uniqueness of a solution of the macroscopic equations is proven
by deriving a contraction inequality involving the L∞-norm of the difference of two solutions of the reaction-
diffusion and ordinary differential equations.

The paper is organised as follows. In Section 2 we give the general setting of the two microscopic models
for plant cell wall biomechanics. The main results of the paper are summarized in Section 3. The existence
and uniqueness results for weak solutions of the two microscopic problems are proven in Sections 4 and 5.
The homogenization and derivation of the macroscopic equations for both microscopic models for plant cell
wall biomechanics are conducted in Sections 6 and 7. Some results on the numerical simulations of the unit cell
problems, which determine the effective macroscopic elastic properties of a plant cell wall, are given in Section 9.
The detailed derivation of the microscopic model for plant cell wall biomechanics on the length-scale of the cell
wall microfibrils is presented in Section 10. Concluding remarks are included in Section 11.

2. Formulation of the mathematical models for plant cell wall biomechanics

In the mathematical model for plant cell wall biomechanics we consider interactions between the mechanical
properties of the plant cell wall and the chemical processes in the cell wall. The derivation of the models is
presented in Section 10.

In the mathematical model we consider the microscopic structure of a plant cell wall, which is given by
microfibrils embedded in the cell wall matrix. By Ω ⊂ R

3 we denote a domain occupied by a flat section of a
plant cell wall and can consider Ω = (0, a1) × (0, a2) × (0, a3), where ai, i = 1, 2, 3, are positive numbers. We
assume that the microfibrils are oriented in the x3-direction (see Fig. 1a). The part of ∂Ω on the exterior of
the cell wall is given by ΓE = {a1} × (0, a2) × (0, a3), and the interior boundary ΓI of the cell wall is given
by ΓI = {0} × (0, a2) × (0, a3). The top and bottom boundaries are defined by ΓU = (0, a1) × {0} × (0, a3) ∪
(0, a1) × {a2} × (0, a3).

To determine the microscopic structure of the cell wall, we consider Ŷ = (0, 1)2 and an open subset ŶF , with
ŶF ⊂ Ŷ , and define ŶM = Ŷ \ ŶF , Y = Ŷ × (0, a3), YF = ŶF × (0, a3), and YM = Y \ YF , where YM and
YF represent the cell wall matrix and a microfibril, respectivelly (see Fig. 1b). We also define Γ = ∂YF and
Γ̂ = ∂ŶF .

We assume that the microfibrils in the cell wall are distributed periodically and have a diameter on the order
of ε, where the small parameter ε characterizes the size of the microstructure (the ratio of the diameter of
microfibrils to the thickness of the cell wall, i.e. the microfibrils of a plant cell wall are about 3 nm in diameter
and are separated by a distance of about 6 nm, see e.g. [14, 29, 57], whereas the thickness of a plant cell wall is
of the order of a few micrometers). The domains

Ωε
F =

⋃
ξ∈Z2

{
ε(ŶF + ξ) × (0, a3) | ε(Ŷ + ξ) ⊂ (0, a1) × (0, a2)

}
and Ωε

M = Ω \Ωε
F

denote the part of Ω occupied by the microfibrils and by the cell wall matrix, respectively. The boundary
between the matrix and the microfibrils is denoted by

Γ ε = ∂Ωε
M ∩ ∂Ωε

F .

In the mathematical model of plant cell wall biomechanics we consider deformations of the cell wall and
the interactions between five species within the plant cell wall matrix: the number densities of methylestrified
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Figure 1. (a) A depiction of the domain Ω with the subsets representing the cell wall matrix
Ωε

M and the microfibrils Ωε
F . The surface ΓI is in contact with the interior of the cell, and the

(hidden) surface ΓE is facing the outside of the cell, and ΓU is the union of the surfaces on the
top and bottom of Ω. (b) A depiction of the unit cell Y .

pectin pε
1, of enzyme PME pε

2, of demethylestrified pectin nε
1, of calcium ions nε

2, and of calcium-pectin
cross-links bε. We shall consider two situations: (i) it is assumed that the calcium-pectin cross-links bε do not
diffuse and (ii) the diffusion of the calcium-pectin cross-links bε in the cell wall matrix is considered.

Model I: In the first case, where the calcium-pectin cross-links bε do not diffuse, the microscopic problem is
composed of a system of reaction-diffusion and ordinary differential equations for pε = (pε

1,p
ε
2)T , nε = (nε

1,n
ε
2)T ,

and bε, coupled with the equations of linear elasticity for the displacement uε

∂tpε = div(Dp∇pε) − Fp(pε) in (0, T ) ×Ωε
M , (2.1)

∂tnε = div(Dn∇nε) + Fn(pε,nε) + Rn(nε, bε, Nδ(e(uε)))
∂tb

ε = Rb(nε, bε, Nδ(e(uε)))
in (0, T ) ×Ωε

M , (2.2)

with the boundary and initial conditions{
Dp∇pε ν = Jp(pε)

Dn∇nε ν = G(nε)Nδ(e(uε))
on (0, T ) × ΓI ,{

Dp∇pε ν = −γp pε

Dn∇nε ν = Jn(nε)
on (0, T ) × ΓE ,

Dp∇pε ν = 0, Dn∇nε ν = 0 on (0, T ) × (ΓU ∪ Γ ε),
pε, nε a3-periodic in x3,

pε(0, x) = p0(x), nε(0, x) = n0(x), bε(0, x) = b0(x) for x ∈ Ωε
M ,

(2.3)

where div(Dp∇pε) = (div(D1
p∇pε

1), div(D2
p∇pε

2))T and div(Dn∇nε) = (div(D1
n∇nε

1), div(D2
n∇nε

2))T .
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The displacement uε satisfies the equations of linear elasticity⎧⎪⎪⎪⎨⎪⎪⎪⎩
div(Eε(bε, x)e(uε)) = 0 in (0, T )×Ω,

(Eε(bε, x)e(uε))ν = −pI ν on (0, T )× ΓI ,

(Eε(bε, x)e(uε))ν = f on (0, T )×
(
ΓE ∪ ΓU

)
,

uε a3-periodic in x3.

(2.4)

The elasticity tensor is defined as E
ε(ξ, x) = E(ξ, x̂/ε), where the Ŷ -periodic in y function E is given by

E(ξ, y) = EM (ξ)χŶM
(y)+ EFχŶF

(y), with constant elastic properties of the microfibrils and the elastic properties
of cell wall matrix depending on the density of calcium-pectin cross-links.

In (2.2) and (2.3), Nδ(e(uε)) denotes the positive part of a local average of the trace of the elastic stress

Nδ(e(uε))(t, x) =
(
−
∫

Bδ(x)∩Ω

tr E
ε(bε, x̃)e(uε)(t, x̃) dx̃

)+

for all x ∈ Ω and t ∈ (0, T ),

where δ > 0 is arbitrary fixed and w+ = max{w, 0}.
From a biological point of view the non-local dependence of the chemical reactions on the displacement

gradient is motivated by the fact that pectins are very long molecules and hence cell wall mechanics has a
nonlocal impact on the chemical processes. The positive part in the definition of Nδ(e(uε)) reflects the fact that
extension rather than compression causes the breakage of cross-links.

In the boundary conditions (2.3) we assumed that the flow of calcium ions between the interior of the cell
and the cell wall depends on the displacement gradient, which corresponds to the stress-dependent opening of
calcium channels in the plasma membrane [59].

The assumed dependence of the reaction terms on the local average of the displacement gradient is also
important for the analysis of Model I. The dependence on the local average of the displacement gradient in the
ordinary differential equation for bε allow us to derive an estimate for the L∞-norm of the difference of two
solutions bε,1 and bε,2 in terms of ‖e(uε,1 − uε,2)‖Lq(0,T ;L2(Ω)) for some q ≥ 2, which is important for the proof
of the well-posedness of the coupled system (2.1)–(2.4). The fact that the local average Nδ is independent
of ε is used in the proof of the strong convergence of bε, and hence is important for the homogenization of
the microscopic problem (2.1)–(2.4). However, if we assume diffusion of bε, then a point-wise dependence on
e(uε) can be considered. From a biological point of view the situation where cross-links diffuse corresponds
to a less connected network of calcium-pectin cross-links and, hence, the mechanical stress in the cell wall
will have a point-wise impact on the chemical processes. This motivates the consideration of the following model.

Model II. In the second case we consider (2.1) and (2.4) together with the modified equations for nε and bε,
which include the diffusion of bε and reaction terms depending on E

ε(bε, x)e(uε) instead of its local average{
∂tnε = div(Dn∇nε) + Fn(pε,nε) + Qn(nε, bε, e(uε))

∂tb
ε = div(Db∇bε) +Qb(nε, bε, e(uε))

in (0, T )×Ωε
M . (2.5)

In addition to the boundary conditions in (2.3), we define the boundary conditions for bε:

Db∇bε · ν = 0 on (0, T ) × (Γ ε ∪ ΓI ∪ ΓU ), Db∇bε · ν = −γb b
ε on (0, T ) × ΓE ,

bε a3-periodic in x3.
(2.6)

As an example we can consider Qn(nε, bε, e(uε)) = Q(nε, bε)P (bε, e(uε)), where Q : R
2×R → R

2 is continuously
differentiable and P : R × R

3×3 → R is a positive continuous function given e.g. by

P (bε, e(uε)) = (tr E
ε(bε, x)e(uε))+ . (2.7)
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Notice that in both models, Models I and II, the boundary conditions for nε depend on Nδ(e(uε)), see (2.3),
because the elasticity equations do not provide enough regularity to consider the trace of e(uε) on the boundary
(0, T ) × ΓI .

Next we shall analyse the two microscopic problems: Model I comprised of equations (2.1)–(2.4) and Model II
given by equations (2.1), (2.3)–(2.6). The main difference in the analysis of the two models is related to the
regularity of bε. If we have an ordinary differential equation for bε, then bε has the same regularity with respect
to the spatial variables as the functions in the reaction terms. Whereas in Model II the diffusion term in the
equation for bε in (2.5) ensures higher integrability and spatial regularity of bε.

We adopt the following notations for time-space domains: ΩT = (0, T ) × Ω, Ωε
M,T = (0, T ) × Ωε

M , Γ ε
T =

(0, T )× Γ ε, ΓI,T = (0, T )× ΓI , ΓE,T = (0, T )× ΓE , ΓU ,T = (0, T )× ΓU , ΓEU ,T = (0, T )× (ΓE ∪ ΓU ), and define

W(Ω) = {u ∈ H1(Ω; R3)
∣∣ ∫

Ω

u dx = 0,
∫

Ω

[
(∇u)12 − (∇u)21

]
dx = 0, and u is a3-periodic in x3},

V(Ωε
M ) = {v ∈ H1(Ωε

M )
∣∣ v is a3-periodic in x3}, V(Ω) = {v ∈ H1(Ω)

∣∣ v is a3-periodic in x3}.

By Korn’s second inequality, the L2-norm of the strain

‖u‖W(Ω) = ‖e(u)‖L2(Ω) for all u ∈ W(Ω)

defines a norm on W(Ω), see e.g. [10, 30, 43]. The Korn inequality holds since W(Ω) ∩ R(Ω) = {0} ([43],
Lem. 2.5), where the space of all rigid displacements of Ω

R(Ω) = {r ∈ H1(Ω; R3) | r(x) = d + Wx for x ∈ Ω, d ∈ R
3 and W is a skew matrix}

is the kernel of the symmetric gradient. To show that W(Ω) ∩R(Ω) = {0}, consider r ∈ W(Ω) ∩R(Ω) of the
form r(x) = d + Wx for all x ∈ Ω, where x is viewed as a column vector. It follows from the second condition
in the definition of W(Ω) that W12 = 0. Using the third condition, we have r(0) = r((0, 0, a3)), which yields
W13 = W23 = 0. Finally, since we now know that W is zero, the first condition in W(Ω) implies that d = 0,
and hence r = 0.

For a given measurable set A we use the notation 〈φ1, φ2〉A =
∫
A φ1φ2 dx, where the product of φ1 and φ2 is

the scalar-product if they are vector valued.
By 〈ψ1, ψ2〉V′,V we denote the dual product between ψ1 ∈ L2(0, T ;V(Ωε

M )′) and ψ2 ∈ L2(0, T ;V(Ωε
M )) and

by 〈φ1, φ2〉V′,V(Ω) we denote the dual product between φ1 ∈ L2(0, T ;V(Ω)′) and φ2 ∈ L2(0, T ;V(Ω)).
For some μ > 0 we define Ik

μ = (−μ,+∞)k, with k ∈ N.

Assumption 1.

1. Dj
α and Db are symmetric, with (Dj

αξ, ξ) ≥ dα|ξ|2, (Dbξ, ξ) ≥ db|ξ|2 for all ξ ∈ R
3 and some db, dα > 0,

where α = p, n, j = 1, 2, and γp, γb ≥ 0.
2. Fp : R

2 → R
2 is continuously differentiable in I2

μ, with Fp,1(0, η) = 0, Fp,2(ξ, 0) = 0, Fp,1(ξ, η) ≥ 0, and
|Fp,2(ξ, η)| ≤ g1(ξ)(1 + η) for all ξ, η ∈ R+ and some g1 ∈ C1(R+; R+).

3. Jp : R
2 → R

2 is continuously differentiable in I2
μ, with Jp,1(0, η) ≥ 0, Jp,2(ξ, 0) ≥ 0, |Jp,1(ξ, η)| ≤ γJ(1 + ξ),

and |Jp,2(ξ, η)| ≤ g(ξ)(1 + η) for all ξ, η ∈ R+ and some γJ > 0 and g ∈ C1(R+; R+).
4. Fn : R

4 → R
2 is continuously differentiable in I4

μ, with Fn,1(ξ, 0,η2) ≥ 0, Fn,2(ξ,η1, 0) ≥ 0, and

|Fn,1(ξ,η)| ≤ γ1
F (1 + g2(ξ) + |η|), |Fn,2(ξ,η)| ≤ γ2

F (1 + g2(ξ) + |η|),
for all ξ,η ∈ R

2
+ and some γ1

F , γ
2
F > 0 and g2 ∈ C1(R2

+; R+).
5. Rn : R

3 × R+ → R
2 and Rb : R

3 × R+ → R are continuously differentiable in I3
μ × R+ and satisfy

Rn,1(0, ξ2, η, ζ) ≥ 0, |Rn,1(ξ, η, ζ)| ≤ β1(1 + |ξ| + η)(1 + ζ),
Rn,2(ξ1, 0, η, ζ) ≥ 0, |Rn,2(ξ, η, ζ)| ≤ β2(1 + |ξ| + η)(1 + ζ),

Rb(ξ, 0, ζ) ≥ 0, |Rb(ξ, η, ζ)| ≤ β3(1 + |ξ| + η)(1 + ζ),

for some β1, β2, β3 > 0 and all ξ ∈ R
2
+, η, ζ ∈ R+.
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6. Jn : R
2 → R

2 is continuously differentiable in I2
μ, with Jn,1(0, η) ≥ 0, Jn,2(ξ, 0) ≥ 0, |Jn,1(ξ, η)| ≤ γ1

n(1+ ξ),
and |Jn,2(ξ, η)| ≤ γ2

n(1 + ξ + η) for all ξ, η ∈ R+ and some γ1
n, γ

2
n > 0.

7. G(ξ, η) : R
2 → R

2, with G(ξ, η) = (0, γ1 − γ2η)T for η ∈ R and some γ1, γ2 ≥ 0.
8. The initial conditions p0,n0 ∈ L∞(Ω)2 and b0 ∈ H1(Ω) ∩ L∞(Ω) are non-negative.
9. f ∈ H1(0, T ;L2(ΓE ∪ ΓU))3 and pI ∈ H1(0, T ;L2(ΓI)).
10. EM ∈ C1(R), EF , EM possess major and minor symmetries, i.e. EL,ijkl = EL,klij = EL,jikl = EL,ijlk,

for L = F,M , and there exists ωE > 0 such that EF A · A ≥ ωE|A|2 and EM (ξ)A · A ≥ ωE|A|2 for all
symmetric A ∈ R

3×3 and ξ ∈ R+. There exists γM > 0 such that |EM (ξ)| ≤ γM for all ξ ∈ R+.
11. Qn ∈ C(R3 × R

3×3; R2) and Qb ∈ C(R3 × R
3×3; R) satisfy

Qn,1(0, ξ2, η,A) ≥ 0, Qn,2(ξ1, 0, η,A) ≥ 0, Qb(ξ, 0,A) ≥ 0,
|Qn(ξ, η,A)| + |Qb(ξ, η,A)| ≤ γ1(1 + |A|)(1 + |ξ| + η),
|Qn(ξ, η,A1) − Qn(ξ, η,A2)| + |Qb(ξ, η,A1) −Qb(ξ, η,A2)| ≤ γ2(1 + |ξ| + η)|A1 − A2|,
|Qn(ξ1, η1,A) − Qn(ξ2, η2,A)| ≤ γ3(1 + |A|)(1 + |ξ1| + |ξ2| + |η1| + |η2|)

(
|ξ1 − ξ2| + |η1 − η2|

)
,

|Qb(ξ1, η1,A) −Qb(ξ2, η2,A)| ≤ γ4(1 + |A|)(1 + |ξ1| + |ξ2| + |η1| + |η2|)|η1 − η2|
+ γ5(1 + |ξ1| + |ξ2| + |η1| + |η2|)|ξ1 − ξ2|

for some γl > 0, l = 1, . . . , 5, and all A,A1,A2 ∈ R
3×3, ξ ∈ R

2
+, η ∈ R+, ξj ∈ I2

μ, ηj ∈ I1
μ, j = 1, 2.

Remark 2.1. Notice that for P of the form (2.7) Assumption 1.11 is satisfied if the elasticity tensor for the
cell wall matrix is bounded from above, as in Assumption 1.10. This assumption is not restrictive, since every
biological material will have a maximal possible stiffness.

Remark 2.2. To prove the non-negativity of solutions pε,nε, bε of the systems (2.1), (2.2) or (2.1), (2.5), with
the boundary conditions in (2.3) and (2.6), Lipschitz continuity of the reaction terms and nonlinear functions
in the boundary conditions in an open neighbourhood of zero is needed. However it is sufficient to specify the
growth assumptions only for non-negative values of pε

1, pε
2, nε

1, nε
2, and bε. The non-negativity assumptions on

the nonlinear functions in the reaction terms and boundary conditions ensure the non-negativity of the solutions
of the system. The non-negativity of Fp,1(ξ, η) and the sub-linearity of Jp,1(ξ, η), uniform in η, for all ξ, η ∈ R+,
are used to show the uniform boundedness of pε

1.

Remark 2.3. Notice that the reaction terms and boundary conditions in the model developed in Section 9
satisfy Assumption 1, with Fp(p) = (ReE(p), 0)T , Fn(p,n) = (ReE(p) − 2Rdc(n) − Rdn1,−Rdc(n))T ,
Rn(n, b,Nδ(e(u))) = (2Rb(b)Nδ(e(u)), Rb(b)Nδ(e(u)))T , Rb(n, b,Nδ(e(u))) = Rdc(n) − Rb(b)Nδ(e(u)),
Jp(p) = (Je(〈p1, 1 〉ΩM ), JE(〈p1, 1 〉ΩM ) − ζEp2)T , and Jn(n) = (−γdn1, γc,1 − γc,2n2)T , where p = (ne, nE)T ,
n = (nd, nc)T and b = nb.

Next we give the definitions of weak solutions of both microscopic problems: Models I and II.

Definition 2.4. A weak solution of the microscopic problem (2.1)–(2.4) are functions (pε,nε, bε,uε), such that
uε ∈ L2(0, T ;W(Ω)), bε ∈ H1(0, T ;L2(Ωε

M )), pε,nε ∈ L2(0, T ;V(Ωε
M ))2, ∂tpε, ∂tnε ∈ L2(0, T ;V(Ωε

M)′)2 and
satisfy the equations

〈∂tpε,φp〉V,V′ + 〈Dp∇pε,∇φp〉Ωε
M,T

= −〈Fp(pε),φp〉Ωε
M,T

+
〈
Jp(pε),φp

〉
ΓI,T

−
〈
γp pε,φp

〉
ΓE,T

(2.8)

and

〈∂tnε,φn〉V,V′ + 〈Dn∇nε,∇φn〉Ωε
M,T

=
〈
Fn(pε,nε) + Rn(nε, bε,Nδ(e(uε))),φn

〉
Ωε

M,T

+
〈
Jn(nε),φn

〉
ΓE,T

+
〈
G(nε)Nδ(e(uε)),φn

〉
ΓI,T

(2.9)
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for all φα ∈ L2(0, T ;V(Ωε
M))2, where α = p, n,

∂tb
ε = Rb(nε, bε,Nδ(e(uε))) a.e. in Ωε

M,T , (2.10)
and 〈

E
ε(bε, x)e(uε), e(ψ)

〉
ΩT

= −〈pI ν,ψ〉ΓI,T + 〈f ,ψ〉ΓEU,T (2.11)

for all ψ ∈ L2(0, T ;W(Ω)). Furthermore, pε, nε, and bε satisfy the initial conditions in L2(Ωε
M ), i.e. pε(t, ·) →

p0, nε(t, ·) → n0 in L2(Ωε
M )2, and bε(t, ·) → b0 in L2(Ωε

M ) as t→ 0.

A weak solution of Model II is defined in the following way.

Definition 2.5. A weak solution of the microscopic problem (2.1), (2.3)–(2.6) are functions (pε,nε, bε,uε), such
that uε ∈ L2(0, T ;W(Ω)), pε,nε ∈ L2(0, T ;V(Ωε

M))2, bε ∈ L2(0, T ;V(Ωε
M )), ∂tpε, ∂tnε ∈ L2(0, T ;V(Ωε

M)′)2,
∂tb

ε ∈ L2(0, T ;V(Ωε
M )′) and satisfy the equations (2.8) and (2.11), and

〈∂tnε,φn〉V,V′ + 〈Dn∇nε,∇φn〉Ωε
M,T

= 〈Fn(pε,nε) + Qn(nε, bε, e(uε)),φn〉Ωε
M,T

+ 〈Jn(nε),φn〉ΓE,T

+
〈
G(nε)Nδ(e(uε)),φn

〉
ΓI,T

,

〈∂tb
ε, φb〉V,V′ + 〈Db∇bε,∇φb〉Ωε

M,T
=
〈
Qb(nε, bε, e(uε)), φb

〉
Ωε

M,T

− 〈γb b
ε, φb〉ΓE,T ,

(2.12)

for all φn ∈ L2(0, T ;V(Ωε
M))2, φb ∈ L2(0, T ;V(Ωε

M )). Furthermore, pε, nε, and bε satisfy the initial conditions
in L2(Ωε

M )2 and L2(Ωε
M ), respectively.

3. Formulation of main results

The main results of the paper are the establishment of the existence and uniqueness results for both of the
microscopic problems and the rigorous derivation of the macroscopic equations using homogenization techniques.

To show the well-posedness of the microscopic problems we consider first the system of linear elasticity for a
given bε and the reaction-diffusion system for a given displacement uε. The Lax–Milgram theorem is used to show
the existence of a solution of the problem (2.4) for a given bε, whereas the Galerkin method and the Schauder
fixed-point theorem are applied to prove the well-posedness of both systems (2.1)–(2.3) and (2.1), (2.3), (2.5),
(2.6) for a given uε. Then we apply the Banach fixed-point theorem to show the existence and uniqueness of a
weak solution of the coupled system. Because of quadratic non-linearities the proof of the fixed-point argument
is non-standard, and the main difficulty is in deriving a contraction inequality involving the L∞-norm of bε.

In the case of Model I (no diffusion term in the equation for bε) the dependence of the reaction term in the
equation for bε on a local average of E

ε(bε, x)e(uε) is important for the derivation of a contraction inequality.
For the proof of the strong convergence of bε it is crucial that the average in Nδ(e(uε)) is independent of ε.

The regularity of bε and delicate estimates for the terms Qn(nε, bε, e(uε)) and Qb(nε, bε, e(uε)) are used
to prove the existence of a unique solution of Model II. To derive the macroscopic equations for the prob-
lem (2.1), (2.3)–(2.6) we prove the strong two-scale convergence of e(uε). More specifically, the strong two-
scale convergence of e(uε) is needed to pass to the limit in the nonlinear functions Qn(nε, bε, e(uε)) and
Qb(nε, bε, e(uε)). Recursive estimations of the Lp-norms, for all p ≥ 2, are used to derive a contraction in-
equality in L∞(0, T ;L∞(Ωε

M )). This method is also applied to show the boundedness of nε and bε, although
other methods can also be used to derive the L∞-estimates for nε and bε, see e.g. [8, 32, 37]. The uniform in ε
boundedness of pε, nε and bε is used in the proof of the strong two-scale convergence of e(uε).

Theorem 3.1. Under Assumption 1 there exists a unique non-negative weak solution of the microscopic
Model I, (2.1)–(2.4), satisfying the a priori estimates

‖uε‖L∞(0,T ;W(Ω)) + ‖∂tuε‖L2(0,T ;W(Ω)) ≤ C,

‖bε‖W 1,∞(0,T ;L∞(Ωε
M )) ≤ C,

‖pε‖L∞(0,T ;L∞(Ωε
M )) + ‖∇pε‖L2(Ωε

M,T ) + ‖nε‖L∞(0,T ;L∞(Ωε
M )) + ‖∇nε‖L2(Ωε

M,T ) ≤ C,

‖ϑhp
ε − pε‖L2(Ωε

M,T−h) + ‖ϑhn
ε − nε‖L2(Ωε

M,T−h) ≤ Ch1/4,

(3.1)

for all h > 0, where ϑhv(t, x) = v(t+ h, x) for (t, x) ∈ (0, T − h]×Ωε
M and the constant C is independent of ε.
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A similar result also holds for the Model II. The main difference in the proof of the well-posedness results for
both of the microscopic problems (Models I and II) is in the derivation of a priori estimates.

Theorem 3.2. Under Assumption 1 there exists a unique non-negative weak solution of the microscopic
Model II, (2.1), (2.3)–(2.6), satisfying the a priori estimates

‖uε‖L∞(0,T ;W(Ω)) ≤ C, (3.2)

‖pε‖L∞(0,T ;L∞(Ωε
M )) + ‖∇pε‖L2(Ωε

M,T ) + ‖nε‖L∞(0,T ;L∞(Ωε
M )) + ‖∇nε‖L2(Ωε

M,T ) ≤ C,

‖bε‖L∞(0,T ;L∞(Ωε
M )) + ‖∇bε‖L2(Ωε

M,T ) ≤ C,

‖ϑhp
ε − pε‖L2(Ωε

M,T−h) + ‖ϑhn
ε − nε‖L2(Ωε

M,T−h) + ‖ϑhb
ε − bε‖L2(Ωε

M,T−h) ≤ Ch1/4,

(3.3)

for all h > 0, where ϑhv(t, x) = v(t+ h, x) for (t, x) ∈ (0, T − h]×Ωε
M and the constant C is independent of ε.

Using the a priori estimates in Theorems 3.1 and 3.2 and applying the two-scale convergence and the unfolding
method, see e.g. [3,12,13,42], we derive the macroscopic equations for both microscopic models of plant cell wall
biomechanics. First we formulate the unit cell problems, which are obtained by the derivation of the macroscopic
equations and determine the macroscopic elastic and diffusive properties of the plant cell wall.

The macroscopic diffusion coefficients and elasticity tensor are defined by

Dl
α,ij = −

∫
ŶM

[
Dl

α,ij + (Dl
α∇̂ŷvi

α,l)j

]
dŷ for i, j = 1, 2, 3, ∇̂yv

j
α,l =

(
∂y1v

j
α,l, ∂y2v

j
α,l, 0

)T

,

Db,ij = −
∫

ŶM

[
Db,ij + (Db∇̂ŷv

i
b)j

]
dŷ for i, j = 1, 2, 3, ∇̂yv

j
b =

(
∂y1v

j
b , ∂y2v

j
b , 0

)T

,

Ehom,ijkl(b) = −
∫

Ŷ

[
Eijkl(b, y) +

(
E(b, y)êy(wij)

)
kl

]
dŷ, i, j, k, l = 1, 2, 3,

(3.4)

where ŷ = (y1, y2), α = p, n and l = 1, 2, and the functions vj
α, vj

b and wij are solutions of the unit cell problems

divŷ(D̂l
α∇ŷv

j
α,l) = 0 in ŶM , j = 1, 2, 3,

(D̂l
α∇ŷv

j
α,l + D̃l

αbj) · ν = 0 on Γ̂ , vj
α,l Ŷ − periodic, 〈vj

α,l, 1〉ŶM
= 0

(3.5)

for α = n, p, l = 1, 2, and D̂l
α = (Dl

α,ij)i,j=1,2, D̃l
α = (Dl

α,ij)i=1,2,j=1,2,3,

divŷ(D̂b∇ŷv
j
b) = 0 in ŶM , j = 1, 2, 3,

(D̂b∇ŷv
j
b + D̃bbj) · ν = 0 on Γ̂ , vj

b Ŷ − periodic, 〈vj
b , 1〉ŶM

= 0,
(3.6)

where D̂b = (Db,ij)i,j=1,2, D̃b = (Db,ij)i=1,2,j=1,2,3 and

d̂ivy(E(b, y)(êy(wij) + bij)) = 0 in Ŷ ,

〈wij , 1〉Ŷ = 0, wij Ŷ − periodic
(3.7)

for (t, x) ∈ ΩT . Here, bjk = 1
2 (bj ⊗ bk + bk ⊗ bj), where (bj)1≤j≤3 is the canonical basis of R

3. For a vector-
valued function v we denote d̂ivyv = ∂y1v1 + ∂y2v2 and êy(v) is defined in the following way: êy(v)33 = 0,
êy(v)3j = êy(v)j3 = 1

2∂yjv3 for j = 1, 2, and êy(v)ij = 1
2 (∂yivj + ∂yjvi) for i, j = 1, 2.

We have the following macroscopic equations for the microscopic models of plant cell wall biomechanics.
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Theorem 3.3. A sequence of solutions of the microscopic problem (2.1)–(2.4) converges to a solution p,n ∈(
L2(0, T ;V(Ω))∩L∞(0, T ;L∞(Ω))

)2, b ∈ H1(0, T ;L2(Ω))∩L∞(0, T ;L∞(Ω)), and u ∈ L∞(0, T ;W(Ω)) of the
macroscopic equations

div(Ehom(b)e(u)) = 0 in ΩT , (3.8)⎧⎪⎨⎪⎩
∂tp− div(Dp∇p) = −Fp(p)
∂tn− div(Dn∇n) = Fn(p,n) + Rn(n, b,N eff

δ (e(u)))
∂tb = Rb(n, b,N eff

δ (e(u)))
in ΩT , (3.9)

together with the boundary and initial conditions⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dp∇pν = θ−1
M Jp(p) on ΓI,T , Dp∇pν = −θ−1

M γp p on ΓE,T

Dn∇nν = θ−1
M G(n)N eff

δ (e(u)) on ΓI,T , Dn∇nν = θ−1
M Jn(n) on ΓE,T ,

Dp∇pν = 0, Dn∇nν = 0 on ΓU ,T ,

p(0, x) = p0(x), n(0, x) = n0(x) in Ω, b(0, x) = b0(x) in Ω,

Ehom(b)e(u)ν = −pIν on ΓI,T , Ehom(b)e(u)ν = f on ΓE,T ∪ ΓU ,T ,

(3.10)

where θM = |ŶM |/|Ŷ | and

N eff
δ (e(u))(t, x) =

(
−
∫

Bδ(x)∩Ω

tr
(
Ehom(b)e(u)

)
dx̃
)+

for (t, x) ∈ ΩT . (3.11)

Here div(Dp∇p) = (div(D1
p∇p1), div(D2

p∇p2))
T and div(Dn∇n) = (div(D1

n∇n1), div(D2
n∇n2))T , and the

macroscopic diffusion coefficients Dl
α, for α = p, n and l = 1, 2, are defined in (3.4).

The difference between the macroscopic problems for Model I and Model II is reflected in the equations for
n and b.

Theorem 3.4. A sequence of solutions of the microscopic problem (2.1), (2.3)–(2.6) converges to a solution
p,n ∈

(
L2(0, T ;V(Ω)) ∩ L∞(0, T ;L∞(Ω))

)2, b ∈ L2(0, T ;V(Ω)) ∩ L∞(0, T ;L∞(Ω)), and u ∈ L∞(0, T ;W(Ω))
of the macroscopic equations (3.8) and⎧⎪⎨⎪⎩

∂tp− div(Dp∇p) = −Fp(p)
∂tn− div(Dn∇n) = Fn(p,n) + Qeff

n (n, b, e(u))
∂tb− div(Db∇b) = Qeff

b (n, b, e(u))
in ΩT , (3.12)

together with the initial and boundary conditions (3.10) and

Db∇b · ν = 0 on ΓI,T ∪ ΓU ,T , Db∇b · ν = −θ−1
M γb b on ΓE,T . (3.13)

Here Qeff
n (n, b, e(u)) = −

∫
ŶM

Qn(n, b,W(t, x, y)e(u)) dy and Qeff
b (n, b, e(u)) = −

∫
ŶM

Qb(n, b,W(t, x, y)e(u)) dy,
where Wijkl(t, x, y) = δikδjl +

(
êy(wij(t, x, y))

)
kl

and wij being solutions of the unit cell problems (3.7).
The macroscopic diffusion coefficients Dα are defined as in (3.4), with α = n, p, b, where div(Dp∇p) =

(div(D1
p∇p1), div(D2

p∇p2))T and div(Dn∇n) = (div(D1
n∇n1), div(D2

n∇n2))T .

4. A priori estimates and the existence and uniqueness results

for the microscopic Model I

In this section we analyse Model I, i.e. equations (2.1)–(2.4). We split the proof of the existence and uniqueness
results into three steps. First we show that for a given non-negative bε the equations of linear elasticity have a
uniques solution. Next we prove the well-posedness of the problem (2.1)–(2.3) for a given uε. Finally, showing a
contraction inequality for bε in L∞(0, T ;L∞(Ωε

M )) and applying the Banach fixed-point theorem, we conclude
that there exists a unique weak solution of the coupled system.



HOMOGENIZATION OF A SYSTEM OF ELASTIC AND REACTION-DIFFUSION EQUATIONS 603

4.1. Existence and uniqueness of a weak solution uε of the problem (2.4) for a given bε

Lemma 4.1. Let bε,1, bε,2 ∈ L∞(0, T ;L∞(Ωε
M )) be given with bε,1(t, x), bε,2(t, x) ≥ 0 for a.a. (t, x) ∈ Ωε

M,T .
Then there exist uε,j ∈ L∞(0, T ;W(Ω)), with j = 1, 2, satisfying⎧⎪⎨⎪⎩

div (Eε(bε,j , x)e(uε,j)) = 0 in (0, T )×Ω,

(Eε(bε,j , x)e(uε,j))ν = −pIν on (0, T )× ΓI ,

(Eε(bε,j , x)e(uε,j))ν = f on (0, T )× (ΓE ∪ ΓU ),

(4.1)

and the estimates

‖uε,j‖L∞(0,T ;W(Ω)) ≤ C1, j = 1, 2, (4.2)

‖e(uε,1 − uε,2)‖L∞(0,T ;L2(Ω)) ≤ C2‖bε,1 − bε,2‖L∞(0,T ;L∞(Ωε
M )), (4.3)

where the constants C1 and C2 are independent of ε and bε,j, with j = 1, 2.

Proof. Due to the assumptions on E
ε, see Assumption 1.10, the solutions uε,j of (4.1) exist by the Lax–Milgram

Theorem. Taking uε,j as a test function in the weak formulation of (4.1) and using the properties of E
ε and the

non-negativity of bε,j we obtain

ωE‖e(uε,j(t))‖L2(Ω) ≤ σ
[
‖uε,j(t)‖L2(ΓI) + ‖uε,j(t)‖L2(ΓE∪ΓU )

]
+ Cσ

[
‖f(t)‖L2(ΓE∪ΓU ) + ‖pI(t)‖L2(ΓI)

]
for a.a. t ∈ (0, T ), where σ > 0 is arbitrary and Cσ is independent of ε. Applying the second Korn inequality
for uε,j ∈ L∞(0, T ;W(Ω)) and the trace estimate in H1(Ω), and choosing σ > 0 sufficiently small yield the
estimate (4.2).

Taking uε,1−uε,2 as a test function in the weak formulation of (4.1) for j = 1, 2 and subtracting the resulting
equations imply〈

E
ε(bε,1, x) e(uε,1 − uε,2), e(uε,1 − uε,2)

〉
Ω

=
〈(

E
ε(bε,1, x) − E

ε(bε,2, x)
)
e(uε,2), e(uε,1 − uε,2)

〉
Ω
.

Then, using the positive definiteness and regularity of E
ε(bε,1, x) together with the boundedness of e(uε,2) in

L∞(0, T ;L2(Ω)) and of bε,j in L∞(0, T ;L∞(Ωε
M )), where j = 1, 2, we obtain the inequality (4.3). �

4.2. Existence and uniqueness of a weak solution of (2.1)–(2.3) for a given uε

In this subsection we prove that for a given uε the system (2.1)–(2.3) has a unique weak solution. In the
derivation of the a priori estimates, uniform in ε, we shall use the properties of an extension of pε and nε from a
connected perforated domain Ωε

M to Ω. Using classical extension results [1,11], we obtain the following lemma.

Lemma 4.2. There exists an extension vε of vε from W 1,p(Ωε
M ) into W 1,p(Ω), with 1 ≤ p <∞, such that

‖vε‖Lp(Ω) ≤ μ1‖vε‖Lp(Ωε
M ) and ‖∇vε‖Lp(Ω) ≤ μ1‖∇vε‖Lp(Ωε

M ),

where the constant μ1 depends only on Y and YM , and Ωε
M is connected, with perforations (microfibrils) having

empty intersection with ∂Ω or near ∂Ω microfibrils are perpendicular to some parts of ∂Ω. See Section 2 for
the description of the microscopic structure of Ωε

M .

Remark 4.3. Notice that the microfibrils do not intersect the boundaries ΓI , ΓU , and ΓE , and near the bound-
aries (∂Ω \ (ΓI ∪ ΓE ∪ ΓU )) it is sufficient to extend pε and nε by reflection in the directions parallel to the
corresponding boundary. Thus, classical extension results [11, 49] apply.
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For vε ∈ Lp(0, T ;W 1,p(Ωε
M ))∩W 1,p(0, T ;Lp(Ωε

M )), define v̂ε(·, t) = vε(·, t) almost everywhere in (0, T ). Since
the extension operator is linear and bounded and Ωε

M does not depend on t, we have v̂ε ∈ Lp(0, T ;W 1,p(Ω)) ∩
W 1,p(0, T ;Lp(Ω)) and

‖v̂ε‖Lp(ΩT ) ≤ μ1‖vε‖Lp(Ωε
M,T ), ‖∂tv̂

ε‖Lp(ΩT ) ≤ μ1‖∂tv
ε‖Lp(Ωε

M,T ), and ‖∇v̂ε‖Lp(ΩT ) ≤ μ1‖∇vε‖Lp(Ωε
M,T ).

In the sequel, we shall identify pε and nε with their extensions.

Theorem 4.4. Under Assumption 1 and for uε ∈ L∞(0, T ;W(Ω)) such that

‖uε‖L∞(0,T ;W(Ω)) ≤ C, (4.4)

where the constant C is independent of ε, there exists a unique non-negative weak solution (pε,nε, bε) of the
microscopic problem (2.1)–(2.3) satisfying the a priori estimates

‖pε‖L∞(0,T ;L∞(Ωε
M )) + ‖∇pε‖L2(Ωε

M,T ) + ‖nε‖L∞(0,T ;L∞(Ωε
M )) + ‖∇nε‖L2(Ωε

M,T ) ≤ C,

‖bε‖W 1,∞(0,T ;L∞(Ωε
M )) ≤ C,

(4.5)

where the constant C is independent of ε.

Proof. To show the existence of a solution of (2.1)–(2.3) for a given uε ∈ L∞(0, T ;W(Ω)), we shall apply the
Schauder and Schaefer fixed-point theorems and the Galerkin method. First we consider the subsystem for pε.

For p̃ε
2 ∈ L2(0, T ;Hς(Ωε

M )) with 0 ≤ p̃ε
2(t, x) ≤ A for (t, x) ∈ Ωε

M,T and some constant A > 0, and
ς ∈ (1/2, 1), we consider⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tpε = div(Dp∇pε) − F̃p(pε) in Ωε
M,T ,

Dp∇pε ν = J̃p(pε) on ΓI,T , Dp∇pε ν = −γp pε on ΓE,T ,

pε a3-periodic in x3, Dp∇pε ν = 0 on ΓU ,T ∪ Γ ε
T ,

pε(0, x) = p0(x), in Ωε
M ,

(4.6)

where F̃p(pε) = (Fp,1(pε
1, p̃

ε
2), Fp,2(pε))T and J̃p(pε) = (Jp,1(pε

1, p̃
ε
2), Jp,2(pε))T . Applying the Galerkin method

and using the estimates similar to (4.7) and (4.10), together with the boundedness of pε
1 when considering the

problem for pε
2, we obtain the existence of a unique weak solution of the problem (4.6).

First, we use the theory of positive invariant regions to show the non-negativity of the solutions of (4.6). The
assumptions on Fp and Jp ensure

Fp,1(0, p̃
ε
2) = 0, Jp,1(0, p̃

ε
2) ≥ 0, for all p̃ε

2 ≥ 0,
Fp,2(pε

1, 0) = 0, Jp,2(pε
1, 0) ≥ 0, for all pε

1 ≥ 0

and Fp, Jp are Lipschitz continuous in (−μ,M)2 for some μ > 0 and any 0 < M < +∞. Thus, the non-
negativity of the initial conditions p0,1 and p0,2 and the Theorem on positive invariant regions ([51], Thm. 2),
with K1(pε) = −pε

1 and K2(pε) = −pε
2, imply pε

j(t, x) ≥ 0 for (t, x) ∈ Ωε
M,T and j = 1, 2.

Considering pε
1 as a test function in the weak formulation of the equation for pε

1 in (4.6) and using the
non-negativity of pε

1 and p̃ε
2, along with the assumptions on Jp and Fp, we obtain the estimate

‖pε
1‖L∞(0,T ;L2(Ωε

M )) + ‖pε
1‖L2(0,T ;H1(Ωε

M )) ≤ C, (4.7)

where the constant C is independent of ε. The estimates for the boundary terms are obtained by using the
extension of pε

1 from Ωε
M to Ω, see Lemma 4.2, and the trace inequality

‖pε
1‖2

L2(ΓI) + ‖pε
1‖2

L2(ΓE) ≤ Cσ‖pε
1‖2

L2(Ω) + σ‖∇pε
1‖2

L2(Ω) ≤ μ1

[
Cσ‖pε

1‖2
L2(Ωε

M ) + σ‖∇pε
1‖2

L2(Ωε
M )

]
, (4.8)

where σ > 0 is arbitrary, the constant Cσ is independent of ε, and μ1 is as in Lemma 4.2.
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Next, we show the boundedness of pε
1. We define Φε

β as the solution of the linear problem⎧⎪⎨⎪⎩
∂tΦ

ε
β = div(D∇Φε

β) in Ωε
M,T , Φε

β(0, x) = 0 in Ωε
M ,

D∇Φε
β · ν = β(1 + Φε

β) on ΓI,T , D∇Φε
β · ν = 0 on Γ ε

T ,

D∇Φε
β · ν = 0 on ΓEU ,T Φε

β a3-periodic in x3,

(4.9)

where D is symmetric and (Dξ, ξ) ≥ d|ξ|2 for all ξ ∈ R
3 and some d > 0, and β ≥ 0. In the same way as in [37],

using the extension of Φε
β from Ωε

M to Ω we obtain

‖Φε
β‖L∞(0,T ;L∞(Ωε

M )) ≤ C, ‖Φε
β‖L∞(0,T ;L∞(Ω)) ≤ C,

where Φε
β denotes the extension of Φε

β from Ωε
M,T to ΩT and the constant C is independent of ε. We also notice

that Φε
β ≥ 0 in Ωε

M,T . Considering p̂ε
1 = pε

1 − Φε
β1

, where Φε
β1

is the solution of the problem (4.9) with D = D1
p

and β = β1, where β1 = γJ (A1 + 1) with A1 ≥ ‖p0,1‖L∞(Ω) and γJ is as in the Assumption 1.3, and taking
(p̂ε

1 −A1)+ as a test function yield

∂t‖(p̂ε
1 −A1)+‖2

L2(Ωε
M ) + 2dp‖∇(p̂ε

1 −A1)+‖2
L2(Ωε

M ) ≤ 2γJ‖(p̂ε
1 −A1)+‖2

L2(ΓI).

Using the properties of the extension of (pε
1−Φε

β1
−A1)+ from Ωε

M to Ω and the trace estimate, similar to (4.8),
and applying the Gronwall inequality we conclude pε

1(t, x) ≤ A1 + ‖Φε
β1
‖L∞(Ωε

M,T ) for a.a. (t, x) ∈ Ωε
M,T .

Using the boundedness of pε
1 and the non-negativity of pε

1 and pε
2, along with the assumptions on Jp and

Fp, and considering pε
2 as a test function in the weak formulation of the equation for pε

2 in (4.6) yield

‖pε
2‖L∞(0,T ;L2(Ωε

M )) + ‖pε
2‖L2(0,T ;H1(Ωε

M )) ≤ C, (4.10)

where the constant C is independent of ε. The boundary terms are estimated using the inequality similar
to (4.8). In the same way as (4.7) and (4.10) we also obtain the uniform estimates for ‖pε‖L2(0,T ;H1(Ωε

M )) and
‖pε‖L∞(0,T ;L2(Ωε

M )), with pε
2 instead of p̃ε

2 in (4.6).
To show that pε

2 is bounded, we consider p̂ε
2 = pε

2 − Φε
β2

, where Φε
β2

is the solution of (4.9) with D = D2
p

and β = β2 with β2 ≥ (A2 + 1)‖g(pε
1)‖L∞(ΓI,T ), where A2 ≥ ‖p0,2‖L∞(Ω) and the function g is as in the

Assumption 1. Notice that the boundedness of pε
1 in Ωε

M,T together with pε
1 ∈ L2(0, T ;H1(Ωε

M )) ensures the
boundedness of pε

1 on ΓI,T , see e.g. [21].
Taking (p̂ε

2 − A2eMt)+, with M such that A2M ≥
[
A2 + 1 + ‖Φε

β2
‖L∞(Ωε

M,T )

]
‖g1(pε

1)‖L∞(Ωε
M,T ), where g1 is

introduced in Assumption 1, as a test function in the weak formulation of the equation for pε
2 in (4.6) and using

the assumptions on Fp,2 and Jp,2 and the properties of the extension of (pε
2 −Φε

β2
−A2eMt)+, and applying the

Gronwall inequality yield pε
2(t, x) ≤ A2eMT +‖Φε

β2
‖L∞(Ωε

M,T ) for a.a. (t, x) ∈ Ωε
M,T . Since A in the assumptions

on p̃ε
2 is an arbitrary constant, it can be chosen so that A2eMT + ‖Φε

β2
‖L∞(Ωε

M,T ) ≤ A.
From equations (4.6) and the estimates for pε in L2(0, T ;V(Ωε

M ))2 shown above, we obtain the boundedness
of ∂tpε in L2(0, T ;V(Ωε

M )′)2 for every fixed ε.
To show the existence of a solution pε of (2.1) with the corresponding boundary and initial conditions in (2.3),

we consider
X = {n ∈ L2(0, T ;Hς(Ωε

M )) | 0 ≤ n(t, x) ≤ A for (t, x) ∈ Ωε
M,T },

with ς ∈ (1/2, 1), and define an operator K1 : X → X , where pε
2 = K1(p̃

ε
2) is given as a solution of the

problem (4.6). The continuity of the functions Fp and Jp, along with the a priori estimates for pε and the
compact embedding of L2(0, T ;V(Ωε

M )) ∩ H1(0, T ;V(Ωε
M)′) in L2(0, T ;Hς(Ωε

M )), with ς < 1, see e.g. [33],
ensures the continuity of K1. Utilizing the a priori estimates and the compact embedding of L2(0, T ;V(Ωε

M))∩
H1(0, T ;V(Ωε

M )′) in L2(0, T ;Hς(Ωε
M )) again, and applying the Schauder fixed-point theorem yield the existence
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of a non-negative, bounded weak solution pε of the equations (2.1) with boundary and initial conditions in (2.3),
for every fixed ε.

To show the existence of a weak solution of the equations (2.2) for (nε, bε), we first consider for a given
ñε

2 ∈ L2(0, T ;Hς(Ωε
M )) ∩ L∞(0, T ;L∞(Ωε

M )) with ñε
2(t, x) ≥ 0 for (t, x) ∈ Ωε

M,T , where ς ∈ (1/2, 1),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tnε = div(Dn∇nε) + F̃n(pε,nε) + R̃n(nε, bε,Nδ(e(uε))) in Ωε
M,T ,

∂tb
ε = Rb(nε

1, ñ
ε
2, b

ε,Nδ(e(uε))) in Ωε
M,T ,

Dn∇nε ν = G(nε)Nδ(e(uε)) on ΓI,T , Dn∇nε ν = J̃n(nε) on ΓE,T ,

nε a3-periodic in x3, Dn∇nε ν = 0 on ΓU ,T ∪ Γ ε
T ,

nε(0, x) = n0(x), bε(0, x) = b0(x), in Ωε
M ,

(4.11)

where
R̃n(nε, bε,Nδ(e(uε))) = (Rn,1(nε

1, ñ
ε
2, b

ε,Nδ(e(uε))), Rn,2(nε, bε,Nδ(e(uε))))T ,

F̃n(pε,nε) = (Fn,1(pε,nε
1, ñ

ε
2), Fn,2(pε,nε))T , J̃n(nε) = (Jn,1(nε

1, ñ
ε
2), Jn,2(nε))T .

Similar to the problem (4.6), applying the Galerkin method and using the estimates similar to (4.15), we obtain
the existence of a unique weak solution of (4.11).

To show the non-negativity of nε
1, nε

2, and bε, we define the reaction terms in equations (4.11) by

fn,1(nε
1, b

ε) = Fn,1(pε,nε
1, ñ

ε
2) +Rn,1(nε

1, ñ
ε
2, b

ε,Nδ(e(uε))),

fn,2(nε, bε) = Fn,2(pε,nε) +Rn,2(nε, bε,Nδ(e(uε))),
fb(nε

1, b
ε) = Rb(nε

1, ñ
ε
2, b

ε,Nδ(e(uε))).

Using the properties of the functions Fn, Rn, Rb, and EM and the non-negativity of ñε
2 and pε

j , j = 1, 2, we
obtain that fn,1, fb and fn,2 are Lipschitz continuous in (−μ,M)2 and (−μ,M)3, respectively, for some μ > 0
and any 0 < M < +∞ and

fn,1(0, bε) ≥ 0, fb(nε
1, 0) ≥ 0, fn,2(nε

1, 0, b
ε) ≥ 0 for nε

1 ≥ 0, bε ≥ 0.

The assumptions on Jn, G, and EM ensure that the boundary terms are Lipschitz continuous in (−μ,M)2 and
(−μ,M)3, respectively. Moreover, Jn,1(0, ñ

ε
2) ≥ 0, Jn,2(nε

1, 0) ≥ 0 and Nδ(A)G2(nε
1, 0) ≥ 0 for all nε

1 ≥ 0 and
A ∈ R

3×3.
Applying the Theorem on positive invariant regions ([51], Thm. 2), with K1(nε, bε) = −nε

1, K2(nε, bε) = −nε
2,

and K3(nε, bε) = −bε and using the non-negativity of the initial data yield nε
1(t, x) ≥ 0, nε

2(t, x) ≥ 0, and
bε(t, x) ≥ 0 for (t, x) ∈ Ωε

M,T .
Next, we derive estimates for the solutions of (4.11). Taking nε as a test function in the weak formulation of

the equation for nε in (4.11) yields

∂t‖nε‖2
L2(Ωε

M ) + ‖∇nε‖2
L2(Ωε

M ) ≤ C1

[
1 + ‖g2(pε)‖2

L2(Ωε
M ) + ‖nε‖2

L2(Ωε
M ) + ‖ñε

2‖2
L2(Ωε

M )

]
+ C2

[
1 + ‖Nδ(e(uε))‖L∞(Ω)

][
1 + ‖nε‖L2(Ωε

M ) + ‖ñε
2‖L2(Ωε

M ) + ‖bε‖L2(Ωε
M )

]
‖nε‖L2(Ωε

M ).

Notice that the estimate (4.4) for uε, and Assumption 1.10 ensure

‖Nδ(e(uε))(t)‖L∞(Ω) ≤ Cδ−3/2‖uε‖L∞(0,T ;W(Ω)) ≤ Cδ (4.12)

for a.a. t ∈ [0, T ], where the constants C and Cδ are independent of ε. The boundary integrals are estimated as∣∣〈Jn,1(nε
1, ñ

ε
2),n

ε
1

〉
ΓE

∣∣ ≤ Cσ(1 + ‖nε
1‖2

L2(Ωε
M )) + σ‖∇nε

1‖2
L2(Ωε

M ),∣∣〈Nδ(e(uε))G2(nε),nε
2

〉
ΓI

∣∣+ ∣∣〈Jn,2(nε),nε
2

〉
ΓE

∣∣
≤ Cσ

(
δ−3‖uε‖2

L∞(0,T ;W(Ω)) + ‖nε‖2
L2(Ωε

M ) + 1
)

+ σ‖∇nε‖2
L2(Ωε

M ),

(4.13)
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where σ > 0 is arbitrary fixed. Here we used the properties of the extension of nε, see Lemma 4.2, and estimates
similar to (4.8). Testing the equation for bε in (4.11) with bε and using the assumptions on Rb and (4.12), yield

∂t‖bε‖2
L2(Ωε

M ) ≤ Cδ

[
1 + ‖bε‖2

L2(Ωε
M ) + ‖nε

1‖2
L2(Ωε

M ) + ‖ñε
2‖2

L2(Ωε
M )

]
.

Using the boundedness of pε and the regularity of the initial data, and applying the Gronwall inequality imply

‖bε‖L∞(0,T ;L2(Ωε
M )) + ‖nε‖L∞(0,T ;L2(Ωε

M )) + ‖∇nε‖L2(Ωε
M,T ) ≤ C

[
1 + ‖ñε

2‖L2(Ωε
M,T )

]
, (4.14)

where C is independent of ε. Considering nε
2 instead of ñε

2 in (4.11), in the same way as (4.14), we obtain

‖bε‖L∞(0,T ;L2(Ωε
M )) + ‖nε‖L∞(0,T ;L2(Ωε

M )) + ‖∇nε‖L2(Ωε
M,T ) ≤ C, (4.15)

where C is independent of ε.
The estimates for nε in L∞(0, T ;L2(Ωε

M )) and L2(0, T ;H1(Ωε
M )) and for bε in L∞(0, T ;L2(Ωε

M )) and the
weak formulation of equations (4.11) ensure the boundedness of ∂tnε in L2(0, T ;V(Ωε

M )′) and ∂tb
ε in L2(Ωε

M,T ),
for every fixed ε > 0.

Next we show the boundedness of nε and bε. For each fixed ε > 0, we have that nε are bounded as solutions
of reaction-diffusion equations in a Lipschitz domain Ωε

M with the reaction terms in L∞(0, T ;L2(Ωε
M )) (see

e.g. [32], Thm. III.7.1 generalized to Robin boundary conditions). To show the boundedness of nε
1 and nε

2

uniform in ε we use the iteration Lemma 3.2 in Alikakos [2]. We derive the L∞-estimates considering nε
2 instead

of ñε
2 in (4.11). The derivation of the L∞-estimates for nε and bε with ñε

2 in (4.11) follows along the same lines,
with the only difference that on the right-hand side of (4.17) and (4.18) we will have additionally the term
‖ñε

2‖2
L∞(0,T ;L∞(Ωε

M )). Since nε
1 and nε

2 are bounded for each fixed ε > 0, we have that |nε|p−2nε, with p ≥ 2,
is an admissible test function. Taking |nε|p−2nε, with p = 2κ, κ = 1, 2, 3, . . ., as a test function in the weak
formulation of the equation for nε in (4.11) and using (4.12), we obtain

∂t‖nε‖p
Lp(Ωε

M ) + 2
p− 1
p

‖∇|nε|
p
2 ‖2

L2(Ωε
M ) ≤ Cp

1 + p(p− 1)‖nε‖p
Lp(Ωε

M )

+ C2

[
1 + δ−

3
2 ‖uε‖L∞(0,τ ;W(Ω))

][
(p− 1)‖nε‖p

Lp(Ωε
M ) + ‖bε‖p

Lp(Ωε
M ) + Cp

3

]
+ Cp

4 δ
− 3p

2 ‖uε‖p
L∞(0,τ ;W(Ω))

for τ ∈ (0, T ]. Here, the boundary terms are estimated by applying Lemma 4.2 to |nε|p/2 together with the
trace inequality for H1-functions:∣∣〈Nδ(e(uε))G(nε), |nε|p−2nε

〉
ΓI,τ

∣∣+ ∣∣〈Jn(nε), |nε|p−2nε
〉

ΓE,τ

∣∣
≤ (p− 1)

[
Cσ‖nε‖p

Lp(Ωτ ) + (σ/p2)‖∇|nε|
p
2 ‖2

L2(Ωτ )

]
+ Cp

1/p+ (Cp
2/p)δ

− 3p
2 ‖uε‖p

L∞(0,τ ;W(Ω))

≤ μ1(p− 1)
[
Cσ‖nε‖p

Lp(Ωε
M,τ ) + (σ/p2)‖∇|nε|

p
2 ‖2

L2(Ωε
M,τ )

]
+ (Cp/p)

[
δ−

3p
2 ‖uε‖p

L∞(0,τ ;W(Ω)) + 1
]
,

(4.16)

where σ > 0 is arbitrary and τ ∈ (0, T ], and the constants C, C1, C2, Cσ, and μ1 are independent of ε. Applying
the extension Lemma 4.2 to |nε|p/2 and using the Gagliardo–Nirenberg inequality [6] imply

‖nε‖p
Lp(Ωε

M ) ≤ ‖|nε|
p
2 ‖2

L2(Ω) ≤
σ

p2
‖∇|nε|

p
2 ‖2

L2(Ω) + Cσp
3‖|nε|

p
2 ‖2

L1(Ω)

≤ μ1

[ σ
p2

‖∇|nε|
p
2 ‖2

L2(Ωε
M ) + Cσp

3‖|nε|
p
2 ‖2

L1(Ωε
M )

]
,

where σ > 0 is arbitrary, the constant Cσ is independent of ε, and μ1 is as in Lemma 4.2. Thus we obtain

‖nε(τ)‖p
Lp(Ωε

M ) +
p− 1
p

‖∇|nε|
p
2 ‖2

L2(Ωε
M,τ ) ≤ p5C1

[
sup
(0,τ)

‖nε‖
p
2

L
p
2 (Ωε

M )

]2
+ Cp

2

[
δ−

3p
2 ‖uε‖p

L∞(0,τ ;W(Ω)) + ‖bε‖p
L∞(0,τ ;Lp(Ω)) + 1

]
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for τ ∈ (0, T ]. Then, using similar recursive iterations as in ([2], Lem. 3.2), we obtain

‖nε(τ)‖p
Lp(Ωε

M ) ≤ Cp22(p−1)210p[1 + ‖uε‖p
L∞(0,τ ;W(Ω)) + ‖bε‖p

L∞(0,τ ;Lp(Ω))]

for τ ∈ (0, T ] and C ≥ 1. Applying the pth root, and taking p→ ∞, yield

‖nε‖2
L∞(0,τ ;L∞(Ωε

M )) ≤ C1

[
1 + ‖bε‖2

L∞(0,τ ;L∞(Ωε
M ))

]
, (4.17)

for all τ ∈ (0, T ] and C1 is independent of ε. Multiplying the equation for bε in (4.11) with bε, integrating over
(0, τ), using the assumptions on Rb, and considering the supremum over Ωε

M give

‖bε(τ)‖2
L∞(Ωε

M ) ≤ ‖b0‖2
L∞(Ωε

M ) + τ C2

[
1 + ‖nε‖2

L∞(0,τ ;L∞(Ωε
M )) + ‖bε‖2

L∞(0,τ ;L∞(Ωε
M ))

]
(4.18)

for τ ∈ (0, T ] and C2 is independent of ε. Using (4.17) and iterating over time intervals of length 1/(2C2(C1 +1))
yield the estimates for bε and, hence, for nε in L∞(0, T ;L∞(Ωε

M )), independent of ε.
The boundedness of Nδ(e(uε)), nε and bε ensures the estimate for ‖∂tb

ε‖L∞(0,T ;L∞(Ωε
M )), independent of ε.

To show the existence of a weak solution (nε, bε) of the equations (2.2) with the boundary and initial conditions
in (2.3), we consider the operator K2 : X → X defined by nε

2 = K2(ñ
ε
2), where nε

2 solves the problem (4.11)
and X = {n ∈ L2(0, T ;Hς(Ωε

M )) ∩ L∞(0, T ;L∞(Ωε
M )) | n(t, x) ≥ 0 for (t, x) ∈ Ωε

M,T }, with ς ∈ (1/2, 1). The
continuity of K2 is ensured by the continuity of Fn, Rn, Rb, Jn, and G, the a priori estimates for nε and bε, the
compact embedding of L2(0, T ;H1(Ωε

M ))∩H1(0, T ;V(Ωε
M)′) in L2(0, T ;Hς(Ωε

M )), for ς < 1, and the estimate

sup
(0,T )

‖bε,1 − bε,2‖L2(Ωε
M ) ≤ Cδ

[∥∥nε,1 − nε,2‖L2(Ωε
M,T ) +

∥∥ñε,1
2 − ñε,2

2 ‖L2(Ωε
M,T )

]
. (4.19)

The estimate (4.19) is obtained by considering the difference of equation (4.11) for bε,1 and bε,2, testing by
bε,1 − bε,1, and using the properties of Rb. Then applying the Schaefer fixed-point theorem and the compact
embedding of L2(0, T ;H1(Ωε

M )) ∩ H1(0, T ;V(Ωε
M)′) in L2(0, T ;Hς(Ωε

M )) yields the existence of a fixed point
of K2.

Hence, combining this result with the existence result for pε, ensures the existence of a weak solution of (2.1)–
(2.3). Considering the equations for the difference of two solutions pε,1 − pε,2, nε,1 − nε,2, and bε,1 − bε,2, and
using the uniform boundedness of pε,l

j , nε,l
j and bε,l, with j = 1, 2 and l = 1, 2, we obtain the uniqueness of a

weak solution of the problem (2.1)–(2.3) for a given uε ∈ L∞(0, T ;W(Ω)). �

Remark 4.5. The proof of Theorem 4.4 follows along the same lines if Jp is a function of
∫

Ωε
M

pεdx instead
of pε.

4.3. Existence of a unique solution of the coupled system (2.1)–(2.4).
Proof of Theorem 3.1

Considering the estimates in Lemma 4.1, to prove the well-posedness of the coupled system we shall derive
estimates for ‖b̃ε,j‖L∞(0,T ;L∞(Ωε

M )) in terms of ‖e(ũε,j)‖L∞(0,T ;L2(Ω)), where b̃ε,j = bε,j − bε,j+1 and ũε,j =
uε,j − uε,j+1 are the differences of two fixed-point iterations.

Proof of Theorem 3.1. We prove the existence of a unique weak solution of the coupled system by applying a
contraction argument. We define the operatorK : L∞(0, T ;L∞(Ωε

M )) → L∞(0, T ;L∞(Ωε
M )) by K(bε,j−1) = bε,j ,

where bε,j is a solution of the system (2.1)–(2.4) with bε in (2.4) replaced by bε,j−1 and with uε in equations (2.2)
and the boundary conditions in (2.3) replaced by uε,j .

For a given non-negative bε,1 ∈ L∞(0, T ;L∞(Ωε
M )), satisfying the initial condition in (2.3), by Lemma 4.1

there exists a unique uε,2 ∈ L∞(0, T ;W(Ω)) satisfying (2.4), with bε replaced by bε,1. Then for uε,2 ∈
L∞(0, T ;W(Ω)), by Theorem 4.4 there are unique pε,2,nε,2 ∈ (L2(0, T ;V(Ωε

M )) ∩ L∞(0, T ;L∞(Ωε
M )))2,

bε,2 ∈ W 1,∞(0, T ;L∞(Ωε
M )) satisfying (2.1)–(2.3), and pε,2

l ,nε,2
l , bε,2 are non-negative, with l = 1, 2. Iterating

for j = 3, 4, . . ., we obtain (pε,j ,nε,j , bε,j ,uε,j), for j ≥ 3.
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For each j ≥ 2, similar to (4.2) and (4.5), we obtain a priori estimates for uε,j in L∞(0, T ;W(Ω)), for
pε,j ,nε,j in

(
L2(0, T ;H1(Ωε

M )) ∩ L∞(0, T ;L∞(Ωε
M ))

)2 and for bε,j in W 1,∞(0, T ;L∞(Ωε
M )), independently of

bε,j−1.
To derive a contraction inequality in L∞(0, T ;L∞(Ωε

M )) we first take φn = |ñε,j |p−2ñε,j , where p = 2κ, with
κ = 1, 2, 3, . . ., and ñε,j = nε,j −nε,j+1, as a test function in the difference of the equations for nε,j and nε,j+1.
For the boundary integrals in the equations for ñε,j we have, using the trace inequality,〈

Nδ(e(uε,j))
[
G(nε,j) − G(nε,j+1)

]
, |ñε,j |p−2ñε,j〉

ΓI
≤ 0,〈

Jn(nε,j) − Jn(nε,j+1), |ñε,j |p−2ñε,j〉
ΓE

≤ Cσp ‖ñε,j‖p
Lp(Ωε

M ) + σ(p− 1)/p2 ‖∇|ñε,j |
p
2 ‖2

L2(Ωε
M )

and ∣∣∣〈G(nε,j+1)
[
Nδ(e(uε,j)) −Nδ(e(uε,j+1))

]
, |ñε,j |p−2ñε,j〉

ΓI

∣∣∣ ≤ Cσ(p− 1)‖ñε,j
2 ‖p

Lp(Ωε
M )

+σ(p− 1)/p2 ‖∇|ñε,j
2 |

p
2 ‖2

L2(Ωε
M ) + (C/p) ‖Nδ(e(uε,j)) −Nδ(e(uε,j+1))‖p

Lp(Ω),

with an arbitrary σ > 0. Then, the uniform boundedness of nε,j and bε,j and the Gagliardo–Nirenberg inequality
applied to |ñε,j |p/2 ensure

∂t‖ñε,j‖p
Lp(Ωε

M ) + 2
p− 1
p

‖∇|ñε,j |
p
2 ‖2

L2(Ωε
M ) ≤ C

[
1 + ‖Nδ(e(uε,j))‖L∞(Ω)

][
p5‖ñε,j‖p

L
p
2 (Ωε

M )

+‖b̃ε,j‖p
Lp(Ωε

M ) + ‖Nδ(e(uε,j)) −Nδ(e(uε,j+1))‖p
Lp(Ω)

]
.

Considering iterations in p as in ([2], Lem. 3.2) with p = 2κ and κ = 2, 3, . . . , we obtain

‖ñε,j(τ)‖p
Lp(Ωε

M ) ≤ Cp
δ 210p22(p−1)

[
‖e(ũε,j)‖p

L∞(0,τ ;L2(Ω)) + ‖b̃ε,j‖p
L∞(0,τ ;Lp(Ωε

M ))

]
for τ ∈ (0, T ] and Cδ ≥ 1. Here we also used the estimate

‖Nδ(e(uε,j)) −Nδ(e(uε,j+1))‖p
Lp(Ω) ≤ Cpδ−

3p
2
[
‖e(ũε,j)‖p

L2(Ω) + ‖b̃ε,j‖p
Lp(Ωε

M )

]
.

Taking the pth root, and considering p→ ∞ yield

‖ñε,j‖L∞(0,τ ;L∞(Ωε
M )) ≤ Cδ

[
‖e(ũε,j)‖L∞(0,τ ;L2(Ω)) + ‖b̃ε,j‖L∞(0,τ ;L∞(Ωε

M ))

]
. (4.20)

Consider the difference of equations (2.10) for two iterations bε,j and bε,j+1, and multiply by φb = b̃ε,j to obtain

‖b̃ε,j(τ)‖2
L∞(Ωε

M ) ≤ Cδ

∫ τ

0

[
‖Nδ(e(uε,j)) −Nδ(e(uε,j+1))‖2

L∞(Ωε
M ) + ‖ñε,j‖2

L∞(Ωε
M ) + ‖b̃ε,j‖2

L∞(Ωε
M )

]
dτ.

Using the estimate (4.20), the definition of Nδ, and the boundedness of bε,j yields

‖b̃ε,j‖2
L∞(0,τ ;L∞(Ωε

M )) ≤ Cδτ
[
‖e(ũε,j)‖2

L∞(0,τ ;L2(Ω)) + ‖b̃ε,j‖2
L∞(0,τ ;L∞(Ωε

M ))

]
for τ ∈ (0, T ]. Then, iterating over time intervals of length 1/(2Cδ), ensures

‖b̃ε,j‖2
L∞(0,T̃ ;L∞(Ωε

M ))
≤ CT̃‖e(ũε,j)‖2

L∞(0,T̃ ;L2(Ω))

for all T̃ ∈ (0, T ] and the constant C independent of T̃ , bε,1 and (pε,j ,nε,j , bε,j ,uε,j) for all j ≥ 2. Estimate (4.3)
yields

‖e(ũε,j)‖2
L∞(0,T̃ ;L2(Ω))

≤ C‖b̃ε,j−1‖2
L∞(0,T̃ ;L∞(Ωε

M ))
. (4.21)
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The last two inequalities ensure that for fixed δ and T̃ sufficiently small we have the contraction inequality for
the operator K. Thus, the same arguments as in the proof of the Banach fixed-point theorem yield that K has
a unique fixed point. Hence, there exists a unique weak solution of (2.1)–(2.4) in (0, T̃ ) × Ω. Since T̃ depends
only on the model parameters, iterating over time intervals yields the existence of a unique weak solution in
(0, T ) × Ω. The a priori estimates (4.2), (4.5), together with (4.22), shown in Lemma 4.6 below, imply the
estimates (3.1). �

Lemma 4.6. Under Assumption 1, weak solutions of (2.1)–(2.4) satisfy

‖∂tuε‖L∞(0,T ;W(Ω)) ≤ C,

‖ϑhp
ε − pε‖L2(Ωε

M,T−h) + ‖ϑhn
ε − nε‖L2(Ωε

M,T−h) ≤ Ch1/4,
(4.22)

for any h > 0, where ϑhv(t, x) = v(t+h, x) for (t, x) ∈ (0, T − h]×Ωε
M and the constant C is independent of ε.

Proof. Differentiating the equations of linear elasticity (2.4) with respect to time t, testing it with ∂tuε, and
using the uniform boundedness of ∂tb

ε imply the estimate for ‖∂te(uε)‖L∞(0,T ;L2(Ω)). Applying the second Korn
inequality we obtain the estimate for ∂tuε in L∞(0, T ;W(Ω)).

To show the estimates for ϑhpε−pε and ϑhnε−nε we integrate the equations for pε and nε in (2.1) and (2.2)
over (t, t+ h) and consider ϑhpε − pε and ϑhnε − nε as test functions, respectively,

‖ϑhpε − pε‖2
L2(Ωε

M,τ ) ≤
∣∣∣∣∣
〈
Dp

∫ t+h

t

∇pε ds, ϑh∇pε −∇pε

〉
Ωε

M,τ

+

〈∫ t+h

t

Fp(pε) ds, ϑhpε − pε

〉
Ωε

M,τ

∣∣∣∣∣
+

∣∣∣∣∣
〈∫ t+h

t

Jp(pε) ds, ϑhpε − pε

〉
Γ ε
I,τ

−
〈
γp

∫ t+h

t

pε ds, ϑhpε − pε

〉
Γ ε
E,τ

∣∣∣∣∣
and

‖ϑhnε − nε‖2
L2(Ωε

M,τ ) ≤
∣∣∣∣∣
〈
Dn

∫ t+h

t

∇nεds, ϑh∇nε −∇nε
〉

Ωε
M,τ

+

〈∫ t+h

t

G(nε)Nδ(e(uε))ds, ϑhnε − nε

〉
ΓI,τ

∣∣∣∣∣
+

∣∣∣∣∣
〈 ∫ t+h

t

[
Fn(pε,nε) + Rn(nε, bε,Nδ(e(uε)))

]
ds, ϑhnε − nε

〉
Ωε

M,τ

∣∣∣∣∣+
∣∣∣∣∣
〈 ∫ t+h

t

Jn(nε)ds, ϑhnε − nε

〉
ΓE,τ

∣∣∣∣∣
for all τ ∈ (0, T − h] and any h > 0. Notice that pε,nε ∈

(
L2(0, T ;H1(Ωε

M )) ∩ H1(0, T ;V(Ωε
M)′)

)2 for every
fixed ε > 0. Then the boundedness of pε

j , nε
j , and bε, with j = 1, 2, the estimates for Nδ(e(uε)) in (4.12) and

for pε and nε in (4.5), together with the Hölder inequality, imply the estimates for pε(t + h, x) − pε(t, x) and
nε(t+ h, x) − nε(t, x), stated in the Lemma. �

5. A priori estimates and existence and uniqueness results

for the microscopic Model II

For the equations of linear elasticity (2.4) we have the same results as in Lemma 4.1. The main difference in
the proof of the well-posedness result for Model II is in the derivation of a priori estimates for nε and bε.

5.1. Existence of a unique weak solution of the problem (2.1), (2.3), (2.5), (2.6)
for a given uε

Theorem 5.1. Under Assumption 1 and for uε ∈ L∞(0, T ;W(Ω)) such that

‖uε‖L∞(0,T ;W(Ω)) ≤ C, (5.1)
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where the constant C is independent of ε, there exists a unique non-negative weak solution (pε,nε, bε) of the
microscopic problem (2.1), (2.3), (2.5), (2.6) satisfying the a priori estimates (3.3).

Proof. The equations for pε in both microscopic problems, Models I and II, are the same. Thus the proof of
the existence and uniqueness and the derivation of the a priori estimates for solutions of the subsystem for pε

follows the same lines as in the proof of Theorem 4.4.
The current proof differs from that of Theorem 4.4 in the derivation of the a priori estimates for nε and

bε, since now the reaction terms in equations (2.5) depend on E
ε(bε, x)e(uε) and not on its local average.

Similar to the proof of Theorem 4.4, to show the existence of a weak solution of (2.5), with the initial and
boundary conditions in (2.3) and (2.6), we apply a fixed-point argument and consider Fn,1(pε,nε

1, ñ
ε
2) instead

of Fn,1(pε,nε) and Qn,1(nε
1, ñ

ε
2, b

ε, e(uε)) instead of Qn,1(nε, bε, e(uε)) in the equations for nε
1, as well as

Qb(nε
1, ñ

ε
2, b

ε, e(uε)) instead of Qb(nε, bε, e(uε)) in the equation for bε and Jn,1(nε
1, ñ

ε
2) instead of Jn,1(nε) in

the boundary conditions for nε
1, for a given ñε

2 ∈ L2(0, T ;Hς(Ωε
M )) ∩ L∞(0, T ;L∞(Ωε

M )) with ñε
2 ≥ 0 and

ς ∈ (1/2, 1). Notice that due to the assumptions on Fn, Qn, Qb, and Jn, the derivation of the a priori estimates
follows along the same lines for nε

1, ñ
ε
2 ≥ 0 and nε

1,n
ε
2 ≥ 0.

By applying the theory of invariant regions ([51], Thm. 2 and [55], Thm. 14.7), we obtain the non-negativity
of nε

j , j = 1, 2, and bε in the same way as in the proof of Theorem 4.4. Taking nε and bε as test functions
in (2.12) and using the non-negativity of nε

j and bε and the boundedness of pε, along with the assumptions on
Fn, Qn, Qb, and Jn, see Assumption 1, yield[

‖nε(τ)‖2
L2(Ωε

M ) + ‖bε(τ)‖2
L2(Ωε

M ) + ‖∇nε‖2
L2(Ωε

M,τ ) + ‖∇bε‖2
L2(Ωε

M,τ )

]
≤ C1

[
‖nε‖2

L2(Ωε
M,τ ) + ‖bε‖2

L2(Ωε
M,τ )

]
+C2

[
1 + δ−3‖e(uε)‖2

L∞(0,τ ;L2(Ω))

]
+ C3‖e(uε)‖L∞(0,τ ;L2(Ωε

M ))

[
‖nε‖2

L2(0,τ ;L4(Ωε
M )) + ‖bε‖2

L2(0,τ ;L4(Ωε
M ))

]
(5.2)

for τ ∈ (0, T ] and the constants C1 and C2 independent of ε. The boundary integrals for nε are estimated in
the same way as in the proof of Theorem 4.4, see estimate (4.13). Considering the properties of the extension
of nε and bε in Lemma 4.2, applying the Gagliardo–Nirenberg inequality to estimate ‖nε‖L4(Ω) and ‖bε‖L4(Ω),
taking into account the estimate (5.1), and using the Gronwall inequality imply

‖nε‖L∞(0,T ;L2(Ωε
M )) + ‖∇nε‖L2(Ωε

M,T ) + ‖bε‖L∞(0,T ;L2(Ωε
M )) + ‖∇bε‖L2(Ωε

M,T ) ≤ C, (5.3)

where the constant C is independent of ε.
The properties of Fn, Qn, Jn, and Qb and the estimates for nε, bε, and ‖e(uε)‖L∞(0,T ;L2(Ω)) yield that for

each fixed ε > 0 the functions nε and bε are bounded (see e.g. [32], Thm. III.7.1 generalized to Robin boundary
conditions), and, hence, (bε)p−1 and |nε|p−2nε, with p ≥ 2, are admissible test functions in (2.12). Considering
|bε|p−1 as a test function in the equation for bε in (2.12), using the assumptions on Qb and the non-negativity
of bε yield

‖bε(τ)‖p
Lp(Ωε

M ) + 4
p− 1
p

‖∇|bε|
p
2 ‖2

L2(Ωε
M,τ ) ≤ Cp

1

[
1 + ‖nε‖p

L∞(0,τ ;L2(Ωε
M ))

]
+ (p− 1)‖|bε|

p
2 ‖2

L2(0,τ ;L4(Ωε
M ))

+C2‖e(uε)‖L∞(0,τ ;L2(Ωε
M ))

[
(p− 1)‖|bε|

p
2 ‖2

L2(0,τ ;L4(Ωε
M )) + ‖|nε|

p
2 ‖2

L2(0,τ ;L4(Ωε
M )) + Cp

]
.

In a similar way, using the boundedness of pε and the assumptions on Fn, Qn, G, and Jn, see Assumption 1,
and considering |nε|p−2nε as a test function in the equations for nε in (2.12) yield[

‖nε(τ)‖p
Lp(Ωε

M ) + 4
p− 1
p

‖∇|nε|
p
2 ‖2

L2(Ωε
M,τ )

]
≤ Cp

1

[
(1 + δ−

3p
2 )‖e(uε)‖p

L∞(0,τ ;L2(Ω)) + ‖bε‖p
L∞(0,τ ;L2(Ωε

M )) + 1
]

+
p− 1
p

‖∇|nε|
p
2 ‖2

L2(Ωε
M,τ ) + C2

[
p ‖|nε|

p
2 ‖2

L2(Ωε
M,τ ) + (p− 1)‖|nε|

p
2 ‖2

L2(0,τ ;L4(Ωε
M ))

]
+ C3‖e(uε)‖L∞(0,τ ;L2(Ωε

M ))

[
(p− 1)‖|nε|

p
2 ‖2

L2(0,τ ;L4(Ωε
M )) + ‖|bε|

p
2 ‖2

L2(0,τ ;L4(Ωε
M )) + Cp

]
.
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The boundary terms 〈Nδ(e(uε))G(nε), |nε|p−2nε〉Γε,τ and 〈Jn(nε), |nε|p−2nε〉Γε,τ are estimated in the same
way as in the proof of Theorem 4.4, see the estimate (4.16). Applying the Gagliardo–Nirenberg inequality
together with the properties of the extension of |nε| p

2 and |bε| p
2 , see Lemma 4.2, implies

‖bε(τ)‖p
Lp(Ωε

M ) + ‖nε(τ)‖p
Lp(Ωε

M ) + ‖∇|bε|
p
2 ‖2

L2(Ωε
M,τ ) + ‖∇|nε|

p
2 ‖2

L2(Ωε
M,τ ) ≤ C1p

10
[

sup
(0,τ)

‖nε‖
p
2

L
p
2 (Ωε

M )

]2
+ C2p

10
[

sup
(0,τ)

‖bε‖
p
2

L
p
2 (Ωε

M )

]2

+ Cp
3

[
1 + ‖nε‖p

L∞(0,τ ;L2(Ωε
M )) + ‖bε‖p

L∞(0,τ ;L2(Ωε
M ))

]
+ Cp

δ ‖e(uε)‖p
L∞(0,τ ;L2(Ω)).

Then similar to the proof of Theorem 4.4, iterating in p (see [2], Lem. 3.2), and using the estimate (5.3) yield

‖nε‖L∞(0,T ;L∞(Ωε
M )) + ‖bε‖L∞(0,T ;L∞(Ωε

M ))

≤ C1

[
1 + ‖nε‖L∞(0,τ ;L2(Ωε

M )) + ‖bε‖L∞(0,τ ;L2(Ωε
M )) + ‖e(uε)‖L∞(0,T ;L2(Ω))

]
≤ C2,

(5.4)

where C1, C2 are independent of ε. Here we used that ‖bε‖Lp(Ωε
M )+‖nε‖Lp(Ωε

M ) ≤ 2
[
‖bε‖p

Lp(Ωε
M )+‖nε‖p

Lp(Ωε
M )

] 1
p .

Hence, similar to the proof of Theorem 4.4, using the a priori estimates (5.3) and (5.4) and applying the
Galerkin method and the Schaefer fixed-point theorem yield the existence of a unique solution of the microscopic
problem (2.1), (2.3), (2.5), (2.6) for a given uε with ‖e(uε)‖L∞(0,T ;L2(Ω)) ≤ C. The estimates (5.3) and (5.4)
also ensure ∂tnε ∈ L2(0, T ;V(Ωε

M)′)2 and ∂tb
ε ∈ L2(0, T ;V(Ωε

M )′) for every fixed ε > 0.
Similar to the proof of Lemma 4.6, to show the last estimate in (3.3) we integrate the equations for nε in (2.5)

over (t, t+h) and consider ϑhnε−nε as a test function, where ϑhv(t, x) = v(t+h, x) for (t, x) ∈ (0, T −h]×Ωε
M ,

‖ϑhnε − nε‖2
L2(Ωε

M,τ ) ≤
∣∣∣〈Dn

∫ t+h

t

∇nε ds, ϑh∇nε −∇nε
〉

Ωε
M,τ

∣∣∣+ ∣∣∣〈 ∫ t+h

t

Jn(nε)ds, ϑhnε − nε
〉

ΓE,τ

∣∣∣
+
∣∣∣〈 ∫ t+h

t

[
Fn(pε,nε) + Qn(nε, bε, e(uε))

]
ds, ϑhnε − nε

〉
Ωε

M,τ

+
〈∫ t+h

t

G(nε)Nδ(e(uε))ds, ϑhnε − nε
〉

ΓI,τ

∣∣∣
for all τ ∈ (0, T − h] and any h > 0. Then the boundedness of pε

j , with j = 1, 2, the estimates for uε

in (5.1) and for nε and ∇nε in (5.3) and (5.4), together with the Hölder’s inequality, imply the estimates
for nε(t + h, x) − nε(t, x), stated in the Theorem. Similar calculations ensure the corresponding estimate for
bε(t+ h, x) − bε(t, x). �

5.2. Existence of a unique solution of the coupled system (2.1), (2.3)–(2.6).
Proof of Theorem 3.2

We prove the existence of a unique solution of (2.1), (2.3)–(2.6) in a similar way as Theorem 3.1. The only
difference is in the derivation of the estimate for ‖bε,j − bε,j+1‖L∞(0,T ;L∞(Ωε

M )) for two fixed-point iterations.

Proof of Theorem 3.2. Similar to the proof of Theorem 3.1 we define the operator K : L∞(0, T ;L∞(Ωε
M )) →

L∞(0, T ;L∞(Ωε
M )) and derive a contraction inequality. Considering the equations for ñε,j and b̃ε,j , where

ñε,j = nε,j −nε,j+1, b̃ε,j = bε,j − bε,j+1 and ũε,j = uε,j −uε,j+1, and taking ñε,j and b̃ε,j as test functions yield

‖ñε,j(τ)‖2
L2(Ωε

M ) + ‖∇ñε,j‖2
L2(Ωε

M,τ ) + ‖b̃ε,j(τ)‖2
L2(Ωε

M ) + ‖∇b̃ε,j‖2
L2(Ωε

M,τ )

≤ C1

[
1 + ‖bε,j‖L∞(Ωε

M,τ ) + ‖nε,j‖L∞(Ωε
M,τ )

][
‖e(ũε,j)‖2

L2(Ωε
M,τ ) + ‖ñε,j‖2

L2(Ωε
M,τ ) + ‖b̃ε,j‖2

L2(Ωε
M,τ )

]
+ C2‖e(uε,j+1)‖L∞(0,τ ;L2(Ωε

M ))

[
1 + ‖nε,j‖L∞(Ωε

M,τ ) + ‖bε,j‖L∞(Ωε
M,τ ) + ‖nε,j+1‖L∞(Ωε

M,τ )

+ ‖bε,j+1‖L∞(Ωε
M,τ )

][
‖ñε,j‖2

L2(0,τ ;L4(Ωε
M )) + ‖b̃ε,j‖2

L2(0,τ ;L4(Ωε
M ))

]
.
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Using the trace inequality and the assumptions on Jn and G, the boundary terms for ñε,j are estimated as

〈Jn(nε,j) − Jn(nε,j+1), ñε,j〉ΓE,τ ≤ Cσ‖ñε,j‖2
L2(Ωε

M,τ ) + σ‖∇ñε,j‖2
L2(Ωε

M,τ ),

〈Nδ(e(uε,j))
(
G(nε,j) − G(nε,j+1)

)
, ñε,j〉ΓI,τ ≤ 0

and ∣∣〈(Nδ(e(uε,j)) −Nδ(e(uε,j+1))
)
G(nε,j+1), ñε,j〉

ΓI,τ

∣∣ ≤ Cσ1‖Nδ(e(uε,j)) −Nδ(e(uε,j+1))‖2
L2(ΓI,τ )

+σ1‖nε,j+1
2 ‖2

L∞(ΓI,τ )‖ñ
ε,j
2 ‖2

L2(ΓI,τ ) ≤ σ
(
‖ñε,j

2 ‖2
L2(Ωε

M,τ ) + ‖∇ñε,j
2 ‖2

L2(Ωε
M,τ )

)
+Cδ

(
‖e(uε,j)‖2

L∞(0,τ ;L2(Ω))‖b̃ε,j‖2
L2(Ωε

M,τ ) + ‖bε,j+1‖2
L∞(0,τ ;L2(Ωε

M ))‖e(ũε,j)‖2
L2(Ωτ )

)
,

with arbitrary σ1, σ > 0. Using the Gagliardo–Nirenberg inequality we estimate ‖ñε,j‖2
L2(0,τ ;L4(Ωε

M )) and

‖b̃ε,j‖2
L2(0,τ ;L4(Ωε

M )) in terms of ‖ñε,j‖2
L2(Ωε

M,τ ), ‖∇ñε,j‖2
L2(Ωε

M,τ ) and ‖b̃ε,j‖2
L2(Ωε

M,τ ), ‖∇b̃ε,j‖2
L2(Ωε

M,τ ), respec-
tively. Then the a priori estimates, similar to those in (4.2) and (5.3)–(5.4), and the Gronwall’s inequality
yields

‖ñε,j‖2
L∞(0,τ ;L2(Ωε

M )) + ‖∇ñε,j‖2
L2(Ωε

M,τ ) + ‖b̃ε,j‖2
L∞(0,τ ;L2(Ωε

M )) + ‖∇b̃ε,j‖2
L2(Ωε

M,τ ) ≤ C‖e(ũε,j)‖2
L2(Ωε

M,τ ).

Considering (̃bε,j)p−1 as a test function in the equation for the difference of two iterations bε,j and bε,j+1 implies

1
p
‖b̃ε,j(τ)‖p

Lp(Ωε
M ) +

4(p− 1)
p2

‖∇|̃bε,j |
p
2 ‖2

L2(Ωε
M,τ ) ≤ C1

[
1 + ‖nε,j‖L∞(Ωε

M,τ ) + ‖bε,j‖L∞(Ωε
M,τ )

+ ‖nε,j+1‖L∞(Ωε
M,τ ) + ‖bε,j+1‖L∞(Ωε

M,τ )

] ∫ τ

0

[(
1 + ‖e(uε,j+1)‖L2(Ωε

M )

)
‖|̃bε,j|p‖L2(Ωε

M )

+ ‖ñε,j‖L2(Ωε
M )‖|̃bε,j|p−1‖L2(Ωε

M )

]
dt

+ C3

[
1 + ‖nε,j‖L∞(Ωε

M,τ ) + ‖bε,j‖L∞(Ωε
M,τ )

] ∫ τ

0

‖e(ũε,j)‖L2(Ωε
M )‖|̃bε,j|p−1‖L2(Ωε

M )dt. (5.5)

The last term in (5.5) we rewrite as∫ τ

0

‖e(ũε,j)‖L2(Ωε
M )‖|̃bε,j |p−1‖L2(Ωε

M )dt ≤
(∫ τ

0

‖e(ũε,j)‖
(1+ς)p
(pς+1)

L2(Ωε
M )

) pς+1
p(1+ς)

(∫ τ

0

‖|̃bε,j|
p
2 ‖2(1+ς)

L4(Ωε
M )dt

) p−1
(1+ς)p

≤ 1
p
C‖e(ũε,j)‖p

L
1+1

ς (0,τ ;L2(Ωε
M ))

+
p− 1
p

(∫ τ

0

‖|̃bε,j|
p
2 ‖2(1+ς)

L4(Ωε
M )dt

) 1
1+ς

(5.6)

with some 0 < ς < 1. Applying the Gagliardo–Nirenberg inequality yields

‖|̃bε,j|
p
2 ‖2

L4(Ωε
M ) ≤ C1

[
‖∇|̃bε,j |

p
2 ‖2a

L2(Ωε
M )‖|̃bε,j|

p
2 ‖2(1−a)

L1(Ωε
M ) + ‖|̃bε,j |

p
2 ‖2

L1(Ωε
M )

]
,

where a = 9/10 (for a three-dimensional domain). Considering ς such that a(1 + ς) < 1 we obtain∫ τ

0

‖|̃bε,j|
p
2 ‖2(1+ς)

L4(Ωε
M )dt ≤ C

[
‖∇|̃bε,j |

p
2 ‖2a(1+ς)

L2(Ωε
M,τ )

(∫ τ

0

‖|̃bε,j|
p
2 ‖

2(1+ς)(1−a)
1−a(1+ς)

L1(Ωε
M ) dt

)1−a(1+ς)

+
∫ τ

0

‖|̃bε,j|
p
2 ‖2(1+ς)

L1(Ωε
M )dt

]

≤
(
σ

p

)1+ς

‖∇|̃bε,j |
p
2 ‖2(1+ς)

L2(Ωε
M,τ ) + Cσ p

a(1+ς)
(1−a)

(∫ τ

0

‖|̃bε,j|
p
2 ‖

2(1+ς)(1−a)
1−a(1+ς)

L1(Ωε
M ) dt

) 1−a(1+ς)
(1−a)

+ C1

∫ τ

0

‖|̃bε,j|
p
2 ‖2(1+ς)

L1(Ωε
M )dt

(5.7)
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for an arbitrary σ > 0. Using the estimate (5.7) in (5.6) implies∫ τ

0

‖e(ũε,j)‖L2(Ωε
M )‖|̃bε,j|p−1‖L2(Ωε

M )dt ≤ C1
1
p
‖e(ũε,j)‖p

L
1+1

ς (0,τ ;L2(Ωε
M ))

+ σ
p− 1
p2

‖∇|̃bε,j|
p
2 ‖2

L2(Ωε
M,τ )

+Cσ(τ
1−a(1+ς)

(1−a)(1+ς) + τ
1

1+ς ) p9

[
sup
(0,τ)

‖|̃bε,j |
p
2 ‖L1(Ωε

M )

]2

.

The same estimates hold for the term ‖ñε,j‖L2(Ωε
M ) ‖|̃bε,j|p−1‖L2(Ωε

M ) in (5.5). Using the Gagliardo–Nirenberg
inequality, the first integral on the right-hand side of (5.5) is estimated as∫ τ

0

‖e(uε,j+1)‖L2(Ωε
M )‖|̃bε,j |

p
2 ‖2

L4(Ωε
M )dτ ≤ C

(
‖e(uε,j+1)‖

1
1−a

L∞(0,τ ;L2(Ωε
M )) + 1

)( p2

p− 1

)9

‖|̃bε,j|
p
2 ‖2

L2(0,τ ;L1(Ωε
M ))

+ (p− 1)/p2 ‖∇|̃bε,j |
p
2 ‖2

L2(Ωε
M,τ ).

Applying the recursive iterations as in ([2], Lem. 3.2), in the same way as in the proof of Theorem 3.1, we obtain

‖b̃ε,j‖L∞(0,τ ;L∞(Ωε
M )) ≤ C‖e(ũε,j)‖

L
1+ 1

ς (0,τ ;L2(Ω))
for any ς ∈ (0, 1/9) and τ ∈ (0, T ]. (5.8)

Then, similar to the proof of Theorem 3.1, combining (5.8) and (4.21), choosing τ sufficiently small, applying
the same argument as in the proof of the Banach fixed-point theorem, and iterating over time-intervals, yield
the existence of a unique weak solution of Model II. �

6. Convergence results and the derivation of the macroscopic equations

for Model I

In this section we first prove convergence results for a sequence of solutions of the microscopic problem (2.1)–
(2.4) and then, using homogenization techniques, derive a macroscopic model for plant cell wall biomechanics.

6.1. Convergence results for solutions of the microscopic Model I

Lemma 6.1. There exist functions p,n ∈
(
L2(0, T ;V(Ω)) ∩ L∞(0, T ;L∞(Ω))

)2, p̂, n̂ ∈ L2(ΩT ;H1
per(Ŷ )/R)2,

and b ∈ W 1,∞(0, T ;L∞(Ω × ŶM )), u, ∂tu ∈ L∞(0, T ;W(Ω)), û ∈ L2(ΩT ;H1
per(Ŷ )/R)3, such that for a sub-

sequence (pε,nε, bε,uε) of the sequence of solutions of the microscopic problem (2.1)–(2.4) (denoted again by
(pε,nε, bε,uε)) we have

pε ⇀ p, nε ⇀ n weakly in L2(0, T ;H1(Ω)),
pε ⇀ p, nε ⇀ n two-scale,

∇pε ⇀ ∇p + ∇̂yp̂, ∇nε ⇀ ∇n + ∇̂yn̂ two-scale,
pε → p, nε → n strongly in L2(ΩT ) and L2((0, T ) × ∂Ω),
bε ⇀ b, ∂tb

ε ⇀ ∂tb two-scale

as ε→ 0, where ∇̂yv = (∂y1v, ∂y2v, 0)T , and

uε ⇀ u weakly∗ in L∞(0, T ;W(Ω)),
∂tuε ⇀ ∂tu weakly in L2(0, T ;W(Ω)),

uε ⇀ u, ∇uε ⇀ ∇u + ∇̂yû two-scale,∫
Ω

e(uε) dx→
∫

Ω

e(u) dx strongly in L2(0, T ), as ε→ 0.
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Proof. The a priori estimates in Theorem 3.1 together with the extension Lemma 4.2 and the compactness
theorems for the two-scale convergence, see e.g. [3,42], ensure the weak and two-scale convergence of pε, nε, bε,
and uε, stated in the Lemma.

The strong convergence of pε and nε in L2(ΩT ) follows from the estimates for ‖∇pε‖L2(Ωε
M,T ), ‖∇nε‖L2(Ωε

M,T ),
‖ϑhpε −pε‖L2(Ωε

M,T−h), and ‖ϑhnε −nε‖L2(Ωε
M,T−h), see (3.1), together with the linearity of the extension from

Ωε
M to Ω and the Kolmogorov compactness theorem [6, 41]. The embedding {γ(v) | v ∈ Hς(Ω)} ⊂ L2(∂Ω),

with ς ∈ (1/2, 1) and γ(v) denote the trace of v on ∂Ω, the compact embedding H1(Ω) ⊂ Hς(Ω), the estimates
for ‖ϑhpε − pε‖L2(Ωε

M,T−h), and ‖ϑhnε − nε‖L2(Ωε
M,T−h), and the compactness result in [54] ensure the strong

convergence in L2((0, T ) × ∂Ω). The boundedness of pε, nε, bε, and ∂tb
ε, along with the convergence results,

implies the boundedness of the limit functions p, n, b, and ∂tb.
The a priori estimate for ∂te(uε) yields the last strong convergence stated in the Lemma. �

In order to pass to the limit in the nonlinear functions Rn, Rb and EM we have to show the strong convergence
of a subsequence of {bε}. To show the strong convergence of a sequence defined on the perforated ε-dependent
domain Ωε

M , we use the unfolding operator to map it to a sequence defined on the fixed domain Ω × ŶM , see
e.g. [12, 13].

Definition 6.2. For a measurable function φ on Ωε
M , the unfolding operator Tε is defined as

Tε(φ)(x, y) = φ(ε[x̂/ε]ŶM
+ εy, x3) for x ∈ Ω, y ∈ ŶM ,

where x̂ = (x1, x2) and [x̂/ε]ŶM
is the unique integer combination of the periods, such that x̂/ε− [x̂/ε]ŶM

∈ ŶM .

For the unfolded sequence {Tε(bε)} we have the following strong convergence result.

Lemma 6.3. Under Assumption 1 we have, up to a subsequence,

Tε(bε) → b strongly in L2(ΩT × ŶM ), as ε→ 0.

Proof. Using the extension of nε from Ωε
M to Ω, see Lemma 4.2, we define the extension of bε from Ωε

M to Ω
as a solution of the ordinary differential equation

∂tb
ε = Rb(nε, bε,Nδ(e(uε))) in (0, T )×Ω,

bε(0, x) = b0(x) in Ω.
(6.1)

The construction of the extension for nε and the uniform boundedness of nε in Ωε
M,T , shown in Theorem 4.4,

ensure
‖nε‖L∞(0,T ;L∞(Ω)) ≤ C1‖nε‖L∞(0,T ;L∞(Ωε

M )) ≤ C2,

with the constants C1 and C2 independent of ε. Then, from equation (6.1) and using the assumptions on Rb,
we also obtain the uniform boundedness of bε and ∂tb

ε in L∞(0, T ;L∞(Ω)).
It follows from the properties of the unfolding operator [12, 13] that the lemma holds if it is shown that bε

converges strongly to b. We show the strong convergence of bε by applying the Kolmogorov theorem [6, 41].
Considering equation (6.1) at (t, x+ hj) and (t, x), where hj = hbj , with (b1,b2,b3) being the canonical basis
in R

3 and h > 0, taking bε(t, x+ hj) − bε(t, x) as a test function and using the boundedness of nε
1, nε

2, and bε,
along with the local Lipschitz continuity of Rb, yield

‖bε(τ, · + hj) − bε(τ, ·)‖2
L2(Ω2h) ≤ C

∫ τ

0

[
‖nε(t, · + hj) − nε(t, ·)‖2

L2(Ω2h) + ‖bε(t, · + hj) − bε(t, ·)‖2
L2(Ω2h)

]
dt

+‖b0(· + hj) − b0(·)‖2
L2(Ω2h) + δ−6

∫ τ

0

∥∥∥∫
Bδ,h(x)∩Ω

tr E
ε(bε)e(uε(t, x̃))dx̃

∥∥∥2

L2(Ω2h)
dt
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for τ ∈ (0, T ], where Ω2h = {x ∈ Ω | dist(x, ∂Ω) > 2h}, Bδ,h(x) =
[
Bδ(x+ hj) \Bδ(x)

]
∪
[
Bδ(x) \Bδ(x+ hj)

]
,

and the constants C1, C2 are independent of ε and h. Using the regularity of the initial condition b0 ∈ H1(Ω),
the a priori estimates for e(uε) and ∇nε along with the fact that |Bδ,h(x) ∩ Ω| ≤ Cδ2h for all x ∈ Ω, and
applying the Gronwall’s inequality we obtain

sup
t∈(0,T )

‖bε(t, · + hj) − bε(t, ·)‖2
L2(Ω2h) ≤ Cδh. (6.2)

Extending bε by zero from ΩT into R+×R
3 and using the uniform boundedness of bε in L∞(0, T ;L∞(Ω)) imply

‖bε‖2
L∞(0,T ;L2(Ω̃3h))

+ ‖bε‖2
L2((T−h,T+h)×Ω) ≤ Ch, (6.3)

where Ω̃3h = {x ∈ R
3 | dist(x, ∂Ω) < 3h} and the constant C is independent of ε and h. The estimates for ∂tb

ε

ensure

‖bε(· + h, ·) − bε(·, ·)‖2
L2((0,T−h)×Ω) ≤ C1h

2‖∂tb
ε‖2

L2(ΩT ) ≤ C2h
2, (6.4)

where C1 and C2 are independent of ε and h. Combining (6.2)–(6.4) and applying the Kolmogorov’s theorem
imply the strong convergence of bε to b̃ in L2(ΩT ). The definition of the two-scale-convergence yields b̃ = b, and
hence the two-scale limit of bε is independent of y. �

Remark 6.4. Notice that the two-scale convergence of uε and the estimates for ∂te(uε) and ∂tb
ε, together

with the Kolmogorov theorem [6], imply that∫
Ω

E
ε(b, x)e(uε)dx→

∫
Ω

−
∫

Ŷ

E(b, y)(e(u) + êy(û))dydx in L2(0, T ),

where êy(v)33 = 0, êy(v)j3 = êy(v)3j = 1
2∂yjv3 for j = 1, 2, and êy(v)ij = 1

2 (∂yivj + ∂yjvi) for i, j = 1, 2, and

−
∫

Bδ(x)∩Ω

E
ε(b, x̃)e(uε)dx̃→ −

∫
Bδ(x)∩Ω

−
∫

Ŷ

E(b, y)(e(u) + êy(û))dydx̃ in L2(0, T )

as ε→ 0, for all x ∈ Ω. Then, Lebesgue’s dominated convergence theorem ensures

−
∫

Bδ(x)∩Ω

E
ε(b, x̃)e(uε)dx̃→ −

∫
Bδ(x)∩Ω

−
∫

Ŷ

E(b, y)(e(u) + êy(û))dydx̃ in L2(ΩT ) and L2(ΓI,T ), (6.5)

as ε→ 0. In the same way we also obtain

−
∫

Bδ(x)∩Ω

e(uε) dx̃→ −
∫

Bδ(x)∩Ω

e(u) dx̃ in L2(ΩT ) and L2(ΓI,T ), as ε→ 0. (6.6)

6.2. Derivation of the macroscopic equations for Model I. Proof of Theorem 3.3

Using the convergence results, shown in Lemma 6.1, and applying the two-scale convergence and the periodic
unfolding methods, see e.g. [3, 12, 13, 42], we derive the macroscopic equations for Model I.

Proof of Theorem 3.3. We consider ϕb ∈ C∞(ΩT ) and φα(t, x) = ϕα(t, x) + εψα(t, x, x̂/ε), where ϕα ∈
C∞(ΩT )2 is a3-periodic in x3, ϕα(T, x) = 0 for x ∈ Ω, and ψα ∈ C∞

0 (ΩT ;C∞
per(Ŷ )), for α = p, n, as test

functions in (2.8)–(2.10). Applying the two-scale convergence and using the strong convergence of Tε(bε), pε
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and nε, yield

− 〈p, ∂tϕp〉ΩT ×ŶM
+ 〈Dp(∇p + ∇̂yp̂),∇ϕp + ∇̂yψp〉ΩT ×ŶM

= −〈Fp(p),ϕp〉ΩT ×ŶM
− |Ŷ |〈γp p,ϕp〉ΓE,T

+ |Ŷ |
〈
Jp

(
p),ϕp

〉
ΓI,T

+ 〈p0,ϕp(0, x)〉Ω×ŶM
,

− 〈n, ∂tϕn〉ΩT ×ŶM
+ 〈Dn(∇n + ∇̂yn̂),∇ϕn + ∇̂yψn〉ΩT ×ŶM

= |Ŷ |〈G(n)N eff
δ (e(u)),ϕn〉ΓI,T

+ |Ŷ |〈Jn(n),ϕn〉ΓE,T + 〈Fn(p,n) + Rn(n, b,N eff
δ (e(u))),ϕn〉ΩT ×ŶM

+ 〈n0,ϕn(0, x)〉Ω×ŶM
,

〈∂tb, ϕb〉ΩT = 〈Rb(n, b, N eff
δ (e(u))), ϕb〉ΩT .

(6.7)
Here we used the fact that the strong convergence of Tε(bε), the two-scale convergence of uε, and the estimates
for ∂tuε and ∂tb

ε ensure

Nδ(e(uε)) → N eff
δ (e(u)) in L2(ΩT ) and in L2(ΓI,T ) as ε→ 0,

see the convergence in (6.5) and the definition of N eff
δ in (3.11). Choosing ϕα ≡ 0 we obtain

〈Dp(∇p + ∇̂yp̂), ∇̂yψp〉ΩT ×ŶM
= 0 and 〈Dn(∇n + ∇̂yn̂), ∇̂yψn〉ΩT ×ŶM

= 0. (6.8)

The linearity of (6.8) implies that p̂ and n̂ have the form

p̂(t, x, y) =
∑

j=1,2,3

∂xjp(t, x)vj
p(y), n̂(t, x, y) =

∑
j=1,2,3

∂xjn(t, x)vj
n(y),

where vj
α = (vj

α,1,v
j
α,2)

T are solutions of the unit cell problems (3.5), for α = n, p, j = 1, 2, 3. The definition of
Dl

α and the fact that vj
α,l are solutions of (3.5) ensure that Dl

α are strongly elliptic, with α = n, p and l = 1, 2.
Taking ψα ≡ 0 and considering first ϕα ∈ C1

0 (ΩT )2 and then ϕα ∈ C1
0 (0, T ;C1(Ω))2, with ϕα being a3-

periodic in x3, where α = p, n, yields the macroscopic equations and boundary conditions for p and n in (3.8)
and (3.9).

Equation (3.9) and the regularity of p, n and u imply ∂tn, ∂tp ∈ L2(0, T ;V(Ω)′)2. Thus, p,n ∈
C([0, T ];L2(Ω))2 and together with the equations for p and n in (6.7) we obtain p(t, ·) → p0 and n(t, ·) → n0

in L2(Ω)2 as t→ 0. The regularity of b and the two-scale convergence of ∂tb
ε ensure b(t, ·) → b0 in L2(Ω).

Considering ψ(t, x) = ψ1(t, x) + εψ2(t, x, x̂/ε), with ψ1 ∈ C1(ΩT )3 ∩ L2(0, T ;W(Ω)), ψ2 ∈
C∞

0 (ΩT ;C∞
per(Ŷ ))3, as a test function in (2.11) and applying the strong convergence of Tε(bε) and the two-

scale convergence of uε, we obtain

|Ŷ |−1〈E(b, y)(e(u) + êy(û)), e(ψ1) + êy(ψ2)〉ΩT ×Ŷ =
[
〈f ,ψ1〉ΓEU,T − 〈pIν,ψ1〉ΓI,T

]
.

Taking ψ1 ≡ 0 yields
〈E(b, y)(e(u) + êy(û)), êy(ψ2)〉ΩT ×Ŷ = 0. (6.9)

The structure of equation (6.9) implies

û(t, x, y) =
1
2

3∑
i,j=1

(
∂ui(t, x)
∂xj

+
∂uj(t, x)
∂xi

)
wij(t, x, y),

where wij are solutions of the unit cell problems (3.7). Considering ψ2 ≡ 0 implies the macroscopic equations
for u. Similar to ([43], Thm. II.1.1) we obtain the symmetries and the strong ellipticity of Ehom.

In the same manner as for the microscopic model, by deriving a contraction inequality we prove the uniqueness
of a weak solution of the macroscopic equations and obtain that the whole sequence of microscopic solutions
converges to a solution of the macroscopic problem. Here we use that due to the boundedness of b for solutions
of the unit cell problem (3.7) we have wij ∈ L∞(ΩT ;H1

per(Ŷ ))3, for i, j = 1, 2, 3. The contraction inequality and
a fixed-point argument also ensure the existence of a solution of the macroscopic equations (3.8)–(3.10). �



618 M. PTASHNYK AND B. SEGUIN

7. Convergence results and the derivation of the macroscopic equations

for Model II

Considering the extension of solutions of the microscopic problem (2.1), (2.3)–(2.6), given by Lemma 4.2, we
have the following convergence results.

Lemma 7.1. There exist p, n ∈
(
L2(0, T ;V(Ω)) ∩ L∞(0, T ;L∞(Ω))

)2, p̂, n̂ ∈ L2(ΩT ;H1
per(ŶM )/R)2,

b ∈ L2(0, T ;V(Ω)) ∩ L∞(0, T ;L∞(Ω)), b̂ ∈ L2(ΩT ;H1
per(ŶM )/R), and u ∈ L∞(0, T ;W(Ω)), û ∈

L2(ΩT ;H1
per(Ŷ )/R)3, such that for a subsequence (pε,nε, bε,uε) of the sequence of solutions of the microscopic

problem (2.1), (2.3)–(2.6) (denoted again by (pε,nε, bε,uε)) we have

pε ⇀ p, nε ⇀ n, bε ⇀ b weakly in L2(0, T ;H1(Ω)),
pε → p, nε → n, bε → b strongly in L2(ΩT ) and L2((0, T ) × ∂Ω),

∇pε ⇀ ∇p + ∇̂yp̂, ∇nε ⇀ ∇n + ∇̂yn̂, ∇bε ⇀ ∇b+ ∇̂y b̂ two-scale,
uε ⇀ u weakly∗ in L∞(0, T ;W(Ω)),

∇uε ⇀ ∇u + ∇̂yû two-scale.
(7.1)

Proof. The convergence results for pε and uε are obtained in the same way as in Lemma 6.1. Due to the
a priori estimates derived in Theorem 3.2 and the compactness theorem for the two-scale convergence, we
obtain the weak and two-scale convergence for nε and bε. The estimates for ‖∇nε‖L2(ΩT ) and ‖∇bε‖L2(ΩT ), as
well as for ‖nε(· + h, ·) − nε(·, ·)‖L2(ΩT−h) and ‖bε(· + h, ·) − bε(·, ·)‖L2(ΩT−h), obtained from the last estimate
in (3.3) and the linearity of the extension, together with the Kolmogorov compactness theorem [6, 41], ensure
the strong convergence of nε and bε in L2(ΩT ). As in the proof of Lemma 6.1, the compactness of the embedding
H1(Ω) ⊂ Hς(Ω), for ς < 1, and the compactness result in [54] ensure the strong convergence in L2((0, T )×∂Ω).
The boundedness of nε and bε, together with convergence in L2(ΩT ), implies the boundedness of n and b. �

Next we derive the macroscopic equations (3.8), (3.10), (3.12), (3.13) for Model II, i.e. for equations (2.1),
(2.3)–(2.6).

Proof of Theorem 3.4. Since the equations for pε are the same in both microscopic problems Model I and Model
II, the derivation of the equations for p follows along the same line as in the proof of Theorem 3.3. Using the
strong convergence of bε, in the same way as in the proof of Theorem 3.3, we obtain the equations for u.

To derive the macroscopic equations for n and b we have to show the strong two-scale convergence of e(uε) in
order to pass to the limit in the nonlinear functions Qn(nε, bε, e(uε)) and Qb(nε, bε, e(uε)). Consider uε as a test
function in (2.11). Then, using the lower-semicontinuity of a norm, the positive definiteness of E

ε(bε, x), the uni-
form in ε boundedness of bε in L∞(0, T ;L∞(Ωε

M )), together with the weak convergence of uε in L2(0, T ;W(Ω)),
the two-scale convergence of e(uε), and the strong convergence of bε, we obtain

|Ŷ |−1
〈
E(b, y)(e(u) + êy(û)), e(u) + êy(û)

〉
ΩT ,Ŷ

≤ lim inf
ε→0

〈Eε(bε, x)e(uε), e(uε)〉ΩT

≤ lim sup
ε→0

〈Eε(bε, x)e(uε), e(uε)〉ΩT = lim
ε→0

[
〈f ,uε〉ΓEU,T − 〈pIν,uε〉ΓI,T

]
= 〈f ,u〉ΓEU,T − 〈pIν,u〉ΓI,T .

(7.2)

Taking u as a test function in (3.8) and û as a test function in (6.9), and using the definition of Ehom, yields

〈f ,u〉ΓEU,T − 〈pIν,u〉ΓI,T = |Ŷ |−1
〈
E(b, y)(e(u) + êy(û)), e(u) + êy(û)

〉
ΩT ,Ŷ

.

Hence we obtain that

lim
ε→0

〈Eε(bε, x)e(uε), e(uε)〉ΩT = |Ŷ |−1
〈
E(b, y)(e(u) + êy(û)), e(u) + êy(û)

〉
ΩT ,Ŷ (7.3)
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and, using the positive definiteness of E, the strong convergence of bε, and the lower semicontinuity of a norm,
we conclude the strong two-scale convergence of e(uε). Taking into account the microscopic structure of Ωε

M

and the definition of the unfolding operator, from (7.3) we also have

|Ŷ |−1 lim
ε→0

〈
E(Tε(bε), y)Tε(e(uε)), Tε(e(uε))

〉
ΩT ,Ŷ

= |Ŷ |−1
〈
E(b, y)(e(u) + êy(û)), e(u) + êy(û)

〉
ΩT ,Ŷ

. (7.4)

To show the strong convergence of Tε(e(uε)) in L2(ΩT × Ŷ ) we consider

Iε =
〈
E(Tε(bε), y)

[
Tε(e(uε)) − e(u) − êy(û)

]
, Tε(e(uε)) − e(u) − êy(û)

〉
ΩT ,Ŷ

=
〈
E(Tε(bε), y)Tε(e(uε)), Tε(e(uε))

〉
ΩT ,Ŷ

− 〈E(Tε(bε), y)Tε(e(uε)), e(u) + êy(û)〉ΩT ,Ŷ

−
〈
E(Tε(bε), y)

[
e(u) + êy(û)

]
, Tε(e(uε))

〉
ΩT ,Ŷ

+
〈
E(Tε(bε), y)

[
e(u) + êy(û)

]
, e(u) + êy(û)

〉
ΩT ,Ŷ

. (7.5)

Then, the convergence in (7.4) and the strong ellipticity of E, together with the strong convergence of bε and
weak convergence of Tε(e(uε)), ensured by the two-scale convergence of e(uε), yield

lim
ε→0

‖Tε(e(uε)) − e(u) − êy(û)‖L2(ΩT ×Ŷ ) ≤ ω−1
E lim

ε→0
Iε = 0.

The a priori estimates for uε, nε, and bε, see (3.2) and (3.3), and the local Lipschitz continuity of Qn and Qb,
see Assumption 1, ensure

‖Tε(Qn(nε, bε, e(uε)))‖L2(ΩT ×ŶM ) + ‖Tε(Qb(nε, bε, e(uε)))‖L2(ΩT ×ŶM ) ≤ C1

and
‖Tε(Qn(nε, bε, e(uε))) − Qn(n, b, e(u) + êy(û))‖L1(ΩT ×ŶM )

+ ‖Tε(Qb(nε, bε, e(uε))) −Qb(n, b, e(u) + êy(û))‖L1(ΩT ×ŶM )

≤ C2(1 + ‖e(uε)‖L2(ΩT ))
[
‖Tε(nε) − n‖L2(ΩT ×ŶM ) + ‖Tε(bε) − b‖L2(ΩT ×ŶM )

]
+ C3

[
1 + ‖n‖L2(ΩT ) + ‖b‖L2(ΩT )

]
‖Tε(e(uε)) − e(u) − êy(û)‖L2(ΩT ×ŶM ),

where the constants C1, C2 and C3 are independent of ε. The strong convergence of Tε(e(uε)), nε, and Tε(bε)
implies

lim
ε→0

〈
Tε(Qn(nε, bε, e(uε))),ψ

〉
ΩT ,ŶM

=
〈
Qn(n, b, e(u) + êy(û)),ψ

〉
ΩT ,ŶM

+ lim
ε→0

〈
Tε(Qn(nε, bε, e(uε))) − Qn(n, b, e(u) + êy(û)),ψ

〉
ΩT ,ŶM

=
〈
Qn(n, b, e(u) + êy(û)),ψ

〉
ΩT ,ŶM

for all ψ ∈ C0(ΩT × ŶM )2. A similar convergence result holds also for Tε(Qb(nε, bε, e(uε))). Hence, we conclude

Tε(Qn(nε, bε, e(uε))) ⇀ Qn(n, b, e(u) + êy(û)) weakly in L2(ΩT × ŶM ),

Tε(Qb(nε, bε, e(uε))) ⇀ Qb(n, b, e(u) + êy(û)) weakly in L2(ΩT × ŶM )

and, due to the relation between the two-scale convergence of a sequence and the weak convergence of the
unfolded sequence, see e.g. [13], we also obtain

Qn(nε, bε, e(uε)) ⇀ Qn(n, b, e(u) + êy(û)) two-scale,
Qb(nε, bε, e(uε)) ⇀ Qb(n, b, e(u) + êy(û)) two-scale.

(7.6)

Considering φn(t, x) = ϕn(t, x) + εψn(t, x, x̂/ε) and φb(t, x) = ϕb(t, x) + εψb(t, x, x̂/ε), with ϕn ∈ C1(ΩT )2,
ϕb ∈ C1(ΩT ), ϕn(T, x) = 0, ϕb(T, x) = 0 for x ∈ Ω, and ϕn, ϕb are a3-periodic in x3, ψn ∈ C1

0 (ΩT ;C1
per(Ŷ ))2,

ψb ∈ C1
0 (ΩT ;C1

per(Ŷ )), as test functions in the equations for nε and bε in (2.12) and using the convergence results
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in Lemma 7.1, together with the two-scale convergence of Qn(nε, bε, e(uε)) and Qb(nε, bε, e(uε)), see (7.6), we
obtain

−θM 〈n, ∂tϕn〉ΩT + |Ŷ |−1〈Dn(∇n + ∇̂yn̂),∇ϕn + ∇̂yψn〉ΩT ,ŶM
= θM 〈n0,ϕn(0, ·)〉Ω + 〈Jn(n),ϕn〉ΓE,T

+|Ŷ |−1〈Fn(p,n) + Qn(n, b, e(u) + êy(û)),ϕn〉ΩT ,ŶM
+
〈
N eff

δ (e(u))G(n),ϕn

〉
ΓI,T

,

−θM 〈b, ∂tϕb〉ΩT + |Ŷ |−1〈Db(∇b+ ∇̂y b̂),∇ϕb + ∇̂yψb〉ΩT ,ŶM
= |Ŷ |−1

〈
Qb(n, b, e(u) + êy(û)), ϕb

〉
ΩT ,ŶM

+θM 〈b0, ϕb(0, ·)〉Ω,

(7.7)

where θM = |ŶM |/|Ŷ | and N eff
δ (e(u)) is defined in (3.11). As in the proof of Theorem 3.3, choosing ϕn ≡ 0

and ϕb ≡ 0 we obtain the unit cell problems (3.5), (3.6) and the macroscopic diffusion coefficients Dl
n and

Db, with l = 1, 2. Taking ψn ≡ 0, ψb ≡ 0 and considering first ϕn ∈ C1
0 (ΩT )2, ϕb ∈ C1

0 (ΩT ) and then
ϕn ∈ C1

0 (0, T ;C1(Ω))2, ϕb ∈ C1
0 (0, T ;C1(Ω)), with ϕn, ϕb being a3-periodic in x3, we obtain the macroscopic

equations and boundary conditions in (3.10), (3.12), and (3.13). The equations (3.12) and the regularity of
n, b and u imply ∂tn ∈ L2(0, T ;V(Ω)′)2 and ∂tb ∈ L2(0, T ;V(Ω)′). Thus n ∈ C([0, T ];L2(Ω))2 and b ∈
C([0, T ];L2(Ω)), and using (7.7) we obtain n(t, ·) → n0 and b(t, ·) → b0 in L2(Ω) as t→ 0.

To show the uniqueness of a solution of the macroscopic problem (3.8), (3.10), (3.12), and (3.13) we consider
the equations for the difference of two solutions. Using the boundedness of p and the local Lipschitz continuity of
Fp we obtain the uniqueness of a solution of the subsystem for p. In the same way as in the proof of Lemma 4.1
and Theorem 3.2 we obtain

‖ñ‖L∞(0,τ ;L2(Ω)) + ‖∇ñ‖L2(Ωτ ) + ‖b̃‖L∞(0,τ ;L2(Ω)) + ‖∇b̃‖L2(Ωτ ) ≤ C‖e(ũ)‖L2(Ωτ ),

‖b̃‖L∞(0,τ ;L∞(Ω)) ≤ C‖e(ũ)‖L1+1/ς(0,τ ;L2(Ω)),

‖e(ũ)‖L∞(0,τ ;L2(Ω)) ≤ C‖b̃‖L∞(0,τ ;L∞(Ω)),

(7.8)

for 0 < ς < 1/9 and τ ∈ (0, T ], where ñ = n1 − n2, b̃ = b1 − b2, ũ = u1 − u2, and (n1, b1,u1) and (n2, b2,u2)
are two solutions of the macroscopic problem (3.8), (3.10), (3.12), and (3.13). Then considering τ sufficiently
small and iterating over time-intervals yield the uniqueness of a weak solution of the coupled system (3.8),
(3.10), (3.12), and (3.13) in ΩT . The inequalities (7.8) together with a fixed-point argument also ensure the
well-posedness of the macroscopic problem. �

8. Analysis of the microscopic equations with the reaction terms depending

on strain

It is possible to assume that the breakage of calcium-pectin cross-links depends on the strain instead of stress:

Nδ(e(uε))(t, x) =

(
−
∫

Bδ(x)∩Ω

tr e(uε)(t, x̃) dx̃

)+

for all x ∈ Ω and t ∈ (0, T ), (8.1)

P (bε, e(uε)) = (tr e(uε))+ , (8.2)

with Qn(nε, bε) = Q(nε, bε)P (bε, e(uε)), see (2.7). In this situation the analysis of the microscopic problems
follows along the same lines as in Theorems 3.1 and 3.2. Moreover, in this situation the growth assumption on
EM is not needed. In the macroscopic equations, see Theorems 3.3 and 3.4, we will have

N eff
δ (e(u)) =

(
−
∫

Bδ(x)∩Ω

tr e(u) dx̃

)+

and P eff(b,We(u)) = (tr We(u))+ ,

where Wijkl(t, x, y) = δikδjl +
(
êy(wij(t, x, y))

)
kl

and wij being solutions of the unit cell problems (3.7). The
proof of the strong convergence of Tε(bε) in the case where Nδ(e(uε)) depends on the strain can be conducted
in a different way.
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Lemma 8.1. In the case of Model I, (2.1)–(2.4), and Nδ(e(uε))(t, x) =
[
−
∫

Bδ(x)∩Ω tr e(uε(t, x̃))dx̃
]+

for x ∈ Ω

and t ∈ (0, T ), we have, up to a subsequence,

Tε(bε) → b strongly in L2(ΩT × ŶM ) as ε→ 0.

Proof. To show the strong convergence of Tε(bε) in L2(ΩT × ŶM ), we prove that Tε(bε) is a Cauchy sequence in
L2(ΩT × ŶM ). In the proof of the Cauchy property for the sequence Tε(bε) we shall use the Gronwall’s inequality.
Thus, we consider equations for bε in (0, τ) ×Ωε

M , for any τ ∈ (0, T ].
Applying the unfolding operator Tε to the equation for bε in (2.2) and taking Tεm(bεm) − Tεk

(bεk) as a test
function in the difference of the equations for Tεm(bεm) and Tεk

(bεk) yield

‖Tεm(bεm)(τ) − Tεk
(bεk)(τ)‖2

L2(Ω×ŶM )
= ‖Tεm(b0) − Tεk

(b0)‖2
L2(Ω×ŶM )

+ 2(I1 + I2 + I3),

where

I1 =〈Rb(Tεm(nεm), Tεm(bεm), TεmNδ(e(uεm))) −Rb(Tεk
(nεk), Tεm(bεm), TεmNδ(e(uεm))), δεm,εkTε(bε)〉Ωτ×ŶM

,

I2 =〈Rb(Tεk
(nεk), Tεk

(bεk), TεmNδ(e(uεm))) −Rb(Tεk
(nεk), Tεk

(bεk), Tεk
Nδ(e(uεk))), δεm,εkTε(bε)〉Ωτ×ŶM

,

I3 =〈Rb(Tεk
(nεk), Tεm(bεm), TεmNδ(e(uεm))) −Rb(Tεk

(nεk), Tεk
(bεk), TεmNδ(e(uεm))), δεm ,εkTε(bε)〉Ωτ×ŶM

,

with δεm,εkTε(bε) = Tεm(bεm) − Tεk
(bεk) and τ ∈ (0, T ]. Using the strong convergence of nε in L2(ΩT ), the

assumptions on Rb, and the boundedness of nε and bε for the first term we have

|I1| ≤ σ1(εm, εk) + ‖Tεm(bεm) − Tεk
(bεk)‖2

L2(Ωτ×ŶM )
,

where σ1(εm, εk) → 0 as εm, εk → 0. The boundedness of nε and bε yield

|I2| ≤ C
[
‖Tεm(Nδ(e(uεm))) − Tεk

(Nδ(e(uεk)))‖2
L2(Ωτ×ŶM )

+ ‖Tεm(bεm) − Tεk
(bεk)‖2

L2(Ωτ×ŶM )

]
= C(I21 + I22).

Using the properties of the unfolding operator Tε, i.e. ‖Tε(φ)‖2
L2(Ω×Ŷ )

≤ |Ŷ |‖φ‖2
L2(Ω) and Tε(φ) → φ strongly

in L2(Ω × Ŷ ) for φ ∈ L2(Ω), we have

I21 ≤
∑

j=m,k

[
‖TεjNδ(e(uεj )) − TεjNδ(e(u))‖2

L2(Ωτ×Ŷ )
+ ‖TεjNδ(e(u)) −Nδ(e(u))‖2

L2(Ωτ×Ŷ )

]
≤ |Ŷ |

∑
j=m,k

‖Nδ(e(uεj )) −Nδ(e(u))‖2
L2(Ωτ ) + σ2(εm, εk),

where σ2(εm, εk) → 0 as εm, εk → 0. Applying the weak convergence of e(uε) and the strong convergence of∫
Bδ(x)∩Ω e(uε)dx̃, see (6.6), yields

‖Nδ(e(uεj )) −Nδ(e(u))‖2
L2(Ωτ ) ≤

∫ τ

0

∫
Ω

∣∣∣∣∣−
∫

Bδ(x)∩Ω

[
e(uεj (t, x̃)) − e(u(t, x̃))

]
dx̃

∣∣∣∣∣
2

dxdt ≤ Cδ−6σ3(εj),

where σ3(εj) → 0 as εj → 0, with j = m, k. We estimate I3 as

|I3| ≤ C
[
1 + sup

ΩT

Nδ(e(uεm))
]
‖Tεm(bεm) − Tεk

(bεk)‖2
L2(Ωτ×ŶM )

.

Combining the estimates for I1, I21, and I3 and applying the Gronwall’s inequality we obtain

sup
(0,T )

‖Tεm(bεm) − Tεk
(bεk)‖2

L2(Ω×ŶM)
≤ σ4(εm, εk),

where σ4(εm, εk) → 0 as εm, εk → 0. Hence, we have that {Tε(bε)} converges strongly in L2(ΩT × ŶM ).
The macroscopic equation for b implies that b is independent of the microscopic variables y ∈ ŶM . �
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9. On the computation of the effective elasticity tensor

The macroscopic equations allow for the development of efficient numerical simulations of the models discussed
above. To solve the macroscopic problem numerically, the first step is to obtain the macroscopic effective diffusion
coefficients and elasticity tensor. To compute the effective diffusion coefficients, one must solve the unit cell
problems (3.5) and (3.6). Since in (3.5) and (3.6) we have Poisson equations defined on a unit cell ŶM and
are independent of the macroscopic variables, standard numerical methods can be applied. Solving (3.7) to
determine the effective elasticity tensor is more involved, since the unit cell problems in (3.7) depend on the
microscopic variables y ∈ ŶM as well as on the macroscopic variables x and the time variable t through the
density of the calcium-pectin cross-links b. Thus, in general the system (3.7) must be solved for each possible
value of b(t, x) for (t, x) ∈ ΩT . However, under physically reasonable assumptions on the elasticity tensor for
the cell wall matrix, it can be shown that it is sufficient to solve (3.7) for only two values of b.

If the cell wall matrix is isotropic, then the effective elasticity tensor depends linearly on the Young’s modulus
of the wall matrix. To see this, consider the definition of the homogenized elasticity tensor

Ehom,ijkl(b) = −
∫

Ŷ

[
Eijkl(b, y) +

(
E(b, y)êy(wij(b))

)
kl

]
dy, (9.1)

where
E(b, y) = EM (b)χYM (y) + EFχYF (y)

and wij are the unique solutions of the unit cell problems (3.7). Experiments suggest that only the Young’s
modulus E = E(b) depends on the density of the calcium-pectin cross-links b, see e.g. [64]. Since the cell wall
matrix is isotropic, the elasticity tensor of the cell wall matrix depends linearly on the Young’s modulus, and
thus is of the form

EM (b) = ẼM (E(b)) = E(b)E1 + E0.

To prove that Ehom also depends linearly on E(b), we shall show that there exist Ehom,1 and Ehom,0 such that

Ehom(b) = E(b)Ehom,1 + Ehom,0. (9.2)

For any positive numbers α and β, we define

Wkl(α, β) =
(

Ẽ(α+ β, y)êy(wij(α+ β))
)

kl
−
(

Ẽ(α, y)êy(wij(α))
)

kl
.

It follows from (9.1) that for (9.2) to hold it is sufficient to show that
∫

Ŷ
W(α, β)dy is linear in β and independent

of α. It follows from equations (3.7) and the Ŷ -periodicity of wij and E(b, ·) that W(α, β) is Ŷ -periodic and
satisfies

d̂ivy(W(α, β) + βE1bijχŶM
) = 0 in Ŷ . (9.3)

The Helmholtz–Hodge decomposition theorem for L2(Ŷ )3×3 implies that W(α, β) has a unique representation

W(α, β) = ( ˆcurly U(α, β))T + Z(α, β),

where ( ˆcurly U(α, β))T and Z(α, β) are L2-orthogonal periodic matrix functions, see e.g. [36]. Here ( ˆcurlyU)ij =
εi1k∂y1Ujk +εi2k∂y2Ujk with summation over k = 1, 2, 3 and ε beeing the three dimensional Levi-Civita symbol.
Then Z(α, β) is the unique Ŷ -periodic solution of

d̂ivy(Z(α, β) + βE1bijχŶM
) = 0 in Ŷ ,

that is orthogonal to the kernel of d̂ivy. Therefore Z is a linear function of β and is independent of α. Moreover,
it follows from the periodicity of U that

∫
Ŷ

( ˆcurly U(α, β))Tdy = 0. Thus,
∫

Ŷ
W(α, β) dy is independent of α

and is linear in β.
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Table 1. Effective macroscopic elasticity tensor for the Young’s modulus E = 10 MPa.

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

21.2 8.9 23.3 0 0 0

8.9 21.2 23.3 0 0 0

23.3 23.3 43367.5 0 0 0

0 0 0 14 0 0

0 0 0 0 14 0

0 0 0 0 0 5.7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since Ehom is a linear function of the Young’s modulus of the cell wall matrix, knowing Ehom for two different
values of this modulus completely determines Ehom. Thus, given the Young’s modulus of the cell wall matrix
as a function of the calcium-pectin cross-link density, the macroscopic elasticity tensor can be computed for
different cross-link densities by solving the unit cell problems (3.7) for only two values of b.

As an example, we compute Ehom numerically for E = 10 MPa, which corresponds to b = 2.48μM when
E(b) = 0.775 b + 8.08, see [64]. Since the cell wall matrix is assumed to be isotropic, it suffices to specify the
Poisson’s ratio to completely determine the elasticity tensor of the wall matrix. Here, we consider the Poisson’s
ratio to be equal to 0.3, a common value for biological materials. The microfibrils are transversely isotropic [16]
and, hence, the elasticity tensor is determined by specifying five parameters: the Young’s modulus EF associated
with the directions lying perpendicular to the fibril, the Poisson’s ratio νF1 which characterizes the transverse
reduction of the plane perpendicular to the microfibril for stress lying in this plane, the ratio nF between EF and
the Young’s modulus associated with the direction of the fibril, the Poisson’s ratio νF2 governing the reduction
in the plane perpendicular to the micofibril for stress in the direction of the microfibril, and the shear modulus
ZF for planes parallel to the fibril. These parameters are assigned the values

EF = 15000 MPa, νF1 = 0.3, nF = 0.068, νF2 = 0.11, ZF = 84842 MPa,

which are chosen based on experimental results [64] and to ensure that the elasticity tensor for the microfibrils
is strongly elliptic. The computations involved the unit cell Ŷ = (0, 1)2 with

ŶF = {(y1, y2) ∈ Ŷ | (y1 − 0.5)2 + (y2 − 0.5)2 < 0.252}.

The unit cell problem (3.7) was solved using FEniCS [34,35,44]. This involved the discretization of the domain Ŷ
using a nonuniform mesh with 15,991,809 vertices that had a higher density of vertices near the boundary
between the cell wall matrix and the microfibrils. The linear system, obtained using the continuous Galerkin
finite element method, was solved using the general minimal residual method with an algebraic multigrid
preconditioner.

Table 1 shows the computed effective elasticity tensor expressed in Voigt notation. When a larger value of b is
considered, the components of the resulting effective elasticity tensor are larger. As can be seen, the macroscopic
elasticity tensor possesses tetragonal symmetry. This is in agreement with a general result on the symmetry
of the effective coefficients, see [50]. The C33 component is several orders of magnitude larger than the other
components of C since it describes the resistivity of the cell wall to being stretched in the direction parallel to
the microfibrils, and the microfibrils are much stiffer than the cell wall matrix.

10. Derivation of the mathematical model

In this section Model I for plant cell wall biomechanics is derived. The derivation of Model II follows along
the same lines. We will emphasise the differences between Models I and II at the end of the section.
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Figure 2. Schematic diagram of a plant cell wall. MF denotes cell wall microfibrils, CMT
denotes cortical microtubules in a plant cell.

The primary wall of a plant cell consists mainly of oriented cellulose microfibrils, pectin, hemicellulose, struc-
tural proteins, and water, see Fig. 2. The cross-linked pectin network is the main composite of the middle lamella
which joins individual cells together. The main force for cell elongation (turgor pressure) acts isotropically, and
so it is the microscopic structure of the cell wall which determines the anisotropic growth of plant cells and
tissue. The orientation of microfibrils, their length, high tensile strength, and interaction with cell wall matrix
macromolecules strongly influence the wall’s stiffness. Hemicelluloses form hydrogen bonds with the surface of
cellulose microfibrils, which may strengthen the cell wall by creating a microfibril-hemicellulose network, but
also weaken the mechanical strength of cell walls by preventing cellulose aggregation [56]. Pectin is deposited
into cell walls in a methylesterified form, where it can be modified by the enzyme pectin methylesterase (PME),
which removes methyl groups by breaking ester bonds. The de-esterified pectin is able to form calcium-pectin
cross-links, and so stiffen the cell wall and reduce its expansion, see e.g. [60, 64].

Thus, the biomechanics of plant cell walls is determined by the cell wall microstructure, given by the mi-
crofibrils, and the physical properties of the cell wall matrix. There are a number of models of a plant cell wall,
each of which focuses on different aspects of its structure. Mathematical models of the cellulose-hemicellulose
network were proposed in [20, 45]. The account of the microstructure of a cell wall has been addressed by con-
sidering the anisotropic yield stresses or by distinguishing between the free energies related to the elasticity
of (i) macromolecules and hydrogen bonds or (ii) the matrix and microfibrils [7, 17, 58]. The influence of the
microfibril orientation and the external torque on the expansion process has been considered in [19]. The effect
of changes in the chemical configurations of pectins (methylesterified and demethylesterified) and the calcium
concentration on the viscous behavior of a cell wall in a pollen tube has been analyzed in [31, 52].

In our model we focus on two aspects which have not been considered together before: the influence of the
microstructure, associated with the cellulose microfibrils, and of the calcium-pectin cross-links on the mechanical
properties of plant cell walls. In the microscopic model of cell wall biomechanics derived here, the cell wall
microstructure and the dynamics of the formation and dissociation of calcium-pectin cross-links are considered
explicitly.

It is supposed that calcium-pectin cross-linking chemistry is one of the main regulators of cell wall elasticity
and extension [61]. It has been shown that the modification of pectin by PME and the control of the amount
of calcium-pectin cross-links greatly influence the mechanical deformations of plant cell walls [46, 47], and the
interference with PME activity causes dramatic changes in growth behavior of plant cells and tissues [62].
We consider the most abundant subclass of pectin, homogalacturonan, which is important for the regulation
of plant biomechanics and growth. Homogalacturonan consists of a long linear chain of galacturonic acids.
Pectin is deposited into the cell wall in a highly methylestrified state and then is modified by the enzyme
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pectin-methylesterase (PME), which removes methyl groups [60]. The demethylesterified pectin interacts with
calcium ions to produce load bearing cross-links, which reduce cell wall expansion, see e.g. [61].

In the mathematical model a flat section of a cell wall composed of a polysaccharide matrix and cellulose
microfibrils is considered. Let Ω be a reference configuration of the plant cell wall. The domains ΩM and ΩF

denote the parts of Ω occupied by the cell wall matrix and microfibrils, respectively.
We consider five species within the plant cell wall matrix: methylestrified pectin, the enzyme PME, demethyl-

estrified pectin, calcium ions, and calcium-pectin cross-links. To form cross-links with calcium ions Ca2+, pectin
molecules need to have only some of their constituent acids de-estrified, see e.g. [15,60]. Thus, when describing
the density of pectin in the different states, we refer to the density of the galacturonic acid groups in the different
states.

Let ne, nE , nd, nc, and nb denote the number densities of methylestrified pectin acid groups, PME enzyme,
demethylestrified pectin acid groups, calcium ions, and calcium-pectin cross-links in the reference configuration
ΩM , respectively. Let S = {e, E, d, c, b} be an index set and nS will denote all five of the densities. We assume
that the densities nα, with α ∈ S, are changing due to spacial movement, reactions between the species, and
external agencies. Thus, the balance equation for nα is given by

∂tnα = rα − div jα + hα in ΩM , α ∈ S, (10.1)

where rα models the chemical reactions between the species, jα is the flux, and hα is the species supply due to
external agencies. The momentum balance for the cell wall reads

0 = divTR + b in Ω, (10.2)

where TR is the Piola stress and b denotes the external body forces, including inertial forces. We consider
elastic behavior of the wall material and assume that the chemical processes in the wall matrix influence the
mechanical properties of the cell walls, see e.g. [15, 60]. The constitutive law of linear elasticity, see e.g. [9], for
the stress is assumed:

TR =
(
EM (nS)χΩM + EFχΩF

)
e(u), (10.3)

where EM (nS) and EF are elasticity tensors for cell wall matrix and microfibrils, respectively, and e(u) =
1
2 (∇u+∇uT) is the symmetric part of the displacement gradient, χA is the characteristic function of a domain A.

The interactions between the mechanical properties of the cell wall and the biochemistry of the wall matrix
are also reflected in the reactions terms

rα = rα0(nS) + Zα(nS) · Ñδ(e(u)), (10.4)

where

Ñδ(e(u))(x) = −
∫

Bδ(x)∩Ω

E(nS)e(u)(x̃)dx̃

for all x ∈ Ω, with E(nS) = EM (nS)χΩM +EFχΩF . We assume that the stress influences the chemical reactions
and the dynamics of calcium-pectin cross-links [48]. Since pectin are long molecules, we assume the nonlocal
impact of cell wall mechanics on chemical processes. Thus, stresses within a neighborhood of a point affect the
rate of the chemical reactions. The length scale δ is associated with the length of the pectin molecules.

The flux of species α is assumed to be determined by Fick’s law:

jα = −Dα∇nα, (10.5)

where Dα is the diffusion coefficient of the species α.
Next, we specify assumptions on the constitutive laws introduced in (10.3)–(10.5) that reflect the physics

of the plant cell wall. The cell wall matrix has the same properties in all directions and, hence, is isotropic,
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see e.g. [64]. This is expressed mathematically by requiring

EM (nS)(Qe(u)QT) = Q(EM (nS)e(u))QT,

Zα(nS) = QZα(nS)QT,

Dα = QDαQT,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for all rotations Q. (10.6)

Using standard representation theorems for isotropic functions, see e.g. [24], equations (10.6) imply that

EM (nS)e(u) = 2μ(nS)e(u) + λ(nS)(divu)1,
Zα(nS) = zα(nS)1,

Dα = Dα1.
(10.7)

While it is known that polymers can diffuse [25], the diffusion coefficient of calcium-pectin cross-links is much
lower than the diffusion coefficients of the other species and, thus, we assume first that calcium-pectin cross-
links do not diffuse, i.e. Db = 0. Unlike the matrix, the microfibrils have different elastic properties in different
directions, see e.g. [16]. For a plant cell wall, the amount of calcium-pectin cross-links plays a decisive role in
determining the elastic properties of the wall matrix [56,61]. Thus, we assume that EM or, equivalently, μ and λ,
depends only on nb.

We consider the following four interactions between the species in the matrix:

(1) The enzyme PME interacts with methylestrified pectin to form demethylestrified pectin.
(2) Demethylestrified pectin decays.
(3) Demethylestrified pectin and calcium ions bind together to form calcium-pectin cross-links.
(4) Under the presence of stress, calcium-pectin cross-links break to yield demethylestrified pectin and calcium

ions.

For a detailed discussion of Interactions 1–4, see e.g. [48, 60, 64].
We begin by discussing the reaction term rd, which is decomposed into the sum of three terms:

rd = reE + rdd + rfb,

where reE is the rate of change of the density of demethylestrified pectin acid groups, nd, associated with
Interaction 1, rdd is the rate of decay of nd mentioned in Interaction 2, and rfb is the rate of change of nd

associated with the formation and breakage of calcium-pectin cross-links specified in Interactions 3 and 4.
From Interaction 1, we have

reE = −re.
We assume that the binding of PME to and dissociation from a pectin acid group are very fast, and that the
enzyme PME is not used up during the demethyl-esterification process so that rE = 0. From Interactions 3
and 4 it follows that

rb = −rc = −1
2
rfb.

The factor of a half in front of rfb reflects the fact that two demethylestirified galacturonic acids are needed to
form a calcium-pectin cross-link. We assume that

reE = ReE(ne, nE),
rdd = −Rd nd,

where ReE defines the demethyl-esterification reaction between methylestrified galacturonic acid groups and
PME and Rd > 0 is a decay constant of the demethylestrified pectin. Interactions between demethylestirified
pectin and calcium ions increase the number of cross-links, while stress can break the cross-links. Thus

rb = Rdc(nd, nc) −Rb(nb)Nδ(e(u)), (10.8)
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where Rdc models the formation of cross-links through the interactions between demethylesterified pectin and
calcium ions, and Nδ(e(u)) is defined as

Nδ(e(u))(t, x) =

(
−
∫

Bδ(x)∩Ω

tr E(nb) e(u)(t, x̃) dx̃

)+

for all x ∈ Ω and t ∈ (0, T ). (10.9)

Having rb depend on the positive part of the local average of the stress does not follow from (10.4), but it is
consistent with the isotropy assumption. The reason for the choice (10.8) is based on the idea that stretching,
rather than compressing, of the cross-links will cause them to break.

Possible choices for the functions ReE , Rdc, and Rb are

ReE(ne, nE) = keEnenE , Rdc(nd, nc) =
kdc,1nc

kdc,2 + nc
nd, Rb(nb) = kbnb,

where keE , kdc,1, kdc,2, and kb are positive constants. Due to the high calcium concentration in plant cell walls,
we assume saturation kinetics for the density of calcium ions in the reaction term Rdc.

Remark 10.1. The constitutive laws, considered here, are consistent with the Second Law of Thermodynamics
in that, in the elastic case, Maxwell’s relation

∂TR

∂nα
=

∂μα

∂e(u)

holds, where μα is the chemical potential for species α, which depends on nS , and e(u), see [24]. The chemical
potential is related to the flux jα through the relation

jα = −Mα∇μα.

To obtain the flux used in this section, set

μα =

⎧⎪⎨⎪⎩
nα α �= b,

1
2
e(u) · ∂E

∂nb
(nb)e(u) α = b,

Mα =

{
Dα1 α �= b,

0 α = b.

The environment can effect the cell wall in two different ways: through external influences and boundary
conditions. The effects of the supply of species hα and external body forces b, including inertial terms, are
neglected so

hα = 0 in ΩM and b = 0 in Ω.

The boundary ∂Ω of Ω is decomposed into four disjoint surfaces: ΓI , ΓE , ΓU , and ∂Ω \ (ΓI ∪ΓE ∪ΓU ), where
ΓI is the part of ∂Ω in contact with the interior of the cell and ΓE is the part of ∂Ω in contact with the middle
lamella. Let ν denote the exterior unit-normal to whatever surface is under discussion. On Γ = ∂ΩF \ ∂Ω, ν
points away from ΩM .

PME, produced in the Golgi apparatus of a plant cell, is deposited into the cell wall and diffuses through the
cell wall into the middle lamella. PME can also diffuse back into the cell to degrade. Thus, we assume that the
enzyme PME can enter or leave the cell wall through ΓI but can only leave the wall through ΓE . To account for
the mechanisms controlling the amount of PME in a cell wall [61], we assume that the inflow of PME into the
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cell wall depends on the total amount of methylestrified pectin within the wall, which leads to the boundary
fluxes

jE · ν = −JE

(∫
ΩM

ne dx

)
+ ζEnE on ΓI ,

jE · ν = γEnE on ΓE ,

where ζE and γE are non-negative constants.
Methylesterified pectin is produced by the cell and then transported into the cell wall through ΓI , e.g. [60].

To account for mechanisms controlling the amount of pectin in the cell wall, we assume that the inflow of new
methylestrified pectin decreases with an increasing amount of methylestrified pectin in the wall. Methylestrified
pectin can leave the wall through ΓE and enter the middle lamella. Thus,

je · ν = −Je

(∫
ΩM

ne dx

)
on ΓI ,

je · ν = γene on ΓE ,

(10.10)

where γe is a non-negative constant. We assume an outflow of demethylesterified pectin from the cell wall into
the middle lamella:

jd · ν = 0 on ΓI , jd · ν = γdnd on ΓE . (10.11)

Calcium ions may enter or leave the cell wall through both ΓI and ΓE , but the flow of calcium through ΓI
is controlled by stretch activated calcium channels in the plasma membrane, see e.g. [18, 59]. Thus, the flow of
calcium through ΓI is assumed to depend on the local average of the stress and on the density of calcium, so
that

jc · ν = −Jc,E(nc) on ΓE ,

jc · ν = −Nδ(e(u))Jc,I(nc) on ΓI ,
(10.12)

where
Jc,I(nc) = γc,1 − γc,2nc, Jc,E(nc) = ζc,1 − ζc,2nc,

with non-negative constants γc,i and ζc,i, where i = 1, 2, and Nδ(e(u)) is given by (10.9). Similar to (10.8), we
assume that the right-hand side of (10.12)2 depends on the positive part of the local average of the stress.

The traction boundary conditions

TRν = −pIν on ΓI , TRν = f on ΓE ∪ ΓU ,

come from the constant, positive turgor pressure pI within the cell and the traction force f , caused by sur-
rounding cells. We consider zero-flux boundary conditions on the surface of the microfibrils and on ΓU :

jα · ν = 0 on Γ and jα · ν = 0 on ΓU , α = e, E, d, c.

On ∂Ω \ (ΓI ∪ ΓE ∪ ΓU ) periodic boundary conditions for the densities and displacement are imposed.
Possible choices for the functions that determine the boundary conditions are

JE

(∫
ΩM

ne dx

)
= βE

∫
ΩM

ne dx, Je

(∫
ΩM

ne dx

)
=

βe

1 + ζe
∫

ΩM
ne dx

,

f = pE ν on ΓE , f = pU ν on ΓU ,

where βE , βe, ζe, pE , and pU are positive constants.
The difference between Models I and II is that in Model II we assume that the calcium-pectin cross-links

can diffuse, i.e. Db > 0. In this situation we assume that the reaction term associated with the formation and
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destruction of cross-links depends on the point-wise values of the displacement gradient rather than the local
average:

rb = Rdc(nd, nc) −Rb(nb)Q(nb, e(u)), (10.13)

where a possible choice for Q is Q(nb, e(u)) =
(
tr E(nb) e(u)

)+. Considering the diffusion of calcium-pectin
cross-links corresponds to the situation where the calcium-pectin network is less connected and the mechanical
stress in the cell wall have a point-wise impact on chemical processes.

11. Summary

In this paper we developed a mathematical model for plant cell wall biomechanics which explicitly considers
the microscopic structure of the cell wall and the biochemical processes that take place within the wall matrix.
The microscopic model defined on the scale of the cell wall’s structural elements describes the interconnections
between the calcium-pectin cross-links dynamics and the changes in the mechanical properties of the cell wall.
We consider both a non-local effect of strain or stress on the calcium-pectin cross-link dynamics as well as
a point-wise dependence of chemical reactions on mechanical forces. Applying homogenization techniques we
rigorously derive macroscopic models for plant cell wall biomechanics. We also show that since the cell wall
matrix is isotropic, the macroscopic elasticity tensor is a linear function of the Young’s modulus of the wall
matrix. Then assuming that only the Young’s modulus of the wall matrix depends on the density of calcium-
pectin cross-links we compute numerically the effective macroscopic elastic properties of the plant cell wall as a
function of the density of calcium-pectin cross-links. In the numerical simulations, the cell wall microfibrils are
assumed to be transversal isotropic. The numerical analysis of the full macroscopic model will be the subject
of future research.
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of plant cell walls.
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