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ADAPTIVE CROUZEIX–RAVIART BOUNDARY ELEMENT METHOD ∗

Norbert Heuer1 and Michael Karkulik1

Abstract. For the nonconforming Crouzeix–Raviart boundary elements from [N. Heuer and F.-J.
Sayas, Numer. Math. 112 (2009) 381–401], we develop and analyze a posteriori error estimators based on
the h−h/2 methodology. We discuss the optimal rate of convergence for uniform mesh refinement, and
present a numerical experiment with singular data where our adaptive algorithm recovers the optimal
rate while uniform mesh refinement is sub-optimal. We also discuss the case of reduced regularity by
standard geometric singularities to conjecture that, in this situation, non-uniformly refined meshes are
not superior to quasi-uniform meshes for Crouzeix–Raviart boundary elements.
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1. Introduction

This is the first paper on a posteriori error estimation and adaptivity for an element-wise nonconforming
boundary element method, namely Crouzeix–Raviart boundary elements analyzed in [24]. Previously, in [13],
we presented an error estimate for a boundary element method with nonconforming domain decomposition.
There, critical for the analysis is that the nonconformity of the method stems from approximations that are
discontinuous only across the interface of sub-domains, which are assumed to be fixed. In that case, the under-
lying energy norm of order 1/2 of discrete functions has to be localized only with respect to sub-domains. In
this paper, where we consider approximations which are discontinuous across element edges, such sub-domain
oriented arguments do not apply. Instead, we have to find localization arguments that are uniform under scalings
with h, the diameter of elements, which is nontrivial in fractional order Sobolev spaces of order ±1/2.

The Crouzeix–Raviart boundary element method is of particular theoretical interest since it serves to set the
mathematical foundation of (locally) nonconforming elements for the approximation of hypersingular integral
equations. Our main theoretical result is the efficiency and reliability (based on a saturation assumption) of sev-
eral a posteriori error estimators. Our second result is that, for problems with standard geometric singularities,
Crouzeix–Raviart boundary elements with seemingly appropriate mesh refinement is as good as (and not better
than) Crouzeix–Raviart boundary elements on quasi-uniform meshes. We further discuss this point below.

Keywords and phrases. Boundary element method, adaptive algorithm, nonconforming method, a posteriori error estimation.

∗ Financial support by CONICYT through projects Anillo ACT1118 (ANANUM) and Fondecyt 1110324, 3140614 is gratefully
acknowledged.
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The a posteriori error estimators in this work are based on the h− h/2-strategy. This strategy is well known
from ordinary differential equations [22] and finite element methods [1,4]. Recently, it was applied to conforming
boundary element methods [16,18] as well: if the discrete space X� is used to approximate the function φ in the
energy norm |||·|||, we use the uniformly refined space X̂� and the corresponding approximations Φ� and Φ̂� to
estimate the error via the heuristics

η� :=
∣∣∣∣∣∣∣∣∣Φ̂� − Φ�

∣∣∣∣∣∣∣∣∣ ∼ |||φ− Φ�||| . (1.1)

In a conforming setting, the proof of efficiency of η� (i.e., it bounds the error from below) follows readily from
orthogonality properties, while its reliability (i.e., it is an upper bound of the error) is additionally based on
a saturation assumption. In nonconforming methods, orthogonality is available only in a weaker form which
contains additional terms, such that h− h/2-based estimators are more involved than in a conforming setting.

As mentioned before, additional difficulties arise in boundary element methods due to the fact that the
underlying energy norm |||·||| is equivalent to a fractional order Sobolev norm. These norms typically cannot be
split into local error indicators. We use ideas from [18] to localize via weighted integer order Sobolev norms.

Our model problem is a hypersingular integral equation on a plane open surface Γ . The energy norm of
this problem defines a Sobolev space of order 1/2, so that low-order conforming methods with quasi-uniform
meshes have approximation order O(hs−1/2) (h being the mesh size) for s ≤ 2, provided the exact solution has
Sobolev regularity s. Typical solutions of hypersingular integral equations on open surfaces exhibit corner and
corner-edge singularities, such that their regularity is restricted to orders 1− ε for all ε > 0 [28]. In such a case,
low-order conforming methods with quasi-uniform meshes have approximation orders equal to O(h1/2), cf. [6],
while methods with appropriate shape-regular mesh refinement towards the singularities show an approximation
order equal to O(h), cf. the discussion in [11], Section 7.3 (v). In [24] the authors have shown that exact solutions
with Sobolev regularity 1 can be approximated by Crouzeix–Raviart boundary elements with order O(h1/2) on
quasi-uniform meshes. For regularity s ≤ 2, one could expect to recover the optimal rate O(hs−1/2) as in the
conforming case. In addition, for appropriate shape-regular mesh refinement towards singularities or for adaptive
methods, one could expect to recover the rate O(h) as in the conforming case.

Surprisingly, this appears to be false in the case of Crouzeix–Raviart boundary elements.
We conjecture that O(h1/2) (or O(N−1/4) with N being the number of unknowns) is the optimal rate for

Crouzeix–Raviart boundary elements even when using non-uniformly refined meshes. We base our conjecture
on two observations. Standard error estimation of nonconforming methods, based on the second Strang lemma,
comprise a best-approximation term and a nonconformity term. The best-approximation term has indeed the
optimal order of a conforming method but we observe that the standard upper bound of the nonconformity
term is of the order O(N−1/4) and not better. This surprising result can be explained by the fact that the
appearing Lagrangian multipliers on the edges of the elements (needed for the jump condition of the Crouzeix–
Raviart basis functions) are approximated in a Sobolev space of order only 1/2 less than the unknown function.
Taking into account that the total relative measure of the edges increases with mesh refinement and that the
Lagrangian multipliers are approximated only by constants, this explains the limited convergence order of the
whole method. In Section 2.4, we discuss this behaviour in more detail.

The second observation stems from numerical experiments with Crouzeix–Raviart boundary elements using
meshes which are optimal for conforming methods:

• We consider uniform meshes for the nonconforming approximation of a solution which is an element of the
coarsest conforming space (i.e., a conforming method would compute the exact solution). This numerical
experiment is carried out in Section 2.4, and shows the conjectured convergence order O(h1/2).

• We consider algebraically graded meshes which are optimal for conforming approximations in the sense that
they guarantee an approximation order O(N−1/2) for inherent singularities. These numerical experiments
are carried out in Section 5.1, and confirm the conjectured order O(N−1/4).

Based on our conjecture, we conclude that, for Crouzeix–Raviart boundary elements, quasi-uniform meshes are
optimal to approximate standard geometric singularities where the solution is almost in H1(Γ ). There is no
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need for adaptive mesh refinement. In this case, the only use of a posteriori error estimation is precisely error
estimation, not adaptivity.

There are cases, however, where given data are singular so that solutions have singular behavior which is
stronger than that due to geometric irregularities. In these cases an adaptive Crouzeix–Raviart boundary element
method can be used to recover the optimal rate O(N−1/4) which cannot be achieved with quasi-uniform meshes
in this situation. Our numerical experiments report on such a case where the exact solution is strictly less
regular than H1(Γ ).

As model problem, we use the Laplacian exterior to a polyhedral domain or an open polyhedral surface. The
Neumann problem for such a problem can be written equivalently with the hypersingular integral operator W ,

Wφ(x) := − 1
4π
∂n(x)

∫
Γ

∂n(y)

(
1

|x − y|

)
φ(y) dΓ (y) = f(x), (1.2)

where Γ is the open or closed surface and f is a given function. The link to the Neumann problem for the exterior
Laplacian is given by the special choice f = (1/2−K ′)v, with v the Neumann datum and K ′ the adjoint of the
double-layer operator. Although the operator W can act on discontinuous functions, the hypersingular integral
equation (1.2) is not well-posed in such a case. However, continuity requirements can be relaxed by using the
relation W = curlVcurl with single layer operator V and certain surface differential operators curl and curl,
see [20, 27]. This identity allows us to use the space V of Crouzeix–Raviart elements to approximate the exact
solution φ of (1.2) in a nonconforming way. The associated energy norm will then be |||·||| = ‖curl·‖H−1/2(Γ )

(see Sect. 2.3).
The reliability and efficiency of h − h/2 error estimators for conforming methods follows readily from the

Galerkin orthogonality

|||φ− Φ�|||2 = |||φ− Φ�|||2 +
∣∣∣∣∣∣∣∣∣Φ̂� − Φ�

∣∣∣∣∣∣∣∣∣2 , (1.3)

where reliability additionally needs the saturation assumption∣∣∣∣∣∣∣∣∣φ− Φ̂�

∣∣∣∣∣∣∣∣∣ ≤ Csat |||φ− Φ�||| , with 0 < Csat < 1 for all 	 ∈ N.

In a nonconforming setting, the orthogonality (1.3) does not hold true any longer. However, there is a substitute
given by an estimate which involves additional terms of the form

∣∣∣∣∣∣Φ� − Φ0
�

∣∣∣∣∣∣, with Φ0
� being a conforming

approximation of φ, see Section 3.1.
A term of the form

∣∣∣∣∣∣Φ� − Φ0
�

∣∣∣∣∣∣ will be called nonconformity error. Although it is computable, it is evident
that the computation of Φ0

� has to be avoided. Hence, we will show that the nonconformity error can be bounded
by inter-element jumps of Φ�, see Corollary 4.1. To that end, we will analyze the properties of quasi-interpolation
operators in the space H−1/2(Γ ) in Section 3.2.

In Section 4, we show that the a posteriori error estimator η� from (1.1) is reliable and efficient up to the
nonconformity error, which can then be exchanged with the inter-element jumps of Φ�. As already mentioned, η�

is not localized, and we will use ideas from [18] to introduce three additional error estimators for that purpose.
Two of them are localized, see Section 4.2, and can be used in a standard adaptive algorithm, see Algorithm 1
below. We show in Section 4 that all error estimators are efficient and, under the saturation assumption, also
reliable, up to inter-element jumps. Finally, Section 5 presents numerical results.

2. Crouzeix–Raviart boundary elements

2.1. Notation and model problem

We consider an open, plane, polygonal screen Γ ⊂ R2, embedded in R3, with normal n(y) at y ∈ Γ pointing
upwards. Restricting ourselves to a plane screen simplifies the presentation. However, associated solutions exhibit
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the strongest possible edge singularities that, at least for conforming methods, require nonuniform meshes in
order to guarantee efficiency of approximation. On Γ , we use the standard spaces L2(Γ ) and H1(Γ ), and as
usual, H1

0 (Γ ) ⊂ H1(Γ ) consists of functions that vanish on the boundary ∂Γ . The space H1
0 (Γ ) is equipped with

the H1(Γ ) (semi-)norm | · |H1(Γ ) := ‖∇Γ ·‖L2(Γ ) where ∇Γ denotes the surface gradient. We define intermediate
spaces by the K-method of interpolation (see, e.g., [31]), that is,

Hs(Γ ) =
[
L2(Γ ), H1(Γ )

]
s

and H̃s(Γ ) =
[
L2(Γ ), H1

0 (Γ )
]
s

for 0 < s < 1.

Sobolev spaces with negative index are defined via duality with respect to the extended L2(Γ ) inner product
〈· , ·〉,

Hs(Γ ) := H̃−s(Γ )′ and H̃s(Γ ) := H−s(Γ )′ for − 1 ≤ s < 0.

We also use the Sobolev-Slobodeckij semi-norm and norm defined by

|v|2
H

1/2
slo (ω)

:=
∫

ω

∫
ω

|v(x) − v(y)|2
|x − y|3 dΓ (x) dΓ (y), ‖v‖2

H
1/2
slo (ω)

:= ‖v‖2
L2(ω) + |v|2

H
1/2
slo (ω)

.

Space of vector valued functions will be denoted by bold-face letters, i.e. L2(Γ ) or H1/2(Γ ), meaning that every
component is an element of the respective space. We will use tangential differential operators. For sufficiently
smooth functions φ on Γ , we define the tangential curl operator curl by

curlφ := (∂yφ,−∂xφ, 0) .

Drawing upon the results from [9], it is shown in ([20], Lem. 2.2) that the operator curl can be extended to a
continuous operator, mapping H̃1/2(Γ ) to

H̃−1/2(Γ ) :=
{
ψ ∈

(
H̃−1/2(Γ )

)3 | ψ · n = 0
}
.

Now our model problem is as follows. For a given f ∈ H−1/2(Γ ), find φ ∈ H̃1/2(Γ ) such that

〈Wφ , ψ〉 = 〈f , ψ〉 for all ψ ∈ H̃1/2(Γ ). (2.1)

Here, W is the hypersingular integral operator from (1.2). It is well-known that this problem has a unique
solution (cf. [28]). Recall the relation W = curlVcurl with single layer operator V ,

Vu(x) :=
1
4π

∫
Γ

1
|x − y|u(y) dΓ (y).

Performing integration by parts one finds that an equivalent formulation of (2.1) is given by

〈Vcurlφ , curlψ〉 = 〈f , ψ〉 for all ψ ∈ H̃1/2(Γ ), (2.2)

see ([27] and [20], Lem. 2.3). Note that V in (2.2) is considered to transfer vectorial densities into vectorial
potentials, i.e., V acts component-wise.

2.2. Meshes and local mesh-refinement

A triangulation T of Γ consists of compact 2-dimensional simplices (i.e., triangles) T such that
⋃

T∈T T = Γ .
We do not allow hanging nodes. The volume area |T | of every element defines the local mesh-width hT ∈ L∞(Γ )
by hT |T := hT (T ) := |T |1/2. We define ET to be the set of all edges e of the triangulation T , and NT as the set
of all nodes z of the triangulation which are not on the boundary ∂Γ . We will need different kinds of patches.
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Figure 1. For each triangle T ∈ T�, there is one fixed reference edge, indicated by the double
line (left, top). Refinement of T is done by bisecting the reference edge, where its midpoint
becomes a new node. The reference edges of the son triangles T ′ ∈ T�+1 are opposite to this
newest vertex (left, bottom). To avoid hanging nodes, one proceeds as follows: we assume that
certain edges of T , but at least the reference edge, are marked for refinement (top). Using
iterated newest vertex bisection, the element is then split into 2, 3, or 4 son triangles (bottom).
If all elements are refined by three bisections (right, bottom), we obtain the so-called uniform
bisec(3)-refinement which is denoted by T̂�.

For a node z ∈ NT , we denote by ωz the node patch as the set of all elements T ∈ T sharing z. Likewise, we
define an edge patch ωe. For an element T ∈ T , the patch ωT is the set of all elements sharing a node with T .

Starting from an initial triangulation T0 of Γ , we will generate a sequence of meshes T� for 	 ∈ N via so-called
newest vertex bisection (NVB). For a brief overview, we refer to Figure 1, and for a precise definition, we refer the
reader to [32]. In order to terminate, a recursive definition of NVB requires the coarse mesh T0 to be equipped
with a special reference edge labeling (an edge is reference edge of both its adjacent elements or of none). In [7],
such a labeling is also needed to derive a complexity bound which is used in proving optimal convergence rates
of adaptive algorithms. The recent work [25] presents an iterative definition of the NVB algorithm which does
not need a special labeling to terminate, and shows also that the complexity bound stays valid. Hence, we do
not need to specify any labeling of reference edges. We denote by T a fixed reference element, and by u the
pull-back of a function u defined on T , i.e., if FT : T → T is the affine element map, u := u ◦FT . An important
property of the NVB refinement strategy is that one can not only map elements T to fixed reference domains,
but also patches. This means that there is a finite set of fixed reference patches and affine maps such that any
node-, element-, or edge patch is the affine image of such a reference patch. In particular, there are only finitely
many constants involved in scaling argument on patches, and hence, one may use patches in scaling arguments.
For a mesh T , we denote by T̂ the uniformly refined mesh, i.e., all edges in T are bisected.

For a triangle T ∈ T , we denote by nT the normal vector on ∂T pointing outwards of T . For an inner edge
e ∈ ET , i.e., e ⊂ Γ , we denote by T+

e and T−
e the two elements of T sharing e, and we define n+ := nT+

e
and

n− := nT−
e
. For smooth enough functions φ : Γ → R and v : Γ → R2 we define the jumps �·� and averages {·}

of the traces φ+, φ−, v+, and v− by

{φ}|e := 1
2 (φ+ + φ−) , {v}|e := 1

2 (v+ + v−) ,

�φ� |e := φ+n+ + φ−n−, �v� |e := v+n+ + v−n−.

We will frequently use the arc length derivative of the jump of functions on the edges ET . This will be denoted
by �·�′. If we equip a mesh with an index, e.g., T�, then we will use the index (·)� instead of (·)T�

, i.e., we write,
e.g., h� instead of hT�

, and the same abbreviation will be used for sets of edges or nodes, e.g., E� or N�.

2.3. Crouzeix–Raviart boundary elements

For a given mesh T , P1(T ) is the space of piecewise linear functions. By V 0 = V 0
T , we denote the space of

lowest-order continuous boundary elements, i.e.,

V 0 := P1(T ) ∩H1
0 (Γ ),
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and V = VT is the space of Crouzeix–Raviart boundary elements, i.e.,

V :=
{
Φ ∈ P1(T )

Φ is continuous in me ∀e ∈ ET with e � ∂Γ,

Φ(me) = 0 ∀e ∈ ET with e ⊂ Γ

}
,

where me is the midpoint of e ∈ ET . For curlT : P1(T ) → L2(Γ ) being the T -piecewise tangential curl operator,
a norm in V is given by

|||·|||T := ‖curlT ·‖H̃−1/2(Γ ) .

In the following we consider the bilinear form

aT (Φ, Ψ) := 〈VcurlT Φ, curlT Ψ〉 .

By the properties of the single-layer operator V (cf. [26]), aT is symmetric and there is a constant Cnorm > 1,
independent of T and Φ ∈ V , such that

C−2
norm |||Φ|||2T ≤ aT (Φ,Φ) ≤ C2

norm |||Φ|||2T .

This makes aT an inner product in V , which is therefore a Hilbert space. Assuming additional regularity
f ∈ H−1/2+ε(Γ ) with ε > 0, then

〈f , Ψ〉 ≤ ‖f‖H−1/2+ε(Γ ) ‖Ψ‖H1/2−ε(Γ ) ≤ CT |||Ψ |||T for all Ψ ∈ V. (2.3)

Here we used the equivalence of norms in the finite-dimensional space V , such that the number CT > 0 depends
on T . By the Lax–Milgram lemma there exists a unique Galerkin solution Φ ∈ V of

〈VcurlT Φ, curlT Ψ〉 = 〈f , Ψ〉 for all Ψ ∈ V. (2.4)

The unique solvability of (2.4) was already addressed in [24] and studied via an equivalent saddle-point problem.
We emphasize that the constant CT in (2.3) depends on V , but is not used in our analysis. In the statements and
arguments below, our notations will mostly omit the explicit dependence on T by writing, e.g., |||·|||, assuming
that this is the norm related to the finest mesh which occurs in the norms’ argument.

2.4. Uniform refinement: consistency error and optimal convergence

We briefly discuss existing results for the Crouzeix–Raviart BEM of Section 2.3 based on a sequence of
uniformly refined meshes (T�)�∈N0 . According to Theorem 2 of [24], it holds that

|||φ− Φ�||| � h
1/2
� ‖φ‖H1(Γ ) , (2.5)

if f ∈ L2(Γ ) and (T�)�∈N0 is a uniform sequence of meshes with mesh width h�. The proof of (2.5) uses, as is
customary in the analysis of nonconforming methods, the Lemma of Berger, Scott, and Strang (cf. [5]), which
states that the error is bounded by the sum of best-approximation error and consistency error,

|||φ− Φ�||| ≤ inf
Φ0

�∈V 0
�

∣∣∣∣∣∣φ− Φ0
�

∣∣∣∣∣∣+ sup
Ψ�∈V�

aT (φ − Φ�, Ψ�)
|||Ψ�|||

.

The best-approximation error behaves at least as good as the one of a conforming method, such that it is
essential to bound the consistency error. In Proposition 5 of [24], it is shown that

sup
Ψ�∈V�

aT (φ − Φ�, Ψ�)
|||Ψ�|||

� inf
μ�∈P0(E�)

[∑
e∈E�

‖te · Vcurlφ− μ�‖2
L2(e)

]1/2

. (2.6)
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Figure 2. Convergence rates for uniform mesh refinement and solution which is already in the
coarsest conforming space. We plot squared quantities so that O(N−1/2

� ) corresponds to a rate
of O(h1/2

� ) for the original quantities. The quantities μ̃� and η� are error estimators which will
be defined in Section 4. The quantities ρ� and ρ̂� are bounds for

∣∣∣∣∣∣Φ� − Φ0
�

∣∣∣∣∣∣ which measure the
deviation of the nonconforming solution Φ� from its conforming counterpart Φ0

� (cf. Cor. 4.1
below). We see that

∣∣∣∣∣∣Φ� − Φ0
�

∣∣∣∣∣∣ � O(N−1/4
� ). Due to (2.7), this order of convergence also holds

for the energy error |||φ− Φ�|||.

The space P0(E�) in (2.6) arises from integrating by parts element-wise the term aT (φ−Φ�, Ψ�) and then using
the fact that as Ψ� is a Crouzeix–Raviart function, its jump has vanishing integral mean on every edge e ∈ E�.
Hence, E�-piecewise constants can be inserted and the infimum can be taken. In Lemma 6 of [24], it is shown
that the right-hand side in (2.6) converges like O(h1/2

� ) given that φ ∈ H1(Γ ). However, this bound for the
convergence rate of the right-hand side is optimal. Indeed, even for v ∈ P1(Γ ) \ P0(Γ ) it only holds that

inf
μ�∈P0(E�)

[∑
e∈E�

‖v − μ�‖2
L2(e)

]1/2

� O
(
h

1/2
�

)
,

which can be seen by a direct calculation. The total error is also bounded from below by the consistency error
due to the continuity of the bilinear form, i.e.,

sup
Ψ�∈V�

aT (φ− Φ�, Ψ�)
|||Ψ�|||

� |||φ− Φ�||| .

Thus, we are led to conjecture that the optimal order of convergence is O(h1/2). To prove our conjecture it is
enough to show that the estimate in (2.6) is indeed an equivalence. There is no apparent loss of approximation
order in (2.6), but its equivalence is an open problem. A simple numerical example supports our conjecture
(and more experiments are performed below). We choose Γ = [0, 1]2 and divide it along the diagonals and the
midpoints of its sides, such that we obtain a mesh T0 of 8 triangles. We choose the exact solution φ ∈ V 0

0 that
vanishes on ∂Γ and has the value 1 in the center of Γ . In Figure 2, we visualize the outcome of the corresponding
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Crouzeix–Raviart BEM based on a uniform mesh refinement. We have not yet defined the shown quantities, but
what is important here is that Φ� ∈ V� denotes the Crouzeix–Raviart solution on the mesh T�, whereas Φ0

� ∈ V 0
�

denotes the conforming solution. According to the definition of φ, we have Φ0
� = φ, and hence, according to (2.5),

|||φ− Φ�||| =
∣∣∣∣∣∣Φ� − Φ0

�

∣∣∣∣∣∣ = O
(
h

1/2
�

)
. (2.7)

One would expect an increased order of O(h1−ε
� ) for every ε > 0, as φ ∈ H̃1/2(Γ ) ∩ H3/2−ε(Γ ). However, as

Figure 2 reveals, this increased rate is not achieved – we still observe O(h1/2
� ), which therefore seems to be the

optimal rate that can be obtained.

3. Preliminaries

3.1. Conforming approximations and partial orthogonality

For the development and analysis of the adaptive Crouzeix–Raviart boundary elements, it will be convenient
to use a decomposition of the space VT into conforming and nonconforming components. Such a decomposition
is given by the identity

VT = V 0
T ⊕ V ⊥

T ,

where V ⊥
T is the orthogonal complement of V 0

T with respect to the inner product aT (·, ·). For a function Φ ∈ VT ,
we write Φ = Φ0 + Φ⊥ with Φ0 ∈ V 0

T and Φ⊥ ∈ V ⊥
T . We emphasize that there is a partial orthogonality, i.e., if

T� is a refinement of T , then

a�(φ− Φ�, Ψ) = 0 for all Ψ ∈ V 0
T ,

where φ is the exact solution and Φ� ∈ VT� is its nonconforming Galerkin approximation. In contrast to
conforming methods, this orthogonality property cannot be extended to all Ψ ∈ VT . However, it can be extended
to a partial orthogonality as follows (cf. [8], Cor. 4.3).

Lemma 3.1. Let T� be a refinement of T and Φ� ∈ VT� the Galerkin solution (2.4) on T�. Then, for all ε > 0,
and all Φ ∈ VT , we have

a� (φ− Φ�, φ− Φ�) ≤ (1 + ε)a (φ− Φ, φ− Φ)

− C−2
norm

2
|||Φ− Φ�|||2� +

(
C2

norm

(
1 +

1
ε

)
+ C−2

norm

) ∣∣∣∣∣∣(Φ− Φ0
)
−
(
Φ� − Φ0

�

)∣∣∣∣∣∣2
�

Proof. As φ− Φ� is orthogonal to V 0
T and V 0(T�), we have

a� (φ− Φ�, φ− Φ�) = a�

(
φ− Φ� − Φ0 + Φ0

�, φ− Φ� − Φ0 + Φ0
�

)
− a�

(
Φ0

� − Φ0, Φ0
� − Φ0

)
= a�

(
φ− Φ+ Φ⊥ − Φ⊥

� , φ− Φ+ Φ⊥ − Φ⊥
�

)
− a�

(
Φ0

� − Φ0, Φ0
� − Φ0

)
= a� (φ− Φ, φ− Φ) + 2a�

(
Φ⊥ − Φ⊥

� , φ− Φ
)

+ a�

(
Φ⊥ − Φ⊥

� , Φ
⊥ − Φ⊥

�

)
− a�

(
Φ0

� − Φ0, Φ0
� − Φ0

)
,

where we used the identity Φ� +Φ0 −Φ0
� = Φ− Φ⊥ + Φ⊥

� in the second step. Using the stability, ellipticity, and
Young’s inequality ab ≤ a2/(4ε) + εb2, we obtain

2a�

(
φ− Φ,Φ⊥ − Φ⊥

�

)
≤ 2a (φ− Φ, φ− Φ)1/2

a�

(
Φ⊥ − Φ⊥

� , Φ
⊥ − Φ⊥

�

)1/2

≤ εa (φ− Φ, φ− Φ) + ε−1C2
norm

∣∣∣∣∣∣Φ⊥ − Φ⊥
�

∣∣∣∣∣∣2
�
,
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as well as

C−2
norm

2
|||Φ� − Φ|||2� − C−2

norm

∣∣∣∣∣∣Φ⊥
� − Φ⊥∣∣∣∣∣∣2

�
≤ C−2

norm

∣∣∣∣∣∣Φ0
� − Φ0

∣∣∣∣∣∣2
�
≤ a�

(
Φ0

� − Φ0, Φ0
� − Φ0

)
.

Finally, the estimate

a�

(
Φ⊥ − Φ⊥

� , Φ
⊥ − Φ⊥

�

)
≤ C2

norm

∣∣∣∣∣∣Φ⊥ − Φ⊥
�

∣∣∣∣∣∣2
�

concludes the proof. �

3.2. Quasi-interpolation operators in H̃−1/2(Γ)

Lemma 3.1 will be the basis for the analysis of the a posteriori error estimators in Section 4, such that terms of
the form

∣∣∣∣∣∣Φ− Φ0
∣∣∣∣∣∣ will emerge. Those terms are (in principle) computable. However, they involve conforming

approximations Φ0, which we do not want to compute, and hence we need to find a substitute involving only Φ.
This will be done in Corollary 4.1, where we will estimate the nonconformity of a function Φ by its jumps over
edges. The proof of this corollary will be based on results of the present section, the aim of which is to provide an
interpolation operator to approximate the conforming part Φ0 of a given function Φ. We will use the well-known
interpolation operator IT by Clément [12,29], and provide approximation results in the space H̃−1/2(Γ ). For a
function v ∈ L2(Γ ), this operator is defined as

IT v :=
∑

z∈NT

ψ(z)ϕz , (3.1)

where ϕz is the nodal basis function of V 0
T associated with the node z ∈ NT . The function ψ ∈ V 0

T |ωz is such
that ∫

ωz

(v − ψ)ϕ = 0 for all ϕ ∈ V 0
T |ωz

see also ([8], Lem. 6.6). In addition, we denote byΠT the L2(Γ ) orthogonal projection onto the space of piecewise
constants [P0(T )]2. The well-known properties of the operator IT are collected in the following lemma. We again
refer to ([8], Lem. 6.6) for a proof.

Lemma 3.2. Let T be a refinement of T0. Then, there exists a constant CI which depends only on T0 such that

‖IT ϕ‖L2(Γ ) ≤ CI ‖ϕ‖L2(Γ ) and ‖IT ϕ‖H1(Γ ) ≤ CI ‖ϕ‖H1(Γ ) , (3.2)

and such that for all T ∈ T , for all ϕ ∈ H1
0 (Γ ), and for all Φ ∈ VT , it holds that

‖ϕ− IT ϕ‖L2(T ) ≤ CI ‖hT ∇ϕ‖L2(ωT ) , (3.3a)

‖Φ− IT Φ‖L2(T ) ≤ CI

∥∥∥h1/2
T �Φ�∥∥∥

L2(EωT
)
, (3.3b)

‖∇T (Φ− IT Φ)‖L2(T ) ≤ CI

∥∥∥h−1/2
T �Φ�∥∥∥

L2(EωT
)
, (3.3c)

where ∇T is the T -piecewise gradient.

For our purposes, we need to analyze the properties of IT in the space H̃−1/2(Γ ). To do so, we will use integration
by parts piecewise. The resulting integrals over the skeleton ET will be bounded with the aid of the following
auxiliary result.
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Lemma 3.3. Let T be a refinement of T0 with the set of edges ET . Then, there is a constant Cedge which
depends only on T0 such that for any choice of functions Φ ∈ VT and V ∈

[
V 0
T
]2, it holds that∫

ET

�Φ� {V} ≤ Cedge ‖�Φ�‖L2(ET ) ‖V‖H1/2(Γ ) . (3.4)

Furthermore, if T̂ is the uniform refinement of T and Φ̂ ∈ V 0
T̂ , it holds that∫

ET̂

�
Φ̂
�
{V} ≤ Cedge

∥∥∥h1/2
T (1 −ΠT )∇T̂ Φ̂

∥∥∥
L2(Γ )

‖V‖H1/2(Γ ) . (3.5)

Proof. For every edge e ∈ ET , we use an affine map to transfer the edge patch ωe to a reference configuration ωe.
As we emphasized in Section 2.2, the number of this reference configurations is bounded uniformly, which permits
us to use scaling arguments. Now we choose ce ∈ R2 to be the mean value of V on e. A finite-dimension argument
and a quotient-space argument, cf. [23], show∥∥V − ce

∥∥
L2(e)

�
∣∣V∣∣

H
1/2
slo (ωe)

. (3.6)

Mapping both sides back to the physical domain yields

‖V − ce‖L2(e)
� |V|

H
1/2
slo (ωe)

≤ ‖V‖
H

1/2
slo (ωe)

. (3.7)

As Φ is a Crouzeix–Raviart function, its jump �Φ� has vanishing integral mean on every edge e ∈ ET , and hence,
using the Cauchy–Schwarz inequality, we obtain with (3.7)∫

ET

�Φ� {V} =
∑

e∈ET

∫
e

�Φ� {V − ce} ≤
(∑

e∈ET

‖�Φ�‖2
L2(e)

)1/2(∑
e∈ET

‖V − ce‖2
L2(e)

)1/2

≤
(∑

e∈ET

‖�Φ�‖2
L2(e)

)1/2(∑
e∈ET

‖V‖2

H
1/2
slo (ωe)

)1/2

.

Locally, only three patches ωe overlap. Therefore, the definition of the norm ‖·‖
H

1/2
slo

and its equivalence with

the interpolation norm on Γ conclude the proof of (3.4). Now we prove (3.5). We start at (3.4), this time with T̂
instead of T , to obtain

∫
ET̂

�
Φ̂

�
{V} �

⎛⎝∑
e∈ET̂

∥∥∥�Φ̂�∥∥∥2

L2(e)

⎞⎠1/2

‖V‖H1/2(Γ ) .

Now we split the L2 norm of the jump
�
Φ̂
�

over the skeleton ET̂ into the contributions on the skeleton ET and
the rest, which we write sloppy as ET̂ \ ET . Then,∑

e∈ET̂

∥∥∥�Φ̂�∥∥∥2

L2(e)
=
∑

e∈ET

∥∥∥�Φ̂�∥∥∥2

L2(e)
+

∑
e∈ET̂ \ET

∥∥∥�Φ̂�∥∥∥2

L2(e)
. (3.8)

We claim that there is a constant C > 0, independent of ET̂ and Φ̂ such that∥∥∥�Φ̂�∥∥∥
L2(e)

≤ Ch1/2
e

∥∥∥(1 −ΠT )∇T̂ Φ̂
∥∥∥
L2(ωe)

if e ∈ ET ,∥∥∥�Φ̂�∥∥∥
L2(e)

≤ Ch1/2
e

∥∥∥(1 −ΠT )∇T̂ Φ̂
∥∥∥
L2(T )

if e ∈ ET̂ \ ET with e ⊂ T ∈ T .
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Both sides define seminorms, and the left one vanishes when the right one does. Hence, the bounded dimen-
sion of the underlying space and a scaling argument prove the claim. Using the last two estimates in (3.8)
shows (3.5). �

Lemma 3.4. In addition to Lemma 3.2, we have the following estimates, where T̂ denotes the uniform refine-
ment of T : For Φ ∈ VT and Φ̂ ∈ VT̂ , it holds that

‖∇T (1 − IT )Φ‖H̃−1/2(Γ ) ≤ CI

∥∥hT �Φ�′∥∥
L2(ET )

, (3.9a)∥∥∥∇T̂ (1 − IT )Φ̂
∥∥∥
H̃−1/2(Γ )

≤ CI

∥∥∥h1/2
T (1 −ΠT )∇T̂ Φ̂

∥∥∥
L2(Γ )

. (3.9b)

Proof. We will use estimates (3.2) and (3.3) to prove this lemma. First, if we denote by IT v the component-wise
action of IT to v ∈ H1/2(Γ ), we integrate by parts piecewise to obtain

〈∇T (1 − IT )Φ, IT v〉 = −〈(1 − IT )Φ, divIT v〉 +
∑
T∈T

∫
ET

(Φ− IT Φ)IT v · nT .

As �IT Φ� vanishes due to the continuity of IT Φ, the second term on the right-hand side can be written as

∑
T∈T

∫
ET

(Φ− IT Φ)IT v · nT =
∫
ET

�Φ− IT Φ� {IT v} +
∫
ET \∂Γ

{Φ− IT Φ} �IT v�
=
∫
ET

�Φ� {IT v}.

We conclude that, for any v ∈ H1/2(Γ ),

〈∇T (1 − IT )Φ,v〉 = 〈∇T (1 − IT )Φ,v − IT v〉 − 〈(1 − IT )Φ, divIT v〉

+
∫
ET

�Φ� {IT v}. (3.10)

We bound the terms on the right-hand side separately. Taking into account (3.3c), the first term on the right-
hand side of (3.10) can be estimated by

〈∇T (1 − IT )Φ,v − IT v〉 ≤
∑
T∈T

‖∇T (1 − IT )Φ‖L2(T ) ‖v − IT v‖L2(T )

�
∑
T∈T

hT |−1/2
T ‖�Φ�‖L2(EωT

) ‖v − IT v‖L2(T )

≤ ‖�Φ�‖L2(ET )

∥∥∥h−1/2
T (v − IT v)

∥∥∥
L2(Γ )

. (3.11)

Now, it holds that
∥∥∥h−1/2

T (v − IT v)
∥∥∥
L2(Γ )

� ‖v‖H1/2(Γ ), which follows from interpolation of the estimates

‖v − IT v‖L2(Γ ) � ‖v‖L2(Γ ) and
∥∥h−1

T (v − IT v)
∥∥
L2(Γ )

� ‖v‖H1(Γ ) ,

which themselves can be derived summing (3.2) and (3.3a) over the elements of the mesh. We conclude that

〈∇T (1 − IT )Φ,v − IT v〉 � ‖�Φ�‖L2(ET ) ‖v‖H1/2(Γ ) . (3.12)
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The second contribution on the right-hand side of (3.10) can be bounded by using (3.3b) via

〈Φ− IT Φ, divIT v〉 ≤
∑
T∈T

‖Φ− IT Φ‖L2(T ) ‖divIT v‖L2(T )

� ‖�Φ�‖L2(ET )

∥∥∥h1/2
T divIT v

∥∥∥
L2(Γ )

� ‖�Φ�‖L2(ET ) ‖v‖H1/2(Γ ) . (3.13)

In the last step we used an inverse estimate (cf. [10], Prop. 3.1) and the recent extension ([3], Prop. 5), and the
fact that IT is bounded in H1/2(Γ ), which again follows by interpolation, this time using the estimates (3.2).
The third part on the right-hand side of (3.10) can be bounded by Lemma 3.3 and the H1/2(Γ )-boundedness
of IT via ∫

ET

�Φ� {IT v} � ‖�Φ�‖L2(ET ) ‖v‖H1/2(Γ ) . (3.14)

From the identity (3.10) we conclude, using (3.12)–(3.14), that

‖∇T (1 − IT )Φ‖H̃−1/2(Γ ) = sup
‖v‖

H1/2(Γ )
=1

〈∇T (1 − IT )Φ,v〉 � ‖�Φ�‖L2(ET ) .

From this, (3.9a) follows from a Poincaré inequality, which may be used since Φ ∈ VT implies that the jump�Φ� vanishes at the midpoint of every element.
To prove (3.9b), we again use integration by parts piecewise and conclude as before〈

∇T̂ (1 − IT )Φ̂ ,v
〉

=
〈
∇T̂ (1 − IT )Φ̂ ,v − IT v

〉
−
〈
(1 − IT )Φ̂ , divIT v

〉
,

+
∫
ET̂

�
Φ̂

�
{IT v}. (3.15)

The first and second term can be bounded as in (3.11) and (3.13), this time using the local estimates∥∥∥∇T̂ (1 − IT )Φ̂
∥∥∥
L2(T )

≤ C
∥∥∥(1 −ΠT )∇T̂ Φ̂

∥∥∥
L2(ωT )∥∥∥(1 − IT )Φ̂

∥∥∥
L2(T )

≤ ChT |T
∥∥∥(1 −ΠT )∇T̂ Φ̂

∥∥∥
L2(ωT )

,

which follow from a scaling argument and norm equivalence in finite dimensional spaces. The last term in (3.15)
can be bounded by (3.5) of Lemma 3.3. �

We will also need the following boundedness result for IT .

Lemma 3.5. In addition to Lemma 3.2, we have the following estimate, where T̂ denotes the uniform refinement
of T : For Φ ∈ VT and Φ̂ ∈ VT̂ , it holds that∥∥∥∇T IT Φ̂

∥∥∥
H̃−1/2(Γ )

≤ CI

∥∥∥∇T̂ Φ̂
∥∥∥
H̃−1/2(Γ )

. (3.16)

Proof. To prove (3.16), we first observe that due to the local L2 boundedness of (1 − ΠT ) and the inverse
estimate ([21], Thm. 3.6), we have∥∥∥h1/2

T (1 −ΠT )∇T̂ Φ̂
∥∥∥
L2(Γ )

≤
∥∥∥h1/2

T ∇T̂ Φ̂
∥∥∥
L2(Γ )

�
∥∥∥∇T̂ Φ̂

∥∥∥
H̃−1/2(Γ )

.

Hence, the triangle inequality and (3.9b) show∥∥∥∇T̂ IT Φ̂
∥∥∥
H̃−1/2(Γ )

≤
∥∥∥∇T̂ Φ̂

∥∥∥
H̃−1/2(Γ )

+
∥∥∥∇T̂ (1 − IT )Φ̂

∥∥∥
H̃−1/2(Γ )

�
∥∥∥∇T̂ Φ̂

∥∥∥
H̃−1/2(Γ )

. �
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4. A posteriori error estimation and adaptive algorithm

In this section, we introduce different error estimators, and show their reliability and efficiency. In Section 4.1,
we introduce global error estimators, that is, the employed (non-integer) norm is nonlocal and therefore does
not provide information for local mesh-refinement. In Section 4.2, we pass over to weighted (integer) norms,
which are local and can therefore be employed in an adaptive algorithm, which will be introduced in Section 4.3.
In order to estimate the nonconformity of a function in terms of the function itself, we will use the results of
Sections 3.1 and 3.2.

Corollary 4.1. Denote by T a refinement of T0. Let Φ ∈ VT be the Galerkin solution (2.4). Then, there is a
constant C4 > 0 which depends only on T0 such that∣∣∣∣∣∣Φ⊥∣∣∣∣∣∣

T =
∣∣∣∣∣∣Φ− Φ0

∣∣∣∣∣∣
T ≤ C4

∥∥hT �Φ�′∥∥
L2(ET )

.

Proof. This follows easily by using the fact that Φ− Φ0 is aT -orthogonal to V 0
T and employing (3.9a). �

4.1. Global error estimators

Let Φ ∈ VT and Φ̂ ∈ VT̂ be Galerkin solutions (2.4), where T̂ is a uniform refinement of T . We introduce
estimators on the mesh T by

ηT :=
∣∣∣∣∣∣∣∣∣Φ̂− Φ

∣∣∣∣∣∣∣∣∣
T̂

=
∥∥∥curlT̂ (Φ̂− Φ)

∥∥∥
H̃−1/2(Γ )

,

η̃T :=
∣∣∣∣∣∣∣∣∣Φ̂− IT Φ̂

∣∣∣∣∣∣∣∣∣
T̂

=
∥∥∥curlT̂ (Φ̂− IT Φ̂)

∥∥∥
H̃−1/2(Γ )

.

The existing derivations of h− h/2 error estimators, e.g. [16,18], focus on conforming methods and rely mostly
on the Galerkin orthogonality (1.3). Contrary, we have the weaker partial orthogonality of Lemma 3.1, where ad-
ditional terms arise (what we called nonconformity error) which account for the nonconformity. In Corollary 4.1,
we showed that these terms can be bounded by the inter-element jumps of Φ, i.e., by

ρT :=
∥∥hT �Φ�′∥∥

L2(ET )
.

Consequently, we have that ηT and η̃T are equivalent up to ρT .

Lemma 4.2. Let T be a refinement of T0. Then, there is a constant C5 > 0 which depends only on T0 such
that

C−1
5

∣∣∣∣∣∣∣∣∣Φ̂− Φ
∣∣∣∣∣∣∣∣∣

T̂
≤
∣∣∣∣∣∣∣∣∣Φ̂− IT Φ̂

∣∣∣∣∣∣∣∣∣
T̂

+ ρT and C−1
5

∣∣∣∣∣∣∣∣∣Φ̂− IT Φ̂
∣∣∣∣∣∣∣∣∣

T̂
≤
∣∣∣∣∣∣∣∣∣Φ̂− Φ

∣∣∣∣∣∣∣∣∣
T̂

+ ρT .

Proof. As Φ̂− Φ is orthogonal to V 0
T in aT̂ , we conclude∣∣∣∣∣∣∣∣∣Φ̂− Φ

∣∣∣∣∣∣∣∣∣
T̂

�
∣∣∣∣∣∣∣∣∣Φ̂− Φ+ Φ0 − IT Φ̂

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣Φ̂− IT Φ̂
∣∣∣∣∣∣∣∣∣

T̂
+
∣∣∣∣∣∣Φ− Φ0

∣∣∣∣∣∣
T ,

and the last term can be bounded by ρT by Corollary 4.1. To see the second estimate, we use the projection
property and boundedness (3.16) of IT to see that∣∣∣∣∣∣∣∣∣Φ̂− IT Φ̂

∣∣∣∣∣∣∣∣∣
T̂

�
∣∣∣∣∣∣∣∣∣Φ̂− Φ0

∣∣∣∣∣∣∣∣∣
T̂
≤
∣∣∣∣∣∣∣∣∣Φ̂− Φ

∣∣∣∣∣∣∣∣∣
T̂

+
∣∣∣∣∣∣Φ− Φ0

∣∣∣∣∣∣
T ,

which shows the desired estimate. �

In a next step, we show the efficiency and reliability of ηT . For the reliability, we assume that a saturation
assumption for the conforming approximations holds true.
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Theorem 4.3. Let T be a refinement of T0. Then, there is a constant Ceff > 0 such that ηT =
∣∣∣∣∣∣∣∣∣Φ̂− Φ

∣∣∣∣∣∣∣∣∣
T̂

is
efficient up to the nonconformity error, i.e.,

C−1
eff

∣∣∣∣∣∣∣∣∣Φ̂− Φ
∣∣∣∣∣∣∣∣∣

T̂
≤ |||φ− Φ|||T + ρT + ρT̂ . (4.1)

Furthermore, assume that there is a constant Csat ∈ (0, 1) such that the saturation assumption for the conforming
approximations

aT̂

(
φ− Φ̂0, φ− Φ̂0

)
≤ CsataT

(
φ− Φ0, φ− Φ0

)
(4.2)

holds true. Then, there is a constant Crel > 0 such that ηT =
∣∣∣∣∣∣∣∣∣Φ̂− Φ

∣∣∣∣∣∣∣∣∣
T̂

is reliable up to ρT + ρT̂ , i.e.,

C−1
rel |||φ− Φ|||T ≤

∣∣∣∣∣∣∣∣∣Φ̂− Φ
∣∣∣∣∣∣∣∣∣

T̂
+ ρT + ρT̂ (4.3)

holds true.

Proof. Efficiency (4.1) follows immediately from Lemma 3.1 by setting T� := T̂ and Corollary 4.1.
To show reliability (4.3), we first note that the triangle inequality and ellipticity give

|||φ− Φ||| � a
(
φ− Φ0, φ− Φ0

)
+ ρT .

Now, due to the conforming orthogonality and the saturation assumption (4.2),

(1 − Csat)a
(
φ− Φ0, φ− Φ0

)
≤ a

(
Φ0 − Φ̂0, Φ0 − Φ̂0

)
�
∣∣∣∣∣∣∣∣∣Φ0 − Φ̂0

∣∣∣∣∣∣∣∣∣
T̂

≤
∣∣∣∣∣∣∣∣∣Φ̂− Φ

∣∣∣∣∣∣∣∣∣
T̂

+
∣∣∣∣∣∣Φ− Φ0

∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣Φ̂− Φ̂0
∣∣∣∣∣∣∣∣∣

�
∣∣∣∣∣∣∣∣∣Φ̂− Φ

∣∣∣∣∣∣∣∣∣
T̂

+ ρT + ρT̂ ,

where we used the triangle inequality and Corollary 4.1. �

Remark 4.4. In finite element methods, the saturation assumption (4.2) is verified for the Poisson problem
−Δu = f . In fact, in [15] it is shown that∣∣∣∣∣∣∣∣∣φ− Φ̂0

�

∣∣∣∣∣∣∣∣∣ ≤ Csat

∣∣∣∣∣∣φ− Φ0
�

∣∣∣∣∣∣+ osc�,

where osc� is a measure for the resolution of f on the mesh T�. Hence, small data oscillation implies the saturation
assumption. However, the saturation assumption (4.2) is not proven for BEM. To the best of the our knowledge,
the only contributions are [2,17]. In [2], it is shown that for 2D-BEM for the weakly singular integral equation,
there is a k ∈ N and Csat < 1 which depend only on T0 and Γ , such that with k uniform refinements of T�,
which we denote by T�(k), there holds

|||φ− Φ�||| ≤ Csat

∣∣∣∣∣∣φ− Φ�(k)

∣∣∣∣∣∣+ osc�

with osc� being a term of higher order than the others. In [17], the saturation assumption is analyzed for an
edge singularity on a plane square-shaped domain, and uniform as well as graded meshes are considered.
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4.2. Localized error estimators

The a posteriori estimators of Section 4.1 use the H̃−1/2(Γ )-norm, which is hard to compute and nonlocal.
In order to provide a posteriori error estimators which can be split into element-wise indicators, we will use a
weighted L2-norm. We introduce the localized estimators

μT :=
∥∥∥h1/2

T curlT̂ (Φ̂ − Φ)
∥∥∥
L2(Γ )

,

μ̃T :=
∥∥∥h1/2

T

(
curlT̂ Φ̂−ΠT curlT̂ Φ̂

)∥∥∥
L2(Γ )

.

Splitting a nonlocal estimator (like ηT ) into a localized estimator (like μ̃T ) is not a peculiarity of a posteriori
error estimation in boundary elements. For example, the residual of a standard finite element approximation for,
e.g., the Poisson equation, is measured in the non-local norm of H−1, but well-known residual error estimates
consider the residual in a weighted L2 norm (which is localized), cf. [32]. For results on the h − h/2 strategy
in finite element methods (even convergence of adaptive algorithms), we refer to ([19], Sect. 2). We have the
following result on efficiency and reliability.

Theorem 4.5. There holds∥∥∥h1/2
T

(
curlT̂ Φ̂−ΠT curlT̂ Φ̂

)∥∥∥
L2(Γ )

≤
∥∥∥h1/2

T curlT̂
(
Φ̂− Φ

)∥∥∥
L2(Γ )

�
∣∣∣∣∣∣∣∣∣Φ̂− Φ

∣∣∣∣∣∣∣∣∣
T̂

(4.4a)

and ∣∣∣∣∣∣∣∣∣Φ̂− IT Φ̂
∣∣∣∣∣∣∣∣∣

T̂
�
∥∥∥h1/2

T

(
curlT̂ Φ̂−ΠT curlT̂ Φ̂

)∥∥∥
L2(Γ )

. (4.4b)

In particular, all estimators are equivalent up to ρT + ρT̂ , and for τ ∈ {ηT , η̃T , μT , μ̃T }, the estimator τ is
efficient up to ρT + ρT̂ , and under the saturation assumption (4.2) for the conforming approximations it is also
reliable, i.e.,

|||φ− Φ||| � τ + ρT + ρT̂ ,

τ � |||φ− Φ||| + ρT + ρT̂ .

Proof. As in [18], the first estimate in (4.4a) follows from the best approximation property of ΠT , while the
second one follows from the inverse inequality ([21], Thm. 3.6). The first estimate in (4.4b) is estimate (3.9b)
from Lemma 3.4. Now, since

ηT =
∣∣∣∣∣∣∣∣∣Φ̂− Φ

∣∣∣∣∣∣∣∣∣
T̂

and η̃T =
∣∣∣∣∣∣∣∣∣Φ̂− IT Φ̂

∣∣∣∣∣∣∣∣∣
T̂

are equivalent up to ρT + ρT̂ according to Lemma 4.2, all estimators are equivalent up to ρT + ρT̂ as well. As
ηT is efficient and reliable (given the saturation (4.2)) up to ρT + ρT̂ according to Theorem 4.3, this is also true
for the three other estimators. �

4.3. Statement of the adaptive algorithm

We now introduce two adaptive algorithms. As error indicators on a mesh T�, we use the element-wise
quantities μ̃�, ρ�, and ρ̂�. The first adaptive algorithm uses on every element T ∈ T� the combined quantity

σ�(T )2 := μ̃�(T )2 + ρ�(T )2 + ρ̂�(T )2

:=
∥∥∥h1/2

� (1 −Π�)curlT̂�
Φ̂�

∥∥∥2

L2(T )
+
∥∥h� �Φ��′∥∥2

L2(E�(T ))
+
∥∥∥∥ĥ�

�
Φ̂�

�′
∥∥∥∥2

L2(Ê�(T ))

.
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For a subset M� ⊂ T�, we write

σ�(M�)2 := μ̃�(M�)2 + ρ�(M�)2 + ρ̂�(M�)2

:=
∑

T∈M�

μ̃�(T )2 +
∑

T∈M�

ρ�(T )2 +
∑

T∈M�

ρ̂�(T )2

and we use the abbreviations σ� := σ�(T�), ρ� := ρ�(T�), and ρ̂� := ρ̂�(T�). Hence,

σ2
� = μ̃2

� + ρ2
� + ρ̂2

�

is a reliable error estimator according to Theorem 4.5. The first adaptive algorithm now reads as follows.

Algorithm 1. Input: Initial mesh T0, parameter θ ∈ (0, 1), counter 	 := 0.

(i) Obtain T̂� by uniform bisec(3)-refinement of T�, see Figure 1.
(ii) Compute solutions Φ� and Φ̂� of (2.4) with respect to T� and T̂�.
(iii) Compute refinement indicators σ�(T ) for all T ∈ T�.
(iv) Choose a set M� ⊆ T� with minimal cardinality such that∑

T∈M�

σ�(T )2 ≥ θ
∑
T∈T�

σ�(T )2. (4.5)

(v) Refine mesh T� according to Algorithm NVB and obtain T�+1.
(vi) Update counter 	 := 	+ 1 and goto (i).

The marking strategy (4.5) uses the combined quantity σ� to single out elements for refinement. In this form,
it was used in the pioneering work [14] to show convergence of an adaptive finite element scheme. In the presence
of data oscillations, one can also use a separated marking strategy as it was used in [30] to prove optimality of
an adaptive finite element scheme. The adaptive algorithm then looks as follows.

Algorithm 2. Input: Initial mesh T0, parameters θ1, θ2, ϑ ∈ (0, 1), counter 	 := 0.

(i) Obtain T̂� by uniform bisec(3)-refinement of T�, see Figure 1.
(ii) Compute solutions Φ� and Φ̂� of (2.4) with respect to T� and T̂�.
(iii) Compute refinement indicators σ�(T ) for all T ∈ T�.
(iv) In case that ρ2

� + ρ̂2
� ≤ ϑμ̃2

� choose a set M� ⊆ T� with minimal cardinality such that∑
T∈M�

μ̃�(T )2 ≥ θ1
∑

T∈T�

μ̃�(T )2. (4.6a)

In case that ρ2
� + ρ̂2

� > ϑμ̃2
� choose a set M� ⊆ T� with minimal cardinality such that∑
T∈M�

(
ρ�(T )2 + ρ̂�(T )2

)
≥ θ2

∑
T∈T�

(
ρ�(T )2 + ρ̂�(T )2

)
. (4.6b)

(v) Refine mesh T� according to Algorithm NVB and obtain T�+1.
(vi) Update counter 	 := 	+ 1 and goto (i).

It can be easily seen that the separated marking strategy (4.6a)–(4.6b) implies the combined strategy (4.5)
(with different parameter θ, though).
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Figure 3. Initial mesh T0 used in the numerical experiments.

5. Numerical experiments

In this section we present numerical experiments for two different problems. The exact solution φ of the
first experiment will be smooth in the sense that uniform and adaptive mesh refinement yield the same rate of
convergence. Still, φ exhibits singularities which stem from the geometric setting (i.e., polygonal boundary). As
we emphasized in the introduction, it is a peculiarity of Crouzeix–Raviart BEM that uniform mesh refinement
is optimal for these kind of singularities.

The second example reports on a case where the right-hand side of our model problem is chosen to be singular,
such that, due to the mapping properties of W , the exact solution φ suffers from low regularity as well. In this
case, it will turn out that uniform mesh-refinement is suboptimal while adaptive refinement recovers the optimal
rate.

5.1. Experiment with geometrically inherent singularities

We consider the screen Γ := [0, 1]2. The initial mesh T0 consists of 8 congruent triangles (cf. Fig. 3), such
that Γ is halved along the diagonals and the midpoints of its sides. The reference edges are chosen on the two
diagonals. The right-hand side is given by

f(x, y) = 1,

and it is well-known that the exact solution φ has square root edge singularities [28] so that φ ∈ H̃1−ε(Γ ) for
all ε > 0. As the regularity is known, the energy error |||φ||| can be approximated by extrapolation. We use the
following sequences of meshes.

Uniform sequence

The sequence T�, 	 ∈ N0, is generated by uniform refinement, i.e., the initial mesh T0 is chosen as in Figure 3,
and the mesh T�, 	 ≥ 1 is generated from T�−1 by a bisec(3)-refinement (as described in Fig. 1) of every triangle
T ∈ T�. Due to the results in [24], we expect a convergence rate of O(h1/2−ε

� ) = O(N−1/4+ε
� ) for all ε > 0,

cf. (2.5). This is exactly what we observe in the convergence history in Figure 4.

Adaptive sequence

The sequence of meshes T�, 	 ∈ N0, is generated by Algorithms 1 and 2, where T0 is chosen as in Figure 3.
As we conjectured in Section 2.4, the rate O(N−1/4

� ) cannot be improved in general, and this is what we see
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Figure 4. Convergence history for uniform mesh refinement and geometric singularities. The
squared quantities exhibit the optimal rate O(N−1/2

� ).
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Figure 5. Convergence history for adaptive Algorithm 1 with θ = 0.5 and geometric singular-
ities. The squared quantities exhibit the optimal rate O(N−1/2

� ).

in the experimental results. Figure 5 shows the convergence history of Algorithm 1 with θ = 0.5, and we see
that all involved quantities are of order O(N−1/4

� ) (note that we plot squared quantities). In Figure 11 we plot
the intermediate mesh T11 and the final mesh T21 that are constructed by the adaptive algorithm. What we
observe qualitatively is that the meshes are refined towards the boundary ∂Γ , which meets the expectation as φ
exhibits singularities there. Nevertheless, the computed meshes are not optimal for a conforming method. This
is visualized in Figure 5, where we also plot the conforming energy error

∣∣∣∣∣∣φ− Φ0
�

∣∣∣∣∣∣2. Clearly, we use the number
of the degrees of freedom of the conforming method for the x-axis. The previous choice θ = 0.5 is arbitrary;
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Figure 6. Error estimator σ2
� for adaptive Algorithm 1 and geometric singularities with dif-

ferent values of θ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The squared quantities exhibit the optimal rate
O(N−1/2

� ) for all given choices of θ.
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Figure 7. Saturation constants Csat for adaptive Algorithm 1 and geometric singularities with
different values of θ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

contemporary analysis of adaptive algorithms requires the parameter θ to be small enough in order to ensure
optimal convergence. In Figure 6 we therefore plot the error estimate σ2

� produced by Algorithm 1 for choices
θ ∈ {0.1, 0.2, 0, 3, 0.4, 0.5}. All choices produce the same qualitative results. As already said, the energy error
of the solution can be extrapolated well in this case. For the conforming solutions Φ0 and Φ̂0 we have Galerkin
orthogonality in the energy norm, and so we are able to compute the saturation constant Csat from (4.2). The
assumption Csat < 1 implies reliability of our error estimator. In Figure 7, we plot the values of Csat for the
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Figure 8. Convergence history for adaptive Algorithm 2 with separate marking and geometric
singularities. The squared quantities exhibit the optimal rate O(N−1/2

� ).
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Figure 9. Convergence history for graded meshes with β = 2 and geometric singularities. The
squared quantities exhibit the optimal rate O(N−1/2

� ).

adaptive Algorithm 1 with different values of θ. We observe that Csat < 1 uniformly for all choices of θ. Finally,
we present the outcome of Algorithm 2 with the choice θ1 = θ2 = ϑ = 0.5 in Figure 8. As the jumps ρ� and ρ̂�

dominate the estimator μ̃� by one order of magnitude, Algorithm 2 will use only the marking strategy (4.6b).
Again, the order of convergence is O(N−1/4

� ) as expected.

Graded sequence

We use a sequence of meshes T�, 	 ∈ N0 that is graded towards ∂Γ , i.e., for all elements T ∈ T� there holds

h�(T ) � dist(T, Γ )β .
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Figure 10. Convergence history for graded meshes with β = 3 and geometric singularities.
The squared quantities exhibit the optimal rate O(N−1/2

� ).

Figure 11. Meshes T11 and T21 of the adaptive Algorithm 1 with θ = 0.5 for geometric
singularities.

We select the parameters β ∈ {2, 3}. The numerical results show that both gradings maintain the conjectured
optimal rate for the Crouzeix–Raviart BEM (see Figs. 9 and 10).

5.2. Experiment with singular solution

The right-hand side is given by

f(x, y) := x−6/10,

and because of f /∈ L2(Γ ) we conclude from the mapping properties of W that the exact solution fulfills
φ /∈ H1(Γ ). The missing regularity will lead to a suboptimal convergence rate for uniform refinement, which
will be recovered by the adaptive algorithm. Let us briefly discuss what to expect in the uniform case: for
the function g(x) = xα there holds g ∈ Hα+1/2−ε(0, 1) \ Hα+1/2(0, 1) for all ε > 0. We conclude that,
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Figure 12. Convergence history for uniform mesh refinement and singular right-hand side.
The squared quantities do not exhibit the optimal rate, which would be O(N−1/2

� ).
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Figure 13. Convergence history for adaptive algorithm, θ = 0.5, and singular right-hand side.
The squared quantities exhibit the optimal rate O(N−1/2

� ).

f ∈ H−0.1−ε(Γ ) \H−0.1(Γ ), and due to the mapping properties of W we conclude that φ /∈ H̃9/10(Γ ). Hence,
we expect a convergence rate which is worse than O(h4/10

� ) = O(N−1/5
� ) for uniform refinement. We already

stated the choice of the initial mesh T0. Uniform and adaptive meshes are computed exactly as described in
Section 5.1. The convergence history for the uniform sequence of meshes is depicted in Figure 12. We see that
the uniform scheme is suboptimal, and the convergence rate is indeed worse than O(N−1/5

� ) (note that we plot
squared quantities). However, the adaptive sequence of meshes, depicted in Figure 13, recovers the optimal con-
vergence rate. In Figure 16, we plot the two adaptive meshes T11 and T23 which are generated by the adaptive
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Figure 14. Error estimator σ2
� for adaptive Algorithm 1 with different values of θ ∈

{0.1, 0.2, 0.3, 0.4, 0.5} and singular right-hand side. The squared quantities exhibit the opti-
mal rate O(N−1/2
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Figure 15. Convergence history for adaptive Algorithm 2 with separate marking and singular
solution. The squared quantities exhibit the optimal rate O(N−1/2

� ).

Algorithm 1. In Figure 14, we plot the error estimate σ2
� versus the number of degrees of freedom for the choices

θ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. As in the first experiment, there is no substantial difference in this range of θ. The
outcome of the adaptive Algorithm 2 with separate marking strategy and θ1 = θ2 = ϑ is shown in Figure 15.
As in the first experiment, the jump terms ρ2

� + ρ̂2
� dominate the estimator μ̃2

� by one order of magnitude, such
that only the marking (4.6b) takes place. The optimal order of convergence O(N−1/4

� ) is recovered also in this
case.
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Figure 16. Meshes T11 and T23 of the adaptive Algorithm 1 with θ = 0.5 for singular solution.
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