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Abstract. The main purpose of this paper is to analyze the stability and error estimates of the lo-
cal discontinuous Galerkin (LDG) methods coupled with implicit-explicit (IMEX) time discretization
schemes, for solving multi-dimensional convection-diffusion equations with nonlinear convection. By
establishing the important relationship between the gradient and the interface jump of the numerical
solution with the independent numerical solution of the gradient in the LDG method, on both rect-
angular and triangular elements, we can obtain the same stability results as in the one-dimensional
case [H.J. Wang, C.-W. Shu and Q. Zhang, SIAM J. Numer. Anal. 53 (2015) 206–227; H.J. Wang,
C.-W. Shu and Q. Zhang, Appl. Math. Comput. 272 (2015) 237–258], i.e., the IMEX LDG schemes
are unconditionally stable for the multi-dimensional convection-diffusion problems, in the sense that
the time-step τ is only required to be upper-bounded by a positive constant independent of the spatial
mesh size h. Furthermore, by the aid of the so-called elliptic projection and the adjoint argument, we
can also obtain optimal error estimates in both space and time, for the corresponding fully discrete
IMEX LDG schemes, under the same condition, i.e., if piecewise polynomial of degree k is adopted on
either rectangular or triangular meshes, we can show the convergence accuracy is of order O(hk+1 +τ s)
for the sth order IMEX LDG scheme (s = 1, 2, 3) under consideration. Numerical experiments are also
given to verify our main results.
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1. Introduction

In this paper we carry out the stability analysis and error estimates of a fully discrete local discontinuous
Galerkin (LDG) scheme coupled with implicit-explicit Runge−Kutta time discretization, for solving nonlinear
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multi-dimensional scalar convection-diffusion problems

Ut + ∇ · F (U) = ΔU, (x, t) ∈ QT = Ω × (0, T ], (1.1)

with periodic boundary condition and the initial solution U(x, 0) = U0(x). Here Ω is a bounded rectangular
domain in R

d (d = 2, 3), and F (U) = (f1(U), . . . , fd(U)) is the given flux function whose components are
assumed to be smooth enough.

The LDG method was introduced by Cockburn and Shu for convection-diffusion problems in [6], motivated
by the work of Bassi and Rebay [2] for compressible Navier–Stokes equations. As an extension of discontinuous
Galerkin (DG) schemes for hyperbolic conservation laws [7], this scheme shares the advantages of the DG
methods, such as good stability, high order accuracy, and flexibility on h-p adaptivity and on complex geometry.
Besides, a key advantage of this scheme is the local solvability, that is, the auxiliary variables approximating
the gradient of the solution can be locally eliminated. The LDG schemes have also been successfully designed
for other diffusion problems, for example, the bi-harmonic equations [9, 23], the Kuramoto–Sivashinsky type
equations [20], the Cahn–Hilliard equation [19], etc. Moreover, the LDG schemes have been studied for solving
dispersive equations as well, such as KdV-type equations [22], the fifth order convection dispersion equation [23],
etc. For more applications of the LDG schemes, we refer the readers to the review article [21] and the reference
therein.

The LDG scheme has shown its good stability for many types of problems [21] in the semi-discrete framework.
However, efficient time discretization is an important issue to be studied, especially for high order spatial
derivative problems. As for convection-diffusion problems, explicit Runge−Kutta time discretization methods
analyzed in [14] is stable, efficient and accurate for solving convection-dominated convection-diffusion problems.
However, for convection-diffusion equations which are not convection-dominated, explicit time discretization
will suffer from a stringent time step restriction for stability [18]. When it comes to such problems, a natural
consideration to overcome the small time step restriction is to use implicit time marching. Furthermore, in
many applications the convection terms are often nonlinear, hence it would be desirable to treat them explicitly
while using implicit time discretization only for the linear diffusion terms. Such time discretizations are called
implicit-explicit (IMEX) time discretizations [1]. Even for nonlinear diffusion terms, IMEX time discretizations
would show their advantages in obtaining an elliptic algebraic system, which is easy to solve by many iterative
methods. If both convection and diffusion are treated implicitly, the resulting algebraic system will be far from
elliptic and convergence of many iterative solvers will suffer.

In reference [15, 16], we showed that the three specific Runge−Kutta type IMEX schemes given in [1, 3],
coupled with LDG spatial discretization for solving one-dimensional linear and nonlinear convection-diffusion
problems, are unconditional stable in the sense that the time step τ is only required to be upper bounded by
a constant which is independent of the mesh size h. In this paper, we will show that the same stability holds
for the IMEX LDG schemes considered in [15] for solving multi-dimensional nonlinear convection-diffusion
problems, on both rectangular meshes and triangular meshes. We would like to point out that, for rectangular
meshes, we consider the finite element space as piecewise polynomials of degree k, denoted as Pk, just as for
the triangular case. This is different from the traditional treatment in the literatures, such as [8,9], where finite
element spaces with tensor product polynomials were considered. Furthermore, it is worth mentioning that,
our stability analysis on multi-dimensional space also relies heavily on the important relationship between the
auxiliary variable and the primal variable, which is formally the same as the one-dimension case, however, the
proof is not straightforward for Pk elements, especially for the triangular meshes.

In this paper, we also perform the error estimates for the IMEX LDG methods. Unlike the one-dimensional
case, in multi-dimensional case, we cannot find a proper projection to eliminate the element boundary errors
to obtain the optimal error estimate. To get an optimal error estimate, we would like to utilize the so called
elliptic projection which is a standard tool in the numerical analysis for elliptic and parabolic problems [13,17].
This method was also used in [9] to derive the optimal error estimate for the LDG method solving linear
time-dependent fourth order problems on triangular elements. In this paper, we will follow [9] and adopt this
methodology to derive the optimal error estimate for the IMEX LDG methods on both rectangular and triangular



IMEX LDG METHODS ON MULTI-DIMENSIONAL PROBLEMS 1085

meshes. We will obtain (k+1)th order of accuracy if the finite element space is made up of piecewise polynomials
of degree k.

The paper is organized as follows. In Section 2 we present the semi-discrete as well as the fully-discrete LDG
schemes for the model problem. In Section 3 we give some preliminaries, including some basic inequalities, the
key lemma and the useful elliptic projection. Sections 4 and 5 are devoted to the stability and error analysis
for the IMEX LDG methods. In Section 6 we will present some numerical results to verify our results. The
concluding remarks and some technical proofs are given in Section 7 and the Appendix, respectively.

2. The LDG method with IMEX time-marching

In this section we will present the definition of the LDG scheme with IMEX time-marching, for problem (1.1).
For simplicity, we only consider the two dimensional case (d = 2) in this paper, in which x = (x, y) and
F (U) = (f(U), g(U)). The results can be easily extended to the three dimensional case (d = 3).

2.1. Discontinuous finite element space

Let Ωh = {K} be a quasi-uniform partition of the domain Ω with triangular (or rectangular) element K,
where h = maxK hK , with hK being the diameter of element K. We denote Γh as the set of all element interfaces.
Associated with this mesh, we define the discontinuous finite element space

Vh =
{

v ∈ L2(Ω) : v|K ∈ Pk(K), ∀K ∈ Ωh

}
, (2.1)

where Pk(K) denotes the space of polynomials of degree less than or equal to k in K.
Following [21, 22], we choose a fixed vector β which is not parallel with any normals of element boundaries.

This is possible because there are only finitely many element boundary normals for any given mesh. For each
side e, we use this fixed vector β to uniquely define the left and right elements KL and KR which share the
same side e. Namely, β · nKL > 0 and β · nKR < 0, respectively, where nK is the outward normal of K. Along
the side e, there are two traces for any function p, denoted by p+ = (p|KR)|e and p− = (p|KL)|e, respectively,
and we denote the jump as [[p]] = p+ − p−.

2.2. The semi-discrete LDG scheme

The semi-discrete LDG scheme [6, 21] starts from the following equivalent first-order differential system

Ut + ∇ · (F (U) −Q) = 0, Q−∇U = 0, (x, t) ∈ QT , (2.2)

with the same initial condition and boundary condition, where

Q = (Q1, Q2) = (Ux, Uy) = ∇U. (2.3)

We would like to find the numerical solution of the LDG scheme, denoted by (u, q), in the finite element space
Vh × Vh, where Vh = V d

h .
Take the initial condition u(x, 0) ∈ Vh as any approximation of the given initial solution U0(x). For any

t > 0, the numerical solution (u(x, t), q(x, t)) ∈ Vh × Vh satisfies the variation forms (in what follows we omit
x and t if there is no confusion)

(ut, v)K =HK(u, v) + LK(q, v), (2.4a)
(q, r)K =QK(u, r) (2.4b)

in each element K, for any test functions (v, r) ∈ Vh × Vh. Here

HK(u, v) = (F (u),∇v)K − 〈F̃nK ,K(uintK , uextK ), v〉∂K , (2.5a)
LK(q, v) = − (q,∇v)K + 〈q̃ · nK , v〉∂K , (2.5b)
QK(u, r) = − (u,∇ · r)K + 〈ũ, r · nK〉∂K , (2.5c)
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where nK is the outward normal vector of each edge of element K, uintK and uextK denote the values of u
evaluated from inside and outside from the element K, respectively. Also

(u, v)K =
∫

K

uv dxdy, (q, r)K =
∫

K

q · r dxdy, and 〈u, v〉∂K =
∫

∂K

uv ds (2.6)

are the standard inner products in L2(K) and L2(∂K), respectively.
In (2.5), the “tilde” terms represent the numerical flux. F̃nK ,K(uintK , uextK ) is any one-dimensional locally

Lipschitz flux which is conservative and consistent with F (u) · nK . Namely, F̃nK ,K(u, u) = F (u) · nK , and
F̃nK ,K(a, b)+ F̃nK′ ,K′(b, a) = 0 for arbitrary a, b, where K and K ′ share the same edge; see [22] for more details.
There are several well-known numerical fluxes which can be used, such as the Godunov flux, the Lax−Friedrichs
flux, the Engquist−Osher flux, and so on. In addition, we adopt the alternating numerical flux [6] for q̃ and ũ
in (2.5b) and (2.5c), for example,

q̃ = q+, ũ = u−. (2.7)

We have now defined the semi-discrete LDG scheme.
For the convenience of analysis, we would like to write the above semi-discrete LDG scheme into the global

form. By summing up the variational formulations (2.4) over all elements, we arrive at the compact form:

(ut, v)Ωh
=H(u, v) + L(q, v), (2.8a)

(q, r)Ωh
=Q(u, r), (2.8b)

where (·, ·)Ωh
=
∑

K(·, ·)K is the standard inner product in L2(Ωh). Here

H(·, ·) =
∑
K

HK(·, ·), (2.9)

and similarly for L and Q.

2.3. The fully discrete LDG schemes

In this subsection we would like to present the fully-discrete LDG schemes coupled with three specific IMEX
Runge−Kutta time-marching methods up to the third order, which have been considered in [15, 16] for one-
dimensional convection-diffusion equations.

Let {tn = nτ}M
n=0 be the uniform partition of the time interval [0, T ], with time step τ such that Mτ = T .

The time step could actually change from step to step, but in this paper we take the time step as a constant for
simplicity. Given un, hence (un, qn), we would like to find the numerical solution at the next time level tn+1,
maybe through several intermediate stages tn,�, by the following IMEX RK methods.

The LDG scheme with the first order IMEX time-marching method, where the convection part is treated
by the forward Euler method and the diffusion part is treated by the backward Euler method, is given in the
following form:

(un+1, v)Ωh
= (un, v)Ωh

+ τH(un, v) + τL(qn+1, v), (2.10a)
(qn+1, r)Ωh

=Q(un+1, r), (2.10b)

for any function (v, r) ∈ Vh × Vh.
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The LDG scheme with the second order IMEX time marching scheme given in [1] is:

(un,1, v)Ωh
=(un, v)Ωh

+ γτH(un, v) + γτL(qn,1, v), (2.11a)
(un+1, v)Ωh

=(un, v)Ωh
+ δτH(un, v) + (1 − δ)τH(un,1, v)

+ (1 − γ)τL(qn,1, v) + γτL(qn+1, v), (2.11b)

(qn,�, r)Ωh
=Q(un,�, r), 	 = 1, 2, (2.11c)

for any function (v, r) ∈ Vh × Vh, where γ = 1 −
√

2
2 and δ = 1 − 1

2γ . Here un,2 = un+1 and qn,2 = qn+1.
The LDG scheme with the third order IMEX time marching scheme proposed in [3] reads: for any function

(v, r) ∈ Vh × Vh,

(un,�, v)Ωh
= (un, v)Ωh

+ τ

3∑
κ=0

(a�κH(un,κ, v) + ã�κL(qn,κ, v)), 	 = 1, 2, 3, (2.12a)

(un+1, v)Ωh
= (un, v)Ωh

+ τ

3∑
κ=0

(bκH(un,κ, v) + b̃κL(qn,κ, v)), (2.12b)

(qn,�, r)Ωh
=Q(un,�, r), 	 = 1, 2, 3, (2.12c)

where the coefficients are given in the following tabular

γ 0 0 0 0 γ 0 0
a�κ

1+γ
2 − α1 α1 0 0 0 1−γ

2 γ 0 ã�κ

0 1 − α2 α2 0 0 θ1 θ2 γ

bκ 0 θ1 θ2 γ 0 θ1 θ2 γ b̃κ

(2.13)

The left half of the tabular lists a�κ and bκ, with the columns from left to right corresponding to κ = 0, 1, 2, 3,
and the first three rows from top to bottom corresponding to 	 = 1, 2, 3. Similarly, the right half lists ã�κ

and b̃κ. Here γ ≈ 0.435866521508459, θ1 = − 3
2γ2 + 4γ − 1

4 , θ2 = 3
2γ2 − 5γ + 5

4 , α1 = −0.35 as in [3] and

α2 =
1
3−2γ2−2θ2α1γ

γ(1−γ) .

3. Preliminaries

3.1. The trace inverse inequalities

Now we present the following trace inverse property with respect to the finite element space Vh. For any
function v ∈ Vh, and r ∈ Vh, there exists a positive inverse constant μ > 0 independent of v, r, h and K such
that

‖v‖∂K ≤
√

μh−1‖v‖K , ‖r · nK‖∂K ≤
√

μh−1‖r‖K . (3.1)

In this paper, we use ‖ · ‖D to denote the standard L2 norm on domain D, if D = Ω, we omit the subscript Ω
for simplicity.

In the following analysis, we will also use the global form of the above trace inverse inequalities by summing
up the above local forms over every element K. The conclusions are the same since the mesh is assumed to be
quasi-uniform, and we omit them.

3.2. The main lemma

In this subsection, we give the main lemma to illustrate an important relationship between the gradient and
the element interface jump of the numerical solution with the numerical solution of the gradient, which plays a
key role in the two-dimensional analysis.
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Lemma 3.1. Suppose (u, q) ∈ Vh × Vh is the solution of scheme (2.8b), namely

(q, r)Ωh
= Q(u, r), ∀r ∈ Vh, (3.2)

then there exists a positive constant Cμ independent of h but maybe depending on the inverse constant μ, such
that

‖∇u‖ +
√

μh−1‖[[u]]‖Γh
≤ Cμ‖q‖. (3.3)

Here ‖ · ‖Γh
= (
∑

e∈Γh
‖ · ‖2

e)
1/2.

To prove this lemma, we just need to consider it in an element K. By (2.4b), (2.5c) and integrating by parts
we obtain

(q, r)K = (∇u, r)K − 〈u, r · nK〉∂K + 〈ũ, r · nK〉∂K

= (∇u, r)K − 〈[[u]], r · nK〉∂−
K

. (3.4)

Here we use ∂−
K = {e ⊂ ∂K,β · nK |e < 0} to denote the inflow side(s) of element K, if β · nK |e > 0, we call

e an outflow side of element K, where nK |e denotes the outward unit normal to the element K at e. For the
rectangular elements, we would like to take β = (1, 1).

Next, we would like to base on the above important relationship to prove Lemma 3.1 on both rectangular
and triangular elements, respectively. In the following proof, we will focus on the Pk finite element space for
both cases, and the “hat” terms are related to the information of the reference element K̂.

3.2.1. The proof for rectangular elements

Assume a rectangle K = Ii × Jj , where Ii = (xi−1
2
, xi+1

2
) and Jj = (yj−1

2
, yj+1

2
). Let q = (q1, q2), then, to

prove (3.3), it is sufficient to show that

‖ux‖K +
√

μh−1

(∫
Jj

[[u]]2i−1
2 ,y dy

)1/2

≤ Cμ‖q1‖K , (3.5a)

‖uy‖K +
√

μh−1

(∫
Ii

[[u]]2x,j−1
2

dx

)1/2

≤ Cμ‖q2‖K . (3.5b)

The proofs for (3.5a) and (3.5b) are similar. In what follows, we only give the proof for (3.5a).
To this end, it is convenient to introduce the reference unit rectangle K̂ = [0, 1] × [0, 1], with variables

x̂ =
x−x

i−1
2

hi
and ŷ =

y−y
j−1

2
hj

, where hi = xi+1
2
− xi−1

2
and hj = yj+1

2
− yj−1

2
. Taking r = (r1, 0) in (3.4), we have

(q1, r1)K =(ux, r1)K +
∫

Jj

[[u]]i−1
2 ,y r1(x+

i−1
2
, y) dy. (3.6)

For any v(x, y) defined on K, let v̂(x̂, ŷ) = v(x, y), then by the change of variable and the chain rule we can get

hihj(q̂1, r̂1)K̂ =hj(ûx̂, r̂1)K̂ + hj

∫ 1

0

[[û]]0,ŷ r̂1(0+, ŷ) dŷ. (3.7)

Choosing r̂1(x̂, ŷ) = x̂ûx̂(x̂, ŷ), then it is clear that r̂1(0+, ŷ) = 0. Thus if we define the weighted norm ‖v̂‖2
ω,K̂

.=
(v̂, x̂v̂)K̂ , which is equivalent to the standard L2 norm ‖v̂‖K , then it follows from (3.7) that

‖ûx̂‖2
ω,K̂

= hi(q̂1, x̂ûx̂)K̂ .

A simple use of the Cauchy−Schwarz inequality leads to

‖ûx̂‖K̂ ≤ C‖ûx̂‖ω,K̂ ≤ Chi‖q̂1‖ω,K̂ ≤ Chi‖q̂1‖K̂ , (3.8)

here and below, C is a generic bounding constant independent of h.
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Figure 1. Type-I (left) and Type-II (right) triangles.

Next we take r̂1(x̂, ŷ) = û(x̂, ŷ) − û(0−, ŷ), then r̂1(0+, ŷ) = [[û]]0,ŷ. Hence, by (3.7) we have∫ 1

0

[[û]]20,ŷ dŷ = (hiq̂1 − ûx, r̂1)K̂ .

By the Cauchy−Schwarz inequality, (3.8) and the Young’s inequality we have∫ 1

0

[[û]]20,ŷ dŷ ≤ C
[
hi‖q̂1‖K̂ + ‖ûx‖K̂

]
‖r̂1‖K̂ ≤ 1

4
‖r̂1‖2

K̂
+ Ch2

i ‖q̂1‖2
K̂

. (3.9)

Noticing that for x̂ ∈ [0, 1], r̂1(x̂, ŷ) =
∫ x̂

0
ûx̂(s, ŷ) ds + [[û]]0,ŷ, then we have

‖r̂1‖2
K̂

≤ 2‖ûx̂‖2
K̂

+ 2
∫ 1

0

[[û]]20,ŷ dŷ. (3.10)

Consequently, owing to (3.8) and (3.9) we get∫ 1

0

[[û]]20,ŷ dŷ ≤ Ch2
i ‖q̂1‖2

K̂
. (3.11)

Finally, by the standard scaling argument we derive (3.5a) from (3.8) and (3.11).

3.2.2. The proof for the general triangular elements

For general triangular elements, according to the given direction β, we can divide the triangles into two types:
type-I (the left of Fig. 1, two inflow sides e1, e2 and one outflow side e3) and type-II (the right of Fig. 1, one
inflow side e1 and two outflow sides e2, e3).

In what follows, we will take type-I triangle as an example to prove Lemma 3.1, the proof for type-II triangle
is similar and actually much simpler. In order to derive the results, it will be convenient to introduce a reference
triangle K̂ with vertices â1 = (1, 0), â2 = (0, 1) and â3 = (0, 0). The reference triangle can be mapped into the
triangle K by the affine transformation [10]

x = Rx̂+ a3, (3.12)

where x̂ = (x̂, ŷ) and

R =
[
|γ2|τ2,−|γ1|τ1

]
, (3.13)



1090 H. WANG ET AL.

Figure 2. The reference element K̂ and the mapping between K̂ with the element K.

with |γi| being the length of edge γi for i = 1, 2; (see Fig. 2). In Figure 2, τi and ni are the unit tangential and
outward normal vectors of edge γi, respectively. Obviously, there hold

n1 = −|γ2|n1 · τ2(R−1)�n̂1, n2 = −|γ1|n1 · τ2(R−1)�n̂2, (3.14)

where n̂1 = (−1, 0) and n̂2 = (0,−1). We also have the following properties of the transformation matrix R:

(i) R−1 =
1

n1 · τ2

(
nt

1/|γ2|
nt

2/|γ1|

)
.

(ii) | detR| = −n1 · τ2|γ1||γ2| = 2|K|, where |K| is the area of K.
(iii) ‖R‖2 ≤

√
|γ1|2 + |γ2|2, where ‖R‖2 is the l2-norm of matrix R.

Let û(x̂, ŷ) = u(x, y), q̂(x̂, ŷ) = q(x, y) and r̂(x̂, ŷ) = r(x, y), then we have

∇u = (R−1)�∇̂û, where ∇̂ =
(

∂/∂x̂

∂/∂ŷ

)
. (3.15)

From (3.4), we have the following relationship for the type-I triangle,

(q, r)K = (∇u, r)K − 〈[[u]], r · n1〉γ1 − 〈[[u]], r · n2〉γ2 , (3.16)

then by the change of variables and the chain rule we have

(q̂, r̂| detR|)K̂ = ((R−1)�∇̂û, r̂| det R|)K̂ + n1 · τ2|γ1||γ2|
(
〈[[û]], r̂ · (R−1)�n̂1〉γ̂1 + 〈[[û]], r̂ · (R−1)�n̂2〉γ̂2

)
.

By property (ii) we get

(q̂, r̂)K̂ = ((R−1)�∇̂û, r̂)K̂ − 〈[[û]], r̂ · (R−1)�n̂1〉γ̂1 − 〈[[û]], r̂ · (R−1)�n̂2〉γ̂2 . (3.17)

First we take r̂ = Rr̂′ in (3.17), where
r̂′ = (x̂ûx̂, 0)�. (3.18)

It is obvious that r̂′ = 0 on γ̂1, and, since n̂2 = (0,−1), we have r̂′ · n̂2 = 0 on γ̂2. Hence from (3.17) we get

(q̂, r̂)K̂ = ((R−1)�∇̂û, r̂)K̂ = (∇̂û, r̂′)K̂ = ‖ûx̂‖2
ω,K̂

. (3.19)
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From (3.13), we get r̂ = |γ2|x̂ûx̂τ2, then by the Cauchy−Schwarz inequality we get

(q̂, r̂)K̂ ≤ |γ2|‖q̂‖ω,K̂‖ûx̂τ2‖ω,K̂ ≤ |γ2|‖q̂‖ω,K̂‖ûx̂‖ω,K̂ , (3.20)

here ‖q̂‖ω,K̂ = (q̂, x̂q̂), equivalent to ‖q̂‖K̂ . Hence

‖ûx̂‖K̂ ≤ C‖ûx̂‖ω,K̂ ≤ Ch‖q̂‖ω,K̂ ≤ Ch‖q̂‖K̂ . (3.21)

Similarly, by taking r̂ = Rr̂′ in (3.17), with r̂′ = (0, ŷûŷ)�, and proceeding in the same way as above we get

‖ûŷ‖K̂ ≤ Ch‖q̂‖K̂ .

Thus
‖∇̂û‖K̂ ≤ Ch‖q̂‖K̂ . (3.22)

Next we take r̂ = Rr̂′′ in (3.17), where

r̂′′ =
(

û − û−(0, ŷ)
û − û−(x̂, 0)

)
, (3.23)

with û−(0, ŷ) = limx̂→0− û(x̂, ŷ) and û−(x̂, 0) = limŷ→0− û(x̂, ŷ). Noticing that

r̂′′(x̂, ŷ) =
(∫ x̂

0 ûx̂(s, ŷ)ds + [[û]]|γ̂1∫ ŷ

0
ûŷ(x̂, s)ds + [[û]]|γ̂2

)
, and r̂′′ · n̂i|γ̂i = −[[û]]|γ̂i , for i = 1, 2. (3.24)

Thus from (3.17), (3.24) we have

‖[[û]]‖2
γ̂1∪γ̂2

= (q̂, r̂)K̂ − (∇̂û, r̂′′)K̂ . (3.25)

Then a simple use of the Cauchy−Schwarz inequality yields

‖[[û]]‖2
γ̂1∪γ̂2

≤ ‖q̂‖K̂‖r̂‖K̂ + ‖∇̂û‖K̂‖r̂′′‖K̂ ≤ ‖R‖2‖q̂‖K̂‖r̂′′‖K̂ + ‖∇̂û‖K̂‖r̂′′‖K̂ .

Similar as (3.10), we can get

‖r̂′′‖2
K̂

≤ 2(‖ûx̂‖2
K̂

+ ‖[[û]]‖2
γ̂1

) + 2(‖ûŷ‖2
K̂

+ ‖[[û]]‖2
γ̂2

)

≤ 2(‖∇̂û‖2
K̂

+ ‖[[û]]‖2
γ̂1∪γ̂2

).

Therefore
‖r̂′′‖K̂ ≤ C(‖∇̂û‖K̂ + ‖[[û]]‖γ̂1∪γ̂2). (3.26)

Hence by (3.22), the property (iii) and (3.26) we get

‖[[û]]‖2
γ̂1∪γ̂2

≤Ch‖q̂‖K̂‖r̂′′‖K̂

≤Ch‖q̂‖K̂(h‖q̂‖K̂ + ‖[[û]]‖γ̂1∪γ̂2)
≤Cεh

2‖q̂‖2
K̂

+ ε‖[[û]]‖2
γ̂1∪γ̂2

,

for arbitrary ε > 0, where we have used the Young’s inequality in the last line. Hence by choosing ε small
enough we get

‖[[û]]‖γ̂1∪γ̂2 ≤ Ch‖q̂‖K̂ . (3.27)

Finally by the scaling argument we obtain

‖∇u‖K + h−1/2‖[[u]]‖γ1∪γ2 ≤ C‖q‖K . (3.28)

Hence there exists Cμ = C(1 +
√

μ) such that

‖∇u‖K +
√

μh−1‖[[u]]‖γ1∪γ2 ≤ Cμ‖q‖K . (3.29)
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3.3. Elliptic projection in two dimension

In this paper, we would like to use the elliptic projection, to obtain the error estimate of the LDG method,
since we are not able to follow the similar line of error analysis in one-dimensional space to obtain the optimal
error estimates in multi-dimensional space, because we cannot find a proper projection to eliminate the error
at element interface or to make it higher order. This is especially the case for general non-tensor product
polynomials of degree k that we have used, and for the case of triangular rather than rectangular meshes.

For any U and Q = ∇U , the elliptic projection (Uh, Qh) is the unique element in Vh × Vh, such that

L(Q, v) =L(Qh, v), (3.30a)
(Qh, r)Ωh

=Q(Uh, r), (3.30b)

hold for any functions (v, r) ∈ Vh × Vh. Since in elliptic problems with periodic boundary conditions, Uh is
determined up to an additive constant, we follow [9] to make the assumption

(U − Uh, 1)Ωh
= 0, (3.31)

to ensure (3.30) is well-defined.
We have the following approximation property.

Lemma 3.2. There exists the bounding constant C depending on the regularity of U and the elliptic regularity
constant C∗ to be defined in (3.34), such that

‖U − Uh‖ + h1/2‖U − Uh‖Γh
≤ Chk+1. (3.32)

Proof. We will finish the proof of this lemma by the aid of two special projections in triangular elements and
rectangular elements, which will be studied in the Appendix, and the following adjoint elliptic problem{

ψ = ∇ϕ,

ζ = ∇ · ψ,
(3.33)

which is assumed to have the following elliptic regularity:

‖ψ‖H1(Ω) + ‖ϕ‖H2(Ω) ≤ C∗‖ζ‖L2(Ω). (3.34)

Although the proof is lengthy and technical, it is very similar to [9]. We skip the details at present, but for the
completeness of this paper, we put the details in the Appendix. �

4. Stability analysis

In this section, we present the stability analysis for the fully discrete IMEX LDG schemes given in Section 2.3,
on both rectangular elements and triangular elements.

4.1. The properties of the LDG spatial discretization

In this subsection, we will give several lemmas to illustrate some properties of the LDG spatial discretization.
All the properties are trivial generalizations of the one-dimensional case [16].

First we consider the linear part. Lemma 4.1 demonstrates the skew symmetric property of the operators L
and Q.

Lemma 4.1. For any w ∈ Vh and v ∈ Vh, there hold the equality

L(w, v) = −Q(v,w). (4.1)
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Next we consider the nonlinear operator H. Lemma 4.2 states the non-positivity of this operator; we refer
to [12] for the proof.

Lemma 4.2. For any v ∈ Vh, there hold the inequality

H(v, v) ≤ 0. (4.2)

The next lemma states the boundedness properties of the nonlinear operator H. To this end, we would like
to assume that the numerical flux F̃nK ,K is locally Lipschitz continuous with respect to each component, and
we denote the Lipschitz constant as Cf . Then we have

|F̃nK ,K(a, b) − F̃nK ,K(c, d)| ≤ Cf (|a − c| + |b − d|), (4.3a)

for arbitrary a, b, c, d and arbitrary K, which implies

|f ′(p)| ≤ Cf , |g′(p)| ≤ Cf , ∀p, (4.3b)

if both f and g are differentiable.

Lemma 4.3. For any u, w, v ∈ Vh, there hold the following inequalities

|H(u, v)| ≤ Cf

(
‖∇u‖ +

√
μh−1‖[[u]]‖Γh

)
‖v‖, (4.4)

|D(u, w; v)| ≤ Cf‖u − w‖
(
‖∇v‖ +

√
μh−1‖[[v]]‖Γh

)
, (4.5)

if (4.3) holds. Here
D(u, w; v) = H(u, v) −H(w, v). (4.6)

Proof. The proof is the simple generalization of the proof of Lemma 3.3 in [16] for the one-dimensional case.
We omit the detailed proof here; see [16] for more details. �

4.2. The main conclusion

Owing to the properties we studied in Sections 3.2 and 4.1, we can easily generalize the stability result in [16]
for the one-dimensional convection-diffusion problems to the multi-dimensional cases.

Theorem 4.4. There exists a positive constant τ0 independent of h, such that if τ ≤ τ0, then the solutions of
schemes (2.10), (2.11) and (2.12) satisfy

‖un‖ ≤ ‖u0‖, ∀n, (4.7)

if (4.3) holds.

Proof. Since the stability property on multi-dimension spaces is very similar to the one-dimensional case, we
only take the second order scheme (2.11) as an example to prove it, and refer to [15,16] for more details about
the proof for the first and third order schemes.

From (2.11a) and (2.11b), we get

(un,1 − un, v)Ωh
= γτH(un, v) + γτL(qn,1, v), (4.8a)

(un+1 − un,1, v)Ωh
= (δ − γ)τH(un, v) + (1 − δ)τH(un,1, v)

+ (1 − 2γ)τL(qn,1, v) + γτL(qn+1, v). (4.8b)
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By taking v = un,1, un+1 in (4.8a) and (4.8b), respectively, and adding them together, we obtain

1
2‖u

n+1‖2 − 1
2‖u

n‖2 + 1
2‖u

n+1 − un,1‖2 + 1
2‖u

n,1 − un‖2︸ ︷︷ ︸
LHS

= R1 + R2,

where

R1 = γτH(un, un,1) + (δ − γ) τH(un, un+1) + (1 − δ)τH(un,1, un+1),
R2 = γτL(qn,1, un,1) + (1 − 2γ)τL(qn,1, un+1) + γτL(qn+1, un+1).

Owing to (4.1) and (2.11c), we have

R2 = − γτQ(un,1, qn,1) − (1 − 2γ)τQ(un+1, qn,1) − γτQ(un+1, qn+1)
= − γτ‖qn,1‖2 − (1 − 2γ)τ(qn,1, qn+1)Ωh

− γτ‖qn+1‖2. (4.9)

In order to use the stability terms provided by LHS and R2 to estimate R1, we rewrite R1 in the following
equivalent form:

R1 = γτH(un,1, un,1) + (1 − γ)τH(un+1, un+1) − γτD(un,1, un; un,1)
− (1 − γ)τD(un+1, un,1; un+1) − (δ − γ) τD(un,1, un; un+1).

Noting that δ − γ = −1, and by the property (4.2) we have

R1 ≤ − γτD(un,1, un; un,1) − (1 − γ)τD(un+1, un,1; un+1) + τD(un,1, un; un+1).

Exploiting (4.5), Lemma 3.1 and the Young’s inequality successively, we can derive

R1 ≤Cf (‖un,1 − un‖ + ‖un+1 − un,1‖)
2∑

�=1

(‖∇un,�‖ +
√

μh−1‖[[un,�]]‖Γh
)

≤CfCμ(‖un,1 − un‖ + ‖un+1 − un,1‖)(‖qn,1‖ + ‖qn+1‖)

≤ γ

4
τ(‖qn,1‖2 + ‖qn+1‖2) + CfC2

μτ
(
‖un,1 − un‖2 + ‖un+1 − un,1‖2

)
,

here and below we use Cf to denote a generic bounding constant which is independent of h and τ . As a
consequence, we obtain

LHS + S ≤ CfC2
μτ
(
‖un,1 − un‖2 + ‖un+1 − un,1‖2

)
,

where

S =
3
4
γτ‖qn,1‖2 + (1 − 2γ)τ(qn,1, qn+1)Ωh

+
3
4
γτ‖qn+1‖2

≥
[
3
4
γ −

(
1
2
− γ

)]
τ(‖qn,1‖2 + ‖qn+1‖2) ≥ 0, (4.10)

owing to the setting of γ and the Young’s inequality. Then

LHS ≤ CfC2
μτ
(
‖un,1 − un‖2 + ‖un+1 − un,1‖2

)
.

Consequently, if CfC2
μτ ≤ 1

2 , i.e., τ ≤ τ0 = 1
2Cf C2

µ
, then we obtain (4.7). �

Remark 4.5. In Theorem 4.4, τ0 may have different values for the three schemes. In this paper we use τ0 as a
generic bound of the time step, which may have different values in each occurrence.
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5. Error estimates

To obtain the optimal error estimates for the IMEX LDG schemes introduced in Section 2.3, we would like
to assume that the exact solution U(x, t) is sufficiently smooth, for example, for sth order fully discrete IMEX
LDG schemes (2.10), (2.11) or (2.12), we assume

U(x, t) ∈ L∞(0, T ; Hk+2), DtU(x, t) ∈ L∞(0, T ; Hk+1), (5.1a)

and
Ds+1

t U(x, t) ∈ L∞(0, T ; L2), (5.1b)

for s = 1, 2, 3, where D�
tU means the 	th order time derivative of U , and the notation L∞(0, T ; Hs(D)) represents

the set of functions v such that max0≤t≤T ‖v(·, t)‖Hs(D) < ∞.
We give the main results in the following theorem.

Theorem 5.1. Let U(x, t) be the exact solution of (1.1), satisfying the smoothness assumption (5.1), let un ∈ Vh

be the solution of the sth order fully discrete IMEX LDG schemes (2.10), (2.11) or (2.12). Then there exists a
positive constant τ0 independent of the spatial size h, such that if τ ≤ τ0 then

max
nτ≤T

‖U(x, tn) − un‖ ≤ C(hk+1 + τs), (5.2)

for s = 1, 2, 3, where T is the final computing time and the bounding constant C > 0 is independent of h and τ .

Remark 5.2. To derive the optimal error estimate, we would like to follow [9] to make use of the so-called
elliptic projections [13,17]. To make the idea clear enough, we would like to take the second order scheme (2.11)
as an example to finish the proof. The same idea can be used for the first order scheme (2.10) and the third
order scheme (2.12). In addition, for the third order scheme, we also need to adopt the technique used in [24,25],
i.e., we need to make the a priori error assumption, since there is one more explicit stage than the implicit
stage in our third order scheme (2.12), there will appear a trouble term which makes the analysis much more
technical. For more details, please refer to [16].

In the following subsections, we will pay our attention to the proof for Theorem 5.1 on both rectangular and
triangular elements, for the second order IMEX LDG method (2.11).

5.1. Reference functions and error splitting

Following [15, 24, 25], we define two reference functions of (2.2) as follow: let U (0) = U be the exact solution
of the problem (1.1), then define

U (1) =U (0) − γτ∇ · F (U (0)) + γτ∇ ·Q(1), (5.3a)

where
Q(1) = ∇U (1). (5.3b)

For any indexes n and 	 under consideration, the reference function at each stage time level is defined as
(Un,�,Qn,�) = (U (�)(x, tn),Q(�)(x, tn)). If 	 = 0, we drop the superscript 	.

In what follows, we would like to denote the stage error by

(en,�
u , en,�

q ) = (Un,� − un,�,Qn,� − qn,�), for 	 = 0, 1, (5.4)

and divide it in two parts, namely,

(en,�
u , en,�

q ) = (ξn,�
u − ηn,�

u , ξn,�
q − ηn,�

q ), (5.5)
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where
(ξn,�

u , ξn,�
q ) = (Un,�

h − un,�,Qn,�
h − qn,�), (ηn,�

u , ηn,�
q ) = (Un,�

h − Un,�,Qn,�
h −Qn,�), (5.6)

with (Un,�
h ,Qn,�

h ) being the elliptic projection of (Un,�,Qn,�), namely

L(Qn,�, v) =L(Qn,�
h , v), (5.7a)

(Qn,�
h , r)Ωh

=Q(Un,�
h , r), (5.7b)

hold for any functions (v, r) ∈ Vh × Vh (see Sect. 3.3).
Owing to the linear structure of elliptic projection and Lemma 3.2, we have the following approximation

properties
‖ηn,�

u ‖ + h1/2‖ηn,�
u ‖Γh

≤ Chk+1, (5.8)

and
‖ηn,�

u − ηn
u‖ ≤ Chk+1τ, (5.9)

where C only depends on the regularity of U and the elliptic regularity constant C∗ which is defined in (3.34).

5.2. The error equations and the energy equation

To estimate ξn,�
u , we need to set up the corresponding error equations. For the second order time-marching,

it is easy to verify that

Un+1 = Un − δτ∇ · F (Un) − (1 − δ)τ∇ · F (Un,1) + (1 − γ)τ∇ ·Qn,1 + γτ∇ ·Qn+1 + ςn, (5.10)

where Qn+1 = ∇Un+1, and ςn is the local truncation error satisfying

‖ςn‖ ≤ Cτ3, (5.11)

with the bounding constant C only depending on the regularity of the exact solution U .
Thanks to the smoothness assumption (5.1), we know that F (Un,�) and Qn,� are continuous functions. Then

it follows from (5.3), (5.7) and (5.10) that

(Un,1 − Un, v)Ωh
= γτH(Un, v) + γτL(Qn,1

h , v), (5.12a)

(Un+1 − Un, v)Ωh
= δτH(Un, v) + (1 − δ)τH(Un,1, v)

+ (1 − γ)τL(Qn,1
h , v) + γτL(Qn+1

h , v) + (ςn, v)Ωh
, (5.12b)

and
(Qn,�, r)Ωh

= Q(Un,�, r), for 	 = 1, 2. (5.12c)

Here and below, Qn,2 = Qn+1 and Un,2 = Un+1. Hence, subtracting (2.11) from (5.12) gives rise to the error
equations: for all v ∈ Vh,

(ξn,1
u − ξn

u , v)Ωh
= (ηn,1

u − ηn
u , v)Ωh

+ γτD(Un, un; v) + γτL(ξn,1
q , v), (5.13a)

(ξn+1
u − ξn

u , v)Ωh
= (ηn+1

u − ηn
u , v)Ωh

+ δτD(Un, un; v) + (1 − δ)τD(Un,1, un,1; v)

+ (1 − γ)τL(ξn,1
q , v) + γτL(ξn+1

q , v) + (ςn, v)Ωh
. (5.13b)

From (2.11c) and (5.7b) we get: for all r ∈ Vh,

(ξn,�
q , r)Ωh

= Q(ξn,�
u , r), for 	 = 1, 2. (5.13c)
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Next we would like to obtain the energy equation for ξn,�
u . To this end, we subtract (5.13a) from (5.13b), and

get

(ξn+1
u − ξn,1

u , v)Ωh
= (ηn+1

u − ηn,1
u , v)Ωh

+ (δ − γ)τD(Un, un; v) + (1 − δ)τD(Un,1, un,1; v)

+ (1 − 2γ)τL(ξn,1
q , v) + γτL(ξn+1

q , v) + (ςn, v)Ωh
. (5.14)

Taking v = ξn,1
u , ξn+1

u in (5.13a) and (5.14) respectively, and adding them together, we can derive the energy
equation

1
2‖ξ

n+1
u ‖2 − 1

2‖ξ
n
u‖2 + 1

2‖ξ
n+1
u − ξn,1

u ‖2 + 1
2‖ξ

n,1
u − ξn

u‖2 = Tp + Td + Tc, (5.15)

where

Tp =(ηn,1
u − ηn

u , ξn,1
u )Ωh

+ (ηn+1
u − ηn,1

u , ξn+1
u )Ωh

+ (ςn, ξn+1
u )Ωh

,

Td = γτL(ξn,1
q , ξn,1

u ) + (1 − 2γ)τL(ξn,1
q , ξn+1

u ) + γτL(ξn+1
q , ξn+1

u ),

Tc = γτD(Un, un; ξn,1
u ) + (δ − γ) τD(Un, un; ξn+1

u ) + (1 − δ)τD(Un,1, un,1; ξn+1
u ).

In the next subsection we will estimate them separately.

5.3. Energy estimate

The estimate for the first two terms is easy. A simple use of the Cauchy−Schwarz inequality, the Young’s
inequality and (5.9), (5.11) leads to

Tp ≤ ετ(‖ξn,1
u ‖2 + ‖ξn+1

u ‖2) + Cε(h2k+2τ + τ5),

for arbitrary ε > 0. Then choosing ε small enough and using the triangle inequality we get

Tp ≤ τ(‖ξn
u‖2 + ‖ξn,1

u − ξn
u‖2 + ‖ξn+1

u − ξn,1
u ‖2) + C(h2k+2τ + τ5). (5.16)

By (4.1) and (5.13c) we have

Td = − γτQ(ξn,1
u , ξn,1

q ) − (1 − 2γ)τQ(ξn+1
u , ξn,1

q ) − γτQ(ξn+1
u , ξn+1

q )

= − γτ‖ξn,1
q ‖2 − (1 − 2γ)τ(ξn,1

q , ξn+1
q )Ωh

− γτ‖ξn+1
q ‖2. (5.17)

The estimate for Tc is a bit more complex. Due to (2.5a), we have

D(Un,�, un,�; v) =
∑

K∈Ωh

(F (Un,�) − F (un,�),∇v)K

−
∑

K∈Ωh

〈F̃nK ,K((Un,�)intK , (Un,�)extK ) − F̃nK ,K((un,�)intK , (un,�)extK ), [[v]]〉∂−
K

,

then we can get the upper bound of this term along the similar line as the proof for Lemma 4.3. By the Lipschitz
continuity and the Assumption (4.3) we have

D(Un,�, un,�; v) ≤ Cf‖Un,� − un,�‖‖∇v‖ + Cf‖Un,� − un,�‖Γh
‖[[v]]‖Γh

. (5.18)

By the triangle inequality we have

‖Un,� − un,�‖ ≤ ‖ξn,�
u ‖ + ‖ηn,�

u ‖ ≤ ‖ξn,�
u ‖ + Chk+1,

‖Un,� − un,�‖Γh
≤ ‖ξn,�

u ‖Γh
+ ‖ηn,�

u ‖Γh
≤
√

μh−1(‖ξn,�
u ‖ + Chk+1),
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where we have used the approximation property (5.8) and the inverse property (3.1). Thus we get the desired
result

|D(Un,�, un,�; v)| ≤ Cf (‖ξn,�
u ‖ + hk+1)(‖∇v‖ +

√
μh−1‖[[v]]‖Γh

). (5.19)

Furthermore, owing to (5.13c) and proceeding in the similar line as in the proof of Lemma 3.1, we can get

‖∇ξn,�
u ‖ +

√
μh−1‖[[ξn,�

u ]]‖Γh
≤ Cμ‖ξn,�

q ‖. (5.20)

As a consequence, by applying (5.19) and (5.20) we obtain

Tc ≤Cfτ(‖ξn
u‖ + ‖ξn,1

u ‖ + hk+1)
2∑

�=1

(‖∇ξn,�
u ‖ +

√
μh−1‖[[ξn,�

u ]]‖Γh
)

≤CfCμτ(‖ξn
u‖ + ‖ξn,1

u ‖ + hk+1)(‖ξn,1
q ‖ + ‖ξn+1

q ‖).

Then a simple application of the triangle inequality and the Young’s inequality yields

Tc ≤CfCμτ(2‖ξn
u‖ + ‖ξn,1

u − ξn
u‖ + hk+1)(‖ξn,1

q ‖ + ‖ξn+1
q ‖)

≤ γ
4 τ(‖ξn,1

q ‖2 + ‖ξn+1
q ‖2) + CfC2

μτ‖ξn,1
u − ξn

u‖2 + Cτ‖ξn
u‖2 + Ch2k+2τ. (5.21)

Thus by (5.16), (5.17), and (5.21) we can derive

Tp + Td + Tc ≤ S2 − S1 + Cτ‖ξn
u‖2 + C(h2k+2τ + τ5), (5.22)

where

S1 = 3
4γτ‖ξn,1

q ‖2 + (1 − 2γ)τ(ξn,1
q , ξn+1

q )Ωh
+ 3

4γτ‖ξn+1
q ‖2,

S2 = (CfC2
μ + 1)τ(‖ξn,1

u − ξn
u‖2 + ‖ξn+1

u − ξn,1
u ‖2).

Then, similar as (4.10), we have S1 ≥ 0, hence, if (CfC2
μ + 1)τ ≤ 1

2 , i.e., τ ≤ τ0 ≤ 1
2(Cf C2

µ+1) , it follows
from (5.15) that

‖ξn+1
u ‖2 − ‖ξn

u‖2 ≤ Cτ‖ξn
u‖2 + C(h2k+2τ + τ5). (5.23)

Consequently, by the discrete Gronwall inequality we arrive at

‖ξn
u‖ ≤ C(hk+1 + τ2). (5.24)

Finally, by (5.8), (5.24) and the triangle inequality we obtain (5.2) with s = 2. Thus we have completed the
proof of Theorem 5.1 with s = 2.

6. Numerical experiments

In this section, we will first numerically validate the orders of accuracy for the second order IMEX LDG
scheme (2.11) and the third order IMEX LDG scheme (2.12), then we will verify the stability of the two
schemes. For the third order IMEX LDG scheme (2.12), we take the parameter α1 = −0.35 as done in [3].

In what follows, we will test the following two examples to verify the orders of accuracy for the two schemes
on both rectangular elements and triangular elements. We will test each example for ν = 1, 0.1, 0.01 and 10−5.
In all the experiments, the final time is T = 1 and we take the time step τ = λh, where h is the mesh size and
we take λ = 0.5 for ν = 1, λ = 0.3 for ν = 0.1 and λ = 0.1 for both ν = 0.01 and ν = 10−5.
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Table 1. Errors and orders of accuracy on nonuniform rectangular elements.

Example 1 ν = 1 ν = 0.1 ν = 0.01 ν = 10−5

scheme (nx, ny) L2 error order L2 error order L2 error order L2 error order

(10,10) 8.25E-01 − 1.31E+00 − 1.30E+00 − 1.31E+00 −
P1 (20,20) 1.88E-01 2.13 3.37E-01 1.96 3.23E-01 2.00 3.30E-01 1.99

IMEX RK2 (40,40) 4.56E-02 2.04 8.58E-02 1.97 8.13E-02 1.99 8.34E-02 1.99

(80,80) 1.12E-02 2.02 2.15E-02 1.99 2.05E-02 1.99 2.11E-02 1.98

(160,160) 2.79E-03 2.01 5.41E-03 1.99 5.15E-03 1.99 5.25E-03 1.99

(10,10) 1.47E-01 − 1.99E-01 − 1.61E-01 − 1.66E-01 −
P2 (20,20) 2.15E-02 2.77 1.84E-02 3.44 2.02E-02 2.99 2.05E-02 3.01

IMEX RK3 (40,40) 2.99E-03 2.85 2.27E-03 3.02 2.53E-03 3.00 2.60E-03 2.98

(80,80) 3.98E-04 2.91 2.84E-04 3.00 3.16E-04 3.00 3.25E-04 3.00

(160,160) 5.16E-05 2.95 3.56E-05 3.00 3.96E-05 3.00 4.07E-05 3.00

Example 2 ν = 1 ν = 0.1 ν = 0.01 ν = 10−5

scheme (nx, ny) L2 error order L2 error order L2 error order L2 error order

(10,10) 1.96E-01 − 1.02E+00 − 1.28E+00 − 1.33E+00 −
P1 (20,20) 4.87E-02 2.01 2.55E-01 2.00 3.09E-01 2.05 3.27E-01 2.02

IMEX RK2 (40,40) 1.21E-02 2.01 6.51E-02 1.97 7.57E-02 2.03 8.07E-02 2.02

(80,80) 3.00E-03 2.01 1.67E-02 1.97 1.88E-02 2.01 2.04E-02 1.98

(160,160) 7.51E-04 2.00 4.23E-03 1.98 4.76E-03 1.98 4.98E-03 1.99

(10,10) 3.50E-02 − 1.12E-01 − 1.32E-01 − 1.39E-01 −
P2 (20,20) 4.90E-03 2.84 1.48E-02 2.93 1.60E-02 3.05 1.82E-02 2.93

IMEX RK3 (40,40) 6.65E-04 2.88 1.94E-03 2.93 1.97E-03 3.02 2.34E-03 2.96

(80,80) 8.70E-05 2.94 2.52E-04 2.95 2.51E-04 2.97 3.10E-04 2.91

(160,160) 1.12E-05 2.96 3.23E-05 2.96 3.32E-05 2.92 4.03E-05 2.94

Example 1. {
Ut + Ux + Uy = ν(Uxx + Uyy),
U(x, y, 0) = sin(x + y), (6.1)

on (x, y) ∈ [−π, π] × [−π, π]. The exact solution is

U(x, y, t) = e−2νt sin(x + y − 2t). (6.2)

Example 2. {
Ut +

(
U2

2

)
x

+
(

U2

2

)
y

= ν(Uxx + Uyy) + f(x, y, t),

U(x, y, 0) = sin(x + y),
(6.3)

on (x, y) ∈ [−π, π] × [−π, π], where f(x, y, t) = e−4νt sin(2(x + y)). The exact solution is

U(x, y, t) = e−2νt sin(x + y). (6.4)

In Table 1, we list the L2 errors and orders of accuracy for the IMEX LDG schemes (2.11) and (2.12)
for solving the above two examples on nonuniform rectangular meshes. The nonuniform rectangular meshes
are obtained by randomly perturbing each node in the uniform mesh by up to 20%. In all the tests, we take
h = min{2π/nx, 2π/ny}, where nx and ny are the numbers of partition in the x and y directions, respectively.

In Table 2, we list the L2 errors and orders of accuracy for the IMEX LDG schemes (2.11) and (2.12) for
solving the above two examples on general triangular meshes. In all the tests, we take h = minK{

√
|K|}, where
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Table 2. Errors and orders accuracy on general triangular elements.

Example 1 ν = 1 ν = 0.1 ν = 0.01 ν = 10−5

Scheme Refine L2 error order L2 error order L2 error order L2 error order

1 2.32E-01 − 4.68E-01 − 4.74E-01 − 4.82E-01 −
P1 2 5.55E-02 2.06 1.17E-01 2.01 1.23E-01 1.94 1.26E-01 1.93

IMEX RK2 3 1.40E-02 1.99 2.86E-02 2.03 3.10E-02 2.00 3.20E-02 1.98

4 3.39E-03 2.04 7.10E-03 2.01 7.66E-03 2.02 8.00E-03 2.00

5 8.33E-04 2.02 1.77E-03 2.01 1.88E-03 2.03 2.00E-03 2.00

1 4.00E-02 − 6.43E-02 − 6.79E-02 − 6.99E-02 −
P2 2 6.23E-03 2.68 7.15E-03 3.17 8.30E-03 3.03 8.46E-03 3.05

IMEX RK3 3 9.22E-04 2.76 8.94E-04 3.00 1.04E-03 3.00 1.04E-03 3.03

4 1.21E-04 2.93 1.11E-04 3.01 1.31E-04 2.99 1.29E-04 3.01

5 1.56E-05 2.96 1.39E-05 3.01 1.65E-05 2.99 1.61E-05 3.00

Example 2 ν = 1 ν = 0.1 ν = 0.01 ν = 10−5

Scheme Refine L2 error order L2 error order L2 error order L2 error order

1 1.01E-01 − 4.73E-01 − 7.21E-01 − 7.74E-01 −
P1 2 2.22E-02 2.18 9.32E-02 2.34 1.28E-01 2.49 1.41E-01 2.46

IMEX RK2 3 5.34E-03 2.06 2.31E-02 2.01 2.96E-02 2.11 3.38E-02 2.06

4 1.30E-03 2.03 5.95E-03 1.96 6.94E-03 2.09 8.28E-03 2.03

5 3.22E-04 2.02 1.54E-03 1.96 1.67E-03 2.05 2.05E-03 2.01

1 1.35E-02 − 5.14E-02 − 7.26E-02 − 7.89E-02 −
P2 2 1.61E-03 3.07 5.76E-03 3.16 9.20E-03 2.98 1.07E-02 2.88

IMEX RK3 3 2.18E-04 2.89 7.21E-04 3.00 1.04E-03 3.15 1.47E-03 2.87

4 2.81E-05 2.96 9.21E-05 2.97 1.17E-04 3.15 2.10E-04 2.81

5 3.58E-06 2.98 1.17E-05 2.97 1.38E-05 3.08 3.04E-05 2.79

Table 3. The maximum time step τ0 to ensure that the L2-norm decreases with time for the
schemes.

Rectangular mesh Triangular mesh

Scheme ν = 0.1 ν = 0.5 ν = 1 ν = 0.1 ν = 0.5 ν = 1

IMEX RK2 (P1) 0.076 0.349 0.705 0.055 0.367 0.717

IMEX RK3 (P2) 0.256 1.365 2.932 0.199 1.027 1.669

|K| is the area of the triangle element K. In our experiments, the initial mesh is in Figure 3, and in each
refinement, every triangle is subdivided to four children triangles by joining the mid-points of the edges of it.

From these tables, we can clearly observe optimal orders of accuracy for our schemes on both nonuniform
rectangular meshes and the general triangular meshes.

To verify the stability of the IMEX LDG schemes, we consider Example 1 with different ν. Table 3 lists
the maximum time step τ0 which can be chosen to ensure the stability (in the sense that the L2-norm of the
numerical solution decreases with time) of the second and the third order IMEX LDG schemes, on both uniform
rectangular and triangular meshes. In all the tests, the final computing time is T = 100, the number of elements
is 6400 for rectangular mesh and 2048 for triangular mesh. From this table, we can see that the maximum time
step τ0 is approximately proportional to the diffusion coefficient ν.
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Figure 3. The initial triangular mesh.

7. Concluding remarks

We have considered several specific implicit-explicit time marching methods coupled with the LDG schemes
for solving multi-dimensional nonlinear convection-diffusion problems with periodic boundary conditions. In
multi-dimensions, the IMEX LDG schemes are unconditionally stable for the convection-diffusion problems, in
the sense that the time-step τ is only required to be upper-bounded by a positive constant independent of the
spatial mesh size h. Furthermore, by the aid of the so-called elliptic projection and the adjoint argument, we
obtain optimal error estimates for the corresponding fully discrete IMEX LDG schemes under the same condition
as the stability analysis. Numerical examples are also given to verify our main results. Although the study in
this paper is restricted to periodic boundary conditions, we expect the stability result to hold for other types of
boundary conditions with a slight modification of the numerical flux at the boundary. Optimal error estimates
can also be achieved for homogeneous boundary conditions, see for example [11] for such a discussion in the
one-dimensional drift-diffusion models. For time dependent boundary conditions, accurate numerical boundary
conditions for high order (greater than second order) IMEX-RK methods would require further investigation,
which will be studied in our future work.

Appendix

In this Appendix, we would like to give the proof for Lemma 3.2. We will finish it in the following steps:

Step 0: Two projections. First we would like to give the following two identities which will be used several
times:

ηu =U − Uh = U − PU + PU − Uh = U − PU + Pηu, (A.1a)
ηq =Q−Qh = Q− ΠQ+ ΠQ−Qh = Q− ΠQ+ Πηq. (A.1b)

where P and Π are the two projections defined as follows.
For both rectangular and triangular meshes in the multi-dimensional space, we use the L2 projection denoted

by P for scalar-valued functions, i.e., for any w ∈ H1(Ωh),

(w − Pw, v)K = 0, ∀v ∈ Pk(K). (A.2)
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In this paper H1(Ωh) is the broken Sobolev space

H1(Ωh) =
{
φ ∈ L2(Ω) : φ|K ∈ H1(K), ∀K ∈ Ωh

}
, (A.3)

also we denote H1(Ωh) = (H1(Ωh))d as the broken Sobolev space in the multi-dimensional space.
For vector-valued functions on triangular elements, we will adopt the projection proposed in [5, 9], which is

defined as follows: for ρ ∈ H1(Ωh), and an arbitrary K ∈ Ωh, given the fixed vector β, and an arbitrary edge
ẽ ∈ ∂K satisfying β · nK |ẽ > 0, the restriction of Πρ on K is defined as the element of Pk(K) that satisfies

(Πρ− ρ,v)K =0, ∀v ∈ Pk−1(K), (A.4a)

〈(Πρ− ρ) · nK |e, v〉e =0, ∀v ∈ Pk(e), ∀e ⊂ ∂K, e �= ẽ. (A.4b)

Remark A.1. The projection (A.4) is well-defined on triangles, i.e., the projection exists and is unique; see [5]
for more details. Furthermore, from the definition we can conclude that, for both type-I and type-II triangles,
the projection Π (A.4) has the following property:

(Πρ− ρ,v)K =0, ∀v ∈ Pk−1(K), (A.5a)
〈(Πρ− ρ) · nK , v〉∂K− =0, ∀v ∈ Pk(K). (A.5b)

For vector-valued functions on rectangular meshes, we propose a similar projection as (A.4), which is defined
as follows: for ρ ∈ H1(Ωh), and an arbitrary K ∈ Ωh, the restriction of Πρ on K is defined as the element of
Pk(K) that satisfies (A.5).

The projection (A.5) on rectangular element exists uniquely. Since the dimension of the freedom matches
with the unknown variables, we only need to show Πρ = 0 if ρ = 0. Same as the proof of Lemma 3.2 in [5], we
can obtain this conclusion easily. Owing to the orthogonality of {ni}d

i=1, we can express Πρ as

Πρ =
d∑

i=1

zini, where zi ∈ Pk(K).

It is obvious that Πρ ·ni = zi, for i = 1, . . . , d. Then taking the test function as v = zi|ei in (A.5b), we can get
zi = 0 on ei. Hence zi = (x − xi)pi, for some pi ∈ Pk−1(K). Next taking v = pini in (A.5a), we get

(Πρ, pini)K = (zi, pi)K = ((x − xi)pi, pi)K .

Since x − xi > 0 on K except on a zero measure set ei, we get pi ≡ 0 on K. Hence zi ≡ 0 on K, and hence
Πρ ≡ 0 on K.

Along the similar analysis as in [5], we have the following approximation properties. For arbitrary w ∈ Hr(Ω)
and ρ ∈Hr(Ω), by the standard scaling argument [4], we have the following approximation properties

|w − Pw|Hm(Ωh) + h1/2−m‖w − Pw‖Γh
≤ Chmin{r,k+1}−m‖w‖Hr(Ω), (A.6a)

|ρ− Πρ|Hm(Ωh) + h1/2−m‖(ρ− Πρ) · n‖Γh
≤ Chmin{r,k+1}−m‖ρ‖Hr(Ω), (A.6b)

for 0 ≤ m ≤ min{r, k + 1}, where the bounding constant C > 0 is independent of h, and | · |Hm(Ωh) =
(
∑

K∈Ωh
| · |2Hm(K))

1/2.

Step 1. Estimate ηq. First, since Q = ∇U is continuous, we have (Q, r)Ωh
= Q(U, r), for arbitrary r ∈ Vh.

Hence from (3.30) we have

L(ηq , v) = 0, (A.7a)
(ηq , r)Ωh

=Q(ηu, r), (A.7b)
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for arbitrary (v, r) ∈ Vh × Vh. That is

−L(Πηq, v) =L(Q− ΠQ, v), (A.8a)
(Πηq, r)Ωh

−Q(Pηu, r) = − (Q− ΠQ, r)Ωh
+ Q(U − PU, r). (A.8b)

Taking v = Pηu and r = Πηq in (A.8), and adding them together we get

‖Πηq‖2 = −(Q− ΠQ, Πηq)Ωh
+ Q(U − PU, Πηq) + L(Q− ΠQ, Pηu),

owing to Lemma 4.1. Recalling the definitions of Q(·, ·) and the projection P, we have

Q(U − PU, Πηq) = 〈U − P̃U, Πηq · n〉∂Ωh
. (A.9)

Here and below

〈z,w · n〉∂Ωh
=
∑

K∈Ωh

〈z,w · nK〉∂K , ∀ (z,w) ∈ H1(Ωh) ×H1(Ωh).

Similarly, we can derive

L(Q− ΠQ, Pηu) = −
∑

K∈Ωh

〈(Q− Π̃Q) · nK , [[Pηu]]〉∂−
K

= 0, (A.10)

by the property of Π (A.5) and the choice of the numerical flux Π̃Q = (ΠQ)+. Hence, by the Cauchy−Schwarz
inequality, the inverse inequality (3.1), and the approximation property (A.6) we get

‖Πηq‖2 ≤
[
‖Q− ΠQ‖ + h−1/2‖U − PU‖Γh

]
‖Πηq‖ ≤ Chk‖Πηq‖,

which yields the result
‖ηq‖ + h1/2‖ηq · n‖Γh

≤ Chk, (A.11)

by using the triangle inequality, the inverse inequality (3.1) and the approximation property (A.6).

Step 2. Estimate ηu. To this end, we need the following lemma, whose proof will be postponed to Step 3.

Lemma A.2. For arbitrary ζ we have

(Pηu, ζ)Ωh
= 〈U − P̃U, (Πψ −ψ) · n〉∂Ωh

+ (ηq ,ψ − Πψ)Ωh

− (Pϕ − ϕ,∇ · (Q− ΠQ))Ωh
+ 〈(ηq − η̃q) · n, Pϕ − ϕ〉∂Ωh

, (A.12)

where ζ is the term on the right-hand side of the adjoint elliptic problem (3.33).

Now we continue our proof of the second step. By taking ζ = Pηu in (A.12), and by the Cauchy−Schwarz
inequality we get

‖Pηu‖2 ≤‖PU − U‖Γh
‖(ψ − Πψ) · n‖Γh

+ ‖ηq‖‖ψ − Πψ‖
+ |Q− ΠQ|H1‖ϕ − Pϕ‖ + ‖ηq · n‖Γh

‖Pϕ − ϕ‖Γh
.

Hence, it follows from (A.11) and (A.6) that

‖Pηu‖2 ≤Chk+min{1,k+1}‖ψ‖H1 + Chk+min{2,k+1}‖ϕ‖H2 + Chk−1+min{2,k+1}‖ϕ‖H2

≤Chk+1(‖ψ‖H1 + ‖ϕ‖H2) ≤ CC∗hk+1‖Pηu‖, (A.13)
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if k ≥ 1, where C only depends on the regularity of U , and the last inequality holds by the elliptic regularity
assumption (3.34). Hence we obtain

‖Pηu‖ ≤ Chk+1, (A.14)

which implies the result of Lemma 3.2.

Step 3. Proof of Lemma A.2. By (3.33) we have

(Pηu, ζ)Ωh
=(Pηu,∇ ·ψ)Ωh

= (∇ ·ψ, Pηu)Ωh
= L(ψ, Pηu),

since ψ is continuous. Hence by the similar argument as (A.10) and by Lemma 4.1 we get

(Pηu, ζ)Ωh
=L(ψ − Πψ, Pηu) + L(Πψ, Pηu) = −Q(Pηu, Πψ)
=Q(U − PU, Πψ) −Q(ηu, Πψ).

As a result, similar as (A.9) and by (A.7b) we have

(Pηu, ζ)Ωh
= 〈U − P̃U, Πψ · n〉∂Ωh

− (ηq , Πψ)

= 〈U − P̃U, (Πψ −ψ) · n〉∂Ωh
− (ηq , Πψ), (A.15)

where we have used the fact 〈U − P̃U,ψ · n〉∂Ωh
= 0, since both U and ψ are continuous across the element

interface.
Denote A1 = −(ηq, Πψ)Ωh

. From (3.33) we have

A1 = (ηq ,ψ − Πψ)Ωh
− (ηq ,ψ)Ωh

= (ηq,ψ − Πψ)Ωh
− (ηq,∇ϕ)Ωh

. (A.16)

Denote A2 = −(ηq,∇ϕ)Ωh
, we can derive that

A2 =(ηq,∇(Pϕ − ϕ))Ωh
− (ηq,∇Pϕ)Ωh

= − (Pϕ − ϕ,∇ · ηq)Ωh
+ 〈ηq · n, Pϕ − ϕ〉∂Ωh

− 〈η̃q · n, Pϕ〉∂Ωh
,

where the second identity is obtained through integrating by parts and (A.7a).
Since both Q and φ are continuous across the element interface, we can verify that

〈η̃q · n, ϕ〉∂Ωh
= 0.

Then by the property of the projection P we have

A2 = − (Pϕ − ϕ,∇ · (ηq − Πηq))Ωh
+ 〈(ηq − η̃q) · n, Pϕ − ϕ〉∂Ωh

= − (Pϕ − ϕ,∇ · (Q− ΠQ))Ωh
+ 〈(ηq − η̃q) · n, Pϕ − ϕ〉∂Ωh

. (A.17)

Consequently, combining (A.15), (A.16) and (A.17) we can obtain (A.12). �
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