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NUMERICAL SOLUTION OF THE MONGE–KANTOROVICH PROBLEM
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Abstract. We present an numerical method to solve the L2 Monge–Kantorovich problem. The method
is based on a continuation approach where we iteratively solve the linearized mass conservation equation,
progressively decreasing a constant lift-up to map compact support densities in the limit. A Lagrangian
as well as an Eulerian integration scheme are proposed. Several examples relative to the transport of
two-dimensional densities are investigated, showing that the present methods can significantly reduce
the computational effort.
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1. Introduction

Optimal transportation is increasingly used to model problems in mechanics, physics, image analysis and
other fields, see e.g. [12] and references therein. Because of all these applications, this old topic first introduced
by Monge in 1781 [8], has attracted considerable attention these last years especially from a numerical point of
view [1–3, 5, 6, 9, 10]. Indeed, compared to the theoretical results already obtained, the discrete solution of this
problem still poses challenging problems in terms of computational burden and accuracy.

In this work we focus on the numerical solution of the L2 Monge–Kantorovich problem (MKP) defined as
follows. Let ρ0(ξ), ρ1(x) be two smooth enough non-negative scalar density functions with compact support Ω0

and Ω1, where ξ, x ∈ R
d and d is the space dimension. We assume that

∫
Ω0

ρ0(ξ)dξ =
∫

Ω1

ρ1(x)dx.

Let X : Ω0 → Ω1 a smooth one-to-one map such that X(ξ) realizes the transfer of ρ0 onto ρ1, i.e., a map that
satisfies the following Jacobian equation:

ρ0(ξ) = det(∇X(ξ))ρ1(X(ξ)).

Keywords and phrases. Optimal transport, Monge–Kantorovich problem, numerical solution, Newton method, continuation
approach.
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This equation is underdetermined with respect to X(ξ) and a solution is selected among all possible maps by
introducing the following L2 Kantorovich–Wasserstein distance:

inf
X

∫
Ω0

ρ0(ξ)|X(ξ) − ξ|2dξ.

The L2 MKP corresponds to finding a map X∗ such that this infimum is achieved. It has been proved that this
problem admits a unique solution [4, 11, 12], which is the gradient of a.e. convex function Ψ : Ω0 → R:

X∗(ξ) = ∇Ψ(ξ).

In the scientific computing literature, there exist two class of methods to approximate this problem. The first
one is based on a direct solution of the Monge–Ampere equation (MAE):

ρ0(ξ) = det(∇2Ψ(ξ))ρ1(∇Ψ(ξ)).

The difficulty in approaching the problem in this way is that the boundary conditions of this equation are not
known a priori. Instead, the solution must verify the constraint X(Ω0) = Ω1. For the solution of the MAE with
Dirichlet b.c. a recent numerical study in two dimensions is discussed in [5], where the solution is obtained via
a least-square formulation. The full MKP solution via a MAE was considered in [3]. The numerical method
employed is based on the solution of MAE with boundary conditions that are iteratively updated to converge
to the MKP solution.

In a recent work, Saumier et al. [10] propose a Newton algorithm to solve the L2 MKP for smooth periodic
densities bounded away from zero. This method is an extension of the scheme proposed by Loeper and Rapetti
for the solution of the MAE on a torus [7] for which convergence is ensured. The convergence of this Newton
algorithm relies on the assumption that the initial and final densities are bounded away from zero, as the under-
relaxation parameter of the Newton update is vanishingly small when the density support becomes compact.

Another class of methods moves on from ideas of continuum mechanics. Benamou and Brenier (BB) nu-
merically solved the MKP by using an augmented Lagrangian method [2]. In their formulation a temporal
dimension is introduced so that, given Π : [0, 1] × Ω0 → R

d, with Π(0, ξ) = ξ, Π(1, ξ) = X(ξ), x = Π(t, ξ) and
∂tΠ = v(t, x), the MKP amounts to the solution of

inf
ρ,v

∫
Rd

ρ(t, x)|v(t, x)|2 dx,

where the infimum is taken among all densities ρ(t, x) ≥ 0 and velocity fields v(t, x) ∈ R
d satisfying the

continuity equation
∂tρ + ∇ · (ρv) = 0,

and the initial and final conditions:
ρ(0, ·) = ρ0, ρ1(1, ·) = ρ1.

The BB method results in a robust and viable discrete minimization problem under constraints which admits a
unique solution. However, since it is a gradient method in space-time, the computational cost may be relevant.
Also, numerical diffusion of the transported densities is observed in the simulation of the transport for inter-
mediate times. A recent improvement of the minimization method at the base of the BB algorithm is proposed
in [9]. Using proximal splitting schemes the authors were able to solve difficult transport problems in presence
of geometric constraints.

A yet different approach is devised in [1]. The idea is to first consider a mass preserving mapping, not
necessary optimal, between the initial and final distributions and then to solve a PDE up to steady state in
order to rearrange the non-optimal mapping into an optimal one. It is shown that also this approach leads to a
gradient-based minimization problem for which many gradient steps are usually needed to converge.
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In this paper we investigate two computationally efficient algorithms to solve the optimal mass transfer
problem for compactly supported densities. These schemes rely on a continuation approach that progressively
reduces a constant lift-up of the mapped densities. Two schemes are presented: a Lagrangian scheme which is an
extension of the Newton method introduced in [7,10] and its Eulerian counterpart, based on a remeshed particle
method, in the continuum mechanics setting proposed by BB. In applications where the Newton method alone
would not converge, these approaches prove to be effective and preserve the compactness of the supports in the
limit.

We validate these numerical schemes on several test cases involving compactly supported densities, including
an example from medical imaging.

2. The general setting

2.1. Newton iteration

The main idea of solution relies on the assumption that we dispose of a mapping at iteration n that is
a perturbation of the optimal mapping. We derive a linear perturbation equation that is used to iteratively
improve the initial guess. Let us assume that the optimal mapping is

Xo(ξ) = ∇ξΨo

and that the mapping obtained at iteration n is

Xn(ξ) = ∇ξΨo + ∇ξΨ
n
ε .

where the error Ψn
ε satisfies ‖Ψn

ε ‖2 ≈ ε. We define ρn
0 (ξ) as the initial density at iteration n that mapped by

Xn(ξ) gives the exact final density ρ1(x). Then, taking a first-order Taylor expansion, we have

ρn
0 (ξ) := ρ1(Xn(ξ)) det (∇ξX

n(ξ))
= ρ1(Xo) det (∇ξXo)︸ ︷︷ ︸

=ρ0(ξ)

+ det (∇ξXo)ρ1(Xo)Tr
(
(∇ξXo)−1∇2

ξΨ
n
ε

)

+ det (∇ξXo)∇xρ1(Xo) · ∇ξΨ
n
ε + o(ε),

where Tr denotes the matrix trace operator.
At first order in ε, we have

ρn
0 (ξ) − ρ0(ξ)
det (∇ξXo)

≈ ρ1(Xo)Tr
(
(∇ξXo)−1∇2

ξΨ
n
ε

)
+ ∇xρ1(Xo) · ∇ξΨ

n
ε . (2.1)

The mapping update is then found by the iteration

Xn+1 = Xn − α∇Ψn
ε ,

that converges to Xo as a geometric series, for α ∈ [0, 1], in the linearized approximation [7, 10].

Remark 2.1. If the approximated mapping is a perturbation of identity, i.e.,

Xn(ξ) = ξ + ∇ξΨ
n
ε

then equation (2.1) reduces to
ρn
0 (ξ) − ρ0(ξ) ≈ ∇ξ · (ρ1(Xn(ξ))∇ξΨ

n
ε ) (2.2)

that is equivalent to a semidiscretization in time of the continuity equation written in Eulerian form.
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2.2. The initial mapping

The choice of the mapping used to initialize the Newton method can be important to reduce the number of
iterations to converge. This is especially true when the Wassterstein distance is a priori large. A first way to
initialise this mapping is to consider a modification of the approach proposed in [1]. As a first step, we compute
a mapping that transports ρ0 onto ρ1. Without loss of generality we assume that Ω = [−Λ, Λ]× [−Λ, Λ], Λ ∈ R.
We assume also that the initial and final densities have compact support included in Ω. Let a : [−Λ, Λ] → R be
the solution of

a′(ξ1)
∫ Λ

−Λ

ρ1(a(ξ1), x2) dx2 =
∫ Λ

−Λ

ρ0(ξ1, ξ2) dξ2 (2.3)

with x = X(ξ), ξ = (ξ1, ξ2), x = (x1, x2) and a(−Λ) = −Λ. Also let b : Ω → R be solution of the parametric
ordinary differential equation

a′(ξ1)
∂b(ξ1, ξ2)

∂ξ2
ρ1(a(ξ1), b(ξ1, ξ2)) = ρ0(ξ1, ξ2) (2.4)

with b(ξ1,−Λ) = −Λ, ∀ξ1 ∈ [−Λ, Λ]. The mapping Xω = (a(ξ1), b(ξ1, ξ2)) takes ρ0 onto ρ1 by construction.
Other choices of a(ξ) respecting monotonicity, regularity and appropriate initial conditions are possible.

The mapping Xω = a(ξ1) b(ξ1, ξ2) is not in general the gradient of a complex potential, while this requirement
is a necessary condition for optimality. However, this mapping can always be decomposed as the sum of an
irrotational field and a solenoidal field:

Xω = ∇ξΨi + ∇× A. (2.5)

Hence, the actual initial mapping ∇ξΨi is found by solving ∇×∇×A = ∇×Xω with homogeneous Neumann
boundary conditions and computing ∇ξΨi = Xω −∇×A. In two space dimensions this amounts to the solution
of one Laplace equation.

A different way to initialise the mapping is to rely on the following discretisation of the continuity equation
in Eulerian form:

∇ξ ·
(

ρ1 + ρ0

2
∇ξΨi

)
= ρ0(ξ) − ρ1(ξ)

with homogeneous Dirichlet boundary conditions. This mapping is defined modulo a rigid translation that can
eventually be inferred by the average displacement of the first moment of the initial and final distributions. In
the following numerical illustrations we have observed that both approaches reduce the number of iteration to
convergence.

2.3. Regularization and continuation

Equations (2.1) and (2.2) are well defined only on the support of the initial and final densities. Therefore,
in actual computations involving compact support densities, the initial and final densities are regularized by
adding a small constant ζ so that the leading order differential operator is well defined on the entire domain:

(ρ1 (Xn) + ζ) Tr
(
(∇ξX

n)−1∇2
ξΨ

n
ε

)
with ζ ≈ 10−3 in practice.

When the support of the initial and final density tends to be compact and correspondingly the Wasserstein
distance dw increases, the under-relaxation parameter α of the Newton method in Section 2.1 becomes excessively
small to ensure convergence [7, 10]. In practice the residuals are hanging and convergence is never reached. In
those cases it is possible to solve the problem by continuation. We start by observing that

lim
ζ→∞

ρ0(ξ) + ζ

ρ1(x) + ζ
= det (∇ξX) = 1
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and hence limζ→∞ dw = 0. Therefore, for ζ large enough the condition Xo(ξ) ≈ ξ is verified.
The idea is then to add to the initial and final densities a constant such that their Wasserstein distance is

reduced and hence the Newton algorithm converges. This constant is then iteratively brought to O(10−3) for
unitary initial and final densities.

Taking ζk ∈ R
+, ∀k ∈ N, we define

ρk
0 = ρ0 + ζk and ρk

1 = ρ1 + ζk.

Once the optimal mapping Ψk
o for ζk is determined, we pose ζk+1 = (1− β)ζk with β ∈ [0, 1] and in practice we

choose β = 0.1. The optimal mapping Ψk
o found for ζk is then taken as the initial mapping Ψk+1

i for the next
optimal transport problem with ζk+1. The overall numerical method for the continuation approach is given in
Algorithm 1.

Algorithm 1. Continuation algorithm.
1. k = 0, ζ0 given, ρ0

0 = ρ0 + ζ0, ρ0
1 = ρ1 + ζ0;

2. Solve the L2 MKP as in Section 2.1 to obtain Ψk
o ;

3. ζk+1 = (1 − β)ζk;
4. ρk+1

0 = ρ0 + ζk+1, ρk+1
1 = ρ1 + ζk+1;

5. Ψk+1
i = Ψk

o ;
6. k = k + 1;
7. go to 2 while ζk > 10−3.

Remark 2.2. This approach assumes that the solution of the MAE can be continued, i.e., there exists a
neighboring solution that results from a small perturbation of the initial and final densities. Let us note:

F : (ρ0, ρ1, Ψ, ζ) → (ρ0 + ζ) − (ρ1(∇Ψ) + ζ) det(∇2Ψ).

Thanks to results stated in [10] and Theorem 2.2 of [7] (Caffarelli’s theorem), Dζ F is invertible and bounded,
as it corresponds to the same linearized operator in Section 2.1. Existence of a neighboring solution is then
ensured by the implicit function theorem.

In order to give a first estimate of ζ0, it is natural to assume that it is proportional to the Wasserstein distance
dw between the two densities. In the following test cases we used the estimate

ζ0 ∝
∫

ρ0|∇ξΨi − ξ|2 dx,

where ∇Ψi is the initial mapping, as explained in Section 2.2. For example, for test case TC3 (see Sect. 4) we
took ζ = 1 as the Wasserstein distance approximation above is of the same order.

Similar results are obtained for an estimation of dw that can be computed a priori. Let

I0 =
(∫

Ω0

ρ0ξ
2dξ

)1/2

I1 =
(∫

Ω1

ρ1x
2dx

)1/2

.

Then, applying the Cauchy–Schwartz inequality we have that dw ≥ |I1 − I0|. Also, by the triangular inequality
we have dw ≤ I1 + I0. These inequalities can give an estimate of dw. For example, when I1 � I0, I1 is a good
approximation of dw. This is the case when the origin of the coordinate system is the center of mass of ρ0 and
the supports of the two densities are disjoint.
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3. Discrete solution

In this section, we detail two solution approaches to solve the L2 MKP for a given ζk. A Lagrangian approach,
that can readily be coded as it implies the solution of a rather simple elliptic PDE and an Eulerian approach,
that can more easily be applied in more general geometries.

3.1. Lagrangian approach

According to previous sections, the following iterative method (Algorithm 2) is considered. In [7, 10] it is

Algorithm 2. Lagrangian iterative algorithm.
1. n = 0;
2. compute X0 = ∇Ψi as explained in Section 2.2;
3. ρn

0 (ξ) = ρ1(X
n(ξ)) det∇ξX

n(ξ);
4. compute Ψn

ε by solving equation (2.1);
5. Xn+1 = Xn − α∇Ψn

ε ;
6. n = n + 1;
7. go to 3 if convergence is not attained;

shown that this algorithm always converges for sufficiently small damping coefficients (i.e. for α small), when
the distributions ρ0 and ρ1 are sufficiently smooth, periodic and bounded away from zero. Algorithm 2 then
converges as a geometric series, i.e.,

Ψn
ε ≈ Ψo (1 − (1 − α)n) . (3.1)

Therefore, defining the normalized residual as r = ‖Ψn
ε − Ψo‖/‖Ψo‖, we have:

log r = n log (1 − α), (3.2)

where log(1 − α) is the rate of convergence of the iterative scheme.
To approximate the problem, we discretize equation (2.1) by a standard second-order finite difference scheme

on a Cartesian grid. At the discrete level, we impose homogeneous Dirichlet boundary conditions to equa-
tion (2.1). In practice, since the initial and final densities of the problem without the lift-up ζ have compact
support, the boundary conditions imposed at the borders of the computational domain do not significantly affect
the solution as ζ → 0. Mass transportation is performed by the continuity equation in Lagrangian coordinates.

In the next sub-section we will provide an alternative approach where the continuity equation is integrated
in Eulerian coordinates. For numerical examples, see Section 4, we will assume that the convergence is attained
when a threshold criterion on ‖ρn

0 − ρ0‖∞ is satisfied.

3.2. Eulerian approach

In the Eulerian framework, the solution of the L2 MKP consists in determining the initial velocity u(0, .) = u0

satisfying: ⎧⎪⎪⎨
⎪⎪⎩

∂t(ρ) + ∇ · (ρu) = 0 (3.3)

∂t(ρu) + ∇ · (ρu ⊗ u) = 0 (3.4)

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1. (3.5)

The optimal initial velocity u0 is written under the form u0 = ∇Ψ , where the potential Ψ is the Lagrange multi-
plier of constraints (3.3) and (3.5). We propose an alternative solution method for u0 by adapting Algorithm 2
to the Eulerian framework.
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Starting from an initial guess for u0, we numerically solve equations (3.3)–(3.4) as detailed hereafter, using
ρ(0, .) = ρ0 as the initial condition for density. We get a final density ρ̃1 and a final velocity field that we
denote ũ1. Since in general the initial velocity guess does not correspond to the optimal solution, the density
ρ̃1 is different from ρ1. The next step is to find a potential velocity field transporting the data ρ̃1 on ρ1. This
velocity field is considered as a correction to the initial mapping.

To find the additional velocity field, we approach the continuity equation (3.3) by the following elliptic
problem:

∇ ·
(

ρ1 + ρ̃1

2
∇Ψ̃

)
= ρ̃1 − ρ1.

This problem is solved using classical second-order centered finite-differences. From the potential Ψ̃ we com-
pute a velocity field ũ = ∇Ψ̃ , which can be seen as the velocity field necessary to advect ρ̃1 to ρ1. As we want to
use it as a correction to u0, we have to advect it backward in time to make it match with the initial density ρ0.
We therefore perform an integration backward in time of the system (3.3)–(3.4) with final conditions ρ̃1 and ũ1,
obtained by the forward numerical computation. The result of the backward advection of ũ, that we denote ũn

0 ,
is added to u0 as a corrective term. The full method is detailed in Algorithm 3.

The numerical resolution of equations (3.3)–(3.4) is performed using a remeshed particle method, similar to
the one developed in [13] for compressible Euler equations. In this class of methods, the fluid is discretized on
small masses concentrated on points. These points, which are called particles, are displaced in a Lagrangian way.
New particles, uniformly distributed at the nodes of an underlying grid, are created at regular time intervals by
a conservative interpolation of the existing particles, what is usually called remeshing the particles.

Because the particles themselves are moved in a Lagrangian way, remeshed particle methods are submitted to
less restrictive stability conditions, in the context of advection problems, than more classical grid-based methods
such as finite-differences or finite-volume methods. Indeed their stability condition is typically proportional to
the inverse of the velocity gradient (meaning that the particles trajectories do not cross), instead of a classical
CFL condition. In the context of the method that we present here for optimal mass transport, we need to
compare the density computed at the final time to the final exact density ρ1. Therefore, the use of larger time
steps is an advantage because it means that the final state is computed with less numerical dissipation due to
the temporal integration than in the case of more classical grid-based methods.

Algorithm 3. Eulerian iterative algorithm.
1. n = 0;
2. initialize u0;
3. for initial data ρ0 and u0 = Xn, compute ρn

1 and un
1 by numerically solving system (3.3)–(3.4);

4. compute Ψ̃ by solving equation:

∇ ·
(

ρ1 + ρ̃1

2
∇Ψ̃

)
= ρ̃1 − ρ1

5. integrate backward in time system (3.3)–(3.4) with final conditions ρ̃1 and ũ1 to advect backward the velocity ũ and
get at initial time the velocity correction ũn

0 matching with ρ0;
6. Xn+1 = Xn + α ũn

0 ;
7. n = n + 1;
8. go to 3 if convergence is not attained;
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Figure 1. Wasserstein distance for ζk increassing for the test case TC3 (green line) and for
the test case TC0 with δ = 0.5, 1 (blue and red lines). (Color online).

4. Numerical illustrations

4.1. Convergence by continuation

We consider the following test case (TC) with distributions:

TC0: ρ0 = exp
(−|x|2) + ζ; ρ1 = exp

(−|x + δ|2) + ζ;

where ζ is the regularization parameter. As shown in [7,10], the Newton method converges for all smooth enough
periodic densities bounded away from zero, provided that the under-relaxation parameter α is sufficiently small.
For TC0, when δ > 0.5 the under-relaxation parameter α is so small that the Newton method does not converge
in practice. Thanks to continuation approach, we can still compute in an efficient way the optimal transportation
between these two distributions. We display in Figure 1, the evolution of the dw as a function of ζk for test cases
TC0 and TC3 (see below). It is seen that as expected for increasing ζk, the Wasserstein distance decreases. The
density lift-up reduces dw and speeds up convergence. Figure 2 shows that there is no impact on the optimal
mapping ∇Ψ if one regularizes the initial and final densities by adding a small constant ζ = 10−3 or ζ = 10−4,
confirming that under a certain threshold the regularization has not impact on the optimal mapping.

4.2. Transport tests

In this section, we provide several numerical validations of our methods. We perform the following test cases:

• TC1. We consider two density distributions having a non-negligible support intersection. We take two
Gaussians of unit mass, same variance and displaced of 0.2 in the vertical direction. The final density
has a cross correlation of 0.5, the initial is isotropic. We have:

ρ0(ξ) = 3.97887e−12.5(ξ2
1+(ξ2+0.1)2)

ρ1(x) = 4.59441 e−16.66666(x2
1+x1(x2−0.1)+(x2−0.1)2).
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Figure 2. Stream curves corresponding to ∇ξΨ the optimal mapping for ζ = 10−3 (right) and
ζ = 10−4 (left) for the test case TC0 with δ = 0.1.

• TC2. This is similar to TC1, but the centroid of the initial density is further displaced. We take the initial
and final density distributions:

ρ0(ξ) = 1.98944
(
e−12.5((ξ1−0.2)2+(ξ2+0.1)2) + e−12.5((ξ1+0.2)2+(ξ2+0.1)2)

)
ρ1(x) = 3.97887 e−12.5(x2+y2).

• TC3. In this case there is mass separation and virtually no intersection between the initial and final density
support. The initial and final density are

ρ0(ξ) = 1.98944
(
e−12.5((ξ1−0.5)2+(ξ2+0.3)2) + e−12.5((ξ1+0.5)2+(ξ2+0.3)2)

)
ρ1(x) = 3.97887 e−12.5(x2+y2).

• TC4. A final case showing the robustness of the Newton iteration is presented. The mapping between two
scans of 1682 pixels relative to the abdomen of a breathing patient, see Figure 11, is determined.

Test case TC1, TC2, TC3 are performed using both the Lagrangian and the Eulerian schemes. We consider
a square domain with Λ = 2 discretized using a uniform 200 × 200 grid. Compared to the Lagangian case, the
corresponding Eulerian TCs are rotated of π/4 in order to show the accuracy of the particle remeshing in a
transverse direction with respect to the grid.

For TC1, with α = 0.2, the expected rate of convergence is of 0.09691, see (3.2). The fitting of the convergence
curve with a straight line gives a convergence rate of 0.0958315 for the Algorithm 2 (Lagrangian), see Figure 3.
The relative error in the max norm is of the order of 10−3 after 23 iterations. The solution with Algorithm 3
(Eulerian) is given in Figure 4.

In the next test case (TC2), the expected rate of convergence is of.0457575 (α = 0.1), the fitting of the
convergence curve with a straight line gives a convergence rate of 0.444000 for Algorithm 2 (Lagrangian), see
Figure 5. The solution with Algorithm 3 (Eulerian) is given in Figure 6.

Finally, in TC3 the Lagrangian scheme was initialized with a regularization ζ = 1 and in 40 steps of the
continuation algorithm it was reduced to 10−3. The initial condition along with the optimal mapping stream
curves are shown in Figure 7. The intermediate and final solution and error with Algorithm 2 (Lagrangian) are
shown in Figures 8 and 9. The solution with Algorithm 3 (Eulerian) is given in Figure 10.
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Figure 3. TC1. Error after 23 iterations and convergence for Algorithm 2.

Figure 4. TC1. Top picture row: Plot of density isolines ρ(t, x) for t = 0, 0.25, 0.5, 0.75, 1 along
with the optimal path computed by Algorithm 3. Bottom: Red (resp. blue) line represents the
error in L1 norm (resp. L∞ norm). (Color online).
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Figure 5. TC2: Initial distribution, final distribution and convergence for Algorithm 2. Isolines
from 0 to the max spaced of 0.2.

The last case presented, TC4, is relative to front abdomen sections of a breathing patient, Figure 11 (courtesy
of B.D. de Senneville). The figure shows the initial velocity field relative to the optimal transport between the
two subsequent scans. In certain focalized beam therapies, like focalized ultrasounds, it is crucial to accurately
predict the movement of a patient in order to calibrate the displacement of the targeted region. In applications,
real-time optical flow techniques based on heuristic arguments are employed. The methods presented here are
not real time, although the solution of the MKP took a few seconds in this case. However, the solution of the
MKP to determine the displacement between two images offers the advantage over optical flow techniques of
being objective in the sense that it is based on a clearly identified model.

5. Discussion and conclusions

In this paper, we proposed two algorithms to compute in an effecient way the numerical solution of the L2-
Monge–Kantorovich problem for smooth enough densities with compact support. We observe that Algorithms 2
and 3 are suitable (without continuation) for transports where the distance travelled by the elementary masses
is small compared to the characteristic length of the density distributions.

Compared to Algorithms 2 and 3, the BB approach has the advantage of solving for a space-time saddle
point. Hence the trajectories are not identically straight line, as in the case of the present method, and the
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Figure 6. TC2. Top picture row: Plot of the isolines of the density ρ(t, x) for t =
0, 0.25, 0.5, 0.75, 1 with Algorithm 3. Bottom: Convergence of Algorithm 3. Red (resp. blue)
data represent the log10(||ρn

1 − ρ1||1) (resp. log10(||ρn
1 − ρ1||∞)) as a function of the number of

iterations. (Color online).

Figure 7. TC3. Initial and final densities and stream curves corresponding to ∇ξΨo, the
optimal mapping obtained with Algorithm 2.

problem remains well conditioned also for large mass displacements as shown in [9]. This is of course at the
price of a costly computational problem in d + 1 dimensions.

In order to show the computational advantage of the Newton iteration for suitable cases, we compare the CPU
time to solve the MKP by the BB method, to the CPU time of algorithms presented here. Since the convergence
criteria are different for the two methods, we will determine the CPU time so that the initial criteria will be
divided by 30, 60 and 100.
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Figure 8. TC3. Intermediate densities obtained with Algorithm 2 for Xα = ξ + χ(∇ξΨo − ξ)
with χ = {0, 1

4 , 1
2 , 3

4} from left to right, top to bottom. Isolines from 0 to the max spaced of 0.2.

We recall that the convergence criterion of the BB method is based on the following residual of the Hamilton–
Jacobi equation (see [2]):

resn = ∂tφ
n +

|∇φn|
2

,

where φ is the Lagrange multiplier of constraints (3.3) and (3.5). The convergence criterion is given by:

critnb =

√√√√ ∫ 1

0

∫
Ω ρn|resn|∫ 1

0

∫
Ω

ρn|∇φn|2
·

For the Picard iteration method presented here, we consider the error between the given final distribution ρ1

and the final distribution ρn
1 at iteration n:

critn = ||ρ1 − ρn
1 ||∞
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Figure 9. TC3. Final density obtained with Algorithm 2 (α = 1) and error.

Figure 10. TC3. Plot of the isolines of the density ρ(t, x) along the optimal path computed
with Algorithm 3.

Table 1. CPU time: BB method vs. Our methods.

BB method Eulerian method Lagrangian method

critn
b CPU time critn CPU time critn CPU time

Initial Criteria (IC) 0.707107 0 m0 s 2.063231 0 m0 s 2.063231 0 m0 s
≈IC/30 0.023547 2 m36 s 0.06004 0 m4.13 s 0.060026 0 m2.6 s
≈IC/60 0.011784 5 m12 s 0.030851 0 m5.32 s 0.034312 0 m3.2 s

IC/60 < IC ≤ IC/100 0.009841 19 m31 s 0.018421 0 m6.22 s 0.027887 0 m3.74 s

in the Eulerian case. For the Lagrangian case we consider the equivalent error based on the initial density. We
consider TC1. For the BB algorithm, we discretize the time domain using 32 nodes and the space domain with
200 × 200 grid points. We take optimal numerical parameters in the Uzawa iteration in order to converge as
quickly as possible.

Table 1 shows the evolution of the CPU time for different convergence thresholds. We can see that CPU
time is very small for the present methods compared to the BB method. Note also that it is impossible to
reduce the initial criteria by 100 in a reasonable time for BB. This is the reason we consider a convergence
IC/60 < IC ≤ IC/100 in the table above. Usually, in order to get to convergence of the BB algorithm
(IC/100), we have about 3000 Uzawa iterations with a computing time larger than three hours.

Cases where the Wasserstein distance between the densities is small are particularly favorable for the Newton
solution because there is no need to regularize the solution by adding an initial constant ζ to both the initial
and final distributions. In cases where the Wasserstein distance is larger, like TC3, the computational advantage
of the continuation method with respect to the BB scheme is reduced (initially, ζ = 1). For example, in TC3
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Figure 11. TC4. Top row: Initial and final grey-scale densities. Bottom: Optimal mapping.
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the solution is obtained with the Lagrangian scheme in about 5 min CPU time, where the BB scheme takes 20
min to get to IC/60 < IC ≤ IC/100. Still, the continuation method is more advantageous, whereas the pure
Newton iteration does not converge in this case.

In conclusion, the continuation method that we presented can lead to a significant improvements in terms
of convergence rate over the BB scheme, in particular when the Wasserstein distance is small. This can be a
significant advantages for large three-dimensional problems in imagery and computational mechanics.
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[9] N. Papadakis, G. Peyré and E. Oudet, Optimal transport with proximal splitting. SIAM J. Imaging Sci. 7 (2014) 212–238.

[10] L.-P. Saumier, M. Agueh and B. Khouider. An efficient numerical algorithm for the l2 optimal transport problem with periodic
densities. IMA J. Appl. Math. (2013).

[11] C. Villani, Topics in Optimal Transportation. American Mathematical Society, 1st edition (2003).

[12] C. Villani, Optimal Transport, old and new. Springer-Verlag, 1st edition (2009).

[13] L. Weynans and A. Magni, Consistency, accuracy and entropy behaviour of remeshed particle methods. ESAIM: M2AN 47
(2013) 57–81.


	Introduction
	The general setting
	Newton iteration 
	The initial mapping
	Regularization and continuation

	Discrete solution 
	Lagrangian approach
	Eulerian approach 

	Numerical illustrations 
	Convergence by continuation
	Transport tests

	Discussion and conclusions 
	References

