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CONNECTIONS BETWEEN OPTIMAL TRANSPORT, COMBINATORIAL
OPTIMIZATION AND HYDRODYNAMICS

Yann Brenier
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Abstract. We discuss a new connection between combinatorial optimization and optimal transport
theory through the analysis of a variational problem coming from mathematical Fluid Mechanics. At a
discrete level, this minimization problem corresponds to a quadratic assignment problem, which belongs
to the NP class of combinatorial optimization. Our analysis is focused on the study of a suitable gradient
flow for which we establish the global existence of dissipative solutions which are unique when smooth.
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1. Introduction

There are well-established connections between combinatorial optimization, optimal transport theory and
Hydrodynamics. For instance, the famous earth moving problem of Monge (“problème des déblais et des rem-
blais” [19]) corresponds, after discretization, to the “linear assignment problem”, which is an easy “P” problem
in combinatorial optimization. The Monge problem is clearly related to Continuum Mechanics and its convex
relaxation, known as the Monge−Kantorovich problem [19], admits a formulation in terms of Fluid Mechan-
ics [2, 6], which corresponds to a quite trivial physical model: a potential inviscid flow without pressure! So, it
is natural to look for more sophisticated interactions between these three fields of combinatorial optimization,
optimal transport theory and Fluid Mechanics. In the present paper, we consider the following variational prob-
lem: let D be a smooth domain in R

d and a ϕ0 a smooth function on D valued in R
N . We denote by λ the

“law” of ϕ0 over R
N , defined by∫

D

F (ϕ0(x))dx =
∫

RN

F (y)λ(dy), ∀F ∈ C0
c

(
R

N
)
. (1.1)

We want to minimize the Dirichlet integral

E [ϕ] =
1
2

∫
D

|∇ϕ(x)|2dx (1.2)

among all functions ϕ from D to R
N , with law λ. This problem is closely related to the (stationary) solutions of

the famous (and highly non-trivial) Euler equations of incompressible Fluid Mechanics, in the case d = 2, N = 1.
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At the discrete level, it corresponds to a “quadratic assignment problem”, a famous “NP problem” in combina-
torial optimization.

In the present paper, we do not address this difficult non-convex minimization problem, but rather introduce
and analyze a “gradient flow” equation for it, namely

∂tϕ+ ∇ · (ϕv) = 0, (−�)mv = −P∇ · (∇ϕ⊗∇ϕ), (1.3)

where P denotes the L2 projection onto divergence-free vector fields andm = 0 or m = 1, with suitable boundary
conditions.

Then, combining some ideas of P.-L. Lions (for the Euler equations) and Ambrosio−Gigli-Savaré (for the
heat equation), we provide for the initial value problem a concept of generalized “dissipative” solutions which
always exist globally in time and are unique whenever they are smooth.

Remark 1.1. After the submission of this paper, we got informed by Filippo Santambrogio of reference [3] (and
also [12,14]). In that work about “area preserving mappings of minimal distortion”, Angenent et al. motivated
by medical imaging problems, had already proposed a gradient flow approach to our minimization problem, at
least in the case d = N = 2. In their approach, the gradient flow is computed by differential geometry methods
and its analysis has been postponed to a future publication. Our derivation is equivalent (but done in “Eulerian
coordinates” instead). As a matter of fact, we have limited our analysis, in the rest of the present paper, to
the case N = 1, but our methodology extends without difficulty to the multidimensional case N > 1. Let us
finally mention the somewhat related work of Gay−Balmaz and Holm [11] in their approach of partly dissipative
models in Fluid Mechanics.

2. Well-known connections between optimal transport theory,

hydrodynamics and combinatorial optimization

2.1. The Monge−Kantorovich distance in optimal transport theory

The (quadratic) Monge−Kantorovich (MK2) distance (very often called “Wasserstein” distance in optimal
transport theory and also called Tanaka distance in kinetic theory) can be defined in terms of probability
measures and random variables as:

dMK2(μ, ν) = inf
{√

E(|X − Y |2), law(X) = μ, law(Y ) = ν
}

(2.1)

where μ and ν are probability measures (with finite second moments) defined on the Euclidean space R
d, X

and Y denotes random variables valued in R
d, | · | is the Euclidean norm and E denotes the expected value.

2.2. Hydrodynamic interpretation of the MK2 distance

Using the so-called “Benamou−Brenier formula” or the “Otto calculus” [6, 17], we may express the MK2

distance in hydrodynamic terms. More precisely, at least in the case when μ and ν are absolutely continuous
with respect to the Lebesgue measure, we may write

d2
MK2(μ, ν) = inf

∫ 1

0

∫
Rd

|v(t, x)|2ρ(t, x)dtdx (2.2)

where the infimum is taken over all density and velocity fields

(t, x) ∈ [0, 1]× R
d → (ρ(t, x), v(t, x)) ∈ R+ × R

d

subject to the continuity equation
∂tρ+ ∇x · (ρv) = 0 (2.3)
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and the time-boundary conditions

ρ(t = 0, x)dx = μ(dx), ρ(t = 1, x)dx = ν(dx). (2.4)

The (formal) optimality equations read

v(t, x) = ∇xθ(t, x), ∂tθ +
1
2
|∇xθ|2 = 0, (2.5)

and describe a potential, inviscid, pressure-less gas, sometimes called “dust” (in cosmology in particular), which
is one of the most trivial models of fluids.

2.3. MK2 distance and combinatorial optimization

Given two discrete probability measures on R
d

μ =
∑

i=1,N

δAi , ν =
∑

j=1,N

δBj , (2.6)

we easily check that

d2
MK2(μ, ν) = inf

law(X)=μ,law(Y )=ν
E(|X − Y |2) = inf

σ∈SN

∑
i=1,N

|Ai −Bσi |2
N

, (2.7)

where σ ∈ SN denotes the set of all permutations of the first N integers. Thus, computing the MK2 distance
between two discrete measures is equivalent to solving the so-called “linear assignment problem” (LAP):

inf
σ∈SN

N∑
i=1

c(i, σi), (2.8)

in the special case when the “cost matrix” c has geometric contents

c(i, j) = |Ai −Bj |2. (2.9)

In full generality, the LAP is one of the simplest combinatorial optimization problems, with complexity
O(N3) [5].

3. NP combinatorial optimization problems and hydrodynamics

There are much more challenging problems in combinatorial optimization, such as the (NP) “quadratic
assignment problem” (which includes the famous traveling salesman problem).

Given two N ×N matrices γ and c, with coefficients ≥ 0, solve:

(QAP ) inf
σ∈SN

∑
i,j=1,N

c(σi, σj)γ(i, j). (3.1)

The QAP is useful in computer vision [16]. Some continuous versions of the QAP are related to recent works in
geometric and functional analysis [18]. It turns out that the QAP can also be related to Hydrodynamics, as we
are going to see.
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3.1. A minimization problem in hydrodynamics

The minimization problem of the Dirichlet integral (1.2) under the law constraint (1.1), discussed in the
introduction, seems to go back to Lord Kelvin and has been frequently studied since (see, for instance [7,8]). It
reads

inf
{

1
2

∫
D

|∇ϕ(x)|2dx, Law(ϕ) = Law(ϕ0) = λ

}
(3.2)

and can be immediately rephrased as a saddle-point problem:

inf
ϕ

sup
F :R→R

1
2

∫
D

|∇ϕ(x)|2dx+
∫

D

F (ϕ(x))dx −
∫

R

F (y)λ(dy). (3.3)

Optimal solutions are formally solutions to

−� ϕ+ F ′(ϕ) = 0, (3.4)

for some function F : R → R, and, in 2d, are just stationary solutions to the Euler equations of incompressible
fluids [4, 15]. (More precisely, ϕ is the stream-function of a stationary two-dimensional incompressible inviscid
fluid).

3.2. The discrete version of the hydrodynamic problem is a QAP

Let us discretize the domain D with a lattice of N vertices A1, . . . , AN and define coefficients γ(i, j) ≥ 0 so
that the Dirichlet integral of a function ϕ can be approximated as follows:

∫
D

|∇ϕ(x)|2dx ∼
N∑

i,j=1

γ(i, j)|ϕ(Ai) − ϕ(Aj)|2.

At the discrete level, we may say that ϕ and ϕ0 have the same (discrete law) whenever

ϕ(Ai) = ϕ0(Aσi ), i = 1, . . . , N,

for some permutation σ ∈ SN . Thus, the discrete version of (3.2) reads:
Find a permutation σ that achieves

inf
σ

N∑
i,j=1

c(σi, σj)γ(i, j) (3.5)

with
c(i, j) = |ϕ0(Ai) − ϕ0(Aj)|2. (3.6)

So we have clearly obtained a particular case of QAP (3.1).

4. A “gradient-flow” approach to the hydrodynamic problem

To address problem (3.2), it is natural to use a “gradient flow” approach involving a time dependent function
ϕt(x) starting from ϕ0(x) at t = 0. Hopefully, as t→ +∞, ϕt will reach a solution to our minimization problem.
(Nevertheless, there is no guarantee at all that we can reach a global minimizer, not even a local minimizer.
This is clearly a widely open problem, due, in particular, to the non-convexity of the minimization problem).
A canonical way of preserving the law λ of ϕ(t, ·) during the evolution is the transport of ϕ by a (sufficiently)
smooth time-dependent divergence-free velocity field v = vt(x) ∈ R

d, parallel to ∂D, according to

∂tϕt + ∇ · (vtϕt) = 0, ∇ · vt = 0, vt//∂D. (4.1)
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Indeed, we easily get:

d
dt

∫
D

F (ϕt(x))dx = −
∫

D

F ′(ϕt(x))∇ · (vt(x)ϕt(x))dx

= −
∫

D

vt(x) · ∇(F (ϕt(x)))dx = 0

(since v is divergence-free), for all smooth bounded functions F . Loosely speaking, the vector field v should be
interpreted as a kind of “tangent vector” along the “orbit” of all ϕ sharing the same law λ as ϕ0.

From the analysis viewpoint, according to the DiPerna−Lions theory on ODEs [10], for the law λ to be
preserved, there is no need for v to be very smooth and it is just enough that the space derivatives of v are
Lebesgue integrable functions (or even bounded Borel measures, according to Ambrosio [1]):

∫ T

0

∫
D

|∇vt(x)|dxdt < +∞, ∀T > 0.

In that situation, the solution of (4.1) is just (implicitly) given by ϕt(ξt(x)) = ϕ0(x), where ξ is the unique
time-dependent family of almost-everywhere one-to-one volume-preserving Borel maps of D generated by v
through:

∂tξt(x) = vt(ξt(x)), ξ0(x) = x.

This is enough to preserve the law of ϕt as t evolves. (Notice, however, that, if v is smoother, say of class C1,
the maps ξt become orientation preserving diffeomorphisms, which makes the evolution much more constrained
and, as a consequence, further reduces the chance to reach a minimizer as t→ +∞, unless the initial condition
ϕ0 is carefully chosen).

In order to get a “gradient flow”, we also need a quadratic form (or, more generally, a convex functional,
which would then rather correspond to a “Finslerian flow”) acting on the “tangent vector” v. For this purpose,
let us first denote by Sol(D) the Hilbert space of all square-integrable divergence free vector fields on D and
parallel to ∂D, with L2 norm and inner-product respectively denoted by || · || and ((·, ·)). Next, let us fix a
lower semi-continuous convex functional K : a ∈ Sol(D) → K[a] ∈ [0,+∞]. We assume that at each smooth
vector-field ω in Sol(D),

(i) K is finite;
(ii) its subgradient has a unique element K ′[ω] ∈ L2(D,Rd);
(iii) there is εK [ω] > 0 such that, the “relative entropy” of K controls the L2 distance:

ηK [v, ω] = K[v] −K[ω] − ((K ′[ω], v − ω)) ≥ εk[ω]||v − ω||2, ∀v ∈ Sol(D). (4.2)

The simplest example is of course

K[v] =
1
2

∫
D

|v(x)|2dx. (4.3)

Then, we are given a “functional” ϕ ∈ E → E [ϕ] ∈ R on a suitable function space E, the canonical example for
us being the Dirichlet integral (1.2) over the Sobolev space E = H1

0 (D). When we evolve ϕ according to (4.1),
we formally get

d
dt

E [ϕt] =
∫

D

E ′[ϕt](x)∂tϕt(x)dx = −
∫

D

E ′[ϕt](x)∇ · (vt(x)ϕt(x))dx,

where we denote by E ′ the gradient of E with respect to the L2 metric. (In the case of the Dirichlet integral,
E ′[ϕ] = −� ϕ.) Thus

d
dt

E [ϕt] = −
∫

D

E ′[ϕt](x)∇ϕt(x) · vt(x)dx (4.4)

(using that vt is divergence-free).
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Then, we may write (4.4) as:

d
dt

E [ϕt] = −((Gt, vt)), (4.5)

Gt = P(E ′[ϕt]∇ϕt), (4.6)

where we denote by P the L2 projection onto Sol(D). Thus, denoting by K∗ the Legendre−Fenchel transform
K∗[g] = supw((g, w)) −K[w], we get:

d
dt

E [ϕt] +K[vt] +K∗[Gt] = K[vt] +K∗[Gt] − ((Gt, vt))

where by definition of the Legendre−Fenchel transform, the right-hand side is always nonnegative and vanishes
if and only if

vt = K∗′[Gt] (4.7)

(for instance, in case (4.3), vt = Gt). Equation (4.7) precisely is the “closure equation” we need to define
the “gradient flow” of E with respect to the evolution equation (4.1) with “metric” K. (This way, we closely
follow [9], in the spirit of [2].) As just seen, this closure equation is equivalent to the differential inequality

d
dt

E [ϕt] +K[vt] +K∗[Gt] ≤ 0,

or, using the definition of K∗ as the Legendre−Fenchel transform of K,

d
dt

E [ϕt] +K[vt] + ((Gt, zt)) −K[zt] ≤ 0, ∀ zt ∈ Sol(D). (4.8)

So, our gradient flow is now defined by combining transport equation (4.1), definition (4.6), and either the
closure equation (4.7) or the variational inequality (4.8), which are formally equivalent.

5. The gradient flow equation

From now on, let us consider, for simplicity, the case of the periodic cube D = T
d, instead of a bounded

domain of R
d. Accordingly, all functions (ϕt, vt, etc. . . ) to be considered will be of zero mean in x ∈ D. We

also concentrate on the case when:

(i) E is the Dirichlet integral (1.2);
(ii) K is the Sobolev (semi-)norm of order m, m ∈ {0, 1, 2, . . .},

K[v] =
1
2

∫
D

|∇mv(x)|2dx, (5.1)

which should be understood, when m > 0, as the Hm Sobolev semi-norm of v when it makes sense and +∞
otherwise.

Then, E ′ = −�, K∗′ = (−�)−m. Also notice that the “relative entropy” reads, for each pair (v, ω) in Sol(D)
with ω smooth,

ηK [v, ω] = K[v] −K[ω] − ((K ′[ω], v − ω)) = K[v − ω] ≥ c||v − ω||2,
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where c > 0 depends only on m and d, by Poincaré’s inequality on the periodic cube. So, equations (4.7)
and (4.6) respectively become

vt = (−�)−mGt ,

Gt = P(E ′[ϕt]∇ϕt) = P(−� ϕt∇ϕt) = P

[
−∇ · (∇ϕt ⊗∇ϕt) +

1
2
∇(|∇ϕt|2)

]

= −P∇ · (∇ϕt ⊗∇ϕt)

(since P is the L2 projection onto Sol(D) and, therefore, cancels any gradient). Thus

vt = −(−�)−m
P∇ · (∇ϕt ⊗∇ϕt). (5.2)

Similarly, (4.8) becomes

d
dt

||∇ϕt||2 + 2K[vt] + ((∇ϕt ⊗∇ϕt,∇zt + ∇zT
t )) ≤ 2K[zt], (5.3)

for all smooth zt ∈ Sol(D).
Finally, the gradient-flow equation reads:

∂tϕt + ∇ · (ϕtvt) = 0, (−�)mvt = −P∇ · (∇ϕt ⊗∇ϕt). (5.4)

5.1. Physical interpretation of the GF equation

Physically speaking, the GF (gradient flow) equation (5.4) in the case m = 1 corresponds to the “Stokes
flow”

∂tϕt + ∇ · (ϕtvt) = 0, −� vt = −P∇ · (∇ϕt ⊗∇ϕt) (5.5)

of an electrically charged incompressible fluid (v and ϕ being the velocity and the electric potential), while the
case m = 0 rather corresponds to a “Darcy flow”

∂tϕt + ∇ · (ϕtvt) = 0, vt = −P∇ · (∇ϕt ⊗∇ϕt). (5.6)

Observe, in both cases, that the electric potential ϕ is not external but, rather, coupled to the velocity field. As
a matter of fact, both models can be seen as two different dissipative versions (one for very viscous fluids and
the other one for flows in porous media) of the “ideal Electrohydrodynamics” equations

∂tϕt + ∇ · (ϕtvt) = 0, ∂tvt + ∇ · (vt ⊗ vt) = −P∇ · (∇ϕt ⊗∇ϕt), (5.7)

which are the electric counterpart of the better known equations of 3D ideal Magnetohydrodynamics:

∂tBt + ∇× (Bt × vt) = 0, ∂tvt + ∇ · (vt ⊗ vt) = P∇ · (Bt ⊗Bt). (5.8)

6. Analysis of the gradient flow equation

The last part of this article is devoted to the analysis of the gradient flow equation (5.4). For that purpose,
we closely follow the ideas and concepts of our recent work [9].
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6.1. A concept of “dissipative solutions”

From the analysis viewpoint, we ignore whether or not gradient-flow (GF) equation (5.4), namely

∂tϕt + ∇ · (ϕtvt) = 0, (−�)mvt = −P∇ · (∇ϕt ⊗∇ϕt),

is locally well-posed in any space of smooth functions (unlessm > d/2+1). The global existence of weak solutions
can be expected for the Stokes version (5.5) (with ϕ a priori in L∞

t (H1
x) and v “almost” in L∞

t (W 1,1
x )), while

such a result looks out of reach in the case of the “Darcy” version (5.6).
Anyway, we prefer a much more “robust” concept of solutions, that we call “dissipative” after [9], somewhat

in the spirit of Lions’ dissipative solutions to the Euler’s equations [13] and following some ideas of the analysis
of the linear heat equations for general measured metric spaces by Ambrosio et al. [2]. We keep transport
equation (4.1) and integrate (5.3) on [0, t], for all t ≥ 0, with a suitable exponential weight, which leads to:

∫ t

0

{2K[vs] + ((∇ϕs ⊗∇ϕs, rId + ∇zs + ∇zT
s )) − 2K[zs]}e−srds (6.1)

+||∇ϕt||2e−tr ≤ ||∇ϕ0||2, for every smooth field t→ zt ∈ Sol(D).

Here r ≥ 0 is a constant, depending on z, chosen so that

∀(t, x), rId + ∇zt(x) + ∇zt(x)T ≥ 0, in the sense of symmetric matrices, (6.2)

in order to be sure that inequality (6.1) only involves convex functionals of (ϕ, v). From the functional analysis
viewpoint, it is natural to consider solutions (Bt = ∇ϕt, vt, t ∈ [0, T ]), for each fixed T > 0, in the space

C0
w([0, T ], L2(D,Rd)) × L2([0, T ], Sol(D)),

where C0
w(L2) just means continuity in time with respect to the weak topology of L2.

6.2. Uniqueness of smooth solutions among dissipative solutions

Theorem 6.1. Assume D = (R/Z)d and define K by (5.1), namely

K[v] =
1
2

∫
D

|∇mv(x)|2dx,

with “relative entropy”

ηK [a, b] = K[a] −K[b] − ((K ′[b], a− b)) =
1
2

∫
D

|∇m(a− b)(x)|2dx. (6.3)

Let us fix T > 0 and consider

(Bt = ∇ϕt, vt, t ∈ [0, T ]) ∈ C0
w([0, T ], L2(D,R2)) × L2([0, T ], Sol(D)),

a dissipative solution of the GF equation (5.4) up to time T , in the sense of (4.1, 6.1, 6.2). Let (βt = ∇ψt, ωt, t ∈
[0, T ]) be any pair of smooth functions with ω valued in Sol(D). Then there is a constant C depending only on
K and the spatial Lipschitz constant of (β, ω), up to time T , so that, for all t ∈ [0, T ],

||Bt − βt||2 +
∫ t

0

e(t−s)C{ηK [vs, ωs]ds− 2JL
s }ds ≤ ||B0 − β0||2etC

JL
t = −((Bt − βt,∇(ωt · βt) + ∂tβt)) − ((P∇ · (βt ⊗ βt) +K ′[ωt], vt − ωt)). (6.4)



CONNECTIONS BETWEEN OPTIMAL TRANSPORT, COMBINATORIAL OPTIMIZATION AND HYDRODYNAMICS 1601

In particular, JL
t exactly vanishes as (β = ∇ψ, ω) is a smooth solution to the GF equation (5.4), namely

∂tβt + ∇(ωt · βt) = 0, K ′[ωt] = −P∇(βt ⊗ βt),

in which case

||Bt − βt||2 +
∫ t

0

e(t−s)CηK [vs, ωs]ds ≤ ||B0 − β0||2etC . (6.5)

This implies the uniqueness of smooth solutions among all dissipative solutions, for any given prescribed smooth
initial condition.

6.3. Global existence of dissipative solutions

In the spirit of [9], at least in the case: D = T
d,

E [ϕ] =
1
2

∫
Td

|∇ϕ(x)|2dx, K[v] =
1
2

∫
Td

|(∇)mv(x)|2dx (m = 0, 1, 2, . . .),

it is fairly easy to establish, for the “dissipative” formulation (4.1), (6.1), (6.2) of (4.1), (4.7) and for each initial
condition ϕ0 with finite Dirichlet integral, the existence of a global solution (B = ∇ϕ, v) in C0

w(R+, L
2(D,Rd))×

L2(R+, Sol(D)). Without entering into details, let us sketch the proof. We approximate B0 strongly in L2 by
some smooth field Bε

0 = ∇ϕε
0 and mollify K by substituting for it

KM,ε(v) = K(v) + ε||∇Mv||2

with M sufficiently large (M > d/2+1) and ε > 0. In this case, we get, M and ε being fixed, a uniform a priori
bound for v in L2([0, T ], C1(D)), which is enough to solve transport equation (4.1) in the classical framework of
the Cauchy−Lipschitz theory of ODEs. Then, we get a smooth approximate solution (Bε = ∇ϕε, vε) satisfying
transport equation (4.1), i.e.,

∂tϕ
ε
t + ∇ · (ϕε

tv
ε
t ) = 0,

together with (6.1,6.2), namely
∫ t

0

{2KM,ε[vε
s] + ((Bε

s ⊗Bε
s, rId + ∇zs + ∇zT

s )) − 2KM,ε[zs]}e−srds

+||Bε
t ||2e−tr ≤ ||Bε

0||2, for every smooth field t→ zt ∈ Sol(D)

satisfying (6.2), and, in particular (for z = 0)
∫ t

0

2KM,ε[vε
s]ds+ ||Bε

t ||2 ≤ ||Bε
0||2.

We get enough compactness for the approximate solutions to get a limit (B, v) in space

C0
w(R+, L

2(D,R)) × L2(R+, Sol(D)),

and pass to the limit in the transport equation (since Bε = ∇ϕε). Finally, by lower semi-continuity, we may
pass to the limit in the dissipation inequality and obtain (6.1) and (6.2), which concludes the (sketch of) proof.

Observe that, for m ≥ 1, the L2 norm of ∇vt is square integrable in time. This implies by DiPerna−Lions
ODE theory (see [13]), as already discussed, that the law of ϕt stays unchanged during the evolution by (4.1)
(but, unless m > 1 + d/2, not necessarily its topology, which is of some interest in view of the minimization
problem (3.2) we started with). However, unless m > 1+d/2, it is unclear to us that (4.1) and (4.7) even admits
local smooth solutions.
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Appendix A. Proof of Theorem 6.1

Choose r ≥ 0 such that ω satisfies (6.2), namely

∀(t, x), rId + ∇ωt(x) + ∇ωt(x)T ≥ 0, in the sense of symmetric matrices.

Since (B = ∇ϕ, v) is a dissipative solution, we get, by setting z = ω in definition (6.1),
∫ t

0

{2K[vs] + ((Bs ⊗Bs, rId + ∇ωs + ∇ωT
s )) − 2K[ωs]}e−srds (A.1)

+||Bt||2e−tr ≤ ||B0||2.
Let us now introduce for each t ∈ [0, T ]

Nt = ||B0||2ert −
∫ t

0

{2K[vs] + ((Bs ⊗Bs, rId + ∇ωs + ∇ωT
s )) − 2K[ωs]}er(t−s)ds (A.2)

so that
Nt ≥ ||Bt||2, ∀t ∈ [0, T ].

By definition (A.2) of Nt, we have
(

d
dt

− r

)
Nt = −2K[vt] −

((
Bt ⊗Bt, rId + ∇ωt + ∇ωT

t

))
+ 2K[ωt]

and, therefore,
d
dt
Nt = r(Nt − ||Bt||2) − 2K[vt] −

((
Bt ⊗Bt,∇ωt + ∇ωT

t

))
+ 2K[ωt] (A.3)

(in the distributional sense and also for a.e. t ∈ [0, T ]).
We now want to estimate

et = ||Bt − βt||2 + (Nt − ||Bt||2) = Nt − 2 ((Bt, βt)) + ||βt||2, ∀t ∈ [0, T ], (A.4)

where βt = ∇ψt. Since (B = ∇ϕ, v) is a dissipative solution, it solves transport equation (4.1) which implies

∂tBt + ∇(Bt · vt) = 0,

after derivation in x. Thus
d
dt

((Bt, βt)) =
∫
Bti(βti,t + vtiβtj,j)

(where we use notations βti,j = ∂j(βt)i, etc. . . and skip summations on repeated indices i, j. . . ).
Using (A.3) and definition (A.4), we deduce

d
dt
et = r(Nt − ||Bt||2) − 2K[vt] − ((Bt ⊗Bt,∇ωt + ∇ωT

t )) + 2K[ωt]

+
∫

2(β −B)tiβti,t − 2Btivtiβtj,j .

Thus
d
dt
et = r(Nt − ||Bt||2) − 2K[vt] + 2K[ωt] + Jt

where
Jt =

∫
−BtiBtj(ωti,j + ωtj,i) + 2(β −B)tiβti,t − 2Btivtiβtj,j .
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Denoting the “relative entropy” of K by ηK [a, b] = K[a] −K[b] − ((K ′[b], a− b)), we have obtained

d
dt
et + 2ηK [vt, ωt] = r(Nt − ||Bt||2) + Jt − 2((K ′[ωt], vt − ωt)). (A.5)

We may write
Jt = JQ

t + JL1
t + JL2

t + JC
t

where JQ
t , JL1

t , JL2
t , JC

t are respectively quadratic, linear, linear, and constant with respect to B−β and v−ω,
with coefficient depending only on ω, β:

JQ
t =

∫
−(B − β)ti(B − β)tj(ωti,j + ωtj,i) − 2(B − β)ti(v − ω)tiβtj,j

JL1
t =

∫
2(B − β)ti[−βtj(ωti,j + ωtj,i) − βti,t − ωtiβtj,j ]

JL2
t = −

∫
2(v − ω)tiβtiβtj,j

JC
t =

∫
[−βtiβtj(ωti,j + ωtj,i) − 2βtiωtiβtj,j ] .

Let us reorganize these four terms. By integration by part of its first term, we see that JC
t = 0, using that β is

a gradient and ω is divergence-free. More precisely

−
∫
βtiβtj(ωti,j + ωtj,i) = −2

∫
βtiβtjωti,j = 2

∫
βti,jβtjωti + 2

∫
βtiβtj,jωti

=
∫

(βtjβtj),iωti + 2
∫
βtiβtj,jωti = 0 + 2

∫
βtiβtj,jωti.

Using that vt − ωt is divergence-free while β is a gradient, we immediately get

JL2
t = −2((P∇ · (βt ⊗ βt), vt − ωt)).

Next, we find
JL1

t = −2((Bt − βt,∇(ωt · β) + ∂tβt)).

Indeed, since

JL1
t =

∫
2(B − β)ti[−βtj(ωti,j + ωtj,i) − βti,t − ωtiβtj,j ]

we get

JL1
t + 2((Bt − βt,∇(ωt · β) + ∂tβt)) =

∫
2(B − β)ti[−βtj(ωti,j + ωtj,i) + (ωtjβtj),i −ωtiβtj,j ]

=
∫

2(B − β)ti[−(βtjωti),j −βtjωtj,i + ωtj,iβtj + ωtjβtj,i] =
∫

2(B − β)ti[−(βtjωti),j +ωtjβtj,i]

=
∫

2(B − β)ti[−(βtjωti),j +(βtiωtj),j −βtiωtj,j ] = 0

(since ω is divergence-free while Bt − βt and βt are gradients). Next, since

JQ
t =

∫
−(B − β)ti(B − β)tj(ωti,j + ωtj,i) − 2(B − β)ti(v − ω)tiβtj,j
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we may find, for any fixed ε > 0, a constant Cε (depending on the spatial Lipschitz constant of (β, ω)) such that

JQ
t ≤ ε||vt − ωt||2 + Cε||Bt − βt||2.

Using (6.3), we may choose ε small enough so that

ε||vt − ωt||2 ≤ ηK [vt, ωt].

So, we get from (A.5)

d
dt
et + ηK [vt, ωt] ≤ r(Nt − ||Bt||2) + Cε||Bt − βt||2 + 2JL

t (A.6)

where
JL

t = −((Bt − βt,∇(ωt · β) + ∂tβt)) − ((P∇ · (βt ⊗ βt) +K ′[ωt], vt − ωt)).

By definition (A.4) of et, namely et = ||Bt − βt||2 + (Nt − ||Bt||2), we have obtained

d
dt
et + ηK [vt, ωt] ≤ Cet + 2JL

t

for a constant C depending only on β, ω and K. By integration we deduce

et +
∫ t

0

e(t−s)CηK [vs, ωs]ds ≤ e0etC + 2
∫ t

0

e(t−s)CJL
s ds.

Next, let us remind that et ≥ ||Bt − βt||2 with equality for t = 0 (since Nt ≥ ||Bt||2 with equality at t = 0).
Thus, we have finally obtained

||Bt − βt||2 +
∫ t

0

e(t−s)CηK [vs, ωs]ds ≤ ||B0 − β0||2etC + 2
∫ t

0

e(t−s)CJL
s ds

with
JL

t = −((Bt − βt,∇(ωt · β) + ∂tβt)) − ((P∇ · (βt ⊗ βt) +K ′[ωt], vt − ωt))

and the proof of Theorem 6.1 is now complete.
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