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1. Motivations and the general set up

1.1. Motivations

In this survey article, the author summarizes the motivations, key ideas and some applications of ramified
optimal transportation which the author has studied in recent years. For the author, there are at least three
motivations for studying the ramified optimal transportation.

The first motivation arises directly in the field of optimal transportation. The transport problem introduced by
Monge in 1781 has been studied in many works (see the books [20, 21] and references therein). In these works,
the cost of a transport mapping or a transport plan is usually an integral of some function of the distance.
However, in many real applications, the actual cost of the transport procedures is not necessarily determined by
just knowing some optimal mapping from the starting position to the target position. For example in shipping
two items from nearby cities to the same far away city, it may be less expensive to first bring them to a
common location and put them on a single truck for most of the transport. In this case, a “Y shaped” path
is preferable to a “V shaped” path. In both cases, the transport mapping from the given two sources to the
single target is trivially the same, but the actual transport path naturally gives the total cost. In general, due to
economy of scale, optimal transportation along ramified paths are typically more cost efficient than a “linear”
structure.
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Figure 1.

The second motivation comes from geometric measure
theory. One of the main motivations of geometric mea-
sure theory comes from the modeling of soap films. The
famous Plateau’s problem says: find a surface of the least
area that has the given curve as its boundary. The an-
swer to this question depends on the exact definitions of
“surface”, “area”, and “boundary curve” (see for instance,
the work of J. Douglas, Federer and Fleming, De Giorgi,
J. Taylor, and others.) In particular, Almgren introduced
the concept of size minimizer: let the given curve be the
union of two parallel circles oriented the same way. When
the circles are far away, an area minimizer is given by the
two parallel disks. When the circles become close enough,
pinching the centers of the two disks together, forming a
soap film consisting of a (smaller) disk and a catenoid type
surface, further minimizes the size of the area. An analo-
gous one dimensional example is shown in Figure 1. These kinds of examples again motivate us to study optimal
branching structures.

Of course, the beauty of the branching structures found in nature also motivates us to explore the mathematics
behind them. Many living systems such as trees, the veins on a leaf, as well as animal cardiovascular/circulatory
systems exhibit branching structures, as do many non-living systems such as river channel networks, railways,
airline networks, electric power supply and communication networks. Why do nature and engineers both pre-
fer these ramifying structures? What are the advantages of these branching structures over non-branching
structures?

Together these considerations motivate the author and many others to study the mathematics behind the
ramified optimal transportation.

1.2. General set-up [24]

In general, we may consider: given two probability measures μ+ and μ− representing the source and the sink,
find an optimal path to transport μ+ to μ−.

To solve this problem, one needs to find a suitable category of transport paths as well as a suitable cost
functional acting on these paths. Particularly, such a category should be broad enough to give existence of an
optimal transport path. Also, an optimal transport path should allow the possibility that some parts overlap in
a cost efficient (maybe complicated) fashion but still enjoy some nice regularity properties. If possible, one may
hope to visualize such an optimal transport path using numerical analysis and computer graphics.

We first recall some concepts about optimal transport paths between measures as studied in [24]. Let X be
a convex compact subset in a Euclidean space Rd. For any x ∈ X , let δx be the Dirac measure centered at x.
An atomic measure in X is in the form of

k∑
i=1

miδxi

with distinct points xi ∈ X , and mi > 0 for each i = 1, . . . , k. For any Λ > 0, let

AΛ (X) (1.1)

be the space of all atomic measures on X with total mass Λ.
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Definition 1.1. For any Λ > 0, and any two atomic measures

a =
k∑

i=1

miδxi and b =
�∑

j=1

njδyj (1.2)

in AΛ (X), a transport path from a to b is a weighted directed graph G consisting of a vertex set V (G) ⊆ X , a
directed edge set E (G) and a weight function

w : E (G) → (0,+∞)

such that {x1,x2,...,xk} ∪ {y1, y2, . . . , yl} ⊂ V (G) and for any vertex v ∈ V (G) ,∑
e∈E(G)

e−=v

w (e) =
∑

e∈E(G)

e+=v

w (e) +
∑

if v=xi for
some i=1,...,k

mi −
∑

if v=yj for
some j=1,...,�

nj. (1.3)

where e− and e+denotes the starting and ending endpoints of each directed edge e ∈ E (G). In other words, G
satisfies the Kirchoff’s law at each of its interior vertices.

Note that the balance equation (1.3) simply means the conservation of mass at each vertex. In terms of
polyhedral chains, we simply have ∂G = b − a.

Let
Path (a,b)

be the space of all transport paths from a to b.

Remark 1.2. Each transport path G ∈ Path (a,b) determines the vector-valued measure on X

G =
∑

e∈E(G)

w (e) [[e]] ,

where [[e]] is the vector-valued measure H1�e
−→e for each edge e ∈ E (G) with unit directional vector −→e . The

above conditions can be simplified to be a single divergence condition on G

div (G) = a − b,

in the sense of distribution.

Among all paths in Path (a,b), we want to find an optimal path which allows the possibility that some parts
overlap in a cost efficient fashion. To get such a “Y-shaped” optimal path, we define the following cost function
on transport paths.

Definition 1.3. For any α ∈ [0, 1], the Mα cost of a transport path

G = {V (G) , E (G) , w : E (G) → (0,+∞)} ∈ Path (a,b)

is defined by
Mα (G) :=

∑
e∈E(G)

w (e)α length (e) , (1.4)

where length(e) denotes the Euclidean distance between endpoints e− and e+ of e. Given a,b ∈AΛ (X), an Mα

minimizer in Path (a,b) is called an α-optimal transport path from a to b.

Problem 1.4 (Ramied optimal transport problem: Discrete version). Given two atomic measures a,b ∈ AΛ(X)
on X of equal mass and α ∈ [0, 1), minimize Mα(G) among all G ∈ Path(a,b).
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2. Properties and techniques for optimal transport path: Discrete version

2.1. Basic properties of optimal transport paths [24]

An arbitrary transport path G ∈ Path (a,b) is a weighted directed graph, but not necessarily a
directed tree. In other words, G may contain some cycles. Here, a weighted directed graph G =
{V (G) , E (G) , w : E (G) → (0, 1]} contains a cycle if for some k ≥ 3, there exists a list of distinct vertices
{v1, v2, . . . , vk} in V (G) such that for each i = 1, . . . , k, either the segment [vi, vi+1] or [vi+1, vi] is a directed
edge in E(G), with the agreement that vk+1 = v1. However, the following proposition says G can be modified
to be an acyclic graph G̃ ∈ Path (a, b) with less Mα cost.

Proposition 2.1 ([24], Prop. 2.1). Given a,b as in (1.2). For any transport path G ∈ Path (a,b), there exists
a transport path G̃ ∈ Path (a,b) such that V

(
G̃
)
⊆ V (G), Mα

(
G̃
)
≤ Mα (G) and G̃ contains no cycles.

Let
Path0 (a,b) = {G ∈ Path (a,b) : G contains no cycles} .

From the above proposition, we may restrict our transport paths to be acyclic. The following proposition
says that the number of all branching vertices of G ∈ Path0 (a, b) is bounded above by k + �− 2.

Proposition 2.2. Suppose G ∈ Path0 (a,b). Then,

|{v : deg (v) ≥ 3}| ≤ k + �− 2.

Proof. By calculating the total number of vertices in V (G), we have

2|E(G)| =
∑

v∈V (G)

deg(v).

By means of the Euler number χG = |V (G)| − |E(G)| of G, we have

2
∑

v∈V (G)

1 − 2χG = 2|V (G)| − 2χG = 2|E(G)| =
∑

v∈V (G)

deg(v).

That is, ∑
v∈V (G),deg(v)=1

1 − 2χG =
∑

v∈V (G),deg(v)≥3

(deg(v) − 2).

Hence,

|{v : deg (v) ≥ 3}| ≤
∑

deg(v)≥3

(deg(v) − 2) =
∑

deg(v)=1

1 − 2χG ≤ k + �− 2. �

As a result, given k and �, there are finitely many possibilities of topologies of all transport paths G in
Path0 (a,b). For instance, when k = 2, � = 1, there are two possibilites: a “V-shape” or a “Y-shape”. It is clear
that there exists at least one minimizer in each given topology. As a result, there always exists an Mα-minimizer
in Path (a,b). That is, there always exists an α-optimal transport path in Path0 (a,b) for any α ∈ [0, 1).

For each G ∈ Path0 (a,b), we have the following trivial but important lemma.

Lemma 2.3 ([24], Lem. 2.1). Suppose G ∈ Path0 (a,b) with a,b ∈ AΛ as in (1.1). Then for any edge e ∈ E (G),
we have 0 < w (e) ≤ Λ. Moreover, Mα(G)

Λα ≥ M1(G)
Λ .
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For any atomic measures a and b on X of equal mass, define the minimum transportation cost as

dα (a,b) := min {Mα (G) : G ∈ Path (a,b)} . (2.1)

As shown in Xia [24], dα is indeed a metric on the space of atomic measures of equal mass. Also, for each λ > 0,
it holds that

dα (λa, λb) = λαdα (a,b) .

Example: Let a = m1δx1 +m2δx2 and b = m3δx3 with m3 = m1 +m2. Then, in the non-degenerate case, the
optimal transport path from a to b under the Mα cost looks like the “Y shaped” graph.

Here the interior vertex x is determined by a balance formula:

mα
1
−→n1 +mα

2
−→n2 +mα

3
−→n3 = 	0, (2.2)

where −→ni = xi−x
|x−xi| is the unit vector from x to xi, i = 1, 2, 3. Let θi be the angle between −→ni and − −→n3 for i = 1, 2

and k1 = m1
m1+m2

, k2 = m2
m1+m2

= 1 − k1. Then, it is easy to find that the angles satisfy

cos θ1 =
k2α
1 + 1 − k2α

2

2kα
1

and cos θ2 =
k2α
2 + 1 − k2α

1

2kα
2

·

Moreover,

cos (θ1 + θ2) =
1 − k2α

1 − k2α
2

2kα
1 k

α
2

·

In particular, if m1 = m2, then
θ1 + θ2 = arccos

(
22α−1 − 1

)
.

Note that for any m1 > 0 and m2 > 0,

• if α = 0, then θ1 + θ2 = 120◦;
• if α = 1/2, then θ1 + θ2 = 90◦;
• if α = 2/3, then θ1 + θ2 is nearly 75◦.

In the more general case, we have the following results for angles between edges:

Proposition 2.4 ([29], Prop. 2.1). Let G ∈ Path0 (a,b) be any α -optimal transport path with α ∈ [0, 1). Let
v ∈ V (G) be an interior vertex of G, i.e. not one of the boundary vertices {x1, . . . , xk, y1, . . . , y�}. Let {ei}deg(v)

i=1

be the edges in G with v being one of its endpoints. Let w (ei) be the corresponding weight on ei, and 	ei be the
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unit directional vector of the edge ei from v to the other endpoint of ei. Then,

(1) There exists a balance equation at v:
deg(v)∑

i=1

[w (ei)]
α
	ei = 	0. (2.3)

(2) The minimum angle between any two edges in {ei}deg(v)
i=1 is uniformly bounded below by

θα :=
{

π
2 , if 0 < α ≤ 1

2 .
arccos

(
22α−1 − 1

)
, if 1

2 < α < 1 or α = 0. (2.4)

(3) The degree deg (v) of v is bounded above by some constant

D (α,m) , (2.5)

depending only on α and the dimension m of Rm.

The following proposition provides an interesting formula of Mα (G) of an optimal transport path G in terms
of boundary values.

Proposition 2.5 ([36], Prop. 6.4). For any G ∈ Path (a,b), it holds that

Mα (G) =
∑

v∈V (G)

	mα (v) · v, (2.6)

where v is the corresponding position vector of v in Rm and

	mα (v) =
∑

e+=v

w (e)α
	e−

∑
e−=v

w (e)α
	e.

If G is an α-optimal transport path, then a reformulation of the balance equation (2.3) gives 	mα (v) = 0 for
any vertex v ∈ V (G) \ {x1, . . . , xk, y1, . . . , y�} and thus

Mα (G) =
∑

v∈{x1,x2,...,xk,y1,...,y�}
	mα (v) · v. (2.7)

Using (2.7) as well as the property that Mα(G) is translational invariant, one gets a necessary condition for a
transport path being optimal:

Corollary 2.6 ([36], Cor. 6.5). Suppose G is an α-optimal transport path from a to b. Then it holds that∑
v∈{x1,x2,...,xk,y1,...,y�}

	mα (v) = 0.

2.2. Decomposition techniques [29]

In this subsection, we describe the decomposition of a signed measure as well as a transport path into a
dominant part and a remainder part.

An infinite atomic measure on X is a signed measure μ on X of the form

μ =
∞∑

i =1

aiδxi , (2.8)

where {ai} is a sequence of real numbers with {|ai|} decreasing,
∑

i |ai| < +∞, and {xi} is a sequence of points
in X .



MOTIVATIONS, IDEAS AND APPLICATIONS OF RAMIFIED OPTIMAL TRANSPORTATION 1797

Proposition 2.7 ([29], Cor. 3.3). Suppose μ is an infinite atomic measure on X in the form of (2.8) with
∞∑

i=1

|ai|α ≤ C for some constant C > 0 and α ∈ [0, 1). For any ε > 0, one can decompose μ as the sum of

μ = μP + μR

such that

μP =
N∑

i=1

aiδxi and the mass ||μR|| :=
∞∑

i=N+1

|ai| ≤ ε

where N is the least integer satisfying N ≥ C
1

1−α ε
−α
1−α .

Similarly, we have a decomposition result for transport paths.

Proposition 2.8 ([29], Prop. 3.4). Let a and b be any two atomic measures in AΛ (X) in the form of (1.2),
and λ > 0. Suppose there exist natural numbers N1 ≤ k and N2 ≤ � such that

k∑
i=N1+1

mi +
�∑

j=N2+1

nj < λ.

Then, for each transport path G ∈ Path0 (a,b), there exist decompositions of a,b and G (see Fig. 2):

a = aP + aR,b = bP + bR, and G = P +R (2.9)

as atomic measures and polyhedral 1-chain such that

(1) aP is an atomic measure supported on {x1, . . . , xN1}, bP is another atomic measure supported on
{y1, . . . , yN2} with the same mass as that of aP and P ∈ Path0 (aP ,bP ) is a transport path.

(2) aR is an atomic measure supported on {x1, . . . , xk}, bR is an atomic measure supported on {y1, . . . , yl} and
R ∈ Path0 (aR,bR) is a transport path. Also, the mass ||aR|| = ||bR|| < λ.

(3) Moreover, the λ-superlevel set Gλ of G is contained in the support of P , where G is viewed as a polyhedral
1-chain.

Sometimes, we call P in (2.9) the λ-dominant part of G.

If in addition, G ∈ Path (a,b) is an α-optimal transport path for some 0 ≤ α < 1, then we can get more
information about the dominant part P of G. From Proposition 2.8, the dominant part P of G is still a transport
path containing no cycles. A vertex v of P is removable if there exists only one edge (i.e. the line segment induced
from G) of P that flows into v and only one edge of P that flows out of v. From now on, we will only consider
non-removable vertices of P with the agreement that any edge of P is a connected polyhedral curve between
non-removable vertices of P , not necessarily a line segment. e.g. in Figure 2b, the path P has only three edges.
Let {Γi}K

i=1 be the set of all these “topological” edges of P for some K ∈ N. Then, as polyhedral chains, P can
be expressed as

P =
K∑

i=1

miΓi

for some positive numbers mi. The following proposition says that each edge Γi of P is a bi-Lipschitz curve.

Proposition 2.9 ([29], Prop. 3.5). Suppose a, b ∈ AΛ (X) and G ∈ Path0 (a,b) is an α-optimal transport path
for some 0 ≤ α < 1. Let P be the dominant part of G as in (2.9) for some λ. For each edge Γi of P , let φi be
the arc parametrization of Γi. Then φi is bi-Lipschitz with

Lip
(
φ−1

i

) ≤ (mi)
α

Λα − (Λ−mi)
α · (2.10)
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(a) A
transport

path G

(b) The path P (c) The path R

Figure 2. Decomposition of a transport path G as sums of a dominant part P and a remainder
part R with λ = 0.35.

The proof of this proposition is based on the following idea: By the optimality of G, for any two points x, y
on Γi, redirect the flow from x to y via the line segment [x, y] will not be able to reduce the transportation
cost. This idea leads to a comparision argument which eventually implies (2.10). We refer to ([29], Prop. 3.5)
for more details.

2.3. Compatibility between transport plan and Path

Suppose a and b are two atomic measures on X as in (1.2). Recall that a transport plan from a to b is an
atomic measure

q =
k∑

i=1

�∑
j=1

qijδ(xi,yj) (2.11)

on the product space X ×X such that for each i and j, qij ≥ 0,

k∑
i=1

qij = nj and
�∑

j=1

qij = mi. (2.12)

Denote Plan (a,b) as the space of all transport plans from a to b.
Now, as in Section 7.1 of Xia [24], we want to consider the compatibility between a transport path and a

transport plan. Let G be a given transport path in Path (a,b). We assume that for each xi and yj ,

there exists at most one directed polyhedral curve gij from xi to yj . (2.13)

In other words, there exists a list of distinct vertices

V (gij) := {vi1 , vi2 , . . . , vih
} (2.14)

in V (G) with xi = vi1 , yj = vih
, and each

[
vit , vit+1

]
is a directed edge in E (G) for each t = 1, 2, . . . , h − 1.

The Assumption (2.13) clearly holds when G contains no cycles.
For some pairs of (i, j), such a curve gij from xi to yj may fail to exist, due to reasons like geographical

barriers, law restrictions, etc. If such curve does not exist, we set gij = 0 to denote the empty directed polyhedral
curve. By doing so, we construct a matrix

g = (gij)k×� (2.15)
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Figure 3. A transport path from 4δx1 + 3δx2 + 4δx3 to 3δy1 + 5δy2 + 3δy3 with g13 = 0, g31 = 0.

with each element of g being a polyhedral curve. A very simple example satisfying these conditions is illustrated
in Figure 3. For any transport path G ∈ Path (a,b) satisfying (2.13), such a matrix g = (gij) is uniquely
determined.

Definition 2.10. Let G ∈ Path (a,b) be a transport path satisfying (2.13) and q ∈ Plan (a,b) be a transport
plan. The pair (G, q) is compatible if qij = 0 whenever gij = 0 and

G = q · g. (2.16)

Here, equation (2.16) means that as polyhedral chains,

G =
k∑

i=1

�∑
j=1

qij · gij ,

where the product qij · gij denotes that an amount qij of commodity is moved along the polyhedral curve gij

from factory i to household j. In terms of edges, it says that for each edge e ∈ E (G), we have∑
e⊆gij

qij = w (e) .

For instance, the transport path in Figure 3 can be expressed as

G = 2g11 + 2g12 + g21 + g22 + g23 + 2g32 + 2g33, (2.17)

which means that the transport plan

q = 2δ(1,1) + 2δ(1,2) + δ(2,1) + δ(2,2) + δ(2,3) + 2δ(3,2) + 2δ(3,3)

is compatible with G in (2.17).
Roughly speaking, the compatibility conditions check whether a transport plan is realizable by a transport

path. Given a transport plan, the planner must design a transport path which can support this plan. To see the
concept more precisely, let

a =
1
4
δx1 +

3
4
δx2 and b =

5
8
δy1 +

3
8
δy2 ,

and consider a transport plan

q =
1
8
δ(x1,y1) +

1
8
δ(x1,y2) +

1
2
δ(x2,y1) +

1
4
δ(x2,y2) ∈ Plan (a,b) . (2.18)

It is straight forward to see from Figure 4 that q is compatible with G1 but not G2. This is because there is no
directed curve g12 from factory 1 to household 2 in G2.
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(a) G1 (b) G2

Figure 4. Compatibility between transport plan and transport path.

3. Ramified optimal transportation between Radon measures

3.1. Set-up and existence result [24]

Let MΛ(X) be the space of Radon measures μ on X with total mass μ(X) = Λ. When Λ = 1, we sometimes
also denote M1(X) by P(X), the space of all probability measures on X .

Recall that in Remark 1.2, each transport path between atomic measures can be viewed as a vector-valued
measure on X . This enables us to consider transport paths between two Radon measures as follows: Let μ+,
μ− ∈ MΛ (X) be any two Radon measures on X with equal total mass Λ. We say a vector-valued measure
T ∈ Mm (X) is a transport path from μ+ to μ− if there exist two sequences {ai},{bi} of atomic measures in
AΛ (X) with a corresponding sequence of transport paths Gi ∈ Path (ai,bi) such that

ai ⇀ μ+, bi ⇀ μ−, Gi ⇀ T

weakly as Radon measures and vector-valued measures.
The sequence of triples {ai,bi, Gi} is called an approximating graph sequence for T . Note that for any such

T , div (T ) = μ+ − μ− in the sense of distributions. Let

Path
(
μ+, μ−) ⊂ Mm (X)

be the space of all transport paths from μ+ to μ−. Also, given any α ∈ [0, 1], for any T ∈ Path (μ+, μ−), we
define its Mα cost to be

Mα (T ) := inf{lim inf
i→∞

Mα (Gi)},

where the infimum is over the set of all possible approximating graph sequence {ai, bi, Gi} of T .

Problem 3.1 (Ramified optimal transport problem: Continuous version). Given two Radon measures μ+,
μ− ∈ MΛ (X) on X ⊂ Rm and α ∈ [0, 1), minimize Mα(T ) among all T ∈ Path (μ+, μ−).

Suppose μ ∈ M1 (X) is supported in a cube Q ⊂ Rm whose center is denoted by cQ. By using a sequence of
dyadic approximations of μ, one can construct a transport path T from μ to δcQ such that for any α ∈ (1− 1

m , 1],

Mα (T ) ≤ diam(Q)
21−m(1−α) − 1

√
m

2
·
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Using this result and the direct method of calculus of variations, we have the following existence result proven
in ([24], Thm. 3.1) for Problem 3.1:

Theorem 3.2 (Existence theorem). Given two Radon measures μ+, μ− ∈ MΛ (X) on X ⊂ R
m and α ∈

(1 − 1
m , 1], there exists an optimal transport path S with least Mα cost among all transport paths in the family

Path (μ+, μ−). Moreover

Mα (S) ≤ Λα

21−m(1−α) − 1

√
md

2
,

where d is the diameter of the convex hull of supports of μ+ and μ−.

Now, for any α ∈ (1 − 1
m , 1], we define

dα

(
μ+, μ−) := min

{
Mα (T ) : T ∈ Path

(
μ+, μ−)} ,

for any two Radon measures μ+, μ− ∈ MΛ (X). Note that for any Λ > 0 and any μ+, μ− ∈ MΛ (X),

dα

(
μ+, μ−) = Λαdα

(
μ+

Λ
,
μ−

Λ

)
·

Thus, we may assume Λ = 1. Some key results about dα is stated in the following theorem:

Theorem 3.3 ([24], Thms. 4.1, 4.2, 5.1). dα is a metric on M1 (X) and metrizes the weak * topology of
M1 (X). Moreover, the space (M1 (X) , dα) is a length space in the sense that for any μ+, μ− ∈ M1 (X), each
α-optimal transport path T corresponds to a continuous map

ψ :
[
0, dα

(
μ+, μ−)]→ M1 (X)

such that ψ (0) = μ+, ψ (dα (μ+, μ−)) = μ− and for any 0 ≤ s1 < s2 ≤ dα (μ+, μ−),

dα (ψ (s1) , ψ (s2)) = s2 − s1.

Suppose {ai,bi, Gi} is any approximating graph sequence of some transport path T ∈ Path (μ+, μ−). One
can show that if Gi is optimal in Path (ai,bi) for each i, then T is also optimal. Based on this result, to get an
optimal transport path T ∈ Path (μ+, μ−), one has the freedom to choose his favorite approximating measures
{ai,bi} of (μ+, μ−). An obvious approximation of a Radon measure μ is given by its dyadic approximation
{An (μ)}. Direct calculations yield

dα (μ,An (μ)) ≤ Cβn

for some constant C > 0 and 0 < β = 2m(1−α)−1 < 1. This result implies that atomic probability measures are
dense in (M1 (X) , dα).
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3.2. Regularity theorems [25, 29]

3.2.1. Some terminology of geometric measure theory

We first recall some terminology about rectifiable 1-currents as in [8] or [18].
Let Ω ⊆ Rm be an open subset and D1(Ω) be the set of all C∞ differential 1-forms in Ω with compact

support with the usual Fréchet topology [8] . An 1-dimensional current S in Ω is a continuous linear functional
on D1(Ω). Let D1(Ω) denote the set of all 1-dimensional currents in Ω. Motivated by Stokes’s theorem, the
boundary of a current S ∈ D1(Ω) is the distribution defined by ∂S (ψ) := S (dψ) for any C∞ test function ψ in
Ω with compact support. A sequence of currents Si ∈ D1(Ω) is said to be weakly convergent to another current
S ∈ D1(Ω), denoted by Si ⇀ S, if Si(ψ) → S(ψ) for any ψ ∈ D1(Ω).

As in [18], a subset M ⊆ Rm is called (countably) 1-rectifiable if M =
∞⋃

i=0

Mi, where H1 (M0) = 0 under

the 1-dimensional Hausdorff measure H1 and each Mi, for i = 1, 2, . . . , is a subset of an 1-dimensional C1

submanifold in Rm. A rectifiable current S is a current coming from an oriented rectifiable set with multiplicities.
More precisely, S ∈ D1(Ω) is a rectifiable current if it can be expressed as

S (ω) =
∫

M

〈ω (x) , ξ (x)〉θ (x) dH1 (x) , ∀ω ∈ D1(Ω)

where

• M is a H1 measurable and 1-rectifiable subset of Ω;
• θ is a H1�M integrable positive function, called the multiplicity function of S;
• ξ : M → Λ1 (Rm) is a H1 measurable unit tangent vector field on M , called the orientation of S.

The rectifiable current S described as above is often denoted by

S = τ
=
(M, θ, ξ).

For instance, each weighted directed graph G ∈ Path (a,b) determines a rectifiable 1-current G = τ
=

(G, w, ξ)
in Rm, with ∂G = b− a as currents.

3.2.2. Regularity of optimal transport paths

For any Radon measures μ+, μ− ∈ MΛ (X) of equal total mass and α ∈ [0, 1), one of the main results in [25]
says that if a transport path T ∈ Path (μ+, μ−) has finite Mα cost, then T determines a rectifiable 1-current
T = τ

=
(M, θ, ξ) with boundary ∂T = μ+ − μ−. Moreover,

Mα (T ) =
∫

M

θαdHk (x) < +∞. (3.1)

Under the assumption that one of μ+ and μ− is atomic, another theorem says: Suppose T ∈ Path (μ+, μ−)
is an optimal transport path with finite Mα cost. For any point ξ ∈ spt (T ) \ spt (μ+ ∪ μ−), there is an
open neighborhood Bξ of ξ, such that T �Bξ is a cone that consists of finite many line segments with suitable
multiplicities.

3.2.3. Boundary regularity [29]

In general, the support of an optimal transport path T may not necessarily be 1 dimensional nearby its
boundary, for the support of the measure μ+ − μ− may even contain an open subset of Rm. For instance, one
may take μ+ to be some Lebesgue measure on a domain Ω and μ− to be some atomic measure on Ω. Then,
the support of μ+ − μ− has the same dimension of Ω, which is not necessarily 1 dimensional. So, the question
is how to describe the behavior of T when a carrying set of T is possibly dense in the whole space X .
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To study the boundary regularity of an optimal transport path, the main idea of our approach is to study
its superlevel sets. This idea is motivated from observing vein structure of a tree leaf provided by the nature.
Here, we show that each superlevel set of an optimal transport path is locally concentrated on the support of
an 1-dimensional bi-Lipschitz chain, which is analogous to vein structures of a tree leaf.

We first clarify some terminology. For any λ > 0, the λ-superlevel set of a rectifiable current T = τ
=

(M, θ, ξ)
is the set

Tλ = {x ∈M : θ (x) ≥ λ} . (3.2)

Also, a bi-Lipschitz chain P is a finite sum of bi-Lipschitz curves in X with real coefficient multiplicities.
That is,

P =
K∑

i=1

miΓi (3.3)

for some real numbers mi > 0, and some bi-Lipschitz curves Γi with i = 1, 2, . . . ,K in X . The support spt (P )
of the bi-Lipschitz chain P is the union of the image of every bi-Lipschitz curve Γi in X .

Now, we state our boundary regularity theorem as follows:

Theorem 3.4 ([29], Thm. 4.1). For any μ+, μ− ∈ MΛ (X), let T = τ
=

(M, θ, ξ) ∈ Path (μ+, μ−) be any
α-optimal transport path with finite Mα cost for some 0 ≤ α < 1. Then, for any ε > 0 and any p ∈ M ,
there exists an open ball neighborhood Br (p) about p and a decomposition

T Br (p) = P + R

as 1-dimensional rectifiable currents such that

(a) P is a bi-Lipschitz chain in the form of (3.3).
(b) R ∈ Path

(
μ+

R, μ
−
R

)
is an 1-dimensional rectifiable current for some Radon measures μ+

R and μ−
R with mass∣∣∣∣μ+

R

∣∣∣∣ = ∣∣∣∣μ−
R

∣∣∣∣ < ε.
(c) Moreover, inside the ball Br (p), the ε-superlevel set Tε of T as defined in (3.2) is a subset of the support of

the bi-Lipschitz chain P .

4. Numerical simulations [30]

Let X be a convex compact subset in R
d. Given two atomic measures in the form of

a = mδO and b =
N∑

i=1

miδyi with m =
N∑

i=1

mi (4.1)

in X of equal total mass, we are interested in seeing what an optimal transport path G from the single source
a to b look like numerically.

4.1. Optimal transport paths for small values of N

The case of N = 1 is trivial. When N = 2, there exists an explicit formula in [30] for constructing the optimal
transport path. Things become complicated when N ≥ 3, but still doable when N is small:

• Step 1: For each fixed topology t, find an Mα minimizer Gt within the given topology using a modified
version of the Melzak algorithm [16] .

• Step 2: Set Gsmall(a,b) ∈ arg mint{Mα(Gt)} among all topology t.

This approach only work when N is small because the number of all possible topologies t becomes extremely
large when N becomes larger. To visualize optimal transport paths (i.e. solutions of the NP-hard problem), we
propose some heuristics approach. The idea is to construct an initial transport path G ∈ Path (a,b) first and
then modify G as much as possible until we can not reduce the cost of G any further.
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4.2. The construction of an initial transport path

Let

λ =
{

3, if d = 2
2, if d ≥ 3

and K = λd where d is the dimension of the ambient space Rd.

Algorithm (Subdivision method):
Input: Two atomic measures a,b in the form of (4.1) and a parameter α ≤ 1;
Output: A transport path Gsd(a,b) ∈ Path (a,b) with degree(v) ≤ K for each v ∈ V (Gsd(a,b)).

Step 1: If N ≤ K, then set Gsd(a,b) = Gsmall(a,b).
Step 2: If N > K, then let Q be a cube in Rd that contains the supports of both a and b. We evenly split

the cube Q into totally K = λd smaller cubes {Qi}K
i=1 whose centers are denoted by c (Qi). Then,

recursively we set

Gsd(a,b) = Gsmall(a,
K∑

i=1

b (Qi) δc(Qi)
) +

K∑
i=1

Gsd

(
b (Qi) δc(Qi),b�Qi

)
. (4.2)

4.3. Modification of an existing transport path

Now, suppose G is an existing transport path from a to b that contains no cycles. We want to modify G to
reduce the transport cost as much as possible. Before describing algorithms, we first introduce some concepts
about vertices of an transport path G.

For any two vertices v, u ∈ V (G), we say that v is an ancestor of u and u is a descendant of v, if there exists a
list of vertices v1 = v, v2, . . . , vh−1, vh = u such that each [vi, vi+1] is a directed edge in E (G) for i = 1, . . . , h−1.
Also, if [v, u] is a directed edge in E (G), then we say that v is a parent of u and u is a child of v.

Let p(O) = O. For each vertex u ∈ V (G) \ {O}, u has exactly one parent p (u) ∈ V (G) because G contains
no cycles and has a single source a = mδO. Let m (u) be the associated weight on the directed edge [p (u) , u]
in E (G) for each u ∈ V (G) \ {O}, and also set m (O) = m. Note that m (v) ≥ m (u) whenever v is an ancestor
of u. Moreover, the vertex O is always an ancestor of each u. That is, there exists a list of vertices v1, v2,. . . , vk

in V (G) such that [vi, vi+1] ∈ E (G) with v1 = O and vk = u. Then, for each t ∈ [−m (u) ,m (u)], we consider
the path

R (G; t, u) := G−
k−1∑
i=1

t [vi, vi+1] ∈ Path (a − tδO + tδu,b) .

When t > 0, we say that a mass of t is removed from the path G at vertex u, When t < 0, we say that a mass of
t is added to the path G at vertex u. Moreover, the potential function of G at a vertex u ∈ V (G) is defined by

PG (u, t) =
{
PG (p (u) , t) + |p (u) − u| [m (u)α − (m (u) − t)α] , u �= O

0, u = O
(4.3)

for t ∈ [−m (u) ,m (u)]. Note that PG (u, t) has the same sign as t.

4.3.1. Local minimization

Now, we describe a local minimization method to modify any existing transport path G containing no cycles.
Input: a transport path G ∈ Path (a,b) containing no cycles and α < 1;
Output: a locally optimized path G̃ ∈ Path (a,b) with Mα

(
G̃
)
≤Mα (G).

For each vertex u of G, let

au = m (u) δp(u) and bu =
∑

h∈V (G),p(h)=u

m (h) δh
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be two atomic measures corresponding to the parent and the children of u. Then,

Gold (u) =
∑

h∈V (G),p(h)=u

m (h) [u, h] +m (u) [p (u) , u] ∈ Path (au,bu)

is the union of all weighted edges in G sharing u as their common endpoint. On the other hand, one may
generate another path Gsmall (au,bu).

If Mα (Gold (u)) > Mα (Gsmall (au,bu)), then replace G by a new path

G̃ = G−Gold (u) +Gsmall (au,bu) ∈ Path (a,b) .

Continue this process for all vertices of G, and repeat until one can not reduce the cost any further. The final
path is denoted by Glocmin(G).

The main drawback of this algorithm is that the result is only local minimization rather than global mini-
mization. For instance, edges may intersect with each other. Sometimes, using eyes of a human being, one can
easily observe a better transport path. To overcome these drawbacks, we adopt the following algorithm.

4.3.2. Global minimization

Now, we introduce the following algorithm of global minimization:
Input: two probability measures a, b in the form of (4.1) and a parameter α ≤ 1;
Output: an approximately α-optimal transport path G ∈ Path (a,b).

Step 1: set the initial path G = Gsd(a,b) as in (4.2).
Step 2: modify the existing path G using the local minimization method.
Step 3: subdivide long edges of G into shorter edges.
Step 4: for each vertex u of G, remove a mass of m (u) at vertex u from the path G; change the parent p(u)

of u to a better one if possible and then add back a mass of m (u) at vertex u. More precisely.

Substep 1: a list of potential parents of u is defined as

L (u) = {v ∈ V (G) : |v − u| ≤ σ, and v is not a descendant of u} ,

where σ = PG(u,m(u))
[m(u)]α and PG is defined in (4.3).

Substep 2: by removing a mass of m (u) at vertex u from the path G, we get another path G̃ = R (G;m (u) , u) .
Substep 3: for each v ∈ L (u) \ {p(u)}, let c (v) = −PG̃ (v,−m (u)) ,

which measures the extra cost of transporting a mass of m (u) on the system G̃ from the source O
to the vertex u via the vertex v.

Substep 4: find the maximum of c (v) over all v ∈ L (u) \ {p(u)}. If max c (v) > σ [m (u)]α, then we find a
better parent for the vertex u. In this case, suppose the maximum of c (v) is achieved at v∗. Then,
let G∗ = R

(
G̃;−m (u) , v∗

)
+ m (u) [v∗, u] . That is, we change the parent of u from p(u) to v∗

and then add a mass m (u) at the vertex u to the modified path. For convenience, we still denote
the final modified transport path G∗ by G.

Step 5: Repeat steps 2−4 until one can not reduce the cost any further.

An example of our algorithms is illustrated in Figure 5.
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Figure 5. (a) A single source a = δ(2,−1) and the targeting measure b represented by 100
random points of equall weight. (b) An initial transport path constructed by the subdivi-
sion method. (c) A modified transport path achieved by repeated modifying the initial path
in (b) using the local minimization. (d) An approximately optimal transport path achieved by
modifying the path in (c) using the global minimization method.

Another example is given below to indicate changing behaviors of α-optimal transport paths as the parameter
α changes:

Example 4.1. Let {yi} be 50 random points in the square [0, 1] × [0, 1]. Then, {yi} determines an atomic
probability measure

b =
50∑

i=1

1
50
δyi ·

Let a = δO where O = (0, 0) is the origin. Then an optimal transport path from a to b looks like the following
figures with α = 1, 0.75, 0.5 and 0.25 respectively:
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5. An application in measure theory: Transport dimension of measures

and dimensional distance

Given a probability measure μ on Rm, when can it be transported to a Dirac mass δO with finite dα cost?
The answer to this question depends on the dimensional information of the measure. In [6], Devillanova and
Solimini introduced the concept of irrigability dimension of measures. For any given probability measure μ on
Rm, the irrigability dimension of μ is defined by

dimI (μ) := inf
0≤α<1

{
1

1 − α
: if μ is α− irrigable, i.e. dα(μ, δO) < +∞

}
.

The main theorem in [6] shows that

max {dimH (μ) , 1} ≤ dimI (μ) ≤ max {1, dimM (μ)} (5.1)

where dimH (μ) (or dimM (μ)) denotes the infimum of the Hausdorff dimension (or the Minkowski dimension,
respectively) of sets that μ is concentrated on. By definition, the irrigability dimension dimI (μ) of a measure μ
must be larger or equal to 1 as the parameter α is in the range of [0, 1).

In [32], we removed the maximum constraint from (5.1) by using a different approach of ramified optimal
transportation (i.e. using optimal transport paths), and also allowing the parameter α to be negative. This
generalization allows us to consider measures which have fractal dimensions (e.g. the Cantor measure) less
than 1. We introduced an analogous concept called “the transport dimension of μ”, and showed that

dimH (μ) ≤ dimT (μ) ≤ dimM (μ)

with a slight modification of the definition of dimM (μ). The major difference between dimI (μ) and dimT (μ) is
that dimT (μ) is allowed to be less than 1. For instance, for the Cantor measure, we show that dimT (μ) is ln 2

ln 3

which is exactly the dimension of the Cantor set.
We now describe how we defined the transport dimension dimT (μ). Let A(Rm) be the space of all atomic

probability measures on Rm. We first introduced the dα metric on A(Rm) for any α ∈ (−∞, 1]. Let

Pα(Rm)

be the completion of the metric space A(Rm) with respect to the metric dα. One may check that if β < α, then
Pβ(Rm) ⊆ Pα(Rm), and for all μ, ν in Pβ(Rm) we have dβ(μ, ν) ≥ dα(μ, ν). Note that when α = 1, the metric
d1 is the usual Monge’s distance on A(Rm) and P1 (Rm) is just the space P (Rm) of all probability measures
on Rm. Therefore, each element in Pα(Rm) can be viewed as a probability measure on Rm when α < 1.

Let {ak}∞k=1be a sequence of atomic measures on Rm of equal total mass in the form of

ak =
Nk∑
i=1

m
(k)
i δ

x
(k)
i

for each k, and α < 1. We say that this sequence is a dα-admissible Cauchy sequence if for any ε > 0, there
exists an N such that for all n > k ≥ N there exists a partition of

an =
Nk∑
i=1

a(k)
n,i

with respect to ak as sums of disjoint atomic measures and a path

Gk
n,i ∈ Path (m(k)

i δ
x
(k)
i

, a(k)
n,i)
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for each i = 1, 2, . . . , Nk such that
Nk∑
i=1

Mα

(
Gk

n,i

) ≤ ε.

Clearly, each dα-admissible Cauchy sequence of probability atomic measures corresponds to an element in
Pα(Rm). Let

Dα(Rm) ⊆ Pα(Rm)

be the set of all probability measures μ which corresponds to a dα-admissible Cauchy sequence of probability
measures. Also, note that if μ, ν ∈ Dα(X), one automatically has dα (μ, ν) <∞.

We now introduce the following concept: for any probability measure μ on Rm, we define the transport
dimension of μ to be

dimT (μ) := inf
α<1

{
1

1 − α
: μ ∈ Dα(Rm)

}
.

Note that if 1
1−α > dimT (μ), then μ ∈ Dα(Rm), and thus dα (μ, δO) < +∞ for any fixed point O ∈ Rm. If in

addition α ≥ 0, then there exists an α-optimal transport path from μ to δO.
For any α < 1, let

Sα (Rm) = {Λ (μ− ν) : Λ ≥ 0, μ, ν ∈ Dα(Rm)}
be a collection of signed measures. Clearly, Sα1 (Rm) ⊆ Sα2 (Rm) if α1 ≤ α2.

Definition 5.1. For any two probability measures μ, ν on Rm, we define

D(μ, ν) := inf
α<1

{
1

1 − α
: μ− ν ∈ Sα (Rm)

}
.

It is easy to see thatD (μ, ν) is a pseudometric2 on the space of probability measures on Rm. This pseudometric
D is called the dimensional distance because it gives the following geometric meaning to the transport dimension
of measures.

Theorem 5.2. For any positive probability measure μ, we have

dimT (μ) = D(μ,a)

where a is any atomic probability measure.

This theorem says that the transport dimension of a probability measure μ is the distance from μ to any
atomic measure with respect to the dimensional distance. In other words, the dimension information of a measure
tells us quantitatively how far the measure is from being an atomic measure.

6. An application in fractal geometry: Diffusion limited aggregation driven

by optimal transportation

Diffusion-limited aggregation, or DLA, has been extensively employed (see [12]) since its proposition in 1981
by Witten and Sander [23] to model cluster growth controlled by the random process of diffusion. This leads to
structures with very regular fractal properties: for instance, off-lattice DLA in the plane evolves a cluster with
fractal dimension 1.71 [15]. While the use of different lattices has an effect on the resulting fractal dimension,
they fall within a narrow range. This makes it difficult to model processes in which varying a certain parameter
affects the shape of the cluster. In particular, electrodeposition experiments use a range of voltages and produce
a range of cluster shapes only one of which can correspond to DLA.

2A pseudometric D means that it is nonnegative, symmetric, satisfies the triangle inequality, and D (μ, μ) = 0. But D (μ, ν) = 0
does not imply μ = ν.



MOTIVATIONS, IDEAS AND APPLICATIONS OF RAMIFIED OPTIMAL TRANSPORTATION 1809

In [33], we modified the standard DLA model with ideas from ramified optimal transportation. The key idea
in [33] is that the probability of sticking is inversely proportional to the additional cost of transporting the new
particle to the root via the existing transport system in the current aggregate.

Let us describe this idea more precisely as follows. The model of diffusion-limited aggregation begins with
any number of seeds in a space. A particle is released at a radius slightly larger than the maximum radius of
the current aggregate and undergoes a random walk (Brownian motion). Once it comes within some critical
distance of the existing aggregate it sticks and the process starts over. We may represent the current aggregate
by a weighted directed tree G. When a new particle arrives at a position x which is adjacent to a vertex v of G,
then we get a new aggregate represented by another weighted directed tree G̃. Suppose Γv is the unique path on
the weighted directed tree G from the vertex v to the root. Then the additional transport cost for transporting
a mass ε at x through Γv to the root is

Mα

(
G̃
)
− Mα (G) =

∑
e∈Γv

([w (e) + ε]α − [w (e)]α) length (e) + εαL

= εαL

(∑
e∈Γv

([
w (e)
ε

+ 1
]α

−
[
w (e)
ε

]α) length (e)
L

+ 1

)
,

where L is the distance from x to v. Now we take a unit mass ε = 1, and also take the length of each edge
of the path to be a constant (e.g. the diameter of the particle). DLA is often done on a square, triangular or
hexagonal lattice in which case the edge length would be the lattice size. Then we may assume the additional
cost is

c (v) =
∑
e∈Γv

([w (e) + 1]α − [w (e)]α) + 1,

and set the probability p (v) of a new particle sticking at vertex v to be inversely proportional to c (v), e.g.
p(v) = 1

c(v) .
Note that when α = 0 we always have c (v) = 1 and p (v) = 1

c(v) = 1. Thus we get the standard DLA
structure. When α > 0, c (v) ≥ 1 and p(v) = 1

c(v) ≤ 1. However, when α < 0 one can show that 0 < c (v) ≤ 1
and thus 1

c(v) ≥ 1. To get a probability we normalize 1
c(v) and set p (v) = cG

c(v) , where cG is the normalization
factor. An ideal normalization factor cG is the minimum of all values c(v) over all vertices v of G. Nevertheless,
instead of calculating this number directly we approximate it by taking cG to be the minimum of all possible
c(v) that have been calculated before (including the current one). When α ≥ 0 we have cG = 1, and when α < 0
then cG becomes a small positive number. So for each v, p(v) ≤ 1 as cG ≤ c(v).

We use the following process to aggregate a cluster:

(1) We release a particle from infinity which in practice is a point on a circle whose radius is slightly larger
than the maximum radius of the cluster.

(2) The particle undergoes a random walk through unoccupied spaces until it moves adjacent to the cluster.
(3) The additional cost c(v) of attaching to one of the adjacent cluster points is calculated for each adjacent

point v and this is translated into a probability p(v).
(4) If the particle sticks, it is added to the cluster and the process starts anew at Step 1. If the particle does

not stick it continues its random walk from Step 2.

Using this algorithm we form in Figure 6 the clusters on a square lattice with different parameters α.
In this model, positive α promotes growth near the root whereas negative α promotes growth at the tips

of the cluster. α = 0 is a phase transition point and corresponds to standard DLA. What makes this model
interesting is that when α is negative enough the final cluster is an one dimensional curve. On the other hand,
when α is positive enough we get a nearly two dimensional disk. Thus our model encompasses the full range of
fractal dimension from 1 to 2.
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Figure 6. Modified DLAs with varying parameter α.

7. An application in metric geometry: geodesic problems in quasimetric spaces

A quasimetric space is a generalized metric space, in which the distance satisfy a relaxed triangle inequality
d(x, y) ≤ c(d(x, z) + d(z, y)) for some c ≥ 1, rather than the usual triangle inequality. Quasimetric concepts
are critical for studying harmonic analysis on spaces of homogeneous type [5]. Further exploration of optimal
transport paths provides us a motivational example to study the geodesic problem in quasimetric spaces. We
first introduce a quasimetric on the space of atomic probability measures as follows:

Definition 7.1. For any two atomic probability measures

a =
m∑

i=1

aiδxi and b =
n∑

j=1

bjδyj

on a metric space (Y, d), and α < 1, define

Jα (a,b) := min

⎧⎨
⎩

m∑
i=1

n∑
j=1

(γij)
α d (xi, yj) : γ =

m∑
i=1

n∑
j=1

γijδ(xi,yj) ∈ Plan (a,b)

⎫⎬
⎭ .

For any given natural number N ∈ N , let AN (Y ) be the space of all atomic probability measures
∑m

i=1 aiδxi

on Y with m ≤ N . One can show that Jα defines a quasimetric on AN (Y ). Note that, in general, Jα may fail
to be a metric on AN (Y ) as demonstrated in the following example.

Example 7.2. For any α < 1, let y be a positive real number. Then, we consider three atomic measures in
Y = R2 :

a =
1
2
δ(−1,y+1) +

1
2
δ(1,y+1),b = δ(0,0) and c = δ(0,y).

Then,

Jα (a, c) + Jα (c,b) − Jα (a,b) = 2
(

1
2

)α √
2 + y − 2

(
1
2

)α√
1 + (y + 1)2 < 0

whenever y is large enough. Thus, Jα does not satisfy the triangle inequality.

As we know, the intrinsic metric induced by a metric has played an important role in the study of metric
geometry. A natural question is: will a quasimetric be able to induce an intrinsic metric?

To answer this question, we first studied properties of a quasimetric space (X, J) in [28]. Note that, as
J only satisfies the relaxed triangle inequality, J is not necessarily continuous. One can easily show that Jα

is not continuous by constructing a sequence of measures located on a “Y-shaped” optimal transport path.
Nevertheless, in [28], we showed that many well-known results in metric spaces still hold in suitable quasimetric
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spaces. For instance, the Ascoli-Arzelà theorem holds when (X, J) is a complete quasimetric space and J is
lower semi-continuous.

Also, to study the geodesic problem in a quasimetric space (X, J), one needs to define the length of a
continuous curve f : [a, b] → (X, J). In a metric space (X, d), we usually define

L (f) = sup
P

N∑
i=1

d (f (ti−1) , f (ti)) ,

where the supremum is over all partitions P = {a = t0 < t1 < . . . < tN = b} of [a, b]. However, on a quasimetric
space, subdivision of a partition may decrease rather than increase the variation of f . One can not take the
supremum of variations as before. Nevertheless, in the study of ramified optimal transportation, we observed in
([28], Rem. 4.16) that for each transport G between two atomic probability measures in AN (Y ), there exists a
piecewise metric Lipschitz curve f in the quasimetric space (AN (Y ), Jα) such that the transport cost

Mα(G) =
∫ 1

0

|ḟ(t)|Jαdt

where the quasimetric derivative ∣∣∣ḟ (t)
∣∣∣
Jα

:= lim
s→t

Jα (f (s) , f (t))
|s− t|

provided the limit exists. This motivates us to define the length of a curve f in a general quasimetric space
(X, J) to be

LJ (f) :=
∫ b

a

∣∣∣ḟ (t)
∣∣∣
J

dt

whenever it is well defined. In particular, for any natural numberM , every curve f in the family PM ([a, b], (X, J))
of all M -piecewise metric Lipschitz curves in (X, J) has a well-defined length LJ(f). For any x, y ∈ X , we
consider the geodesic problem

min{LJ (f)} (7.1)

among all f in the family

PathM (x, y) = {f ∈ PM ([0, 1] , (X, J)) with f (0) = x; f (1) = y} .
Definition 7.3. Suppose J is a quasimetric on X . For any x, y ∈ X , and M ∈ N, define

D
(M)
J (x, y) = inf {LJ (f) : f ∈ PathM (x, y)}

whenever PathM (x, y) is not empty, and set D(N)
J (x, y) = ∞ when PathM (x, y) is empty. Since D(M)

J (x, y) is
a decreasing function of M , we define

DJ (x, y) = lim
M→∞

D
(M)
J (x, y) .

For each quasimetric J on X , DJ is automatically a pseudometric. When DJ is indeed a metric on X , it is
called the intrinsic metric, or geodesic distance, on X induced by the quasimetric J .

We explored some sufficient conditions on X and J that ensure DJ to be a metric. One of them says that if
D

(M)
J (x, y) becomes a real valued constant DJ(x, y) (i.e. independent of M) whenever M is large enough, then

DJ is a metric on X . If in addition, the geodesic problem (7.1) has a solution for M large enough, then (X,DJ)
is a length space. It turns out the quasimetric space (AN (Y ), Jα) satisfies these conditions, and thus Jα induces
a metric DJα . The metric dα coincides with this induced metric DJα on AN (Y ). Consequently, an optimal
transport path between two atomic probability measures is simply a geodesic in the length space (AN (Y ), dα)
in the usual sense of metric geometry.
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8. Generalization: Ramified mass transportation in metric spaces

In [31], we generalized the study of ramified optimal transportation from Euclidean spaces to geodesic metric
spaces. Such generalization is not only mathematically natural but is also expected to be useful for considering
specific examples of metric spaces later. By exploring various properties of the metric, we showed that many
results about ramified optimal transportation is not limited to Euclidean spaces, but can be extended to suitable
metric spaces.

When (X, d) is a geodesic metric space, we defined a family of metrics dα on the space A (X) of atomic
probability measures on X for a (possibly negative) parameter α < 1. The space (A (X) , dα) is still a geodesic
metric space when 0 ≤ α < 1. A geodesic, also called an optimal transport path, in this space is a weighted
directed graph whose edges are geodesic segments. It is still true that an optimal transport path contains no
cycles when 0 ≤ α < 1.

In the settings of an Euclidean space Rm, the degree (i.e. the total number of edges) at each vertex of an
α-optimal transport path is uniformly bounded above by a constant D (m,α) as in (2.5). This is not necessarily
true in the general metric space setting (as a counter example is given by [31], Example 2.0.4). We now explore
sufficient conditions for the existence of such a uniform upper bound D.

Recall that, in the setting of a Euclidean space, there is a universal lower bound θα in (2.4) for the angle
between any two neighboring edges on an optimal transport path. To extend this result in a more general
setting, we consider geodesic metric spaces of bounded curvature as follows: We now recall the definition of a
space of bounded curvature [3]. For a real number k, the model space M2

k is the simply connected surface with
constant curvature k. That is, if k = 0, then M2

k is the Euclidean plane. If k > 0, then M2
k is obtained from

the sphere S2 by multiplying the distance function by the constant 1√
k
. If k < 0, then M2

k is obtained from the
hyperbolic space H2 by multiplying the distance function by the constant 1√−k

. The diameter of M2
k is denoted

by Dk := π/
√
k for k > 0 and Dk := ∞ for k ≤ 0.

Let (X, d) be a geodesic metric space, and let ΔABC be a geodesic triangle in X with geodesic segments as
its sides. A comparison triangle ΔĀB̄C̄ is a triangle in the model space M2

k such that d (A,B) =
∣∣Ā− B̄

∣∣
k
,

d (B,C) =
∣∣B̄ − C̄

∣∣
k

and d (A,C) =
∣∣Ā− C̄

∣∣
k
, where |·|k denotes the distance function in the model space

M2
k . Such a triangle is unique up to isometry. Also, the interior angle of ΔĀB̄C̄ at B̄ is called the comparison

angle between A and C at B. A geodesic metric space (X, d) is a space of curvature bounded above by a real
number k if for every geodesic triangle ΔABC in X and every point h in the geodesic segment γAC , one has
d (h,B) ≤ ∣∣h̄− B̄

∣∣
k

where h̄ is the point on the side γĀC̄ of a comparison triangle ΔĀB̄C̄ in M2
k such that∣∣h̄− C̄

∣∣
k

= d (h,C).
Now, let X be a geodesic metric space with curvature

bounded above by a real number k. Suppose α < 1 and G
is an α-optimal transport path between two atomic probability
measures a,b ∈A (X).

Let O be any vertex of G and ei be any two distinct directed
edges with e+i = O (or e−i = O simultaneously) and weight
mi > 0 for i = 1, 2. Also, for i = 1, 2, let Ai be the point on the
edge ei with d (O,Ai) = r for some r satisfying 0 < r ≤ 1

2Dk

and r ≤ length (ei).
By means of the spherical/ordinary/hyperbolic law of cosines

in the model space M2
k , one can show the following estimates

for the distance:

d (A1, A2) ≥

⎧⎪⎨
⎪⎩

2√
k

sin−1
(

R
2 sin

(
r
√
k
))

, if k > 0
Rr, if k = 0

2√−k
sinh−1

(
R
2 sinh

(
r
√−k)) , if k < 0,

(8.1)
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where R is the constant given by

R =

√
(mα

1 +mα
2 )2 − (m1 +m2)

2α

mα
1m

α
2

· (8.2)

Let θ be the comparison angle between A1 and A2 at O in the model space M2
k . Using the above estimates

on d (A1, A2), one can show that

θ ≥ arccos
(

1 − R2

2

)
= arccos

(
1 − k2α

1 − k2α
2

2kα
1 k

α
2

)
,

where
k1 =

m1

m1 +m2
and k2 =

m2

m1 +m2
·

Moreover,

θ ≥ θα :=

{
π
2 , if 0 < α ≤ 1

2

arccos
(
22α−1 − 1

)
, if 1

2 < α < 1 or α ≤ 0.

Note that when k = 0, this agrees with what we have found in (2.4). Also, when α approaches −∞, θα approaches
π; and when α approaches 1, θα approaches 0.

A metric space X is called doubling if there is a doubling constant Cd ≥ 1 so that every subset of diameter
r in X can be covered by at most Cd subsets of diameter at most r

2 .
When X is a geodesic doubling metric space of curvature bounded above, we showed that the degree of any

vertex of an α-optimal transport path between two atomic measures on X is bounded above by a constant D
depending only on α and the doubling constant of X . In the other direction, we also provided a lower bound of
the curvature of X by a quantity related to the degree of vertices.

Furthermore, when X is a complete geodesic metric space, as in Section 5, we considered optimal transporta-
tion between any two probability measures on X by considering the completion of the metric space (A (X) , dα).
A geodesic, if it exists, in the completed metric space is viewed as an α-optimal transport path between measures.
The existence of an optimal transport path is closely related to the dimensional information of the measures.
Analogous to Section 5, we considered concepts such as transport dimension as well as dimensional distance of
measures. It turns out that main results in Section 5 still hold when Rm is replaced with a complete geodesic
doubling metric space X with Assouad dimension m.

When X is a compact geodesic doubling metric space with Assouad dimension m and the parameter α >
max

{
1 − 1

m , 0
}
, then we showed that the space P (X) of probability measures on X with respect to dα is a

geodesic metric space. In other words, there exists an α-optimal transport path between any two probability
measures on X .

9. Applications in mathematical biology

9.1. The formation of a plant leaf

In [27], we built a mathematical model to understand the dynamic formation of a plant leaf. Plant leaves
have diverse and elaborate shapes and venation patterns. Why do tree leaves grow in such an amazing way?
What is the mathematics behind it? To answer these questions, we first look at basic functions of leaves. A tree
leaf will transport resources like water and solutes from its root to its tissues via xylem, absorb solar energy at
their cells through photosynthesis (a function of leaf surface area), and then transport the chemical products
(carbohydrates) synthesized in the leaf back to its root by phloem. Thus, a leaf tends to increase the surface area
as large as possible to maximize metabolic capacity, because metabolism produces the energy and materials
required to sustain and reproduce life. On the other hand, and more important, the leaf tends to maximize



1814 Q. XIA

internal efficiency by developing an efficient transporting system. One of the main tasks here is to describe this
efficient biological transport system.

For simplicity, a leaf may be viewed as a finite union of square cells, centered on a given grid Γh = {(mh, nh) :
m,n ∈ Z} in R2 of size h. A leaf will be a subset of Γh. However, not every subset of Γh gives a leaf. One aim
is to understand the speciality of a reasonable tree leaf. Let

Ω = {x1, x2, . . . , xN} ⊂ Γh

be any finite subset representing a prospective leaf.
The amount of water needed at each cell is proportional to its area (= h2). Without losing generality, we

may assume it is h2. So, each xi ∈ Ω corresponds to a particle of mass h2 located at xi. The aim is to transport
these particles to the node (i.e. the intersection point of the leaf with the branch) O in some cost efficient way.

A transport system for the leaf is modeled by a transport path G from O to
∑N

i=1(h
2)δxi . The cost function

Mα,β(G) on the transport system G is a modified version of Mα(G). As before, the parameter α comes from
the transport economy of scales. The other parameter β arises from the principle that when there exists a given
transport direction, it is cheaper to transport in the given direction than transport in any other direction. The
cost is an increasing function of the angle between the favored direction and other directions. More precisely,
let α ∈ [0, 1) and β > 0 be two fixed real numbers. For any transport system G = {V (G) , E (G) , w}, the cost
of G is defined by

Mα,β (G) :=
∑

e∈E(G)

mβ

(
e+
)
(w (e))α length (e) .

The function mβ on V (G) is defined inductively as follows: we first set mβ (O) = 1. For any other v ∈ V (G),
let p(v) be the “parent vertex” of v, then we set

mβ (v) = mβ (p (v))Hβ

(
	ev, 	ep(v)

)
,

where for any two unit vectors u, v with θ being the angle between them,

Hβ (u, v) =
{ |u · v|−β = 1

cosβ(θ) , if u · v > 0
+∞, otherwise.

Note that the function mβ depends on G.
The growing of a plant leaf is a dynamic process of generating new cells. At every stage, the leaf will develop

an optimal transport system to transport water between the root and the existing cells with respect to the given
transport cost function. Let

Ah :=
{

(Ω,G) : Ω ⊂ Γh, G is an optimal transport
system of Ω under the Mα,β cost

}
.

Also, as the environment changes, the leaf may generate some new cells nearby its boundary. The selection of
those new cells is not random. Under the same environmental conditions, each potential new cell outside the
existing leaf produces about the same amount of revenue (such as the absorbed solar energy). The revenue that
a new cell produces is proportional to its area. That is, for some constant ε > 0,

revenue = εh2.

However, the expense corresponding to each potential new cell varies with respect to the position of the cell.
Here, the expense is mainly the transport cost of water and nutrients between the cell and the node O. Given
(Ω,G) ∈ Ah, let B be the boundary set of Ω. For any x ∈ Γh \ Ω, and any “boundary point” b ∈ B, we define
“the transport cost of x via b” to be

CΩ (x, b) := h2α |x− b|mβ (b)Hβ

(
x− b

|x− b| , 	eb

)
+ PG

(
h2, b

)
,
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where
PG (y, v) =

∑
u∈Pv\{O}

mβ (u) [(w (eu) + y)α − (w (eu))α]length(eu)

measures “the increment of the total cost” if one adds an extra mass of weight y to the point v ∈ V (G). Then,
the expense for generating a new cell at x is mainly given by the transport cost

CΩ (x) := min
b∈B

CΩ (x, b) = CΩ (x, b (x)).

The selection of new cells during the generation process is governed by a selection principle which says that
a new cell is generated only if the expense is less than the revenue it produces. Based on the selection principle,
for any given ε > 0, we set

Ω̃ =
{
x ∈ Γh\Ω : CΩ (x) ≤ εh2

} ∪Ω,
Ṽ = V (G) ∪ Ω̃, Ē = E (G) ∪

{
[x, b (x)] : x ∈ Ω̃\Ω

}
and G̃ be the optimal transport system of Ω̃ achieved by modifying Ḡ = {Ṽ , Ē, w̄}. In other words, we take
Ḡ as the initial transport path, and use algorithms analogous to those stated in Section 4 to reduce the Mα,β

transport cost as much as possible, and called the final transport path G̃. Thus, we get a map Lε,h : Ah → Ah

by letting
Lε,h (Ω,G) =

(
Ω̃, G̃

)
.

Note that G̃ might reduce the transporting costs for cells outside Ω̃. It is possible that CΩ (x) > εh2 but
CΩ̃ (x) ≤ εh2. By the selection principle, we should also select such cells as new cells. Thus, we need to consider
further: L2

ε,h (Ω,G) = Lε,h ◦Lε,h (Ω,G) , L3
ε,h (Ω,G) , . . . and so on. Will Ln

ε,h (Ω,G) stop growing and stay in a
bounded domain when n is large enough? The answer is yes if α ∈ (1/2, 1).

Indeed, for α > 1/2, let Aε,h = {(Ω,G) ∈ Ah : Ω ⊂ BRε (O)} , where Rε is a constant depending only on ε and

α. A proposition in [27] says that Lε,h maps Aε,h into itself. That is, for any (Ω,G) ∈ Aε,h, we have
(
Ω̃, G̃

)
:=

Lε,h (Ω,G) ∈ Aε,h. Now, for α ∈ (1/2, 1) and (Ω,G) ∈ Aε,h, we may define (Ωn, Gn) = Lε,h (Ωn−1, Gn−1) ∈ Aε,h

with (Ω0, G0) = (Ω,G). This leads to a sequence of nested sets Ω = Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ . . . ⊂ BRε (O)∩Γh, which
is a finite set. Thus, when N is large enough, ΩN = ΩN+1 = . . . . As a result, one may define gε,h : Aε,h → Aε,h

by sending
gε,h (Ω,G) = (ΩN , GN ) = lim

n→∞Ln
ε,h (Ω,G) .

This map is called the generation map.
With a given initial growing direction, a leaf originates from a bud which is modeled by

Ω0 = {O} and G0 = {{O} , ∅,−} . (9.1)

So, Ω0 consists only the node O, and G0 contains no edges. This element (Ω0, G0) generates a subset of Ah

by the generation map. When the environmental conditions change, the corresponding revenue that a cell can
produce also changes. When the corresponding revenue of each cell increased to a certain degree, it becomes
beneficial to produce some new cells, and thus the leaf will grow. Due to limited resources, the revenue that
a cell can possibly produce is bounded above. This fact forces the leaf to stop growing after some time. More
precisely,

Definition 9.1. For any ε > 0 and h > 0, a pair (Ω,G) ∈ Aε,h is called an (ε, h) leaf if there exists a list
{(Ωn, Gn)}k

n=1 of elements in Ah such that for each n = 1, 2, . . . , k,

(Ωn, Gn) = gεn,h (Ωn−1, Gn−1)
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Figure 7. Some numerically generated leaves.

and
(Ω,G) = (Ωk, Gk)

for some positive numbers εi’s satisfying

0 < ε1 < ε2 < . . . < εk = ε.

As a result, the final shape and venation pattern of a leaf are mainly determined by the cost function defined on
the collection of all possible transport systems, as well as the actual environment. Based on this model, we also
provided some computer visualization of tree leaves, which resemble many known leaves including the maple
and mulberry leaf.

9.2. Transport efficiency of transport systems in human placentas

The human newborn is a reflection of the entirety of nutrients transferred from the maternal circulatory
system to the fetal system across the placenta during gestation. By extension, birth weight and newborn health
depend on placental function. In [37, 38], we quantify efficiency of the transport system in the human placenta
and study its role played in the birth weight as well as the gestational age of the human newborn.

As stated in [40], 1110 placentas were collected by an academic health center in central North Carolina. For
each placenta (see Fig. 8a), a trained technician captured series of x, y coordinates that marked the site of the
umbilical cord insertion and the perimeter of the fetal surface (see Fig. 8b). Thus, each placenta P is represented
by a pair (D,O) where D is a bounded planar domain and O is a fixed point inside D representing the the site
of the umbilical cord insertion.

We say two placentas P1 = (D1, O1) and P2 = (D2, O2) have the same shape if there exists a number λ > 0
such that the mapping fλ : D1 → D2 given by

f (x) = λ (x−O1) +O2, x ∈ D1

is one-to-one and onto. To encode the shape information of the placenta for analysis and quantifying its impact
on the birth weight of the newborn, we introduced the variable “shape factor” and removed the impact of size
as follows: For each placenta P = (D,O) and α < 1, the α-shape factor of P is defined by

Sα (P ) :=
dα (μD, |D| δO)

|D|α+0.5 ,
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(a) A photo of a placenta. (b) Boundary curve and
the insertion point.

(c) An optimal transport network
simulating a vascular tree struc-

ture.

Figure 8.

where μD denotes the Lebesgue measure on R2 restricted to the set D, |D| denotes the area of D, and dα is
the distance defined in (2.1). It turns out that two placentas of the same shape have the same shape factor
independent of their sizes.

Since transportation cost dα (μD, |D| δO) is proportional to the shape-factor Sα, among placentas of similar
sizes, the smaller the shape-factor Sα the more efficient the transport system corresponding to the placenta. This
motivates us to consider the following definition: for each placenta P and α < 1, the transport α− efficiency of
P is defined to be

Eα (P ) :=
Sα (B (0, 1))
Sα (P )

,

where Sα (B (0, 1)) denotes the α-shape factor of the unit ball B (0, 1) in R2 with respect to the origin (0, 0).
Clearly, two placentas of the same shape have the same transport efficiency Eα(P ).

To calculate the transport cost dα (μD, |D| δO), we used algorithms described in [30] to generate an ap-
proximated optimal transport path GP ∈ Path (μD, |D| δO). This leads to Figure 8. We used this idealized
transport system GP to model the vein (or the arterial) structure inside the placenta. The value dα (μD, |D| δO)
is approximated by Mα(G). Thus,

Sα (P ) ≈ Mα(GP )
|D|α+0.5 · (9.2)

Now, for each placenta P in the available data and α = 0.85, we calculate the transport cost Mα(GP ), shape-
factor Sα(P ) and the transport efficiency Eα (P ).

Statistically, the transport cost Mα(G) is highly correlated with the birth weight. To see it geometri-
cally, we plot the average transport cost as a function of birth weight in Figure 9. Here, for each value B
in {500, 1000, . . . , 5000}, we calculate the average transport cost of all placentas whose birth weights are among
(B − 500, B+ 500) grams. Figure 9 indicates that the average transport cost is nearly a linear function of birth
weight. This positive correlation between transport cost and birth weight is expected given that transport cost
primarily reflects placental size which will, on average, vary with larger and smaller fetal weights.

We also study transport efficiency of each placenta and investigate its correlations with birth weight and
gestational age at birth. We show that averaged birth weight and averaged gestational age are both roughly
increasing functions of the calculated placental transport efficiency (see for instance Fig. 10 for the birth weight
case). Significantly, both preterm and low birth weight are associated with lower placental transport efficiency.

Furthermore, we also show that the relationship of transport efficiency to these outcomes is nonlinear, reaching
a plateau at 38−39 weeks gestational age and 3200g birth weight. As illustrated in Figure 11, the contribution of
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Figure 9. Average transport cost Mα is nearly a linear function of birth weights.

Figure 10. Average transport efficiency is roughly an increasing function of birth weights.
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Figure 11. Transport efficiency still has a positive relationship with averaged birth weights.

placental transport efficiency to the eventual birth weight plateaus above a certain level of transport efficiency.
Average birth weight still increases as transport efficiency increases, but with a decreased slope, indicating a
smaller effect.

9.3. Human placentas, optimal transportation and Autism

Autism spectrum disorder (ASD) is one of the fastest-growing developmental disabilities. An effective way
to reduce the symptoms of ASD is early intervention. However, obvious signs and symptoms of ASD tend to
emerge between 2 and 3 years of age.

A natural question arises: Is there any measurable anatomical indicator of ASD in infants at birth?
Our studies of vascular structures in placentas provide a positive answer. The placenta is a temporary organ

that serves in the exchange of nutrients and wastes between the mother and the fetus. ASD appears to have
its roots in fetal life, which is highly dependent on the dynamic growth function of the placenta. Information
about the timing and (possibly) the nature of early brain maldevelopment may be paralleled by the geometric
structure of the placenta as measured by its size, shape, and depth as well as the thickness, length, and geometric
locations of veins/arteries in the placenta.

Recently, we have traced arterial (Fig. 12a) and venous (Fig. 12b) vascular networks from the following two
groups of placentas:

• 201 placentas collected by NCS. NCS is a population cohort study of children in the United States and as
such would be expected to experience the baseline ASD risk seen in the general U.S. population.

• 75 placentas collected by the Early Autism Risk Longitudinal Investigation (EARLI) Study. The EARLI
cohort is a network of research sites that is enrolling and following a group of mothers of children with
autism at the start of another pregnancy and documenting the development of the newborn child (cases of
siblings with autism) through three years of age.
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(a) Traced arterial vasculature (b) Traced venous vasculature

Figure 12. Examples of arterial and venous vasculature manually traced with electronic device.

Newborns whose placentas are in the NCS group tend to have lower ASD risk when compared with those from
the EARLI group.

Since the conclusions in [39] for veins and arteries are very similar, we only discuss the situation of arteries
here. Note that each traced network of arteries gives a directed weighted graph G. For each blood vessel segment
e of length l(e), let f(w(e), l(e)) be the cost of transporting a volumetric flow rate w(e) along e. In particular,
we are interested in the cost function f(x, y) = xαyβ for real valued parameters α and β. The corresponding
transportation cost G is

Mα,β(G) =
∑

e∈E(G)

w(e)αl(e)β.

A benchmark for vascular systems was proposed by Murray in 1926 as a compromise between the frictional and
metabolic costs, with the latter expressed as a cost function. The formulation of a minimum energy hypothesis
led to a scaling law, w(e) ∝ d(e)3, between the volumetric flow rate w(e) and the diameter d(e) of a blood vessel
segment e. By Murray’s law, it holds that

Mα,β(G) ∝
∑

e∈E(G)

d(e)3αl(e)β . (9.3)

Motivated by (9.2), we use a normalization process to remove the effect of the size of the placenta onMα,β(G).
For each placenta P = (D,O) with a traced vascular structure G, we define the shape factor of G to be

Sα,β(G) :=

∑
e∈E(G) d(e)

3αl(e)β

|D|α+β/2
∝ Mα,β(G)

|D|α+β/2
·

Let Pa
L (and Pa

H) denote the set of all traced arterial vascular networks G from placentas in the NCS group
(or EARLI group, respectively). For each value α and β, we consider the relative transport efficiency function
of the two groups:

Ra(α, β) :=
mean({Sα,β(G) : G ∈ Pa

L})
mean({Sα,β(G) : G ∈ Pa

H}) ·

For different values of α, Figure 13 plots the graphs of Ra(α, β) as functions of β.
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Figure 13. Relative transport efficiency Ra(α, β) of arteries of the two groups.

Based on Figure 13, we have the following observations:

• Pa
H is not a randomly selected subset of Pa

L, otherwise the values Ra(α, β) would be around 1. The behaviors
of traced vascular graphs of NCS placentas are different from those in the EARLI group. These differences
are quantified by the relative transport efficiencies Ra(α, β).

• The values of the relative transport efficiency Ra(α, β) vary according to the transport cost function xαyβ.
Under some transport costs, EARLI placentas are relatively more transport efficient than NCS placentas,
while for other transport costs, the opposite situation appears.

• Ra(α, β) is a decreasing function in both variables α and β.
• For each fixed α, Ra(α, β) is nearly a linear function of β with a negative slope.

Given the placenta P of a newborn, how can one quantify the risk of the newborn having a future ASD
diagnosis? For simplicity, we considered here a fixed transportation cost function, the quadratic transport cost
f(x, y) = xy2, with e.g. α = 1 and β = 2. In Figure 13, the value Ra(1, 2) = 0.58, which indicates that average
arteries of placentas in the NCS (i.e. low risk of ASD) group are more transport efficient than those of placentas
in the EARLI (i.e. high risk of ASD) group under the quadratic transportation cost.

To better illustrate the difference of NCS and EARLI placentas, we order the values of both {S1,2(G) : G ∈
Pa

L} and {S1,2(G) : G ∈ Pa
H} increasingly, and plot them in Figure 14a: Pa

L in blue, Pa
H in red. Again, we

find a significant difference between the two sets. It indicates that the shape factor S1,2(G) can be viewed as
an indicator of risk of ASD. The higher the shape factor value is, the higher the risk of an ASD diagnosis. To
quantify this correlation, we introduce the following definition: for any s ≥ 0, define

ra
H(s) :=

#{G ∈ Pa
H : S1,2(G) ≥ s}

#{G ∈ Pa
H ∪ Pa

L : S1,2(G) ≥ s}
and ra

L(s) := 1 − ra
H(s). The graphs of the functions ra

L and ra
H are plotted in Figure 14b. For instance, for the

shape factor value 0.04, the corresponding percentage value for the EARLI group shown in Figure 14b is 0.78.
That is, among all placentas whose shape factors are over 0.04, 78% of them are from the EARLI group while
22% of them are from the NCS group. This big difference indicates that the shape factor of the placenta may
be used as a neonatal indicator of the risk of ASD.
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(a) Values of S1,2(G) of arteries of placentas
in two groups.

(b) The graphs of the functions ra
L and ra

H .

Figure 14.

(a) G1 (b) G2

Figure 15. Unlike a traditional transport system G1, a ramified transport system G2 provides
an exchange value.

10. Applications in mathematical economics

10.1. The exchange value embedded in a transport system [34]

In the study of ramified optimal transportation, we have focused on the cost value of a branching transport
system in terms of its effectiveness in reducing transportation cost. In [34], we showed that there is another
value, named as exchange value, embedded in some ramified transport systems. As an illustration, we consider a
spacial economy with two goods located at two distinct points {x1, x2} and two consumers living at two different
locations {y1, y2}. The spacial distribution is shown in Figure 15. Suppose consumer 1 favors good 2 more than
good 1. However, good 2 may be more expensive than good 1 for some reason such as a higher transportation
fee. As a result, she buys good 1 despite the fact that it is not her favorite. On the contrary, consumer 2 favors
good 1 but ends up buying good 2, as good 1 is more expensive than good 2 for him. Given this purchase plan,



MOTIVATIONS, IDEAS AND APPLICATIONS OF RAMIFIED OPTIMAL TRANSPORTATION 1823

a traditional transporter will ship the ordered items in a transport system like G1 (see Fig. 15b). However,
as shown in [24] etc., a transport system like G2 (see Fig. 15b) with some branching structure might be more
cost efficient than G1, so one may save some transportation cost by using a transport system like G2 instead
of G1. Now, we observe another very interesting phenomenon about G2. When using this transport system, one
can simply switch the items which leads to consumer 1 getting good 2 and consumer 2 receiving good 1. This
exchange of items makes both consumers better off since they both get what they prefer. More important, no
extra transportation cost is incurred during this exchange process. In other words, a ramified transport system
like G2 may possess an exchange value, which cannot be found in other transport systems like G1.

In [34], we proposed an explicit valuation formula to measure this exchange value for a given compatible
transport system. Suppose there are k sources of different goods which could be purchased by � consumers
distributed on a compact convex subset X of Rm. Each source xi ∈ X supplies only one type of goods, i =
1, . . . , k. Each consumer j located at yj ∈ X derives utility from consuming k goods according to a utility function
uj : Rk

+ → R : (q1j , . . . , qkj) �→ uj , j = 1, . . . , �, where uj : Rk
+ → R is continuous, concave and increasing,

j = 1, . . . , �. Each consumer j has an initial wealth wj > 0 and faces a price vector pj = (p1j , . . . , pkj) ∈ Rk
++,

j = 1, . . . , �. We denote this economy as
E = (U,P,W ;x, y) . (10.1)

In the classical consumer’s decision problem (see e.g. [14]), each consumer j will choose a utility maximizing
consumption plan given the price pj and wealth wj . More precisely, the consumption plan q̄j is derived from
the following utility maximizing problem:

q̄j ∈ argmax
{
uj (qj) | qj ∈ R

k
+, pj · qj ≤ wj

}
. (10.2)

Given the continuity and concavity of uj, we know this problem has a solution.
Let q̄ ∈ Plan (a,b) be the initial plan given by (10.2). Denote

Ω (q̄) = {G ∈ Path (a,b) | (G, q̄) is compatible} . (10.3)

For each probability measure q = (qij) ∈ P (X ×X), we define

S (q) =
�∑

j=1

ej (pj , uj (qj)) =
�∑

j=1

min
{
pj · tj | tj ∈ R

k
+, uj (tj) ≥ uj (qj)

}
, (10.4)

where qj = (q1j , q2j , . . . , qkj) for each j = 1, . . . , �. Here, S (q) represents the least total expenditure for each
individual j to reach utility level uj (qj) .

Each transport plan in the set

FG =
{
q ∈ P (X ×X)

∣∣∣∣ q is compatible with G
uj (qj) ≥ uj (q̄j) , j = 1, . . . , �.

}
(10.5)

is called a feasible plan for G, and the set FG is called the feasible set of G.
Let E be an economy as in (10.1). For each transport path G ∈ Ω (q̄), we define the exchange value of G by

V (G; E) = max
q∈FG

S (q) − S (q̄) , (10.6)

where S is given by (10.4).

Example 10.1. Let’s return to the example discussed in introduction. More precisely, suppose u1 (q11, q21) =
q11 + 3q21, w1 = 1/2, p1 = (1, 6) and u2 (q12, q22) = 3q12 + q22, w2 = 1/2, p2 = (6, 1) . By solving (10.2), we find
q̄1 = (1/2, 0) and q̄2 = (0, 1/2). This gives the initial plan

q̄ =
(

1/2 0
0 1/2

)
.
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Now, solving expenditure minimization problems in (10.4) yields e1 (p1, ũ1) = ũ1, e2 (p2, ũ2) = ũ2, and thus

S (q) = e1 (p1, u1 (q1)) + e2 (p2, u2 (q2)) = u1 (q1) + u2 (q2)

for each probability measure q ∈ P (X ×X). Now, we find the exchange value embedded in the transport
systems G1 and G2 as given in Figure 15.

• G1 : the associated feasible set is FG1 = {q̄}, and thus the exchange value of G1 is

V (G1) = max
q∈FG1

S (q) − S (q̄) = S (q̄) − S (q̄) = 0.

• G2 : the associated feasible set is

FG2 =

⎧⎪⎨
⎪⎩q =

(
q11 q12
q21 q22

)
∈ P (X ×X)

∣∣∣∣∣∣∣
q11 + q12 = 1/2, q21 + q22 = 1/2,

q11 + q21 = 1/2,
q11 + 3q21 ≥ u1 (q̄1) = 1/2,
3q12 + q22 ≥ u2 (q̄2) = 1/2.

⎫⎪⎬
⎪⎭

=
{
q =

(
q11 1/2 − q11

1/2 − q11 q11

) ∣∣∣∣ q11 ≤ 1/2
q11 ≥ 0 .

}

Thus, we have the following exchange value

V (G2) = max
q∈FG2

S (q) − S (q̄)

= max
q∈FG2

{(q11 + 3q21) + (3q12 + q22)} − 1

= max
0≤q11≤ 1

2

{(q11 + 3 (1/2 − q11)) + (3 (1/2 − q11) + q11)} − 1

= max
0≤q11≤ 1

2

{3 − 4q11} − 1 = 2.

The exchange value is always nonnegative and bounded from above. It is jointly determined by transport
structures, preferences and prices. Each of these factors may lead to a zero exchange value under very rare
situations. More precisely, when the structure of the transport system yields a singleton feasible set FG or the
utility functions are merely quantity dependent, or price vectors are collinear across consumers, the exchange
value is zero. However, under many common situations, there exists a positive exchange value for a ramified
transport system. For instance, there exists a positive exchange value in any of the following two cases:

• The feasible set FG is non-singleton, and each utility function uj : Rk
+ → R is homogeneous of degree βj > 0,

(uj (qj))
1

βj is concave in qj satisfying the condition

(uj ((1 − λj) q̃j + λj q̂j))
1

βj > (1 − λj) (uj (q̃j))
1

βj + λj (uj (q̂j))
1

βj (10.7)

for each λj ∈ (0, 1), and any non-collinear q̃j , q̂j ∈ Rk
+.

• The transport systems are of ramified structures with some order conditions on prices and non-degeneracy
conditions on the utility.

When designing a transport system G, it is reasonable to consider both the minimization of the transporta-
tion cost Mα(G) and the maximization of the embedded exchange value V(G). So, we propose the following
minimization problem.

Problem 10.2. Given two atomic probability measures a and b on X in an economy E given by (10.1), find a
minimizer of

Hα,σ (G) := Mα (G) − σV (G) (10.8)

among all G ∈ Ω (q̄), where Ω (q̄) is given by (10.3), and α ∈ [0, 1) and σ ≥ 0 are fixed constants.
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(a) G1 (b) G2 (c) G3

Figure 16. Three topologically different transport systems.

When the utility functions are merely quantity dependent or when price vectors are collinear across consumers,
the exchange value of any G ∈ Ω (q̄) is always zero. In these cases, Hα,σ (G) = Mα (G) for any σ. Thus, the
study of Hα,σ coincides with that of Mα. However, as seen in the previous section, it is quite possible that Hα,σ

does not agree with Mα on Ω (q̄) for σ > 0 in a general economy E .
As V is topologically invariant, many results that can be found in literature about Mα still hold for Hα,σ.

For instance, the Melzak algorithm for finding an Mα minimizer ([16]) in a fixed topological class still applies
to Hα,σ because V (G) is simply a constant within each topological class. Also, as the balance equation (1.3)
still holds, one can still calculate angles between edges at each vertex using existing formulas ([24]), and then
get a universal upper bound on the degree of vertices on an optimal Hα,σ path.

However, due to the existence of exchange value, one may possibly favor an optimal Hα,σ path instead of
the usual optimal Mα path when designing a transport system. The topological type of the optimal Hα,σ path
may differ from that of the optimal Mα path. This observation is illustrated by the following example.

Example 10.3. Let us consider the transportation from two sources to two consumers. If we only consider
minimizing Mα transportation cost, each of the three topologically different types shown in Figure 16 may
occur. However, when σ is sufficiently large, only G2 in Figure 16b may be selected under suitable conditions
of u and p. This is because G2 has a positive exchange value which does not exist in either G1 or G3.

10.2. The ramified optimal allocation problem [35]

One of the lasting interests in economics is to study the optimal resource allocation in a spatial economy. For
instance, the well known Monge−Kantorovich transport problem aims at finding an efficient allocation plan or
map for transporting some commodity from factories to households. In the work [35], we proposed an optimal
resource allocation problem where a social planner aims at finding an optimal allocation plan as well as an
associated optimal allocation path to minimize the overall cost of transporting commodity from factories to
households.

In the standard transport problems, e.g. Monge−Kantorovich or ramified optimal transportation, one typi-
cally assumes an exogenous fixed distribution on both sources and targets.

However, in many resource allocation practices, the distribution on either sources or targets is not pre-
determined but rather determined endogenously. For instance, in a production allocation problem, suppose
there are k factories and � households located in different places in some area. The demand for some commodity
from each household is fixed. Nevertheless, the allocation of production among factories is not pre-determined
but rather depends on the distribution of demands among households as well as their relative locations to
factories. A planner needs to make an efficient allocation plan of production over these k factories to meet given
demands from these � households. With ramified transportation, the transportation cost of each production
plan is determined by an associated optimal transport path from factories to households. Consequently, the
planner needs to find an optimal production plan as well as an associated optimal transport path to minimize
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the total cost of distributing commodity from factories to households. We named this type of allocation problem
the ramified optimal allocation problem. In this problem, the distribution of production over factories is not
pre-determined as in either Monge−Kantorovich or ramified transport problem, but endogenously determined
by the distribution of demands from households as well as their relative locations to factories. In other words,
the atomic measure a which represents the k factories can have varying production level mi at each factory i.

We now describe this problem in more details. In a spatial economy, there are k factories and � households
located at x = {x1, x2,...,xk} and {y1, y2, . . . , y�} in some area X , where X is a compact convex subset of a
Euclidean space Rm. In this model economy, there is only one commodity, and each household j = 1, . . . , � has a
fixed demand nj > 0 for the commodity. We can thus represent the � households as an atomic measure on X by

b =
�∑

j=1

njδyj · (10.9)

Without loss of generality, we may assume that b is a probability measure.
Given x and b as above, an allocation plan from x to b is a probability measure q on X ×X such that

q =
k∑

i=1

�∑
j=1

qijδ(xi,yj) with qij ≥ 0 and
k∑

i=1

qij = nj for each j.

Denote Plan [x,b] as the set of all allocation plans from x to b. Note that any allocation plan q ∈ Plan [x,b]
corresponds to a transport plan q from a (q) to b, where

a (q) :=
k∑

i=1

mi (q) δxi , with mi (q) =
�∑

j=1

qij , i = 1, . . . , k, (10.10)

is the probability measure supported on x representing k factories.
For any allocation plan q ∈ Plan [x,b] and α ∈ [0, 1), the ramified transportation cost of q is defined by

Tα (q) := min {Mα (G) : G ∈ Path (a (q) ,b) , (G, q) compatible} . (10.11)

Now, the ramified optimal allocation problem is: Given x and b as above, minimize Tα (q) among all allocation
plans q ∈ Plan [x,b].

It is easy to prove that there exists a solution to the ramified optimal allocation problem. Moreover,

min
q∈Plan[x,b]

Tα (q) = min

{
dα

(
k∑

i=1

miδxi ,b

)
: mi ≥ 0,

k∑
i=1

mi = 1

}
. (10.12)

Similarly, given x and b as above, an allocation path from x to b is a transport path G ∈ Path (a,b) for
some atomic probability measure a supported on x. Denote Path [x,b] as the set of all allocation paths from x
to b. By the definition of dα, equation (10.12) can be alternatively written as

min {Tα (q) : q ∈ Plan [x,b]} = min {Mα (G) : G ∈ Path [x,b]} , (10.13)

which shows that the ramified optimal allocation problem corresponds to a problem of finding an optimal
allocation path.

The next lemma presents a key property of an optimal allocation path, as shown in Figure 17.

Lemma 10.4. Let G ∈ Path [x,b] be an optimal allocation path. Then, for any i �= s ∈ {1, . . . , k}, xi and xs

do not belong to the same connected component of G.
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Figure 17. A partition in households and allocation path.

The above lemma says that no two factories will be connected on any optimal allocation path. Alternatively
speaking, on an optimal allocation path, each single household will receive her commodity from only one
factory, i.e., each household is assigned to one factory. This result is attributed to the transport economy of
scale underlying ramified transportation theory: As seen in Section 2, an α ∈ [0, 1) implies the existence of
transport economy of scale with transporting in groups being more cost efficient than transporting separately.
Any allocation path on which some single household receives commodity from two factories can not be optimal
because the planner would be able to reduce transportation cost by transferring production of one factory to
the other. This transfer makes the benefit of transport economy of scale more likely to be realized as commodity
for this household is transported in a larger scale on the path. The result that each household is assigned to one
factory on an optimal allocation path motivates the following notion of assignment map.

An assignment map is a function S : {1, . . . , �} → {1, . . . , k}. Let Map [�, k] be the set of all assignment maps.
For any assignment map S ∈Map [�, k] and α ∈ [0, 1), define

Eα (S;x,b) :=
k∑

i=1

dα (ai,bi) ,

where ai =
(∑

j∈S−1(i) nj

)
δxi and bi =

∑
j∈S−1(i) njδyj .

A main result in [35] is given by the following theorem:

Theorem 10.5. Given a subset x = {x1, x2,...,xk} in X, an atomic probability measure b as in (10.9), and a
parameter α ∈ [0, 1).

(1) An allocation plan q ∈ Plan [x,b] is optimal if and only if there exists an optimal assignment map S ∈
Map [�, k] such that q = qS, where qS =

∑�
j=1 njδ(xS(j),yj).

(2) An allocation path G ∈ Path [x,b] is optimal if and only if there exists an optimal assignment map S ∈
Map [�, k] such that G = GS , where GS =

∑k
i=1Gi ∈ Path [x,b] with each Gi ∈ Path (ai,bi) being an

optimal transport path.
(3) Moreover,

min
q∈Plan[x,b]

Tα (q) = min
S∈Map[�,k]

Eα (S;x,b) = min
G∈Path[x,b]

Mα (G) . (10.14)
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The equivalence relation between an optimal allocation plan and an optimal assignment map found here has
an analogous counterpart in Monge−Kantorovich problems and plays a crucial role there, but has never been
observed in the current literature on ramified transport problems. Because of the equivalence, we can instead
focus attention on studying the properties of optimal assignment maps in the ramified optimal allocation
problem. We develop methods of marginal transportation analysis and projectional analysis to study geometric
properties of optimal assignment maps. An important application of the properties of optimal assignment maps
is that they can shed light on the search for those maps. We develop a search method utilizing these properties
in the notion of a state matrix. In some non-trivial cases, it is shown that this method can exactly find an
optimal assignment map.

11. Landscape functions associated with transport paths from multiple

sources [36]

11.1. Background

In the study of river basins, geophysics yields problems very similar to ramified optimal transportation. While
studying the configuration of a river basin, the main objects are the landscape function giving the altitude of any
point of the region and a river channel network which is the datum of all the streams that concur to bring water
to lakes. In a seminal paper [17] of Santambrogio, he introduced the concept “landscape function” associated
with an optimal transport Path from a Dirac mass (representing a single lake) to another probability measure
(representing the region). In the context of ramified optimal transportation, the landscape function at a point
can be viewed as the marginal transportation cost from the point to the common single source. Independently,
the author has also used analogous ideas of the landscape function in applications such as [33] in modeling
diffusion-limited aggregation driven by optimal transportation and [35] about the marginal analysis of optimal
assignment maps.

In the work of Santambrogio, it was assumed that the initial measure is a Dirac mass (i.e. a single common
source). In the article [36], we generalized the concept of landscape function by allowing multiple sources rather
than a single common source. For simplicity, we only considered the discrete version, i.e. transport paths
(which are weighted directed graphs) between atomic measures. The continuous version will be left for future
exploration.

11.2. Landscape functions

Let a = δS be the initial source and the target b be an atomic measure on X . Let P = {V (P ) , E (P ) , w}
be a transport path from a to b. Then for any x in the support of P , there is a unique polyhedral curve γx on
P from the initial source S to x. In this case, Santambrogio’s landscape function z (x) associated with P can
be simply written as

z (x) =
∫

γx

θ (s)α−1 dH1 (s)

where H1 represents the 1-dimensional Hausdorff measure, and θ(s) represents the mass flowing through the
point γx(s).

In general, an atomic measure a is not necessarily a single source but of the form in (1.2) that contains
multiple-sources. Here, we study a multiple-sources version of landscape functions associated with a transport
Path.

Definition 11.1. Given two measures a,b as in (1.2), let P = {V (P ) , E (P ) , ω} be an acyclic transport path
from a to b with V (P ) = {v1, v2, . . . , vJ}, E(P ) = {e1, e2, . . . , eK}, and 0 ≤ α < 1. A function Z : V (P ) → R

is called an α-landscape function associated with P if for each edge e ∈ E (P ), it holds that

Z
(
e+
)− Z

(
e−
)

= ω (e)α−1 length (e) . (11.1)
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Using matrix notations the system (11.1) of linear equations on Z becomes

ZQ (GP ) = D (11.2)

where Z = [Z (v1) , Z (v2) , . . . , Z (vJ)], Q (GP ) is the incidence matrix of the underlying graph GP of P and
D = [ω (e1)

α−1 length (e1) , . . . , ω (eK)α−1 length (eK)].
One can show that the dimension of the solution space of the system (11.2) is equal to the connected

components of the underlying graph GP . In particular, for a connected transport path P , its α-landscape
function is unique up to a constant. This agrees with the motivation that the landscape function represents the
elevation of the landscape.

Landscape functions give another formula for the transport cost Mα(P ):

Proposition 11.2. For any α-landscape function Z associated with a transport path P ∈ path (a,b), it holds
that ∫

X

Zd (b− a) = Mα (P ) .

In particular, if P is an α-optimal transport path from a to b, then∫
X

Zd (b− a) = dα (a,b).

11.3. p-harmonic functions on directed graphs

It turns out that the study of α-landscape functions is closely related to the study of p-harmonic functions
on directed graphs where p = α

α−1 is non-positive. More precisely, let G be an acyclic directed graph with a
vertex set V (G) and an edge set E (G) of directed edges.

Definition 11.3. For any two vertices v, ṽ ∈ V (G), we say v ≺ ṽ if there exists a list of edges {ei1,ei2 , . . . , eik
}

in E (G) with e+ih
= e−ih+1

for h = 1, 2, . . . , k − 1, and e−i1 = v , e+ik
= ṽ.

Note that since G is acyclic, the partial order ≺ is well-defined on V (G). In particular, e− ≺ e+ for any edge
e ∈ E (G).

Definition 11.4. Let Ṽ be a subset of V (G). A function u : Ṽ → R is monotone increasing with respect to G
if for any x, y ∈ Ṽ with x ≺ y, it holds that u (x) < u (y).

Let FG be the family of all monotone increasing functions u : V (G) → R with respect to G. For instance,
any landscape function Z associated with an acyclic transport path P is monotone increasing with respect to
the underlying graph GP .

For each u ∈ FG and p ≤ 0, the p-energy of u is given by

Ep (u) =
∑

e∈E(G)

|∇u (e)|p length (e) (11.3)

where for each e ∈ E (G) with unit directional vector 	e,

∇u (e) =
u (e+) − u (e−)

length (e)
	e·

We are interested in minimizing Ep (u) among u ∈ FG with a Dirichlet boundary condition.
Let ∂G be a subset of V (G) such that{

v ∈ V (G) : either there is no edge e ∈ E (G) with e+ = v
or there is no edge e ∈ E (G) with e− = v

}
⊆ ∂G ⊆ V (G) .

In other words, ∂G contains all source and sink vertices in V (G), and may contain some other vertices. We
view ∂G as the boundary set of V (G).
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Problem 11.5. Suppose u0 : ∂G→ R is monotone increasing with respect to G, and p < 0. Minimize

Ep (u) =
∑

e∈E(G)

|∇u (e)|p length (e)

among all u ∈ U = {u : V (G) → R|u ∈ FG and u = u0 on ∂G} .

By identifying u ∈ FG with the value (u(v1), u(v2), . . . , u(vI)), it turns out that this minimization problem
is equivalent to a minimization of some strictly convex function f on a nonempty convex domain Ω in R

I . The
“nonempty convex” property of Ω is guaranteed by the monotonicity of u0. The associated Euler−Langrange
equation is

∑
e∈E(G)
e+=vi

|∇u (e)|p−1 =
∑

e∈E(G)

e−=vi

|∇u (e)|p−1 (11.4)

at each vi ∈ V (G) \ ∂G. Using the discrete version of the divergence notation:

div
(
	V
)

(v) =
∑

either e+=v
or e−=v

	V (e) · 	e

for any vector field 	V : E (G) → Rm, equation (11.4) can be expressed as the p-Laplace equation on the graph G:

div
(
|∇u|p−2 ∇u

)
(v) = 0 (11.5)

for any v ∈ V (G) \∂G.
A solution to the p-Laplace equation (11.5) in U is called a p-harmonic function on the graph G. By the

strict convexity of f , any p-harmonic function u is an Ep-minimizer in FG with respect to its boundary datum.
The following theorem describes an equivalent relationship between landscape functions and p-harmonic

maps:

Theorem 11.6. Let α ∈ [0, 1) and p = α
α−1 ≤ 0 be the conjugate of α.

1. If Z is an α-landscape function associated with an acyclic transport path P , then Z is a p-harmonic function
on the underlying graph GP . Moreover, Mα (P ) = Ep (Z).

2. Conversely, if u is a p-harmonic function on an acyclic graph G, then u is an α-landscape function associated
with an acyclic transport path P with G being its underlying graph. Moreover, Ep (u) = Mα (P ).

11.4. Landscape functions associated with optimal transport paths

Proposition 11.7. Suppose P ∈ Path (a,b) is an α-optimal transport path. For any α-landscape function Z
associated with P, it holds that at each vertex v ∈ V (P ) \ {x1, . . . , xk, y1, . . . , y�},∑

e+=v

ω (e)∇Z (e) =
∑

e−=v

ω (e)∇Z (e) (11.6)

and ∑
e+=v

|∇Z (e)|p−1 ∇Z (e) =
∑

e−=v

|∇Z (e)|p−1 ∇Z (e) (11.7)

for p = α
α−1 .
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Remark 11.8. For any transport path P , by (1.3), mass is conserved at each interior vertex of P . When
the transport path P is optimal, by (11.6), momentum is also conserved at each interior vertex when viewing
∇Z(e) = w(e)α−1	e as the velocity of a moving particle of mass w(e) on each e.

The following proposition says that any α-landscape function associated with an α-optimal transport path
is Lipschitz. Before stating the proposition, we first extend the domain of a landscape function Z : V (P ) → R

to the support of P by linear extensions of Z on each edge of P .

Proposition 11.9. Suppose P ∈ Path (a,b) is an α-optimal transport path for some α ∈ (0, 1). Let Z be an
α-landscape function associated with P . Then, for any x, y on the same connected components of the support of
GP , it holds that

|Z (x) − Z (y)| ≤ 1
α
σα−1 ‖x− y‖

where σ = mine⊆γ ω (e), and γ is the unique curve on P from x to y. In particular, when P is connected, let
σP = mine∈E(P ) ω (e), then

|Z (x) − Z (y)| ≤ 1
α

(σP )α−1 ‖x− y‖
for any x, y on the support of GP .
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