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Abstract. In the present paper we introduce a Virtual Element Method (VEM) for the approximate
solution of general linear second order elliptic problems in mixed form, allowing for variable coefficients.
We derive a theoretical convergence analysis of the method and develop a set of numerical tests on a
benchmark problem with known solution.
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1. Introduction

The aim of this paper is to design and analyze some aspects of the use of Virtual Element Methods (in short,
VEM) for the approximate solution of general linear second order elliptic problems. In a previous paper [20]
the same authors analyzed diffusion-convection-reaction problems with variable coefficients in the primal form.
Here we shall deal with the mixed formulation.

Virtual Element Methods (introduced in [15]) belong to the family of methods that allow the use of general
polygonal and polyhedral decompositions, that are becoming more and more popular, in particular in view
of their use in particular problems connected to moving boundaries. Example of applications where polytopal
meshes could have (or are already yielding) a positive impact can be found, for instance, in fluid-structure
interaction [57, 86], crack propagation [21, 71, 79], phase change [34, 64], contact problems [22], or topology
optimization [55, 56, 81, 83], but they are promising also in other applications, for instance in presence of co-
efficients that vary rapidly on sub-domains with complicated geometries, as when dealing with various types
of inclusions (see e.g. [35, 70, 80]), or more generally in medical applications [70, 74, 75, 84], in image pro-
cessing [52, 58, 62], and many others. It must be pointed out that several among these methods, in view
of their great resistance to element distortions, come out to be handy not only for general polygonal ele-
ments, but also on quadrilaterals or hexahedra as well [33]. The literature on these methods has quite old
origins (see e.g. [85]), and kept slowly increasing and widening its range of applications ever since. See for
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1 Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via Cozzi 57, 20125 Milano, Italy.
2 IMATI del CNR, Via Ferrata 1, 27100 Pavia, Italy. alessandro.russo@unimib.it
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instance [4–8,23, 24, 41, 51, 53, 54, 59, 61, 63, 65, 72, 76–78,82, 89]. In more recent times the variety of methods
(already quite rich) has been growing very fast. In particular we have presently a flourishing group of methods,
quite similar to each other, based (one way or another) on local polynomial reconstructions. Among others we
mention Hybridizable Discontinuous Galerkin methods [37–40, 69], Weak Galerkin methods [67, 68, 87, 88], the
latest evolution of Mimetic Finite Differences [10, 12, 14, 30, 61], several variants related to Finite Volumes and
Mixed Methods [25,42–45,47–49], boundary element methods [73] and various evolutions of the Virtual Element
Methods themselves (mentioned below).

The similarities and the differences among all these methods are still under investigation, as well as the (much
more important) analysis of “which method is best suited for which class of problems”. We are not going to
attempt to clarify these issues in the present paper, and more modestly we stick on Virtual Element Methods,
and in particular on their use in mixed formulations.

We recall that Mixed Virtual Element Methods for div(K∇) with K constant were introduced, for the two
dimensional case, in [32] as an evolution of the Mimetic Finite Differences as originally analyzed in [27–29], and
then extended in various directions, see for instance [3, 9, 13, 31]. For references to several much older papers
on Mimetic Finite Differences and a much more detailed panorama on related methods we refer to [60] and
[18]. We also point out that the first attempt to extend and analyze Mimetic Finite Differences to linear elliptic
second order operators of the form div(K∇) with a variable K was actually done earlier in [12] for the mixed
formulation.

A more recent approach to the theory of Virtual Element Methods has been introduced in [1], where the
first attempt to a systematic use of the L2-projection operator was presented (originally for the so called nodal
VEM). This was later refined and extended to mixed formulations in [19]. See also [17], for more details on
the implementation of Virtual Elements and [2, 11, 16, 21, 26, 56, 61, 66] for other interesting applications and
developments.

Here we follow this direction, and the Virtual Element Methods that we propose and analyze for dealing with
variable coefficients are indeed based on L2-projection operators in a rather systematic way. We recall that for
Virtual Element Methods the shape and trial functions are not given in an explicit form, but rather as solutions
of PDE problems inside each element. As we do not want to solve these problems inside the elements (not even
in an approximate way), the passage from constant to variable coefficients is less trivial than for other methods.
In particular, simple minded approaches to variable coefficients can lead to a loss of optimality, especially for
higher order methods, as it has been shown for instance in [20] for nodal VEM.

For the sake of simplicity we present here only the two-dimensional case, although, as pointed out here below
in Remark 4.3, the passage from two to three dimensions, in the present case, is quite immediate.

We will use the following notation. The space of polynomials of degree ≤ k, for k nonnegative integer, will
be denoted by Pk, or Pk(O) whenever we want to stress the fact that we are working on a particular domain
O. As common, we will use P−1 ≡ {0} as well.

Throughout the paper, we will follow the standard notation for classical Sobolev spaces, as for instance
in [36]. In particular, for a domain O in one or several dimensions, ‖f‖k,p,O (k ≥ 0 integer and 1 ≤ p ≤ +∞)
will denote the norm of the function f in the Sobolev space W k,p(O) of functions that belong to Lp(O) with
all their derivatives up to the order k. We will also use the notation Hk(O) to denote W k,2(O), and the norm
of a function f in Hk(O) will be denoted by ‖f‖k,O (or simply ‖f‖k whenever no confusion can occur). With
a minor (and common) abuse of notation, for a vector valued function (say, f : O → R

2) we will still write
‖f‖k,p,O to denote the norm of f in the Sobolev space (W k,p(O))2. The scalar product in L2(O) or in (L2(O))2

will be denoted by (· , ·)0,O, or simply by (· , ·)0 (or even (· , ·)) when no confusion may arise. As usual, Hk
0 (O)

(k integer > 0) will denote the subset of Hk(O)made of functions vanishing at the boundary ∂O of O together
with all their derivatives up to the order k − 1.

Throughout the paper, C will denote a generic constant independent of the mesh size, not necessarily the
same from one occurrence to the other. Sometimes, in some specific step where we want to stress the dependence
of a constant on some variable (say, ξ) we will indicate it by Cξ. Needless to say, Cξ might also assume different
values from one occurrence to another.
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An outline of the paper is as follows. In Section 2, after stating the problem and its formal adjoint, we
recall (in Sect. 2.1) the mixed variational formulation. Then, in Section 3 we introduce the Virtual Element
approximation of the mixed formulation, and derive optimal error estimates in Section 4. In Section 5 we derive
a superconvergence result for the scalar variable, and finally, in Section 6, we present some numerical results.

In the bibliography we included an unusual amount of references, as it would have been appropriate for
a review paper. However we thought that a wide set of references could be convenient, as well, for a paper
submitted for a special issue (like the present one).

2. The problem and the adjoint problem

Let Ω ⊂ R
2 be a bounded convex polygonal domain and let Γ represent the boundary of Ω. We assume that

κ and γ are smooth functions Ω → R with κ(x) ≥ κ0 > 0 for all x ∈ Ω, and that b is a smooth vector valued
function Ω → R

2. For f ∈ H−1(Ω)(≡ (H1
0 (Ω))′), we consider the problem:{

Find p ∈ H1
0 (Ω) such that:

L p := div(−κ(x)∇p + b(x)p) + γ(x) p = f(x) in Ω.
(2.1)

We make the following fundamental assumption, that among other things implies that problem (2.1) is
Well-Posed.
Assumption WP. We assume that for all source terms f ∈ H−1(Ω) problem (2.1) has a unique solution p,
that moreover satisfies the a priori estimate

‖p‖1,Ω ≤ C‖f‖−1,Ω, (2.2)

as well as the regularity estimate
‖p‖2,Ω ≤ C‖f‖0,Ω, (2.3)

both with a constant C independent of f .

We consider also the adjoint operator L∗ given by

L∗p := div(−κ(x)∇p) − b(x) · ∇p+ γ(x) p. (2.4)

The above assumptions on problem (2.1) imply, among other things, that existence and uniqueness hold, as
well, for (2.4). Moreover, for every g ∈ L2(Ω) there exists a unique ϕ ∈ H2(Ω)∩H1

0 (Ω) such that L∗ϕ = g, and

‖ϕ‖2,Ω ≤ C∗‖g‖0,Ω (2.5)

for a constant C∗ independent of g. We note that having a full diffusion tensor would not change the analysis in
a substantial way; the choice of having a scalar diffusion coefficient κ was done just for simplicity. Finally, as we
shall see, the 2-regularity (2.3) and (2.5) is not necessary in order to derive the results of the present work, and
an s-regularity with s > 1 would be sufficient. Here however we are not interested in minimizing the regularity
assumptions.

2.1. The mixed variational formulation

In order to build the mixed variational formulation of problem (2.1), we define

ν := κ−1, β := κ−1b,

and re-write (2.1) as

u = ν−1(−∇p+ βp), div u + γ p = f in Ω, p = 0 on Γ. (2.6)
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Introducing the spaces
V := H(div;Ω), and Q := L2(Ω),

the variational formulation of problem (2.6) is:⎧⎪⎪⎨
⎪⎪⎩

Find (u, p) ∈ V ×Q such that

(νu,v) − (p, div v) − (β · v, p) = 0 ∀v ∈ V,

(div u, q) + (γp, q) = (f, q) ∀q ∈ Q.

(2.7)

For the subsequent analysis it will be convenient to write (2.7) also in a more compact way. For this, we define
first

V := V ×Q, U := (u, p), V := (v, q), F := (0, f),

and
A(U,V) := (νu,v) − (p, div v) − (β · v, p) + (div u, q) + (γp, q). (2.8)

Problem (2.7) can then be equivalently written as:
{

Find U ∈ V such that

A(U,V) = (F,V) ∀V ∈ V .
(2.9)

Remark 2.1. It is almost immediate to see that our path (from (2.1)) to (2.9)) can be easily reversed: if a pair
U = (u, p) solves (2.9) then u and p satisfy (2.6) and hence p solves (2.1). In turn, this easily gives that the
existence and uniqueness of the solution of (2.1) implies the existence and uniqueness of the solution of (2.9).

3. VEM approximation

In the present section we introduce the Virtual Element approximation of problem (2.7).

3.1. The virtual element spaces

Let Th be a decomposition of Ω into star-shaped polygons E, and let Eh be the set of edges e of Th. We
further assume that for every element E there exists a ρE > 0 such that E is star-shaped with respect to every
point of a disk DρE of radius ρEhE (where hE is the diameter of E) and that the length he of every edge
e of E satisfies he ≥ ρEhE . When considering a sequence of decompositions {Th}h we will obviously assume
ρE ≥ ρ0 > 0 for some ρ0 independent of E and of the decomposition. As usual, h will denote the maximum
diameter of the elements of Th.

For every element E we introduce:
Gk(E) := ∇Pk+1(E), (3.1)

and
G⊥

k (E) = the L2(E) orthogonal of Gk(E) in (Pk(E))2, (3.2)

so that
(Pk(E))2 = Gk(E) ⊕ G⊥

k (E). (3.3)

For k integer ≥ 0 we define

V k
h (E) := {v ∈ H(div;E) ∩H(rot;E) : v · n|e ∈ Pk(e) ∀e ∈ ∂E, div v ∈ Pk(E), and rotv ∈ Pk−1(E)}. (3.4)

Then we introduce the discrete spaces

V k
h := {v ∈ H(div;Ω) such that v|E ∈ V k

h (E) ∀ element E in Th}, (3.5)



MIXED VIRTUAL ELEMENT METHODS FOR ELLIPTIC PROBLEMS 731

and
Qk

h := {q ∈ L2(Ω) such that: q|E ∈ Pk(E) ∀ element E in Th}. (3.6)

The degrees of freedom for Qk
h are obvious (one has many equivalent good choices for them), while the degrees

of freedom for V k
h are defined by (see [19])∫

e v · n q k ds for all edge e, for all qk ∈ Pk(e), (3.7)∫
E v · gk−1dx for all element E, for all gk−1 ∈ Gk−1(E), (3.8)∫
E v · g⊥

k dx for all element E, for all g⊥
k ∈ G⊥

k (E), (3.9)

where the notation (3.1)–(3.2) was used for Gk(E) and G⊥
k (E), respectively.

Remark 3.1. We point out that conditions (3.7) could be replaced by the values of v ·n at suitable points on
each edge. Similarly, in (3.9) G⊥

k (E) could be replaced by any subspace of (Pk(E))2 satisfying (3.3).

Remark 3.2. It is not difficult to check that the present choice of elements mimics, in some sense, the Raviart-
Thomas elements, although, even on triangles, they coincide with the RT elements only for k = 0. As pointed
out in [32] and in [19] there are many other choices that could be made.

Remark 3.3. Regarding the mesh assumptions at the beginning of this section, we note that it wouldn’t be
a problem to generalize the shape regularity condition by allowing suitable unions of star-shaped elements.
Analogously, also the minimal edge length condition could be probably avoided with some additional technical
work in the interpolation estimates.

3.2. Interpolants, projections and approximation errors

From now on, we shall denote by Π0
k : Q → Qk

h and by Π0
k : V → V k

h the L2-projection operators, defined
locally by ∫

E

(q −Π0
kq)pk dx = 0 ∀pk ∈ Pk(E), ∀E ∈ Th,∫

E

(v − Π0
kv)qk dx = 0 ∀qk ∈ (Pk(E))2, ∀E ∈ Th.

(3.10)

In [19] it was shown that the degrees of freedom (3.7)–(3.9) allow the explicit computation of the projection
Π0

kv from the knowledge of the degrees of freedom (3.7)–(3.9) of v. For the convenience of the reader we briefly
recall the construction. We first observe that using the degrees of freedom (3.8) we can easily compute the value
of v · n on ∂E. From this and (3.8) one can compute the value of div v ∈ Pk, using∫

E

div v qkdx = −
∫

E

v · ∇qkdx+
∫

∂E

v · n qkds ∀qk ∈ Pk (3.11)

(remember that ∇qk ∈ Gk−1). Once you know explicitly v · n on ∂E and div v inside E, then you can easily
compute the integral ∫

E

v · ∇qk+1dx = −
∫

E

div v qk+1dx+
∫

E

v · n qk+1ds, (3.12)

meaning that you can compute
∫

E v · gkdx for every gk ∈ Gk. This and the degrees of freedom (3.9) allow you
to compute

∫
E

v · qkdx for every (vector valued) polynomial qk of degree ≤ k.
On the other hand, in every element E, the computation of the L2(E)-projection of an element q ∈ Qk

h is
trivial (and coincides with its restriction to the element E).

With classical arguments one can easily show that

‖q −Π0
kq‖0 ≤ Chs|q|s, ‖v − Π0

kv‖0 ≤ Chs|v|s, 0 ≤ s ≤ k + 1, (3.13)

for every q and v, respectively, that make the norms in the right-hand sides finite.
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We point out that a linear “Fortin” operator ΠF
h from W := (H1(Ω))2 → V k

h can be defined through the
degrees of freedom (3.7)–(3.9), by setting, brutally∫

e
(v − ΠF

h v) · n q k ds = 0 for all edge e, for all qk ∈ Pk(e), (3.14)∫
E

(v − ΠF
h v) · gk−1dx = 0 for all element E, for all gk−1 ∈ Gk−1(E), (3.15)∫

E
(v − ΠF

h v) · g⊥
k dx = 0 for all element E, for all g⊥

k ∈ G⊥
k (E), (3.16)

and (using, essentially, (3.11)) it is easy to verify that the commuting diagram property holds:

W
div−−−−→ Q −−−−→ 0

ΠF
h

⏐⏐
 ⏐⏐
Π0
k

V k
h −−−−→

div
Qk

h −−−−→ 0

(3.17)

so that
div ΠF

h v = Π0
k div v. (3.18)

Moreover, the following estimates hold, provided u has enough regularity:

‖u − ΠF
h u‖0 ≤ Chk+1‖u‖k+1, ‖ div(u − ΠF

h u)‖0 ≤ Chk+1‖ div u‖k+1. (3.19)

With a minor abuse of notation, for an element W ≡ (w, r) with w ∈ (H1
0 (Ω))2 and r scalar or vector function

in L2(Ω), we will also denote

w := Π0
kw, r := Π0

kr, and W := (w, r),

wI := ΠF
h w, rI := Π0

kr, and WI := (wI , rI).
(3.20)

We remind that, obviously,

‖w‖0 ≤ ‖w‖0, ‖r‖0 ≤ ‖r‖0, ‖rI‖0 ≤ ‖r‖0, (3.21)

while
‖wI‖0 ≤ ‖w‖0 + ‖w − wI‖0 ≤ C (‖w‖0 + h|w|1). (3.22)

For locally smooth w, as we can see from (3.13) and (3.19), the two errors ‖w−wI‖0,E and ‖w−w‖0,E will
behave in the same way (in terms of powers of h and required regularity). Hence it makes sense to introduce a
sort of common value that bounds both of them. We define

Ek(w) := ‖w − wI‖0 + ‖w − w‖0, (3.23)

and we put it on charge to measure the approximation error for w when using Virtual Element spaces of degree
k. Needless to say, the same holds for a scalar function r approximated in Qk

h (or, when necessary, for a vector
valued function r approximated in (Qk

h)2) since, in these cases the two approximations r and rI coincide (as
one can see in (3.20)). In order to use the same notation all over, however, we follow (3.23), and set

Ek(r) := ‖r − rI‖0 + ‖r − r‖0, and Ek(W) := ‖W − WI‖0 + ‖W − W‖0. (3.24)

We also point out that, by the properties of the projection, we immediately have

‖WI − WI‖0 ≤ ‖WI − W‖0 ≤ ‖WI − W‖0 + ‖W − W‖0 = Ek(W), (3.25)
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implying also
Ek(WI) ≤ Ek(W). (3.26)

Along the same lines, it is intuitively obvious (and it can be easily proved) that if you have a certain estimate
(in terms of powers of h and required regularity) for w (or for r) you will have quite similar estimates for, say,
ϕw whenever ϕ is a given smooth function. The constant in front of the estimate will depend on ϕ, but the
power of h and the regularity required to w will be exactly the same. For instance it is immediate to check (just
expanding the derivatives of the products, and using Cauchy–Schwarz) that one has

‖ϕw − ϕw‖0 ≤ C hk+1 |ϕw|k+1 ≤ C hk+1 ‖ϕ‖k+1,∞‖w‖k+1 ≡ Cϕ h
k+1 ‖w‖k+1. (3.27)

The same occurs for a pair W = (w, r) when one of the two entries (or both) are multipled by a smooth
function ϕ or a smooth vector valued function ϕ, as in

Ek(wϕ) = ‖wϕ− wϕ‖0 + ‖wϕ− (wϕ)I‖0 and Ek(rϕ) = ‖rϕ− rϕ‖0 + ‖rϕ− (rϕ)I‖0 (3.28)

for a smooth function ϕ, as well as in

Ek(rϕ) = ‖rϕ − rϕ‖0 + ‖rϕ − (rϕ)I‖0 (3.29)

for a smooth vector valued function ϕ.
All this suggests a further “abuse of notation”: for W = (w, r) we will use the notation Ek(ℵW) (either for

ℵ scalar or ℵ vector) whenever one of the two (w and r), or both, are multiplied by ℵ.
It could be worth pointing out a few particular cases: no matter whether ℵ is a scalar or a vector, we have

Ek(ℵW) ≤ Cℵ h
(
‖r‖1 + ‖w‖1

)
, (3.30)

as well as
Ek(ℵWI) ≤ Ek(ℵ(WI − W)) + Ek(ℵW) ≤ ‖ℵ‖∞Ek(W) + Ek(ℵW). (3.31)

Needless to say, the obvious analog of the bounds (3.30) and (3.31) apply also to the separate terms Ek(w), Ek(r)
and so on. Finally, we observe that estimates (3.13) and (3.19) imply

Ek(U) ≤ Chk+1(‖u‖k+1 + ‖p‖k+1), Ek(ℵU) ≤ Cℵh
k+1(‖u‖k+1 + ‖p‖k+1), (3.32)

where Cℵ is a constant depending on ℵ and its derivatives up to the order k+1. As a final remark we note that,
whenever convenient, we can easily bound Ek(ℵW) by

Ek(ℵW) ≤ Cℵ‖W‖0. (3.33)

3.3. The discrete bilinear forms

As is well-known from the theory of mixed formulations, the two main ingredients to be used to prove stability
and error estimates are the ellipticity of the leading diagonal term (here, (νu,v)), and the inf-sup condition.
Here the inf-sup condition will be easily provided by the commuting diagram (3.17). Hence, our main worry
will be the treatment of the term

a(u,v) := (νu,v). (3.34)

On each element E ∈ Th we define:

aE
h (v,w) := (νv,w)0,E + SE(v − v,w − w), (3.35)

where SE(v,w) is any symmetric and positive definite bilinear form that scales like aE(v,w) (see [15]). More
precisely, our assumption on S will be: There exist two positive constants α∗ and α∗ (depending on ν but
independent of h) such that

α∗aE(v,v) ≤ SE(v,v) ≤ α∗aE(v,v) ∀v ∈ V k
h . (3.36)
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For practical purposes it will be convenient to choose the Euclidean scalar product associated to the degrees of
freedom in V k

h multiplied, for instance, by |E|ν(xB), where xB = (xB , yB) = is the barycenter of E. We notice
that, obviously, pk = pk for all pk ∈ Pk. Therefore

aE
h (pk,w) =

∫
E

νpk · w, dx ∀w ∈ V k
h , ∀pk ∈ Pk. (3.37)

We can now define
ah(v,w) :=

∑
E

aE
h (v,w). (3.38)

Lemma 3.4. The bilinear form ah(·, ·) is continuous and elliptic in (L2(Ω))2, that is:

∃M > 0 such that |ah(v,w)| ≤M‖v‖0‖w‖0 ∀v,w ∈ V k
h ,

∃α > 0 such that ah(v,v) ≥ α‖v‖2
0 ∀v ∈ V k

h ,
(3.39)

with M and α depending on ν but independent of h.

Proof. The symmetry of SE and (3.36) imply easily the continuity of SE :

SE(v,w) ≤ (SE(v,v))1/2(SE(w,w))1/2 ≤ Cν‖v‖0,E‖w‖0,E, (3.40)

with Cν = α∗νmax. In particular,

SE(v − v,w − w) ≤ Cν‖v − v‖0,E‖w − w‖0,E ≤ CνEk(v)Ek(w). (3.41)

Then, the continuity of ah(·, ·) is an obvious consequence of the continuity of a(·, ·) and of the L2-projection
properties:

|ah(v,w)| ≤ νmax‖v‖0‖w‖0 + Cν‖v − v‖0‖w − w‖0 ≤M‖v‖0‖w‖0.

Similarly,
ah(v,v) ≥ νmin

(
‖v‖2 + α∗‖v − v‖2

0

)
≥ α

(
‖v‖2

0 + ‖v − v‖2
0

)
= α‖v‖2

0. �

The discrete problem is now:

⎧⎪⎪⎨
⎪⎪⎩

Find (uh, ph) ∈ V k
h ×Qk

h such that

ah(uh,vh) − (ph, div vh) − (β · vh, ph) = 0 ∀vh ∈ V k
h

(div uh, qh) + (γph, qh) = (f, qh) ∀qh ∈ Qh.

(3.42)

Like we did for the continuous formulation, in order to write (3.42) in a more compact form, we set

Vh := V k
h ×Qk

h, Uh := (uh, ph), Vh := (v, qh), Fh := (0, f),

and
Ah(Uh,Vh) := ah(uh,vh) − (ph, div vh) − (β · vh, ph) + (div uh, qh) + (γph, qh). (3.43)

Then problem (3.42) can be written as{
Find Uh ∈ Vh such that

Ah(Uh,Vh) = (Fh,Vh) ∀Vh ∈ Vh.
(3.44)
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4. Error Estimates

Our final target is to prove the following theorem.

Theorem 4.1. Under the above assumptions and with the above notation, for h sufficiently small problem (3.42)
has a unique solution (uh, ph) ∈ V k

h ×Qk
h, and the following error estimates hold:

‖p− ph‖0 ≤ Chk+1
(
‖u‖k+1 + ‖p‖k+1

)
,

‖u − uh‖0 ≤ Chk+1
(
‖u‖k+1 + ‖p‖k+1

)
,

‖ div(u − uh)‖0 ≤ Chk+1
(
|f |k+1 + ‖p‖k+1

)
,

(4.1)

with C a constant depending on ν,β, and γ but independent of h.

Before proving the theorem, we will introduce some useful lemmata, that deal with properties of the bilinear
forms A and Ah.

4.1. Preliminary estimates

A typical source of difficulties, when proving optimal error estimates, is the fact that the bilinear form
A(U,V) cannot be bounded in terms of the L2 norms of U and V, due to the presence of the two terms
(div u, q) and (p, div v) involving the divergence. We will therefore spend some additional time in order to point
out some particular cases in which these terms could be avoided. In particular, we note that for v ∈ H(div;E)
and q ∈ L2(E) we will have ∫

E

div v q dx = 0 (4.2)

whenever

• q ∈ Pk, and div v is orthogonal to Pk,
• div v ∈ Pk, and q is orthogonal to Pk.

Hence, in particular, using (3.4), (3.6), and (3.18) we have:∫
E

div(w −ΠF
h w) qhdx = 0 ∀qh ∈ Qk

h, ∀w ∈ (H1(E))2, (4.3)

and ∫
E

div vh (r −Π0
kr)dx = 0 ∀vh ∈ V k

h (E), ∀r ∈ L2(E), (4.4)

so that for every W ∈ V and for every Vh ∈ Vh we have

|A(Vh,W − WI)| + |A(W − WI ,Vh)| ≤ Cν,β,γ ‖Vh‖0 ‖W − WI‖0. (4.5)

4.2. The consistency error

Further attention should also be given to the difference (Ah −A)(W,V). We will perform the analysis on a
single element, without indicating every time that the norms are considered in L2(E). Using (2.8) and (3.43)
we have easily

(Ah −A)(W,V) = (νw,v) − (νw,v) (=: T1(W,V))
+ S(w − w,v − v) (=: T2(W,V))
+ (v − v,βr) (=: T3(W,V)),

(4.6)
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where as before V = (v, q) and W = (w, r) are in Vh. We point out that all the terms T1, T2 and T3 do
not involve derivatives, so that we will not have continuity problems. For the term T1, using repeatedly the
properties of the L2-projection we have:

T1(W,V) = (νw,v) − (νw,v) = (νw,v − v) − (w − w, νv)
= (νw − νw,v − v) − (w − w, νv − νv)
= (νw − νw,v − v) − (w − w, νv − νv + νv − νv)
= (νw − νw,v − v) − (w − w, νv − νv) − (w − w, ν(v − v))

≤
(
Cν‖w − w‖0 + ‖νw − νw‖0

)
‖v‖0

≤
(
CνEk(W) + Ek(νW)

)
‖V‖0.

(4.7)

Needless to say, in view of the symmetry of the term, we also have

T1(W,V) = T1(V,W) ≤
(
CνEk(V) + Ek(νV)

)
‖W‖0. (4.8)

The terms T2 and T3 in (4.6) are easily bounded. Directly from (3.41) we have

T2(W,V) ≤ CνEk(W) Ek(V), (4.9)

and for T3

T3(W,V) = (v − v,βr − βr) ≤ Ek(V) Ek(βW). (4.10)

The above analysis can now be summarized in the following two estimates, that will both be used in our final
proof.

• Using (4.8), (4.10) with (3.33), and (4.9) we have

(Ah −A)(W,V) ≤ Cν,β

(
(Ek(V) + Ek(νV)

)
‖W‖0. (4.11)

• Using instead (4.7), (4.10) and (4.9) we have

(Ah −A)(W,V) ≤ Cν

(
Ek(W) + Ek(νW) + Ek(βW)

)
‖V‖0. (4.12)

4.3. The dual problem

Our proof will use a duality argument. Therefore we spend some time analyzing the dual problem.

Lemma 4.2. Let 
 ∈ L2(Ω), g ∈ H(div;Ω), and set G := (g, 
). Let Z := (ζ, z) ∈ V be the solution of

A(W,Z) = (G,W) ∀W = (w, r) ∈ V . (4.13)

Then Z is the solution of

ζ = κ(∇z + g) and − div ζ − β · ζ + γ z = 
 in Ω, z = 0 on Γ (4.14)

that is (see (2.4)),
L∗z = 
+ b · g + div(κg), (4.15)

so that, in particular
||z||2 + ||ζ||1 ≤ C∗(||
||0 + ||κg||H(div)). (4.16)
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Proof. Recalling (2.8), and substituting W for U and Z for V we get

A(W,Z) = (νw, ζ) − (r, div ζ) − (β · ζ, r) + (div w, z) + (γr, z). (4.17)

Separating the equations in w and in r in (4.13) it is not difficult to see that (ζ, z) solves{
(νw, ζ) + (div w, z) = (g,w) ∀w ∈ H(div, Ω)

− (r, div ζ) − (β · ζ, r) + (γr, z) = (
, r) ∀r ∈ L2(Ω)
(4.18)

giving, respectively,
ζ = κ∇z + κg plus z ∈ H1

0 (Ω),

and
− div ζ − β · ζ + γz = 
.

Putting them together we have

− div(κ∇z) − div(κg) − b · ∇z − b · g + γz = 
,

and (4.15) follows. �

4.4. Proof of Theorem 4.1

We are now ready for the proof of Theorem 4.1.

Proof. To prove Theorem 4.1 we shall follow the arguments of Douglas–Roberts [46]. We first assume that (3.42)
has a solution, at least for h sufficiently small. That it does, it will be clear from the convergence analysis. Let
therefore Uh = (uh, ph) be a solution of (3.42). Let us form the error equation:

A(U,Vh) −Ah(Uh,Vh) = 0 ∀Vh ≡ (vh, qh) ∈ Vh. (4.19)

We use duality arguments. Let Ψ = (χ, ψ) be the solution of the adjoint problem

A(V,Ψ ) =
(
ν(UI − Uh),V

)
=

(
(ν(uI − uh), pI − ph),V

)
∀V ∈ V . (4.20)

According to Lemma 4.2, ψ ∈ H1
0 (Ω) ∩H2(Ω) is the solution of the adjoint problem

L∗ψ ≡ div(−κ∇ψ) − b · ∇ψ + γ ψ = pI − ph + β · (uI − uh) + div(uI − uh), (4.21)

and by the elliptic regularity (4.16) with G ≡ (g, 
) := (ν(uI − uh), pI − ph) we get

‖ψ‖2 + ‖χ‖1 ≤ C∗ (‖pI − ph‖0 + ‖uI − uh‖H(div)). (4.22)

Our first step will then be the estimate of ‖ div(uI − uh)‖0. Looking at the discrete and continuous equations
we have

div uh = Π0
k(f − γph) and div u = f − γp, (4.23)

and from (3.18) div uI = Π0
k div u = Π0

k(f − γp). Hence,

div(uI − uh) = Π0
k(γ(ph − p)), (4.24)

so that, clearly,
‖ div(uI − uh)‖0 ≤ Cγ‖p− ph‖0. (4.25)
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Therefore, (4.22) reduces to

‖ψ‖2 + ‖χ‖1 ≤ C (‖pI − ph‖0 + ‖uI − uh‖0 + ‖p− pI‖0)

≤ C
(
‖UI − Uh‖0 + Ek(U)

)
,

(4.26)

and using (for instance) (3.30) with ℵ = 1 the estimate (4.26) implies that

Ek(Ψ ) ≤ C h
(
‖ψ‖1 + ‖χ‖1

)
≤ C h

(
‖UI − Uh‖0 + Ek(U)

)
, (4.27)

as well as
‖Ψ I‖0 ≤ ‖Ψ − Ψ I‖0 + ‖Ψ‖0 ≤ C

(
‖UI − Uh‖0 + Ek(U)

)
. (4.28)

Moreover, taking V = UI − Uh in (4.20), it is immediate to see that

νmin‖UI − Uh‖2 ≤
∫

Ω

(ν|uI − uh|2 + |pI − ph|2)dx = A(UI − Uh,Ψ ). (4.29)

Hence,

νmin‖UI − Uh‖2 ≤ A(UI − Uh,Ψ ) (±Ψ I)
= A(UI − Uh,Ψ − ΨI) + A(UI − Uh,Ψ I) (±U)
= I + A(UI − U,Ψ I) + A(U − Uh,Ψ I) (just linearity)
= I + II + A(U,Ψ I) −A(Uh,Ψ I) (use (4.19))
= I + II + (Ah −A)(Uh,Ψ I). (4.30)

The first two terms are easily bounded using (4.5), (4.27), (4.28), and (3.32):

I ≡ A(UI − Uh,Ψ − Ψ I) ≤ C ‖UI − Uh‖0 h
(
‖UI − Uh‖0 + Ek(U)

)
≤ C

(
h‖UI − Uh‖2

0 + hk+2‖UI − Uh‖0

)
, (4.31)

II ≡ A(UI − U,Ψ I) ≤ C Ek(U)
(
‖UI − Uh‖0 + Ek(U)

)
≤ C

(
‖UI − Uh‖0h

k+1 + h2k+2
)
, (4.32)

and we are left with the third term. For it, we are going to use the arguments of Section 4.2. We start by
observing that

(Ah −A)(Uh,Ψ I) = (Ah −A)(Uh − UI ,Ψ I) + (Ah −A)(UI ,ΨI). (4.33)

The first term in (4.33) can be easily bounded, using (4.11), (3.26), (3.31), (4.27), and (3.32):

(Ah −A)(Uh − UI ,Ψ I) ≤ Cν,β

(
Ek(Ψ I) + Ek(νΨ I)

)
‖Uh − UI‖0

≤ C h
(
‖Uh − UI‖0 + Ek(U)

)
‖Uh − UI‖0

≤ C
(
h ‖Uh − UI‖2

0 + hk+2‖Uh − UI‖0

)
, (4.34)

while, using (4.12), (3.26), (3.31), and (4.28), the second term in (4.33) can be bounded by

(Ah −A)(UI ,Ψ I) ≤ Cν

(
Ek(UI) + Ek(νUI) + Ek(βUI)

)
‖Ψ I‖0

≤ C
(
Ek(U) + Ek(νU)) + Ek(βU)

)(
‖Uh − UI‖0 + Ek(U)

)
≤ C

(
hk+1‖Uh − UI‖0 + h2k+2

)
. (4.35)
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Inserting (4.31), (4.32), (4.34) and (4.35) into (4.30) we have then

νmin‖Uh − UI‖2 ≤ C
(
h‖Uh − UI‖2 + ‖Uh − UI‖ hk+1 + h2k+2

)
. (4.36)

For h small enough (say: Ch ≤ (1/2)νmin in (4.36)) we can hide the first term in the r.h.s. of (4.36) in the
left-hand side, and have

‖Uh − UI‖2
0 ≤ C

(
hk+1‖Uh − UI‖0 + h2k+2

)
, (4.37)

and the first two estimates in (4.1) follow completing the square. The estimate on the divergence follows directly
from (4.23), and standard error estimates.

Finally, since (3.42) is finite dimensional, in order to prove the existence of the solution we only have to prove
uniqueness, that is, we have to prove that for f = 0 problem (3.42) has only the solution ph = 0,uh = 0. Since we
assumed that the continuous problem (2.1) has a unique solution, it follows that for f = 0 we have p = 0,u = 0.
The above analysis showed that, for h small enough, any solution (uh, ph) of (3.42) must satisfy (4.1) which, in
our case, imply uh = 0, ph = 0, and the proof is concluded. �

Remark 4.3. Looking at the construction of the method, and to the analysis of its convergence properties, it
is not difficult to see that the passage from the two-dimensional case to the three-dimensional one can be done,
using [19], without any difficulty. However, the notation for dealing with both cases at the same time would
be more cumbersome, and a presentation with two separate treatments would be very boring and essentially
useless.

5. Superconvergence results

Theorem 5.1. Let ph be the solution of (3.42), and let pI ∈ Qk
h be the interpolant of p. Then, for h sufficiently

small,

‖pI − ph‖0 ≤ C hk+2
(
‖u‖k+1 + ‖p‖k+1 + |f |k+1

)
, (5.1)

where C is a constant depending on ν, β, and γ but independent of h.

Proof. We proceed again via duality argument. Let ψ ∈ H1
0 (Ω)∩H2(Ω) be the solution of the adjoint problem

div(−κ(x)∇ψ)−b(x) · ∇ψ+γ(x)ψ = pI − ph, χ = κ∇ψ, (5.2)

whose mixed formulation is: Find (χ, ψ) in H(div, Ω) × L2(Ω) such that

{
(νχ,v) + (ψ, div v) = 0 ∀v ∈ H(div, Ω)

− (div χ, q)−(β · χ, q)+(γψ, q) = (pI − ph, q) ∀q ∈ L2(Ω).
(5.3)

The error equations (4.19), using (3.20) and (3.18), become

{
a(u,vh) − ah(uh,vh) − (pI − ph, div vh)−(β · vh, p) + (β · vh, ph) = 0 ∀vh ∈ V k

h ,

(div(u − uh), qh)+(γ(p− ph), qh) = 0 ∀qh ∈ Qh.
(5.4)

Taking now q = pI − ph in (5.3) gives

‖pI − ph‖2
0 = −(div χ, pI − ph)−(β · χ, pI − ph)+(γψ, pI − ph). (5.5)
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For the first term, using again (3.20) and (3.18), we have

(div χ, pI − ph) = (div χI , pI − ph) (use (5.4) with vh = χI)
= a(u,χI) − ah(uh,χI)−(β · χI , p) + (β · χI , ph) (±uh)
= a(u − uh,χI) + a(uh,χI) − ah(uh,χI)−(β · χI , p) + (β · χI , ph) (±χ)
= a(u − uh,χ) + a(u − uh,χI − χ) + a(uh,χI) − ah(uh,χI)
−(β · χI , p) + (β · χI , ph). (5.6)

In turn, the first term in (5.6) becomes

a(u − uh,χ) = (u − uh,∇ψ) = −(div(u − uh), ψ) (±ψI)
= −(div(u − uh), ψ − ψI) − (div(u − uh), ψI) (use (5.4))
= −(div(u − uh), ψ − ψI)+(γψI , p− ph). (5.7)

Replacing (5.7) in (5.6), and using the result for the first term of (5.5), we have then

‖pI − ph‖2
0 = −

[
− (div(u − uh), ψ − ψI)+(γψI , p− ph) + a(u − uh,χI − χ)

+ a(uh,χI) − ah(uh,χI)−(β · χI , p) + (β · χI , ph)
]

−(β · χ, pI − ph)+(γψ, pI − ph). (5.8)

The first two terms are easily bounded:

|a(u − uh,χI − χ)| ≤ Ch‖u − uh‖0‖pI − ph‖0,

|(div(u − uh), ψ − ψI)| ≤ Ch2‖ div(u − uh)‖0‖pI − ph‖0,
(5.9)

while using (4.8) and (4.9) we get

|a(uh,χI) − ah(uh,χI)| ≤ Cνh
k+1‖u‖k+1,Ωh ‖pI − ph‖0. (5.10)

For the terms involving reaction, adding and subtracting (γψI , pI − ph) and using the properties of the projection
we obtain

(γψ, pI − ph)−(γψI , p− ph) = (γ(ψ − ψI), pI − ph) + (γψI , pI − ph) − (γψI , p− ph)

= (γ(ψ − ψI), pI − ph) + (γψI , pI − p)

= (γ(ψ − ψI), pI − ph) + (γψI − γψI , pI − p)

≤ Cγh
2
(
‖pI − ph‖2

0 + ‖p− pI‖‖pI − ph‖0

)
. (5.11)

For h small enough the first term in the right-hand side of (5.11) can be hidden in the left-hand side of (5.8)
and the other one is more than enough.

Finally, the terms involving advection can be treated as:

−(β · χ, pI − ph) + (β · χI , p) − (β · χI , ph) (±χI)
= −(β · (χ − χI), pI − ph) − (β · χI , pI − ph) + (β · χI , p) − (β · χI , ph)

= −(β · (χ − χI), pI − ph) + (β · χI , p− pI) + (χI − χI ,βph)

= −(β · (χ − χI), pI − ph) + (β · χI − β · χI , p− pI) + (χI − χI ,βph − βph)

≤ Cβh‖pI − ph‖0

(
‖p− pI‖0 + ‖p− ph‖0 + hk+1‖p‖k+1

)
. (5.12)

Inserting (5.9)–(5.12) in (5.8) and using (4.1) and standard interpolation estimates we obtain (5.1) �
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6. Numerical experiments

In this Section we will present some numerical experiments to validate the convergence results proven in the
previous sections. We will test our method on the same problem and with the same meshes of [20], where we
studied the Virtual Element Method for problem (2.1) in the primal form.

Before presenting the numerical results we make a comment on the stabilization bilinear form in (3.35). For
each element E ∈ Th we denote by χi, for i = 1, 2, . . . , NE, the operator V k

h (E) → R that to each vh ∈ V k
h (E)

associates the ith local degree of freedom (3.7), (3.8) and (3.9), ordered as follows: first the boundary d.o.f. (3.7),
for i = 1, 2, . . . , N∂

E , and then the internal ones (3.8) and (3.9), for i = N∂
E + 1, . . . , NE . We assume that all the

degrees of freedom are scaled in such a way that the associated dual basis {φi}NE

i=1 scales uniformly in the mesh
size

||φi||L∞(E) � 1 ∀i = 1, 2, . . . , NE. (6.1)

With this notation, the most natural VEM stabilization SE(·, ·) in (3.35) is given by (see [15])

SE(v − Π0
kv,w − Π0

kw) := |E|
NE∑
i=1

χi

(
v − Π0

kv
)
χi

(
w − Π0

kw
)

(6.2)

for all v,w ∈ V k
h (E). We now observe that, by definition of the L2 projection operator Π0

k, and since both
spaces Gk−1(E), G⊥

k (E) appearing in (3.8) and (3.9) are included in (Pk(E))2, it is immediate to check that

χi

(
v − Π0

kv
)

= 0 ∀v ∈ V k
h (E), i = N∂

E + 1, . . . , NE.

Therefore the contribution of the internal degrees of freedom in (6.2) vanishes, and we can equivalently use the
shorter version

SE(v − Π0
kv,w − Π0

kw) := |E|
N∂

E∑
i=1

χi

(
v − Π0

kv
)
χi

(
w − Π0

kw
)
.

In other words, the internal degrees of freedom do not need to be included in the stabilization procedure.

6.1. Exact solution

We will consider problem (2.1) on the unit square with

κ(x, y) =
(
y2 + 1 −xy
−xy x2 + 1

)
, b = (x, y), γ = x2 + y3, (6.3)

and with right hand side and Dirichlet boundary conditions defined in such a way that the exact solution is

p(x, y) = x2y + sin(2πx) sin(2πy) + 2. (6.4)

The corresponding flux is given by
u = −κ∇p+ b p. (6.5)

We will show, in a loglog scale, the convergence curves of the error in L2 between (p,u) and the solution (ph,uh)
given by the mixed Virtual Element Method (3.42). As the VEM flux uh is not explicitly known inside the
elements, we compare u with the L2-projection of uh onto (Pk)2, that is, with Π0

kuh.

6.2. Meshes

For the convergence test we consider four sequences of meshes.
The first sequence of meshes (labelled Lloyd-0) is a random Voronoi polygonal tessellation of the unit

square in 25, 100, 400 and 1600 polygons. The second sequence (labelled Lloyd-100) is obtained starting
from the previous one and performing 100 Lloyd iterations leading to a Centroidal Voronoi Tessellation (CVT)
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Figure 1. Lloyd-0 mesh. Figure 2. Lloyd-100 mesh.

Figure 3. square mesh. Figure 4. concave mesh.

(see e.g. [50]). The 100-polygon mesh of each family is shown in Figure 1 (Lloyd-0) and in Figure 2 (Lloyd-100),
respectively.

The third sequence of meshes (labelled square) is simply a decomposition of the domain in 25, 100, 400
and 1600 equal squares, while the fourth sequence (labelled concave) is obtained from the previous one by
subdividing each small square into two non-convex (quite nasty) polygons. As before, the second meshes of the
two sequences are shown in Figures 3 and 4 respectively.

6.3. Convergence curves

In Figures 5 and 6 we report the relative error in L2 for ph and uh respectively, for the four mesh sequences
in the case k = 1. In Figures 7 and 8 we show the same convergence results for k = 4.
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Figure 5. k = 1, relative L2 error for ph.
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Figure 6. k = 1, relative L2 error for uh.
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Figure 7. k = 4, relative L2 error for ph.
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Figure 8. k = 4, relative L2 error for uh.

A closer inspection of the convergence curves for the L2 error between p and ph shown in Figures 5 and 7
reveals that the slope is slightly larger than expected for the coarsest meshes. This behavior can be explained
in following way. The L2 error ‖p− ph‖0 can be written as

‖p− ph‖2
0 = ‖p− pI‖2

0 + ‖pI − ph‖2
0, (6.6)

where we recall that on each element pI = Π0
kp. As shown in Section 5, there is a superconvergence of ph to pI :

‖pI − ph‖0 ≤ Chk+2. (6.7)
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Figure 10. k = 4, superconvergence.

Hence, as long as ‖pI − ph‖0 is the dominant term in the error, we observe a slope of k + 2; when h becomes
smaller, the term ‖p − pI‖0 takes over and the slope becomes k + 1 as expected. This is clearly shown in
Figures 9 and 10 where p − pI and pI − ph are plotted in the case of the lloyd-100 meshes with k = 1 and
k = 4, respectively. For the sake of clarity, on each curve we have reported its slope.

We conclude that the Virtual Element Method behaves as expected and shows a remarkable stability with
respect to the shape of the mesh polygons.
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[48] J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and
mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295.

[49] J. Droniou, R. Eymard, T. Gallouët and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear,
nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (2013) 2395–2432.

[50] Q. Du, V. Faber and M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41 (1999)
637–676.

[51] M. Floater, A. Gillette and N. Sukumar, Gradient bounds for Wachspress coordinates on polytopes. SIAM J. Numer. Anal.
52 (2014) 515–532.

[52] M.S. Floater, G. Kós and M. Reimers, Mean value coordinates in 3d. Comput. Aided Geom. Design 22 (2005) 623–631.

[53] M. Floater, K. Hormann and G. Kós, A general construction of barycentric coordinates over convex polygons. Adv. Comput.
Math. 24 (2006) 311–331.

[54] T.-P. Fries and T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications.
Int. J. Numer. Methods Engrg. 84 (2010) 253–304.

[55] A.L. Gain, Polytope-based topology optimization using a mimetic-inspired method. Ph.D. thesis, University of Illinois at Urbana-
Champaign, 2013.

[56] A.L. Gain, C. Talischi and G.H. Paulino, On the Virtual Element Method for three-dimensional linear elasticity problems on
arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 282 (2014) 132–160.

[57] A. Gerstenberger and W.A. Wall, An extended finite element method/Lagrange multiplier based approach for fluid-structure
interaction. Comput. Methods Appl. Mech. Engrg. 197 (2008) 1699–1714.

[58] K. Hormann and M.S. Floater, Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25 (2006) 1424–1441.
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