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ENERGY CONSERVATION AND NUMERICAL STABILITY
FOR THE REDUCED MHD MODELS OF THE NON-LINEAR JOREK CODE
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Abstract. In this paper we present a rigorous derivation of the reduced MHD models with and without
parallel velocity that are implemented in the non-linear MHD code JOREK. The model we obtain
contains some terms that have been neglected in the implementation but might be relevant in the non-
linear phase. These are necessary to guarantee exact conservation with respect to the full MHD energy.
For the second part of this work, we have replaced the linearized time stepping of JOREK by a non-
linear solver based on the Inexact Newton method including adaptive time stepping. We demonstrate
that this approach is more robust especially with respect to numerical errors in the saturation phase
of an instability and allows to use larger time steps in the non-linear phase.
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1. PHYSICAL CONTEXT AND RESISTIVE MHD

1.1. Physical context: ITER and ELM’s simulations

The aim of magnetic confinement fusion is to develop a power plant that gains energy from the fusion of
deuterium and tritium in a magnetically confined plasma. ITER, a tokamak type fusion experiment currently
being built in the South of France, is the next step towards this goal.

In order to achieve a reasonable lifetime of first wall materials in ITER and future fusion reactors, plasma
instabilities like edge localized modes (ELMs) [30, 31] need to be well controlled. Numerical modelling can
help to develop the necessary understanding of the relevant physical processes. A physical model well suited
to describe those large scale instabilities is the set of magneto-hydrodynamic equations (MHD) or the simpler
reduced MHD model.

Keywords and phrases. MHD, instabilities, nonlinear solvers, reduction, toroidal.

I Inria Nancy grand Est, TONUS Team, 67000 Strasbourg, France. emmanuel.franck@inria.fr

2 Max-Planck-Institut fiir Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany.
mhoelzl@ipp.mpg.de; alessig@ipp.mpg.de

3 Technische Universitiit Miinchen, Boltzmannstr. 3, 85748 Garching, Germany. sonen@ipp.mpg.de

Article published by EDP Sciences © EDP Sciences, SMAI 2015


http://dx.doi.org/10.1051/m2an/2015014
http://www.esaim-m2an.org
http://www.edpsciences.org

1332 E. FRANCK ET AL.
1.2. Resistive MHD

We begin by introducing the resistive Magnetohydrodynamic (MHD) fluid system in 3D. The spatial variable
is x € R3. We note p the mass density of the plasma, v the velocity, 7' the temperature, p = pT" the pressure,

B the magnetic field, J the current and E the electric field. The evolution of the plasma can be described by
the following MHD model

dhp+V-(pv) =0,
pov+pv-Vv+Vp=IxB+V-(vVv),
Op+v-Vp+4pV -v =0,
(1.1)

OB =-VxE=Vx(vxB-nJ),

VxB=1J,

V-B=0

with v the viscosity coefficient, n the resistivity coefficient. The resistive term originates from the collision
between the two species electrons and ions present in the plasma. The viscosity term is a very simple approxi-
mation of the stress tensor. The resistive MHD model used here is a simplification of two fluids models (extended
MHD). The numerical properties of extended MHD terms in JOREK are beyond the scope of this paper and
will be investigated in a future publication. First we recall the energy conservation and dissipation properties
of the resistive MHD model.

Proposition 1.1. The total energy of the MHD model is given by the sum of the kinetic energy, magnetic
energy and internal energy:

v[> | B
E=p 20 °
s R — T

with p = pT and v = % The balance law for the total energy is given by

V|2
OE +V- {v(pT—k%p) —(va)xB+n(JxB)] =-n|IP+V-@Vv))- V)

IfB=v=0and p=T =0 on 02 we obtain

d
—/E=—77/\J\Z—V/\le—l//\v‘f\zﬁo
dt Jq Q Q Q

with W =V X v.
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Proof. We multiply the mass equation by ‘%, the velocity equation by v, the pressure equation by ﬁ and
the magnetic field equation by B. We obtain
[vI* (0 \Y =0
— G+ “(pv)) =0,

V- (pOv+pv-Vv+Vp—J xB-V-(rVv)) =0,

L,

0
‘y-1 -1

gl _
v Vp+’y_1pv v =0, (1.2)

B-9.B=B:(Vx(vxB-nl),

VxB=1J,

V-B=0.

2
First we multiply the velocity equation by v and the mass equation by V™ t6 obtain the following equation on

|
2
the kinetic energy
KW(pv)+ V- (plvV)+v-Vp= (T xB) - v+ V- (vVv).

Adding this equation to the pressure equation and the magnetic field equation multiplied by B, we obtain

O == 5=V (pv) = pIv - TV = v Vo= ¥ v+ BV % (v X B)) 4 v+ (J < B)

~y
v—1
—n(VxJ-B)+ (V- (wVv)- v).

Rearranging the terms this becomes

V2
3tE:—V~<(p%+% )V>—|—V~((v><B)xB)—n(VxJ~B)+(V-(qu)-v).

To obtain this we have used V- (ax b) = (V x a)-b —a(V x b). Now we use
VxJ-B=V-(JxB)+|J>
To finish the proof we use the definition of the vector Laplacian
V- (V) =Av=V(V-v) -V x(V xvV)
and an integration by parts. O

Corollary 1.2. If the resistivity and viscosity coefficients are equal to zero the total energy is conserved in time
and otherwise it is dissipated in time.

This result comes from the flux divergence theorem and the assumptions on the boundary conditions. Normally
the dissipation introduced by the resistive and viscous terms is balanced by the viscous and the Ohmic heating
to obtain at the end the conservation of the total energy. However it is classical to neglect these terms and
work with the dissipative resistive MHD system. In the following, we will derive a reduced model with the same
dissipative energy (or a really close energy). Indeed, energy conservation or dissipation is important for the
numerical stability.
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1.3. Reduced MHD models

The reduced resistive MHD models are designed to reduce the CPU cost by making assumptions, which are
reasonable for the tokamak configuration. Since the perturbation of the toroidal magnetic field is of second order
(in terms of a small expansion parameter) and enters into the equation of motion only at third order, it can be
neglected in the reduced MHD limit [29] such that we take the toroidal magnetic field to be constant in time.
The magnetic field B can be split into two parts: the toroidal part By and the poloidal part By, given by

R 1
B, = EO% and Byt = =V x €. (1.3)

The velocity field depends on the electrical potential in the poloidal plane and the parallel velocity (parallel to
the magnetic field). Tt is given by

V:Vpol+V|| = —RVu x e¢—|—v||B. (14)

This choice comes from to the choice of the electrical potential V = Fyu with E = VV and the fact that the
poloidal velocity is homogeneous to E x B. This potential formulation allows to reduce the number of variables
and filter the fast magnetosonic waves of the MHD for nearly incompressible flows. The full MHD system with
all waves is a very stiff problem with restrictive CFL stability conditions and bad conditioning for the numerical
methods. Consequently eliminating these waves allows to obtain a less stiff problem, which is easier to solve. To
obtain the final reduced models we plug the potential formulations in the full MHD model and use projections
to obtain the equations on u and v). For the equation on the electric potential we project by applying the
operator e, -V x (R?...) to the momentum equation. To obtain the equation on v)| we project by applying the
operator B - (...) to the momentum equation.

One of the aims of this work is to derive exactly the reduced MHD model used in the JOREK code and
prove that this model satisfies the energy conservation law. Indeed the energy conservation is a very important
property to ensure the numerical stability of the time evolution method for nonlinear models.

1.4. JOREK code

The non-linear JOREK code was originally developed by Huysmans [15,18], see also [1,2,12,14,16,17,19,21,
25,26], solves the reduced or full MHD equations in realistic three-dimensional tokamak geometry. The spatial
discretization is performed by isoparametric Bézier finite elements in the poloidal plane and a toroidal Fourier
decomposition. As a first step in a simulation, the Grad Shafranov equation given by

dp OF
A%y =-—R*— — F—
v o o
with A*y = R% (% g%) + %, F = RBy, p the pressure and By the toroidal magnetic field, is solved on an

initial grid (Fig. 1, on the left) to calculate the plasma equilibrium and again on a grid aligned to the equilibrium
magnetic flux surfaces (Fig. 1, on the right in blue). This second grid is used during the following time integration
as well, in which the (reduced) MHD equations are solved by a fully implicit method (Crank—Nicholson or Gear
scheme). The resulting large sparse matrix system is solved using the iterative GMRES method with a physics-
based preconditioning during which the direct sparse matrix solver Pastix is employed. JOREK is implemented
in Fortran 90/95 and uses a hybrid MPI plus OpenMP parallelization suitable for large scale simulations on
supercomputers. The realistic treatment of the tokamak geometry including the plasma region, separatrix and
X-point, as well as scrape-off layer and divertor region makes the code suitable for simulations of many different
types of plasma instabilities.

In the following we will provide a rigorous algebraic derivation of the reduced MHD equations that are
implemented in JOREK from the full MHD equations (Sects. 2.1-2.3) and investigate the energy conservation
properties of this reduced MHD model (Sect. 2.4). In Section 3, we will introduce a non-linear time integrator
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FIGURE 1. Initial grid (grey) and flux aligned grid (blue) used in JOREK X-point simulations
(shown with reduced resolutions) (color online).

based on inexact Newton iterations for JOREK in order to increase the robustness and performance of the code
in highly non-linear stages. Numerical tests of the non-linear time stepping scheme are presented in Section 4
and brief conclusions of the work are provided in Section 5.

2. DERIVATION OF THE MODELS

The derivation of reduced MHD models is not a new research topic. We can find some derivations of models
with parallel velocity for small curvature in the Tokamak in [20,29]. These derivations are based on an asymptotic
analysis with the small parameter € which corresponds to the curvature of the geometry. In these calculations,
some terms are neglected in the final models. In our case we use an algebraic derivation. Using the same
assumptions for the magnetic field and the velocity field as in [20,29]. The same method and the same type of
calculation can be found in the works of R. Sart and B. Després in [9,10,22]. In these papers the authors propose
two methods to obtain the reduced MHD in the low (3 case, where ( is the ratio between plasma and magnetic
pressures (which correspond to p << |B,|?) for general density profiles. In this work we use the same technique
as in their first paper, but we apply this method to obtain the more complicated models, which are actually
implemented in the JOREK code. So far, no exact derivation for the reduced MHD models implemented in
JOREK had been published. For this reason we give these proofs and identify previously neglected terms in the
reduced MHD physics models.

2.1. Notation

The fundamental coordinate system used in JOREK is the cylindrical system (R, ¢, Z) illustrated in Figure 2.
The connection to cartesian coordinates is given by

X = Rcos¢
Y = —Rsin¢ (2.1)
Z =7
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FicUre 2. Illustration of the cylindrical coordinate system used in JOREK.

We define e = VR, %e(i, = V¢ and ez = VZ with R, ¢, Z functions of (X,Y,Z). By definition of the basis
we have er X e, = —ez, €4 X ez = —eg and ez X er = —ey.

The domain is defined by (R, Z, ¢) € 2 = D x [0, 2x[. To finish we define the different differential operators
used for the calculation:

Vi = 0n(fen + H0s(f)es + 0z f)ez,
Vporf = Or(f)er + 0z(f)ez,
V£ = S 0R(RfR) + 06(fs) +02(72),
Vxf= (%aqbfz - 3Zf¢> er+ (0zfr — Orfz)eq + }% (Or(Rfy) — Osfr) €z,
A*f = R?V - (%v{f) = ROg (%«%f) +0zzf,
Apol =V (Vpolf) = ! 0

E R
[a, b] =€y (Va X Vb) = aRa,azb — (9Za6Rb.

(RORf) +0zzf,

The variables associated to the reduced MHD models are the poloidal magnetic flux 1, the electrical potential
u, the density p, the temperature 7" and the parallel velocity v)|. We introduce two additional variables: the
toroidal current j defined by j = A*y and the vorticity w defined by w = Apgu. This procedure is used to
break some high order operators into lower order ones. For the integration we denote by dW = RdRdZ the
cylindrical measure and dV = dRdZ. When no measure is given explicitly, dRdZ is used.

2.2. Derivation of the model

The starting point of our derivation is the the following resistive MHD model

Op+ V- (pv) =0,
porv+pv-Vv+Vp=Jx B,
Op+ v -Vp+4pV -v =0,
B =V x (vxB-nlJ).

(2.2)

We do not treat the viscosity term in the following derivation, but discuss it briefly at the end of Section 2.3.
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2.2.1. Magnetic poloidal flux equation

We use the magnetic field B = By + B, given by (1.3). Since V- B = 0 and 0, Fy = 0 we get 9,B =
Ot ( ey + VX (Rwe¢)) =V x (at(%we(;s)). Consequently the equation on the magnetic field in (2.2) becomes

X (& (%ﬂ’%)) =V x(vxB-nJ) (2.3)

with J = V x B. The equation becomes
1
O <Ewe¢> =vxB-nJ+VV (2.4)

with V' a potential. We begin by estimating the term v x B. Since B x B = 0 we obtain v x B =
(—R?V x (fuey)) x (fF2ey + V x (F1ey)) which gives

F 1 1
vxB= Vpol X B= (—R@ZueR + R&Ruez) X <Eoe¢ + Eaz¢eR — EaR’l/Jez>

= Fy (0zuez + Oruer) + [, uleg
Now we study the term J =V x B.
J =V x (FyV¢) +V x (Vi x Vo).

Since Fy is constant, using the properties of curl and gradient operators we have V x V¢ = 0. So
J=Vx (Vi xV¢) =V x (%821@3 - %aR’l/Jez> .
Since Vxer=VxVR=0and V xey =V x VZ =0 we have
J=Vx (VY xV¢p)=V <%821/}) x erp —V (%831{1) X ey.
Therefore expanding the gradient for each component we obtain

J=Vx (Vi xVe) = ——3227/1% + —504(0z¢)ez — Or(= 3R¢)e¢ + 0s(OrY)er,

R2

and using the definition of the Grad—Shafranov diffusion operator we have

V x (V0 x Vo) = — A%y + 20,070)e + 3 0u(Ont)en

R2
We plug together all the terms to obtain

1
Oy (E’(/Je¢> =F (8Zuez + 8RueR) + [1/J,u]e¢

0p(0z1)ez + = 04(OrVY)er| + VV.

R2

Now we multiply the previous equation by er and after by ez to obtain the expressions of the R and Z
derivatives of V: ,
OrV = —Fy0pu + ﬁ&ww,
(2.5)
07V = —Fy0zu + %aqu’d).
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Consequently V = —Fyu + "2‘@ +C and VV -e4 = —%8¢u + na‘gﬁw. We have assumed that the constant C'

is equal to zero to obtain the electrical potential that is usually chosen and compatible with the choice of the
poloidal velocity.
This definition of V' gives the final result.

0
O = R[Y, u] + nA*) — FyOpu + 77(;—(21/} (2.6)
with j = —RJ - e = A%t the toroidal current.

2.2.2. Poloidal momentum equation

To obtain an equation on the electric potential we apply the projection operator eg - V x (R2 .. ) in the
poloidal plane to the momentum equation. The equation obtained is

ey V x [R*(p0v =—pv-Vv—Vp+JI xB)|. (2.7)
We begin by considering the first term of (2.7): e, - V x (R?pd;v). Using the definition of v, we obtain
V x (R?p0yvpor) = V x [—pR*07(du)er + pR*Or(dyu)ez]

and

€y - V x (RQpathol) =0z (pRSaz(atu)) + Ogr (pR383(8tu)) .

By definition of the gradient and the divergence we obtain
ey V X (R2p0yvpor) = RV - (pR*V p0104u0). (2.8)

We consider the term associated to the time derivative of the parallel velocity ey - V X (Rzpatvn) =e4-V X
[R?p0, (v B)]. Developing B we obtain

0 0 F
e [#o (1)~ (1) ]
After some algebra
€y - V x (R2p8tv||) = —82 [Rpat(vuaz¢)] — 83 [Rpat(vuaR’L/J)] = —RV - [pat(’l)nvpoﬂll)] . (2.9)

Secondly, we study the current term e, - V x (R?(J x B)). We recall the form of the current
1 .
J=VxB= ﬁ (6R¢Z/JGR — Rje¢ + 82¢’(/Jez) (2.10)

computed in the previous subsection. So, using (2.9)—(2.10) we have

1 . .

R*J x B =% [(—RjORY + FoOzev)er + (—RjOzy — FoOrptp)ez]
1

+

7 [T (OrY)(Ore) + (029)(0z0))es]

Applying the operator e, - V x (R?...) we obtain

ey V x (R*J x B) =0z (jory) — 0z (%(%W) — Or (jOzY) — Or (%%W) .
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A final calculation gives the following result
. Fo « . Fo, .
eV x (R*J x B) = [, j] — R 06A Y =10,5] = 7045 (2.11)
For the pressure term, trivial computations allow to obtain the following result
V x (R*Vp) - ey = —0r(R*)dzp = —[p, R?] = [R?,p]. (2.12)

The last term considered is eg - V X (R?pv - Vv). Firstly we study the part which depends only on the poloidal
velocity: e4 - V x (R?pVpol - Vpor). To begin we denote by a = —ROzu, 8 = ROru and p = R?p. So

Vpol = g + ez and vy - Ve = (a0ra + B0za)er + (a0rf + B0z 0)ez.
To estimate this term we propose the following decomposition
V x (ﬁvpol : vaol) c€ep = (ﬁV X (Vpol . vaol) + Vﬁx Vpol vaol) cep = A+ B. (2.13)

One has the identities
A =—p[0z(adra + BOza) — Op(adrS + B0z P)],

and

A= —pladr(dza — IpB) + B02(0z0 — OrB) + (Ora + 2B)(za — IpB)]

Using (0za —Orf) = —RApoiv = —Rw and p(Ora+ 0z5) = —p[R, u] we obtain A = —Rp[Rw, u] — Rpw[R, u].
In a first time we estimate the term B. The definition of the vector product gives

B = —[0z(p)(adra + BOza) — Or(p)(adr B + B0z3)]

which we can rewrite in the following form
. 1, 1, . 1, 1,
B=—9z2(p) |0r | 50" + 567 | + B(0za = OrB)| — Or () |0z | 5o~ + 5F” | — a(dza — Orf)| | .
Using 0z« — Orf3 = —Rw, we obtain the final expression of the term B, which reads

[R?|V porul?, ] — R*w[p, u].

B =~ [R|Vyul’, 7] — 02(7)5(0z0 — ) — On(P)a(0za — OrB) =

To finish we sum up A and B to obtain
—~ 1 —~ -
V X (pVpor - VVpor)eg = —§[R2|Vpolu\2,,5] — R[Rpw,u] — Rpw[R, u].

Therefore 1
V X (PVpor - VVpor)ep = —§[R2\Vpolu|2,ﬂ — [R*pw, u). (2.14)

At this moment of the derivation using the equation on the velocity in the resistive MHD (2.2), using the
projection ey - V x (R?pd;v) and neglecting all the terms in the velocity equation which depend on the parallel
velocity we have obtained the equation on u implemented in the code. Now we propose to derive the terms
neglected in the code which correspond to the following cross terms between the parallel and poloidal velocities
and given by

€y - V x (Rzp (8tVH —|—V|| . VVH + v - vaol + Vpol - VV”)) . (2.15)
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Firstly we consider the term ey - V X (Rzva - V). We begin by splitting the term into two parts
A= ﬁv X (UHB : V(’UHB)) “ €y and B = Vﬁx (UHB : V(’UHB)) "€y

and we define v||B = vjaer + v|jbez + v||cey with a = —w, b= —aRTw and ¢ = %, consequently

R
B- V(U”B) |:aaR(a1}||) + b@z(aUH + 8¢ av)| :| [a@R b’UH) + baz(bU”) + 845(1)1}“)}

2

+ [adn(ev)) + b0z (cvy) + 50 ev))] e - (vﬁﬁ) er+ (viza) es
The term B can be decomposed as B = C + D with
C = (0rp) [avOr(bv)) + bu, 0z (bv)))] — (0zp) [av)Or(av))) + bv Oz (av))],
and
~ 0n) [Sh0u(00)] — 0z) [ S0utan)] + 02 (475
) (Ve 060 Vpert) +02(7) (115 )
We rewrite the term C' to obtain
C = 0r(p) {82 <1vﬁa2 + %vﬁb2> + av| O (bvy) — av@z(avn)]
—9z(p) {aR ( via® + 1va ) + by 9z (av))) —vaaR(va)]

which is equal to

C = % |:ﬁ, ’Uﬁ ‘Vz};l;b‘ :l -y [8R(ﬁ)a(8z(cw||) — 8R(b’UH)) + 8z(ﬁ)b (82(@1}”) — 8R(bUH))] . (2.16)

We remark that 0z (av)) — Or(bv)) = FA Y + £(Vporv)| - Vport). Using this result we obtain the following
expression for B:

B= L [5, vﬁ|Bpoz\ } R“z][p Y] — %(VPOZ'UH Vo) [P, Y]

~ . F2
RSUII( polP * O (V) Vparh)) + 0z(p) (”ﬁR_?f) ’

with Byoy = £V X €.
Now we study the term A = pV x (v B - V(v B)) - €4 which is equal to

R cv 2
A=— paz {av@R(av) + bvuaz(m}”) + #845(&1}“) — ’Uﬁ CE]
~ Ccvj|
+ pOr {avH(BR(va) + b’Uuaz(bU”) + ?845(1)’(}“)} .
We split these terms into two terms A = A; + Ay defined by Ay = —pdz(av|Or(av)) + bvdz(av))) +
ﬁaR(avnaR(bU”) + bU”az(b’UH)) and Ay = —pdy (%8¢(CL’UH)) + pOr (%'%(bvu)) + ﬁaz(’uﬁ%)
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Factorizing the term A; we obtain

A =— [a’UHaR(az(a’UH) — 8R(va)) + bv||8z(8z(avH) — 83(va))]

[(83((11)“) + 8z(b’U||)) (8Z(cw||) — 8R(bv||))] .

Using that 0z (av))) — Or(bv))) = HA Y + £(Vporv) - Vparth) and Og(av))) + dz(bv)) = [55,1] we obtain

5
5

=B ]2 [y o]

p;:” [”n’w} ( polV|| * Vpor)) [%,w].

The properties of the Poisson bracket allow to conclude
vt
ﬁjv '(/)

Ay =—p - ﬁ[%(vpolv\\ : Vpoﬂ#)ﬂ#} . (2'17)

For the term A, some computations allow to obtain the result
Fy Ey F?
Ay = —pOz vu%(v\\f)zw — POr v||3¢(v||3R¢) + 0z | Vi (2.18)
At the end using the properties of the Poisson bracket and the product of derivatives we obtain
. 1.
ep -V X (R2PVH V) =— [pvﬁj,w} = [0 (Vporv)) - Vparth), ] + E[Pa Uﬁ‘Bpolm
_F _F
— 0z (pR—g’U||a¢(’U||az¢)> — Or (pR—ng)¢(vaR¢)>
_Fg
+ 0z (pR—%vz> . (2.19)

To finish the derivation associated with poloidal velocity, we study the last term ey -V x (pVpor- V|| 4-pV||- VVpor).
Firstly we note

c c c
’U||B . vaol = {a&Ra + b0za + anga} er + v {aaRﬁ +b040 + angﬁ} ez + v Eae(;s
and
Vol - V(v B) = [adr(av))) + B0z (av))] er + [adr(bv)) + Bz (bv))] ez + [adr(cv)) + BIz(cv)|)] e
The term ey - V X (pVpor - V(v B) + pvy B - Vivye) can be split into two terms

(A) = VP x (vpor - V(v B) + v B - Vo) - €
(B) = pV x (Vpor - V(v B) + v B - Vvpor) - €.

Using our notation we obtain that (A) = (A1) + (A2) with

(A1) =—0zp [U”aaROz + Ot@R(a’UH) + v bdza + ﬁaz(a’UH)]
+ Orp [’UHbﬁzﬁ + ﬁaz(b’UH) + ’UHaaRﬁ + OéaR(bU”)] ,
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and AC'UH AC'UH
(A2) = —820?84304 + 8Rpf8¢ﬁ.

Straightforward calculations show that the term (A2) is equal to (A2) = %vn(vpolﬁ~ Vot (Opu)). Now we
consider the term (A1) which can be rewritten in the following form
(Al) = — 82(,3) [8R(av||a + bUHﬂ) — UHbagﬁ — ﬁaR(b’UH) + vaaza + 5az(a’l}||)]
+ Or(p) [0z (ava + by B) — v adza — adz(av)|) + adr(bv)) + vjjadrB] .

Using the definition of the different coefficients we obtain that (A1) = —[p,v|(Vpa®) - Vporu)] + (A3) + (A4)
with

(A3) = —0z(p)v)|(—bORB + bIza) + Or(p)v)|(—adza + adrf)

(A4) = —az(,/o\)(—ﬁaR(’UHb) + ﬁaz(avu)) -+ 83(,3)(—0182(1)“@ + a@R(va)).

Now we consider the term (A3) which can be factorized in the following way
(A3) = (0z(P)v) b + Or(p)v)ja)(—0zc + Orp).

Using that (0za — Orf3) = —RApqu we obtain that (A3) = vjjw(p, ] and (A4) = —(9zpp + Orpa)(dz(av)) —
Ir(by)))).

We known that 9z (av)|) — Or(bv))) = % (Vpath - Vporv))) + £v)j, consequently at the end we have (A4) =
[, PI(Vpor) - Vporvy| +v)17) with (9z(p)3 + Or(p)a) = R[u, p]. Putting all the terms together we obtain that

(A) = —[u, ﬁ](vpol¢ : Vpolvll) - [u,ﬁ]v“j — [P UII(VpOl¢ : vpolu)]
~ F ~
+oyw(p,ul + Z 0y (Voo Vol (Dpu)).

Now we consider the term (B) = pV X (vpor - Vv B + v B - V) - €4 decomposed into two terms (B) =
(B1) + (B2) with

(Bl) = —pOz [UHCL@ROA + vaaza + Ot@R(a’UH) + ﬁ@z(avu)]
+ pOr [v”a@Rﬂ + 0|00z 3 + adr(bv)) + ﬁaz(b’UH)]

and
—5(—a, (2 ] :
(B2) = p( 0z ( R 8¢6¥> +8R( R 8455))
We consider the term (B1). We begin by expending (B1) and after rearranging terms we obtain

(B1) = — 5 [v)adr (970 — rf) + v bdz(dza — Orf)
+a0r(0z(av)|) — Or(bv)))) + B0z(0z(av)|) — Or(byy|))
—I-(aR(U”a) + 82(’0\\()))(820[ — 8Rﬁ) + (8R04 + 82ﬁ)(8z (CL’UH) — 8R(b’UH))] .
We use that (0za — Orf3) = —RAp,u and dz(av)) — Or(bv)) = %j + %(Vpozw - Vpotvy)). Using dg(v)a) +

el

dz(vb) = [5,¢] and (Ora + 0z03) = [u, R], we write the term (B1) in the following form
_1s A U S R
(B1) =pv[Rw, ] + pRe [, v] — Rofu, ] = plu, BRI
1 P
= RP[U, E(vpolw ! VpolUH)} - %[U, R](vpolw : vpolUH)
=+ plvyw, Y] = plu, vy 5] — plu, (Vport) - Viporvy)]-
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The term (B2) is equal to pRV - (£3v), V01 (94u)), consequently we obtain

(B) = ployu ] = 1] s (Vs - Vyori)] + RV (o Va0 ). (220)
All together we have derived the following term
€+ V X (pVpol - VV|| + V|| - VVpor) = = [0, 0| (Vpor¥) - Vport)] + [pv)jw, ¥] = [u, pvy 4]
~ Tyt Vit + R - (P V) ). (22)

2.2.3. Equation on p and T

For the thermodynamic equations Oyp = —pV -v —v-Vp and O;p = —ypV - v — v - Vp, we propose to rewrite
the equations in order to obtain a dependency on u and v)|. We begin with

Vpol - Vp =(—RVu x ey) - Vp
= (—ROzuepr + ROgueyz) - |Orper + %(%pqu + 8Zpez]
= — R(9zu)(0rp) + R(9ru)(0zp) = —R[p,u].
Then we compute the second term pV - vy
PV - Vpor = —p%@R(RQ(‘?Zu) + p0z(RORu) = —2p0zu.

Now we derive the term associated to the parallel velocity v = v B:

F 1 1
UHB -Vp= V)| |:Eoe¢ + —az’L/JeR — E83¢ezi| -Vp

1UH[W/J]~

0,
¢>p+R

_U||R2

The second term is
F 1 1
pV - (’UHB) =pV- |:1) (EO(%& + —az¢eR — E83¢ez>:|

]p%[vn ¥+ 2 5¢U||

Consequently we obtain

v %o ol p pEy
Op = Rlp,u] +2p0zu — —5=0pp — 1 [p 9] = v, 9] = 506 (2.22)
and P .
v 1)
Orp = Rlp,u] + 2ypOzu — S20,p — L fp.v) = loy vl — 2050 (2.23)

2.2.4. Equation on the parallel velocity

We consider the equation pd;jv = —pv - Vv — Vp + J x B. To obtain the equation on v|| we project the
momentum equation applying the operator B - (...). Firstly we remark that B - (J x B) = Det(B,J,B) = 0.
Secondly we consider B - pd;(v|| +Vpor). Using the definition of B we prove that the term B - pd; (v B) is equal to

1
pIBI*dyv) + puy, ﬁvpoﬂﬂ Vot (1)) (2.24)
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For the poloidal term B - p(0yvy0r), straightforward computations show that this term is given by

B - p(0:vpot) = =PV ot - Vpor (Osu). (2.25)
For the pressure term B - Vp, we obtain

1

Fpvl 220

F 1 1 1 F
B-Vp= (Eoeqs + E82¢9R - Eamﬂez) <3RPGR + E%p% + 821792) = R—g(%p +

Now we consider the following terms (the four last terms which are neglected in the model implemented in the
code JOREK):

B.-p (V” . VVH +v - VVpol + Vol - VV” + Vpol VVpol) . (2.27)

Firstly we study B (pv| - Vv||) = B (pvB - V(v)|B)). For this we note v|| = v||B = v||(aer + bez + cey) with
a= %aztb, b= —%8131/1 and ¢ = %. Using these notations we obtain

c 2
pvy - Vv = py) (a&R(va) + b0z (vja) + E%(vua) — v§> er
=+ py| (aaR(va) + baz(U”b) + %8(;5(1}“())) ey

=+ py| (aaR(ch) + baz(U”C) + %8(;5(1}“6)) ey + vuaé%,.
Now we rewrite the term as B - (pv|| - Vv||) = Wi + Wy + W3, where W is given by
c
Wy = pEU” [aa¢(1}”a) + b8¢(1}||b) + c8¢(ch)] +
2R |2
_ ko 2 2 272 2 2\ _ To UI||B‘
The term W5 is given by

Wy = bpy)| [adz(v)a) + bz (v)b) + cdz (v c)]

Lo o 272 2 2 P va‘z
The term W3 is given by
W3 = apv) [adg(v)a) + bOr (v b) + cOr(v)c)]

L/ o, 272 22 P Uﬁ‘BF
= apagi (vHa —|—va + vjjc ) = Eazwag 3 .

2112
Fy UH‘B|
+pﬁ8¢ ( 5 . (2.28)

At the end we obtain
1B
2

1%
B- (pV” . VV”) = _E

¥,
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Now we propose to study the fourth term B - (pvpor - VVper). To estimate this term we define o = —ROzu and
(8 = ROgru. Using this notation we prove that

Vpol = aeg + ez and vy, - Vv, = (@dpa + B0za)er + (aOrfB + $0z5)ez
Using the definitions of the coefficients we obtain
B - (pvpol - VVpol) = %P (0z(¥)(adra + BOza) — Or(¥)(adRB + BOzP))

which is equal to

B (ot Vvput) = (9206) (0 (502 + 357 + 8020~ 0n)
—Or(¥) (52 <2a + ﬁz) —a(0za — 8Rﬂ)>)
to obtain

B - (pVyot - Vyat) = 5plR*Vporul®,w] + 5 [02(0)8(0z0 — 9rB) + On()a(dz0 — rB)].

2R‘0[

After straightforward computations we obtain

B (pVpor - Vvpor) = 2Rp[R2|Vpolu\2 Y] + pRw(v, ul. (2.29)
Now we consider the term B - (pvpe - V(v B)). To estimate this term we define a« = —RIzu, 3 = RORu,
= %821/), b= —%8131/1 and ¢ = %. Consequently we obtain

Vpot = e + Bez, and v B = v)|(aer + bez + cey).
Using these notations we obtain

PVpol * V(U”B) Zp[OtaR(UHCL) + ﬁ@z(vua)}eR
+ p[aaR(U”b) + ﬂ@z(v“b)]ez + p[aaR(U”C) + ﬁ@z(vuc)}%,

consequently

B - (pVpor - V(v B)) =paladr(vjja) + Sz (v)ja)]
+ pb[a@R(va) + ﬁ@z(va)] + pC[Ot@R(’UHC) + ﬁaz(vnc)].

Rearranging terms we obtain

B- (pvpol V(UHB)) ((1 + b? +c )OlaR(UH) + p(a + b? +c )ﬁaz(’l}n)

1
+ ipowH@R(a + 0%+ c2) + 5,0&)“82((1 + 0% +c?).



1346 E. FRANCK ET AL.

Using that (a2 + b% + ¢2) = |B|? we obtain that

B (pvpor - V(’UHB)) = Rp\B|2[u, 1}”] + Rpuyj| l:u, BT|:| . (2.30)

To finish we consider the term B - (pv)B - V(vpo1)) = pv (B - (B - Vvye)). We define vy, = aer + fez and
B = aepr + beyz + cey. Using these definitions we obtain

2

C C C
B (B Vvyu) = a|adra + bdza + EaW] +b a0 + b0B + Eew] +Za,
2

= aladra -+ bza] + bladrf + bz 5] + T 040 + %%5 +a

Now we consider the first term A = a(adre + b0za) + b(aOrS + b0z 3). For this we rewrite the term in the
following form

2 2

A = adp(ac + bB) + bdz(ac + bB) — a@R(%) _ oy

5) — Badrb — abdza.

We define C' = adg(aa + bB) + b0z (ac + b3) and D = —aaR(g) - ﬁ@z(g) — Badrb — abdza. We can rewrite
the term D in the following form

a®>  b? a®> b
D=— (OéaR (7 + ?> B0z (7 + 5) + ozb(@za — 83()) — ﬁa(aza — 81{[))) .

‘We obtain

_ |Bpol|2 J

Straightforward computations show that C' = £[1), (Vport) - Vporu)]. The term A is given by A = C'+ D. Now
we consider the term B = F0sa ;I— b—gf%ﬁ + %a and it is easy to prove that
B = —%(Vpoﬂb - Vpot (Ogu)) — %azu. At the end we obtain

‘Bpol‘z J P
B- (vaB . V(Vpoz)) = —Rpy|| |u, — + vaE[u,w] + = [0, (Vpor? - V por)]
pvj Fo F?
_ ]‘%‘2 (Vo - V por (Dp11)) — vaR—gaZu. (2.31)

2.3. Final model

We define the magnetic and velocity fields by B = %e¢ + %Vw x eg and v = —RVu x e4 + v B. Using
all the equations (2.6), (2.8,2.9,2.11,2.12,2.14,2.17,2.18), (2.22), (2.23), (2.24,2.25,2.26,2.28,2.29,2.30,2.31) based
on these definitions of the fields and the definition of the toroidal current and poloidal vorticity, we obtain the
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final reduced MHD model with parallel velocity.

1 1 n (., st
—2'(/1 = E[’(/J,u} + ﬁ (] + R2 F08¢u

‘R R2
- 1 Fo
V- (ﬁvpolatu) (pat(’UvaOlw)) R[R |vpolu‘ } R[pR w, u] - E[R } [wv } R2 ¢j
1, 5. 1 Fo
+V - (pL V) + E[PUHJJM 7 [0 (Vpotvy| - Vpor?h), 1] — < P2 vaoz(5¢u)>

1

~ . 1 . 1 . 1 .
+E[.0a 'Ull(vpolw : vpolu)] - P Uﬁ|Bpol|2] - E [P'Ullwa¢] + E [UapUHJ] + E [u,p (vpol'l/’ : vpolUH)]

—
2R

1 _F 1 _F 1 _F?
+ 50z (pR—gva¢(Uﬁz¢)) + 70r (pR—gUH%(UH@RW) — 70z ( R%U ) :

w = Apolua
J=A4%,
_ o gl p pFo
Op = Rlp,u] +2007u — —p3=06p — 5 0, ] = Flo, ¥ = 5306y,
v F v Eo
Orp = Rlp,u] + 2yp0zu — T20,p — L p.v) = oy, vl = 22050,
v |B|?

PIB210¢0)| + o) 32 Vot - Vot (0) = PV pott) - Vot (Opu) = — 5 [p, ] — 2 06p + % [w, L}

Fo vﬁ|B\2 1 2 2 ﬁ 2 ‘B|2 |Bpol|2
_Epa(b 57| ~ 3R’ [R?|Vporul?, 9] — 7Y wltp, u] — Rp|B|*[u,v] — Rpvy, U 5 + Rpu, Uy o

A*p pU pvy Fo F?

—pY) R [U, ’l/}} - ?H W» (vpolw : Vpolu)] + £2 (vpolw . Vpol(a¢u)) + PY)| R_OzaZu

In our derivation we have not treated the viscosity term Awv. This term in the resistive MHD is not really
physical. This a very simple approximation of the stress tensor in the fluid model, which is physically justified
for a gas but not for a magnetized plasma in a tokamak. It is used in JOREK to model somewhat the effect
of the stress tensor, dissipate the energy and stabilize the system. For this reason, we propose to use a simple
viscosity in the poloidal velocity equation given by vA,,w = Z/Afwlu rather than compute the reduced viscosity
associated to the viscosity Av. We will discuss the effects of this simplification on the total energy later.

2.4. Energy estimate

For the full MHD model the total energy is conserved in the ideal case and dissipated in the resistive case.
To validate the derivation of the model, to validate the choice of the projection operators and to obtain the
stability results, which are important for the numerical methods we prove that the reduced MHD model satisfies
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an energy balance equation compatible with the energy balance associated with full MHD model [10,20]. Before
the energy estimate we introduce the natural Dirirchlet and Neumann boundary conditions [9] given by

o ou _ 0 _
z/J—u—T—p—Oonﬁﬂandan—an—O (2.32)

with n the outgoing normal to the domain. We can also use the boundary conditions
Yp=u=T=p=0ondRandw=3=0 (2.33)
These two boundary conditions are relatively close (see [9]).

Lemma 2.1. We define the energy E = ‘Bl —I—plv‘ + 5P We assume that the boundary conditions are given
by (2.32). If n = v = 0 the total energy satzsﬁes

E/Edwzi/REdvzo
at /o at /o

and if n £0 and v # 0

d
—/ EdW = —Z// 2dVV 77/ 2dW 77/ Vpol( )| dw.
at /o

2 2
Proof. To begin we compute E % fn ‘l%l + p‘% % dW. We obtain

dE o[ o ’
E:/ atwgéf' dW+/ g, Yratl” pl' dW+/ o dW+/ (V|| - BeVpol + Vpor - Bpv) ) AW
2

2 0
+/ Matpdw+/ L'atpdw+/(v|| ~Vpol)8tde+/ P_qw.
o 2 o 2 Q ov—1

After straightforward computations we show that the derivative of the energy is given by

dE IV porth]? / IV port? / oo [
pv H
R2
2| ‘2

2 vi | B
+/ [Vporul” atﬁdWJr/ A
o 2

The term [, 0; (M) dW is equal to [,( ”Iglw Vot (0¢1)))dW . Integrating by parts we obtain

+ ( polw Vpoz(5t¢))dW _/Qp(vpolu'at(Uvaol¢))dW_/ pUH(vPOlw'at(vPOZu))dW

)
T 9, pd W — / 0 (Vport - Vo) O pd W + / P W,

2R?

2 2 * .
/Qat (%) dW:/Qat (%) av — — QA Y opdV = — Q%atwdw.

Using an integration by parts we also obtain

| 7o (Vp;”" )=~ 5 00 uaw:
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Consequently
. (pat (’U‘ ‘ Vpol’(/J))) udW

dE
dt

/ (006) 5 AW / PV po(Oh)) —
-|-/ (|B‘ 81‘“\\ + Rz( pol® - Vpor(0:1)) — (Vport) - 9¢( P"lu))) UlIdW
»2|B
| ‘ 8de /'UH polU - vpolw)atpdw—"_/g,yaipldw

Vport|?
_|_/ Matde_F/ A
o 2 o 2

Using 20zu = +[R?, u], we obtain
vy Fo v P Iy
i 0ap — 25l = 1oy, ] = T 0u.

P p2
Orp = R|p, —[R*,u] —
tp = Rlp,u] + S[R* u] = —5-0sp — 4
Before computing the energy estimate we give an equation on p. For p we multiply by R? the equation on p

— FoOg(pv)|)

‘We obtain
04p = (o, ] + 250 7u + Rl pu |
— F08¢(p’UH).

= R[p,u] — 2[R, u] + 2p05u + R[v, pv]

Using that 2p0zu = %[RQ, u], we obtain
— Fo0s(puy),

9:p = Rp,u] + R[t, pyy|]

- Fopa(zg’UH - Fo’UH8¢p.

which is equal to
Oep = R[p,u] + Rp[p,v)] + Roy|[¢, p]
To compute <7 we add to the final model three equations on the density
ABE, B EBRR, o ofBEL
2 T o MUT T RV 2 Rm’”
v N F
|| (vpolu : Vpolw)atp = %(Vpolu : vpol'(/J)[pv u} — v (vpolu : Vpolw)R_ga¢(pUH) - UH( polU * Vpolw) [p'UH W
Voortt|? . . Voort|? . Voo tt|? or]?
‘ p2l ‘ 8tp: | P2l ‘ R[p,u] _ ‘ p2l | F08¢(p’UH) _ ‘ p2l | R[pvll’w]
Now we compute
dE
T = [0 FaW — [ (V- (3 ya(00) = T (0001 T o) ud
—|—/ (|B‘ 3th + RQ( Polw Vpol(atw)) ( POlw'at( POlu))) deW
gy,

Vporuf? FIB\
+ ————OypdW + ——— O pdW — UH Vpoltt - vpol'l/))atde +
o 2 Q ov—1
€2 = (E1)+ ...+ (E£18). Now we

dE can be written as the sum of 18 groups of terms: df

The derivative in time ;
propose to prove that each group of terms is equal to zero or negative

- [ glodiaw = [ Lo == [ (@i + . dJuav = o

/R2 de+/ 0 )udW:/Q%(&b(u)j—l—%(j) )V =0
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These results are obtained by integration by parts and using the assumptions on the boundary conditions (2.32).
Now we study the term (E3):

(E3) = — /Q %[ﬁRQw,u]udW _— /

[PR*w, ujudV = / [u, u]pR*wdV = 0.
o o

The term (E4) corresponds to the viscosity and resistivity terms:

(E4) —1// AporwudW — / =AW —n 8@?#
o R

= —l// 2dVV / ﬁdW "7/ Vpol( > i dw.
22

To obtain this result we use w = Apyu and a double integrating by parts. Now we define the term (E5) which
depends on the pressure.

B l 9 1 2
(E5)—/QR[R ,p]udW—&——ry_1/9R[p,u]dW—|——ry_1/QpazudVV.

Gdw

2

Using 2pdzu = %[R?, u] and integrating by parts we obtain

(E5):/Q[R2,p]udv+%/ Rz[p,u]dV—kL/ p[R2,u]dV.

(E5):—/Q[R }pdV—T p[R2, dV+—/ u)dV = 0.

Now we study the terms (E6) and (E7). In these two cases using integration by parts and the anti-symmetric
properties of bracket operator we conclude.

6) = — R2v oIt pudW—l— WP"“" Dpol® pig, uldw,
p

_ / L[R2V o, PludV — / 5 LP?“' R4V =0,
.Q

1 ~

:—/ ﬁvnw[u,i/)]dV—/ pwl, ulvdV = 0.
Q Q

The term (E8) corresponds to the coupling between the pressure and the parallel velocity vj;. We obtain

1 [ Foy 1 v v p

/R2p8¢vH aw — / Fouy )dW—/Q%[p Y)W,

Integrating by parts the terms which depend on m and factorizing we obtain that (E8) = 0. The term (E9)
is defined by

(E8) =

UQinol|2 1 pU UQinol|2
(E9):+/97H > vl AW [ o, A=W

v2|Bpoll® F v} [Bypor|*
[=r 0 W — - W
_/Qf 2960y / Rzpv”a(ZS )"
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Integrating by parts we obtain

vﬁ|Bpol|2
89) = [ poy (|0 15 av
Byl E v [Bpor|®
||| pol 0 |15
/}#U%< 5 >WFAQWU%Q—7— dv =

The term (E10) is defined by

'Uﬁ Bypol |
2

Y

|V poru
(£10) = / Vporu” Rlpvy, v]dW — / el [R?|V poru|?, ¢]dW.
We apply the classical integration to conclude (E10) = 0. Now we study the term (E11)
1. . 1.
(B1) =~ [ s pogudW = [ 2l BV - Vv Jud
Q Q

To conclude we use the integration by parts and the fact that [u, u] = 0. The term (E12) depends of the toroidal
direction

_ (55 [ Vparl®
(E12) =+ \Y pR2 U“Vpol(a(;su) dw 9 F08¢(va)dW
2 2

P V port]? P
) / P ) (Vput - (O]} AV — / %Fm (%vn) av.
o 2

Using that (Vpeitt - Vpor(Opu)) = 8¢(M) and integrating by parts the second term we conclude. The term
(E'13) also depends on the toroidal derivative. It is defined by

1 _F 1 _ I
(E13) = — /Q Eaz <pR—g’U8¢(U82'¢)> dw — /Q —0gr (p—gv8¢(v8Rw)> dw
/U\\(Vpolu Vpoﬂ/f)Rg s (pvy)) dW+/ R”Fo( pol?¥ + Vot (Opu)) AW.

We integrate by parts the first term and expand this term, we integrate by parts the second one to obtain

F F
(E13) = /Q pEOUII(8¢(vPol¢) : Vpolu)dv + /Q P Eo(vpolu : vpolw)ab(vll)dv

Fypv F
— [ 00 Tyt Tyt )V + | L (Tt Fyea(00)V

To conclude we expand the third term

2
Fol’?;}” Dy (0)|(Vports - Vipor1))) in two terms Fogj” s (Vportt - Vpeit) and
%(Vpolu - Vport)0g(v)). The sum of the five terms obtained is equal to zero. Now we introduce the terms
(E14) and (E15).
(E14 / R pa 'U||( polw Vpolu)]UdW / E'UH polu Vpoﬂ/’)[ﬂ» } W,

(E15) / = vaA W, YludW — / PV —5—u, Y]dW.
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A integration by parts of the first term is sufficient to prove that (E14) and (E15) are equal to zero. The term
(E'16) is defined by

1}2|B‘2
I -~
(E16 / 'R pa'U|||Bpol‘ ]UdW+/ W[pau]dw

B F B,
—/ vaﬁ {u, T|] dw —/ va”R—g[u,vH]dW—l-/ vaﬁ [u, pT”} dw.
o) 2 fo)

The fourth term of (E16) is the toroidal part of the term Rp|B[*[u,v)] in the parallel velocity equation. Now
we split (E16) between two terms (E16a) and (E16b). (E16a) is defined by

1 2|Bpol‘
(E16a):+/ 2R[p,v”|Bpol| ]udW+/ Ly [0, u]dW

_/ vaﬁ |:u ‘ P0l| :|dW+/ vaﬁ |:u | pol| :|dW
2 2

This term is equal to zero (integrating by parts the first term is sufficient to prove this). The (E160) is defined by

UH F2 F 2
(E'16b) = ; Eﬁ[ u|ldW — / vaH 2R2 |aw — / va||R2 [u, v |dW
We rewrite the term (E16b) to obtain

(E16b) +/ 2 1o [, uldV /AQ o dv
= v —=|p, u — v
L ozl S oR
R} K
— — dV — — dVv
/QPUHQRQ [, ] /QPUHQRQ [, ]
We combine the second and third terms and use the anti-symmetry property of the bracket for the fourth term
We obtain
F? F? F?
E16b) = — [ pi av f =[P, uldV /A 0 av.
(£16b) /QPUII[ SpzudV + /QUHQRQ [P ldV | Pviigpalon vl
Now we combine the two last terms and we use anti-symmetric property of the bracket in the first to obtain
N F? F?
(E16b) = /Qp’UH |: Rz’UH, :|dV+/ V|5pa 2R2 [p’UH, }dV =0.
The result is obtained using an integration by parts. The last (E17) is given by

(E17) = / = (V)| (Vpotv)] - Vpor?)), w]UdW+/ Rl (Vportw - Viporvy))[pvy), ]dW,
1
— [ R Tyt VAW = [ RplB vy g

Firstly Rp|Bpor|?[u, v)]v)| = & (Vporth - Vyorth)vy|[u, v)|], secondly we have the identity

(Vpol'UH : Vpolw)[u, 1/1] = (vpolw . Vpolw)[u, UM + (vpolu . Vpolw)[vﬂvw]’
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Using these two identities we obtain

(B17) =+ /Q PUII(Vporv)) - Viport) ), 91dV = /rz
-

pvﬁ [(vpolu : vpolw)a ¢]dV
- /Q oo (ot Vo 01V = [ e

s (vpglu . vpolw)]dv
— /Q va(Vpoﬂb . Vpolw)[u’ UH}dV

The sum of second and fourth terms is equal to zero (anti-symmetry property of the bracket). The sum of the
other terms is equal to zero (second identity). To finish the proof we compute (E18) defined by

F2
(219) = [ az( RS%) wdw + [ o £8 o udw
.Q

This term is equal to zero because the sum of the two terms is also equal to zero (using a integration by parts).
This last result concludes the proof. O

This result proves that the physical energy associated with the reduced MHD system is conserved in the
ideal case (v = n = 0) as for the full MHD case and dissipated in the resistive case. As for the full MHD
case the dissipation is linked to the vorticity and the current. However the dissipation terms are not exactly
the same in the reduced and full MHD. In the part of the dissipation which depends on the resistive terms,
we have the square of the current for the full MHD and the square of the toroidal current of the reduced MHD.
Consequently during the reduction the poloidal current disappears (we can explain this by the choice of the
projections during the reduction). The ordering proposed in the physics papers show that the poloidal current is
smaller than the toroidal current, consequently it is logical that the reduction kills the effects of this part. In the
part of the dissipation which depends on the viscous terms we observe that the part linked to compressibility
(divergence of v) and the parallel vorticity disappears. At the end we conserve only the dissipation associated
with the poloidal vorticity. Finally, in the ideal case the reduced model conserves the energy as for the full MHD
problem and in the resistive and viscous cases the reduced model dissipates energy with decay terms that are
relatively close to the decay terms of the dissipation of the full MHD. First this result validates the reduced
model since we obtain two consistent energy balance estimates associated to the full and reduced MHD models.
Secondly the dissipation result is useful to verify at the mathematical level that the model is well-posed. For
example in [9,10] the authors explain and detail the key role of the energy balance to prove the existence of
weak solutions. Finally, this energy estimate is very important to ensure the numerical stability of the schemes.
Indeed a way to ensure the stability is to design a numerical method which dissipates the energy at the discrete
level and we cannot obtain this stability property a similar energy dissipation on the continuous model.

Let us make a first remark about the resistive term a?{‘iw , which is the poloidal current neglected in the JOREK
code. With or without this term we have a model which conserves energy in the ideal case and dissipate the
energy in the resistive case. Now we make a second remark about the other invariant of the MHD. The classical
full MHD admits other quantities, which are conserved. The first invariant is the mass conservation. When
we have written the equation on the density we have plugged our reduced velocity field and never used an
approximation. Consequently we can write the density equation in a conservative form and obtain the mass
conservation. The second invariant is the cross helicity which is conserved only in the incompressible case. In
our case we assume that the flow is compressible consequently the cross helicity may not be conserved. After it
is not clear that the balance law for the cross helicity is the same for the reduced and the full MHD. The last
one is the magnetic helicity (conserved only when the resistivity is equal to zero) defined by (A -B) with A the
vector potential given by

A= %1#8,;5.
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Consequently the equation on the magnetic helicity is the equation on . Now using the same boundary condi-
tions that before we obtain

d 1
(A~B)—Fog/flﬁwdw
:Fo/[’lli,u]dV—Fo/ %%udV
2 (93
F
-F / (Or(10zu) — Oz (YOru))AV — Fy / EO(%udV
2 (]

F
:FO/ vaolu'ndV—Fo/ —08¢udV:0
o0 0 R
Consequently the magnetic helicity is conserved.

3. DISCRETIZATION OF THE MODEL

3.1. Spatial discretization

In the JOREK code, different discretization methods are applied for the toroidal direction and the poloidal
plane. For the toroidal direction we use a classical Fourier expansion. This discretization is easy to implement but
generates a large matrix. Using a Fast Fourier transformation (FFT) we obtain a faster algorithm to construct
the matrix and the right hand side than the classical loop used to assemble the matrix and the right hand side.
For the Poloidal plane we use a classical finite element method with numerical viscosity to stabilize the method.
The elements chosen are Cubic Bezier elements which allow to guarantee C' continuity useful to discretize
the fourth order operators and preserve the free divergence constraints. However this C! reconstruction is not
guaranteed for the grid center and for the X-Point. Because of the higher continuity requirement, these elements
need only 4 degrees of freedom per grid node compared to the Lagrangian Qs cubic element, which needs 9
degrees of freedom by grid node. Another advantage comes from the isoparametric formulation. Indeed we can
discretize the geometrical quantities like R and Z with Bezier Splines. This property allows to construct the
grid aligned with the magnetic surfaces easily. The details about the discretization using Bezier elements are
given in [18].

3.2. Original time discretization and preconditioning

In this section we explain the time discretization originally used in JOREK and the preconditioning used for
the linear solver. The different models implemented in the JOREK code (with or without parallel velocity) can
be written in the following form

O A(U) = B(U)

with A and B discrete nonlinear differential operators and U = (¢, u, j, w, p, T, v||). For the time discretization
we use the classical Crank Nicholson or a Gear second order scheme allowing to write the time scheme in the
following form

(1+ QAU — hAtB(U" ) = (1 +2¢0)A(U™) — CA(U™ 1) + (1 — 9) AtB(U")

with ¢ and 0 the parameters of the scheme. If § = 1 and ( = 0 we obtain the implicit Euler scheme, if { = 0 and
0= % we obtain the Crank—Nicholson scheme and if # = 1 and { = % we obtain the Gears scheme. These implicit
schemes do not preserve the decay of the discrete time energy, because the system is too nonlinear. Finding an
accurate time scheme with this property is an interesting problem for the future. Now we define two nonlinear
vectors G(U) = (14 ¢)A(U) — §AtB(U) and b(U™, U 1) = (1 + 2¢)A(U") — CA(U" 1) + (1 — 0) AtB(U").
At the end we want to solve the following nonlinear system

G(U™) =p(Uu™, U™ ).
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A first order linearization is applied in the original code to obtain the following linear system

(LG(U )> SUM = —GQ(U™) 4+ (U™, U™ 1) = R(U")
ouU

with §U"T! = U™T! — U" and the Jacobian J, = aGa(gn). To solve this system we use the classical GMRES

method with left preconditioning [13,24]. The principle of the left preconditioning is to replace the solver

J,0U™ = R(U") by M, 1J,6U""! = M 1R(U™). The last system can be split between two steps. First we

solve exactly

M, éy = R(U")
and then we solve with the GMRES method

M, T,6U" T = gy.

It is necessary to obtain the final algorithm that the preconditioning matrix M,, is invertible. The idea currently
followed in the code is to write the Jacobian by block, each block corresponding to the coupling terms between
two Fourier modes. Under the assumption of weak coupling it is possible to eliminate the non diagonal blocks.
We obtain a diagonal block matrix where the blocks correspond to the equations for each Fourier mode. To
compute the inverse we use a direct solver (LU method for example) to obtain the inverse of each block and
consequently the inverse of M,,. To minimize the CPU cost we don’t invert M, at each time step, but only
when the convergence for the previous linear step is too slow.

3.3. Nonlinear time solvers

The first order linearization previously used may not be the optimal choice to solve the problem in the
nonlinear phase of the run. Consequently we propose to replace this linearization by a Newton procedure. Since
we use an iterative solver to compute the solution of the linear system, it will be interesting to use an inexact
Newton procedure [7,11]. This variation of the Newton method means that the convergence criterion of the
GMRES method is adapted using the nonlinear residual and the convergence of the Newton procedure. The aim
is to use the nonlinear convergence to minimize the number of GMRES iterations. Indeed it is not necessary
to solve with a high accuracy the linear system but just enough at each step to converge to the solution of the
nonlinear system at the end. Let us now detail the Inexact Newton algorithm:

Algorithm
e At the time step n, we compute b(U™, U"~1), G(U™).
e We choose €2,z and the initial guess §Uy.
e At each iteration k of the Newton method we have the solution Uy.
e We compute G(Uy,) and the Jacobian Jj.
e We solve the linear system with GMRES J,.0Uy = —G(Uy) + b(U", U""1) = R(Uy, U") and the following

convergence criterion
176Uk — R(Ux, U")| _
|1R(U, UM e

with N
oo (RO )
MRE [|[R(Ug—1, Um)|

o We iterate with Upy; = Uy + §Uy.
e We apply a convergence test (for example ||R(Uy, U™)|| < €, + €.||R(UM)]]).
e When the Newton method has converged we define U"*! = Uy ;.
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Here €, and €, are the relative and absolute stopping criteria for the Newton procedure. We couple this algorithm
with an adaptive time stepping which allows to use large time steps in the linear phase and smaller time steps in
the nonlinear phase. Actually the principle is simple: if the Newton process converges very quickly we increase
the time step and if the convergence is slow we decrease the time step for the following iteration. If the Newton
process does not converge or if ||R(Ugt1, U™)|| > ||[R(Uk, U™)|| during two or three consecutive linear steps
we decrease the time step and restart the Newton iterations. To have a smooth evolution of the time step it is
necessary to avoid a large increasing or decreasing of the time step.

4. NUMERICAL RESULTS

In general the different test cases used in this paper have the same structure. First we compute the equilibrium
on the poloidal grid (Fig. 1, left), compute the aligned grid (Fig. 1, right) and begin the time loop. At the
beginning of the time loop peeling-ballooning modes [14, 30] set in which are responsible for the appearance of
edge localized modes (ELMs). These linear instabilities are driven by large pressure gradients (steep pressure
pedestal) and large current densities in the edge. During these instabilities the energy associated with the non
principal modes grows exponentially. The background profiles are modified. When the energies associated with
the non principal modes are sufficiently large, the pressure gradients get smaller which stabilizes the instability.
This is the nonlinear saturation phase. The implicit time methods are known to be stable without restriction
on the time step, however this type of result is valid for stable physical dynamics and stable models. In our
cases we have physical instabilities consequently the numerical stability is not ensured. Typically we will show
that if the numerical error (time error, linearization error) becomes too large the numerical simulation does not
capture correctly the beginning of the salutation phase and generates critical numerical instabilities.

In this section we present some numerical results for the models with and without parallel velocity. We add
to the reduced MHD models, numerical diffusion operators for each equation and two anisotropic diffusion
operators on the density and the temperature (density and pressure equations). For example, for the pressure
equation we add the following diffusion operator

VbV T+ kLVIT) = V- (k) = k)V T + kLVT)
with v T = H:%H . (H:%H -VT)and V, = V-V

We propose to compare the different methods (Exact and Inexact Newton methods and classical linearization)
mainly in the nonlinear phase. Indeed in the linear phase the classical method is clearly more efficient. In this
phase the preconditioning is very efficient and the GMRES solver converges quickly (between 1 and 5 iterations).
The Newton procedure converges with 3 iterations in general. Consequently using the Newton method the cost
is clearly higher for each time step in the linear phase. In the nonlinear phase the situation is more complicated.
The nonlinear phase begins when the quantities associated with the non principal modes have the same order
of magnitude as the quantities associated to the principal mode. To compare the numerical results, we define
the beginning of the nonlinear phase as the time where the kinetic and magnetic energies for n # 0 are at the
level of the energies associated to n = 0. To compare the classical linearization and the Newton procedure we
use the adaptive time stepping. If the algorithm for one time step does not converge we recompute it with a
smaller time step (typically At,e, = 0.8At4). For the Newton and the linearization methods the factorization
is recomputed for each time step and during a Newton step the factorization is recomputed if the number of
GMRES iterations associated with the two last Newton steps is superior to 50.

4.1. Model without parallel velocity
4.1.1. First test case

This first case corresponds to a simplified equilibrium configuration associated to the JET reactor. We solve
the model without parallel velocity. In this case the numerical viscosity is zero and the numerical resistivity is
10710, The physical viscosity and resistivity, dependent on the temperature are given by n(T) = 2 x 10772
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TABLE 1. For the linearization method the average number of GMRES iterations and LU
factorizations per time step are given as well as the wall clock time.

Linearization method
At = GMRES Iter. LU fact. Time
30 19 1 53.25

TABLE 2. For the exact Newton method the average number of total GMRES iterations, LU
factorizations, number of Newton iteration and number to GMRES iteration per Newton step
per time step are given as well as the wall clock time.

Exact Newton
At = GMRES Iter. LU fact. Newton iter. Total GMRES iter. Time
30 19.8 1.05 3 59 79.6
40 26.6 1.28 3.2 85.5 102

TABLE 3. For the inexact Newton method the average number of total GMRES iterations, LU
factorizations, number of Newton iteration and number to GMRES iteration per Newton step
per time step are given as well as the wall clock time.

Inexact Newton
At = GMRES Iter. LU fact. Newton iter. Total GMRES iter. Time
30 3.3 1 5.7 18.7 76.25
40 5.4 1 5.8 31 82.9

and v(T) = 4 x 10~573. Note that the energy estimate for our model is valid only for a constant viscosity
coefficient, which is not the case here. This point will be discussed in the future. We consider a geometry with
X-point. The number of degrees of freedom for these simulations is around 1.5 x 10° with around 9.0 x 107
nonzero coefficients. In the toroidal direction we use three Fourier modes 1, cos(n,¢) and sin(n,¢) with n, a
parameter called the periodicity. For the linearization procedure the criterion of convergence for the GMRES
procedure is ¢ = 1078, For the Newton procedure the maximum number of Newton iteration is 10 and the
criterion of convergence for the Newton procedure e, = 107°, the £, s zs of the GMRES convergence criterion
is 0.0005. Using At = 30 we compare the results for the linearization method, the exact Newton method and the
inexact Newton method. These results are given between the time 1400 and 3500 corresponding to the nonlinear
saturation phase. The final time is 3500. The code is executed with 2 MPI and 16 OpenMP threads per MPI
process. In tables (Tabs. 1, 3) we give the average of different quantities associated to the solver during one
time step.

Some remarks about these results. It is clear that the CPU cost associated with the Newton procedure is
higher compared to the classical linearization for the same time stepping. This result is expected, indeed by
definition of the Newton method, the number of linear problems solved is larger with the Newton procedure.
First in the nonlinear phase we remark that the Newton procedure is also less performing, but using an inexact
Newton method we can reduce the CPU cost. In Tables 2 and 3 we remark that for the time step At = 30,
the main difference between the Inexact and exact Newton method is small, but for At = 40 the difference is
larger. The main difference between exact and inexact Newton method can be explained by the fact that the
number of GMRES iterations is larger using the exact Newton method and consequently the factorization for
the preconditioning is called more often. At the end we remark that the inexact Newton method is clearly more
efficient when the problem is more nonlinear and similar when the problem is not too nonlinear. This result
verifies the usefulness of the inexact Newton method.
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solution can be use as reference to validate the solutions computed with very large time steps.
The coefficient n corresponds to the periodicity. In this case the periodicity is equal to 8.

Now we propose to compare the linearization method and the inexact Newton method. In the nonlinear phase
the difference is less important. Indeed in the nonlinear phase the number of GMRES iterations for each linear
problem is larger. Using an inexact Newton procedure we have more linear problems to solve but each linear
system is solved with a small accuracy. Consequently the cost associated with each linear system is smaller
when we use the inexact Newton procedure. Tables 1-3 for At = 30 show that the total GMRES iterations for
one time step are similar between an inexact Newton procedure and the linearization procedure. Consequently
the additional cost associated with the inexact Newton method come from the computation of the matrix and
in this case is around 1.5 which is an acceptable additional cost. Additionally, the parallel scaling is better for
the construction of the matrix than the iterative solver and the preconditioning. Consequently with more MPI
process the difference between the CPU cost associated with the inexact Newton method and the linearization
method can be reduced.

Secondly we compare the two methods with At = 40, 50, 60. For the Newton procedure the maximum number
of Newton iterations is 20 and the criterion of convergence for the Newton procedure ¢ = 1077, the €%, pps
of the GMRES convergence criterion is 0.0005. We plot the kinetic and magnetic energies associated with the
different modes for the two procedures and the different time steps (Fig. 3) and (Fig. 4).

These results show that the Newton procedure with adaptive time stepping is more robust than the classical
linearization and allows to use a larger time step. When we use the classical linearization with a very large
time step, the numerical error linked to the time discretization and the linearization becomes too large such
that consequently the numerical scheme does not capture correctly the beginning of the saturation phase. In
this case, numerical instabilities appear and the iterative solver does not converge after the beginning of the
numerical instability. If we use an adaptive time stepping the situation is the same because in general the scheme
computes the beginning of the numerical instabilities and at this moment is too late to adapt and decrease the
time step.
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FIGURE 5. In the left Kinetic and Magnetic energies for Linearization method for At = 1. In
the middle Kinetic and Magnetic energies for Linearization method for At = 2. In the right
Kinetic and Magnetic energies for the Newton method for At = 10 with adaptive time stepping.

With the Newton procedure the situation is different. First the error of linearization and consequently the
global numerical error is smaller so we can use larger time steps and capture correctly the beginning of the sat-
uration phase. Secondly we don’t have the problem associated with the numerical instabilities with the Newton
procedure as the Newton method does not converge in case of the numerical instability such that the time step
is recalculated with smaller At. We conclude that the adaptive time stepping works with the Newton method
because this procedure detects the beginning of the numerical instabilities by non convergence of the method
contrary to the linearization, for which in order to continue the computation it is necessary to adapt the At
before the beginning of the numerical instability. Consequently the Newton procedure is more robust, allowing
an efficient adaptive time stepping, which avoids numerical instabilities for large time steps and non convergence
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TABLE 4. CPU time of the simulation for the GMRES method with At = 1 and for Newton
method with adaptive time method (initial time step At = 10).

GMRES At =1 Newton + adaptive time method
18800 7600

TABLE 5. Average of number of GMRES iteration and factorization computation (precondi-
tioning) during a time step. Linearization method. At = 20.

Linearization method

Models GMRES Iter. Facto. Time
with neglected terms 25.4 1 75.7
without neglected terms 28 1 83.6

issues. The figure (Fig. 4.) shows that the code with the linearization method does not converge with At = 40
contrary to the Newton method which converges even with At = 60. This test case is not too nonlinear and
consequently not too stiff for the numerical method. For more nonlinear test cases the Newton procedure gives
better results when the problems get stiffer.

4.1.2. Second test case

This second test case corresponds to a realistic ASDEX Upgrade equilibrium configuration with unrealistically
large resistivity which makes the instability especially violent. We solve the model without parallel velocity. In
this case the numerical viscosity and the numerical resistivity are close to 10~''. The physical viscosity and
resistivity are dependent of the temperature: n(T) = 2 x 107573 and v(T) = 3 x 10757~ 3. We consider a
geometry with X-point. In the toroidal direction we use three Fourier modes 1, cos(n,¢) and sin(n,¢) with n,
a parameter called the periodicity. The final time is 450.

For the linearization procedure the maximum number of GMRES iteration is 500 and the convergence criterion
for the GMRES procedure ¢ = 1078, First we propose to compare the two methods for At = 5,10, 20. For the
Newton procedure the maximum number of Newton iterations is 10 and the the criterion of convergence for the
Newton procedure € = 1072, the gy of the GMRES convergence criterion is 0.0005.

This test case with violent physical instabilities allows to confirm the previous remarks about adaptive time
stepping and numerical instabilities. First if we choose a too big time step with the linearization method, we
have a numerical instability which appears and the adaptive time stepping is not efficient.

Due to the violent physical instabilities the problem is strongly nonlinear in the saturation phase. Contrary
to the previous test case, using the Newton method allows to reduce significantly the CPU cost for the total
run (Tab. 5).

The inexact Newton method with adaptive time stepping is more robust than the linearization method and
allows to reduce the CPU costs for highly nonlinear cases because of the possibility to take larger time steps.

4.2. Model with parallel velocity

This test case is the same as the one used in Section 4.1.1 but we solve the model with parallel velocity. First
we compare the two methods in the nonlinear phase with At = 20. For the Newton procedure the maximum
number of Newton iteration is 10 and the the criterion of convergence for the Newton procedure ¢ = 1072, the
gg of the GMRES convergence criterion is 0.0005. These results are given between the time 1250 and 3500 which
correspond to the saturation phase (stiff part of the computation).

The conclusions on the comparison between the Newton procedure and the linearization procedure are similar
to the conclusion for the first test case: in the nonlinear phase the new method costs around 1.4—1.5 times
more, but this additional cost can be reduced using a larger time step. Indeed using the Newton procedure
(as previously) we can use larger time steps than with the original linearization method without running into
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FIGURE 6. In the left Kinetic and Magnetic energies for Linearization method for At = 20, 25.
In the left Kinetic and Magnetic energies for Newton method for At = 20, 40.

numerical instabilities. For example in this latter case the linearization method is unstable with At = 25 and
the Newton method is stable with At =40 (Fig. 6).

For all these results we recompute the factorization for the preconditioning at each time step. For the Newton
method we have added an additional rule. The factorization is recomputed if the convergence is too slow for
the previous linear step. To reduce the CPU time we can use only the second rule for the Newton procedure
and the Linearization method. In this case, it is not necessary to compute the factorization for each time step.
The different test cases show that for the Newton procedure it will be important to use a smaller g¢ (initial £
for the GMRES method in the Inexact Newton procedure) to compute correctly the first Newton iteration.

The last remark about this result is on the difference between the model with and without neglected terms.
These terms in the potential and parallel velocities equations come from to the fact the poloidal and parallel
velocity are not perpendicular, this is the cross terms between the poloidal velocity and the poloidal part of
the parallel velocity. In Figure 7 and we remark that we have small differences in the dynamics of kinetic and
magnetic energies between the models with and without neglected terms. We observe these differences for the
linearization method with A¢ = 20 and for the Newton methods with At = 40. With the Newton procedure and
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FIGURE 7. Comparaison between the full model (model with neglected terms) and the model
without neglected terms. In the top and left results given by the Linearization method with
At = 20, in the top and right, results given by the Newton method with At = 20 and in bottom
results given by the Newton method with At = 40.

At = 20 the difference is smaller. In theory these terms are small consequently it is expected that the impact
of these terms is small when the numerical error (Time and linearization errors) is small. When the error is
larger (Linearization method with At = 20, Newton method with At = 40) the impact of these terms is more
important. However the impact of these additional terms on the stability, conditioning and convergence issues
is not clear and requires additional studies for exemple when the resistivity and viscosity are close to zero.

5. CONCLUSION

In this paper, we have presented a rigorous analytical derivation of the reduced MHD models implemented in
the non-linear MHD code JOREK. Starting from the potential formulation of the magnetic field vector and fluid
velocity used in JOREK we obtain a few additional terms that have been neglected in the code but might be
relevant in the non-linear phase. We have also given a proof of the conservation (in the ideal case) or dissipation
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TABLE 6. Average of number of GMRES iteration and factorization computation (precondi-
tioning) during a time step. Inexact Newton method. At = 20.

Inexact Newton method

Models GMRES Iter. Facto. Newton iter. Total GMRES iter. time
with neglected terms 5.1 1 6.4 32.7 119.3
without neglected terms 5.2 1 6.4 33.4 122.5

TABLE 7. Average of number of GMRES iteration and preconditioning called during a time
step. Inexact Newton method. At = 20.

Inexact Newton method

Models GMRES Iter. Precon. called Newton iter. Total GMRES iter. time
with neglected terms 10.9 1.1 6.95 75.6 152
without neglected terms 8.7 1 6.7 58 142

(in the resistive and viscous cases) of total energy for this reduced MHD model if the additional terms are
taken into account. This is an important validation for the choices of the projections and the assumptions of the
derivation. Indeed we obtain an energy estimate close the energy estimate associated with the full MHD. At the
numerical level it is important to have a stable model (here we consider the dissipation of the energy as a first
stability result for the model). Indeed it is not possible to certify the numerical stability (decay of the norm or
of the energy) and the good behavior of the numerical methods if it is not the case for the continuous model.
The numerical results do not show large differences between our model derived previously with the dissipative
energy estimate and the model implemented initially in JOREK which does not preserve this energy balance
estimate. Perhaps because at the numerical level the discrete energy decay is not yet satisfied exactly under
all circumstances (time scheme not adapted, negative density or wrong viscous coefficient can explain this).
However, now we have a model with a good energy balance law which makes possible the design of numerical
method that are stable and robust. In the future we would like to study the derivation of the reduced MHD
with the bi-fluid effects, with more physical stress tensors [28].

The second part of the paper is focused on the time solver of JOREK. The original method used in JOREK
for the time-stepping of the nonlinear system is a linearization solved iteratively by GMRES with physics-
based preconditioning. We have replaced this by the nonlinear inexact Newton method in which the linear
convergence accuracy of GMRES depends on the non-linear convergence. Especially at the onset of non-linear
saturation, large numerical errors can cause numerical instabilities and prevent convergence. The non-linear time
stepping reduces those errors and consequently allows to use larger time steps as confirmed by numerical tests.
We have lso implemented and tested an adaptive time stepping that works very efficiently with the Newton
method and allows to reduce computational costs. The Newton method is more robust than the linearization
method as it avoids certain numerical instabilities, is well suited for adaptive time stepping, and allows to reduce
computational costs in highly non-linear cases. The Newton method is currently implemented for the single fluid
reduced MHD equations in JOREK, and will be extended to two-fluid terms and further extended models in
the future.
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