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Abstract. In this paper we analyze a two-dimensional shape optimization problem, governed by
Stokes equations that are defined on a domain with a part of the boundary that is described as the
graph of the control function. The state problem formulation is mapped onto a reference domain, which
is independent of the control function, and the analysis is mainly led on such domain. The existence
of an optimal control function is proved, and optimality conditions are derived. After the analytical
inspection of the problem, finite element discretization is considered for both the control function and
the state variables, and a priori convergence error estimates are derived. Numerical experiments assess
the validity of the theoretical results.
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1. Introduction

Optimal control for partial differential equations [28] is a challenging field of applied mathematics, thanks
to its combination of sophisticated theoretical tools and interesting engineering applications. Among optimal
control problems, shape optimization [12,22–24,33,35] has recently undergone a renewal of interest, mainly due
to the wide range of industrial and real world applications, like fluid dynamics [19] and structural mechanics [1],
and to the increased computational power available for numerical simulations. Shape optimization aims at
finding the solution to problems of the following general form:

min
Ω∈O

J(Ω, S(Ω)), subject to a differential problem L(S(Ω)) = 0 in Ω, (1.1)

where J is a cost functional, defined on a suitable set O of admissible domains, L is a differential operator and S
is the operator mapping an admissible domain Ω ∈ O to the corresponding solution of the differential problem
L(S(Ω)) = 0 in Ω. In particular, in this paper we analyze a two-dimensional, steady Stokes problem, completed
by mixed boundary conditions.

Problems of the form (1.1) have been widely discussed in the literature, employing different techniques
in the description of the set O, generally considered as a proper subset of finite (see, e.g., [3, 5]) or infinite
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(see, e.g., [12,33,35]) dimensional spaces. The present paper belongs to the latter category, as the boundary of
the admissible domains (or a subset of it) is described by the graph of a suitable control function. This approach
has been widely adopted by many authors (see, e.g., [2, 4, 15, 20, 22, 23, 26, 27]).

Concerning the numerical solution of shape optimization problems, a standard technique is represented by
gradient type iterative algorithms, in which the state problem is solved on differently shaped domains at each
iteration (see, e.g., [1, 13]). A critical point of this approach is the repeated deformation of the computational
mesh, leading to an increase in the computational effort and to the possible generation of highly skewed mesh
elements. In order to avoid such problems, a possible solution is to employ the so called reference domain
approach (see, e.g., [26, 27]) where, exploiting a suitable transformation, the actual domain and the whole
optimization problem is mapped onto a reference domain Ω0, whose computational mesh is built once and for
all. In this paper, we adopt the reference domain approach to study a shape optimization problem governed by
Stokes equations. In particular, we will be interested in deriving a priori estimates for the different discretization
errors (on state solution, control function and cost functional) involved in the finite element solution of the
optimization problem. Discretization of shape optimization problems and convergence issues have been firstly
addressed in [9,10] and recently in [16,26]. To the best of our knowledge, [16,26] are the only works providing,
for a shape optimization problem governed by Poisson equations, a convergence rate for the discretization errors.
On the other hand, analogous convergence results dealing with Stokes equations seem not to be available in the
literature: inspired by [26] and extending the results therein contained, the present paper aims at filling this
gap, by deriving novel finite element a priori error estimates and convergence rates for a shape optimization
problem governed by Stokes equations.

It is worth remarking that, as one of the main goal of the paper is the proof of a priori error estimates for
the FEM discretization errors, some more restrictive assumptions (w.r.t. the more general framework presented,
e.g., in [33]) have to be employed. Indeed, these assumptions are instrumental to extract, via the application of
interpolation error estimates, the correct convergence rates of the FEM errors.

Finally, we remark that considering Stokes equations is relevant for fluid-dynamics and elasticity applications.
Moreover, it represents a first step towards the application of the reference domain approach to real world
applications modeled by Navier–Stokes equations.

The paper is organized as follows. In Section 2, we present the shape optimization problem governed by Stokes
equations, and we reformulate it on the reference domain. Within this framework, the existence of an optimal
solution to the minimization problem is proved. Section 3 is devoted to the proof of a priori estimates for
the numerical discretization error of the optimization problem. In Section 4, we consider first order optimality
conditions and we provide a boundary-integral expression for them. Finally, in Section 5 we present some
numerical tests, assessing the theoretical results. In Appendix A, we discuss the regularity assumptions needed
by the a priori estimates, whereas in Appendix B some technical results are proved.

2. The optimal control problem

The aim of the present paper is to study a shape optimization problem governed by Stokes equations, which
reads as follows

min
q∈Qad

J(q,u, p) subject to the following generalized Stokes system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηu − div(ν∇u) + ∇p = f , in Ωq,

div u = 0, in Ωq,

u = 0, on Γq,

ν∂nu − pn = gN , on Γ1,

∂nux = 0, uy = 0, on Γ2,

u = gD, on Γ3,

(2.1)
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Figure 1. Physical (left) and reference (right) domains.

where J is a given cost functional to be optimized, u = (ux, uy) and p are the so-called state variables and q is
the control function (belonging to the admissible set Qad) that identifies the domain Ωq.

In particular, the control function q : I = (0, 1) → R describes the lower part Γq of the boundary of domain
Ωq = {(x, y) ∈ R

2 | x ∈ I , y ∈ (q(x), 1)}. As shown in Figure 1 (left), the boundary of Ωq is partitioned as
∂Ωq = Γq ∪ Γ1 ∪ Γ2 ∪ Γ3.

In order to avoid domain degeneration, we fix ε ∈ (0, 1) a priori , and we introduce the following intermediate
set of admissible controls2

Q
ad

= {q ∈ H3(I) ∩ H1
0 (I) : q(x) ≤ 1 − ε, ∀x ∈ I}. (2.2)

In the following, it will be useful to have the admissible controls in a bounded set, so we fix a constant C > 0
and reduce Q

ad
to the following set:

Qad = {q ∈ Q
ad

: ‖q‖H3(I) ≤ C}. (2.3)

From the above definition, it follows that all the feasible domains Ωq are contained in a bounded, convex,
hold-all domain Ω̂ ⊂ R

2.
The weak formulation of problem (2.1) reads:

Find u = ũ + R̃gD , ũ ∈ Vq and p̃ ∈ Pq such that

{
aq(ũ,v) + bq(v, p̃) = Fq(v), ∀ v ∈ Vq ,

bq(ũ, π) = −bq(R̃gD, π), ∀ π ∈ Pq,
(2.4)

where

Vq = {v ∈ [H1(Ωq)]2 : v = (vx, vy) = 0 on Γ3 ∪ Γq and vy = 0 on Γ2},
Pq = L2 (Ωq) , (2.5)

2Shape optimization for more general classes of admissible domains, and governed by more general differential problems, has
been studied in the literature (see, e.g., [20, 33]). Anyway, the restrictions we make on the set of admissible controls are functional
to obtain estimates and convergence rates on the discretization errors of the quantities involved in our shape optimization problem
(see Sect. 3).
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and
aq(u,v) =

∫
Ωq

(η u · v + ν∇u · ∇v) dΩ,

bq(v, π) = −
∫

Ωq

π div v dΩ,

Fq(v) =
∫

Ωq

f · v dΩ − aq(R̃gD,v) + 〈gN ,v〉Γ1 .

Data functions η, ν, f are defined on the hold-all domain Ω̂,3 boundary data gN ,gD are defined on the fixed
edges Γ1, Γ3, respectively, and R̃gD is a continuous lifting of gD on Ωq.

Remark 2.1 (Well-posedness of the state problem). Using classical results on Stokes problem (see, e.g., [18]),
we can ensure the well-posedness of (2.4). Concerning data functions, we assume what follows:4

• η(x) ≥ 0, ν(x) ≥ ν0 > 0 ∀x ∈ Ω̂;
• ν, η ∈ L∞(Ω̂);
• f ∈ [L2(Ω̂)]2, gD ∈ [H1/2(Γ3)]2, gN ∈ [H−1/2(Γ1)]2.

Under these conditions, the following stability estimate holds:

‖ũ‖Vq + ‖p̃‖Pq ≤ c
(
‖f‖[L2(Ω̂)]2 + ‖gD‖[H1/2(Γ3)]2 + ‖gN‖[H−1/2(Γ1)]2

)
. (2.6)

We remark that constant c in (2.6) is independent of q, since the inf-sup constant of the form bq is lower-
bounded, for any q, by the inf-sup constant related to the hold-all domain Ω̂. Hence, the right-hand side of (2.6)
represents an upper bound for ‖ũ‖Vq , ‖p̃‖Pq , uniformly on q.

Finally, we introduce the cost functional

J(q, ũ, p̃) =
∫

Ωq

|∇ũ|2dΩ +
α

2
‖q′′‖2

L2(I) +
β

2

(∫
I

q(x)dx − V

)2

,

representing the total energy dissipation of the Stokes flow, with a regularization term ‖q′′‖2
L2(I) (as in [26]) and

a volume penalty term, measuring the difference between the area under the graph of q and a fixed value V .5

Let us introduce the state solution operator S̃(q), mapping each q ∈ Qad to the corresponding solution
S̃(q) = (ũ, p̃) of (2.4), together with the reduced cost functional j̃ defined as follows:

j̃ : Qad → R, j̃(q) := J(q, S̃(q)). (2.7)

For convenience, it can be useful to define the following constants, whose existence is ensured by the fact
that q belongs to Qad:

d1, d2 > 0 such that ‖q′′‖L∞(I) ≤ d1, |q′(0)| ≤ d2.

Finally, we introduce the set of admissible control variations, namely:

δQ =
{
δq ∈ H3(I) ∩ H1

0 (I) : q + δq ∈ Qad, ∀q ∈ Qad
}

.

Remark 2.2. We point out that Qad is convex, closed and bounded in H3(I): boundedness is stated in (2.3),
whereas closure and convexity are consequences of the fact that definitions (2.2) and (2.3) involve only constraints
of the form ζ(q) ≤ c, where c is a constant and ζ is either the identity or the H3 norm: the continuity of ζ
provides closure, and the triangle inequality convexity.

3If not necessary, no special notation will be used to point out whether the functions in Ω̂ are to be considered, or their
restrictions to Ωq : the distinction will be inferable from the context.

4If a particular q is fixed, the conditions need only to be respected on Ωq . However, in order to be free from dependence on the

control, we formulate them on the hold-all domain Ω̂.
5Volume constraints are typical of shape optimization for fluid dynamics: see, e.g., [30, 32].
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2.1. Domain transformation

In this section, we map the original problem (2.1) onto a reference domain. The main advantage of this
technique lays in the numerical solution of the optimization problem: solving the state problem on a reference
domain avoids the need to deform the computational mesh at each step of the optimization algorithm.

Let us introduce the reference domain Ω0 = (0, 1)2, which is equivalent to the choice q ≡ 0. It follows that
any admissible domain Ωq can be seen as a transformation of Ω0 by means of the map

Tq : Ω0 → Ωq, with Tq(x, y) = (�+ Tq)(x, y) =
(

x
y + (1 − y)q(x)

)
,

where Tq denotes the displacement field (0, (1− y)q(x))T . We denote by (·, ·) the L2 inner product on Ω0, while
(·, ·)I and (·, ·)Ωq indicate the scalar product in L2(I) and L2(Ωq), respectively.

Remark 2.3 (Notation I). We will use the following quantities depending on Tq:

Map gradient: DTq with (DTq)ij = ∂xj(Tq)i, i, j = 1, 2.
Map jacobian: γq = det(DTq).
Laplacian-related matrix: Aq = γqDT−1

q DT−T
q .

Remark 2.4 (Notation II). By the superscript ·q we denote the composition with the map Tq. On the other
hand, whenever no doubt arises on which q is considered, the composition with the inverse map T−1

q will be
denoted by ·̃.

We are now ready to state the variational problem (2.4) on the pulled-back spaces V and P , that do not
depend anymore on q:

Find (u, p) ∈ V × P , such that{
a(q)(u,v) + b(q)(v, p) = F (q)(v), ∀ v ∈ V,

b(q)(u, π) = G(q)(π), ∀ π ∈ P,
(2.8)

where
V = {v ∈ [H1(Ω0)]2 : v = (vx, vy) = 0 on Γ3 ∪ Γ0 and vy = 0 on Γ2},
P = L2(Ω0),

and

a(q)(u,v) =
∫

Ω0

[
ηqu · vγq + νq tr

(
∇uAq∇vT

)]
dΩ,

b(q)(v, π) = −
∫

Ω0

π tr(∇vDT−1
q )γq dΩ,

F (q)(v) =
∫

Ω0

fq · vγq dΩ − a(q)(RgD,v) + 〈gN ,v〉Γ1 ,

G(q)(π) = −b(q)(RgD,v).

Remark 2.5 (Lifting). RgD represents a continuous lifting of the Dirichlet datum gD onto Ω0. However, as
gD is defined on Γ3, where Tq is equal to the identity, it does not need to be mapped onto the reference domain.
The fact that, in general, RgD �= R̃gD ◦ Tq, does not represent an obstruction, since in the following we are
not making use of any explicit expression of the lifting.
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Finally, we introduce the solution operator S : Qad → V × P , which maps an admissible control function to
the solution of the transformed state problem (2.8). It follows that the original optimization problem can be
reformulated as follows:

Find q ∈ Qad such that

j(q) = min
q∈Qad

j(q) = min
q∈Qad

J
(
q, S(q) ◦ T−1

q

)
. (2.9)

This is the formulation we will refer to on the rest of the paper.

2.2. Well-posedness of the problem

In this section, we analyze the well-posedness of the state problem (2.8) and the existence of an optimal
solution to our minimization problem (2.9). We remark that, since (2.8) is obtained by applying to (2.4) the
change of variables induced by the map Tq, the solution (u, p) to problem (2.8) and the solution (ũ, p̃) to
problem (2.4) are connected by the following identities:

u = ũ ◦ Tq, p = p̃ ◦ Tq.

Therefore, it is not restrictive to focus the analysis on the transformed problem (2.8). Indeed, the well-posedness
of the original problem (2.4) is equivalent to that of (2.8), due to the equivalence in L2(Ωq) of the norms
ϕ �→ ‖ϕ‖L2(Ωq) and ϕ �→ ‖ϕ ◦ Tq‖L2(Ω0).

At first, we observe that matrix Aq belongs to [L∞(Ω0)]2×2, it is symmetric and positive definite, and its
eigenvalues are lower-bounded by

λ0 = 2

⎛⎝1 +
1 + (d1 + d2)2

ε
+

√(
1 +

1 + (d1 + d2)2

ε

)2

− 4

⎞⎠−1

> 0.

Under the same assumptions of Remark 2.1, the coercivity of the form a(q) and the continuity of the functionals
and forms involved in (2.8) are given by the following inequalities, holding for any u,v ∈ V , π ∈ P , q ∈ Qad:

a(q)(v,v) ≥ ν0λ0‖∇v‖2 =: αc‖∇v‖2, (2.10a)

|a(q)(u,v)| ≤
(
‖η‖L∞(Ω̂)‖γq‖∞ + ‖ν‖L∞(Ω̂)

1
λ0

)
‖∇u‖‖∇v‖

≤
(
‖η‖L∞(Ω̂)(1 + d1 + d2) + ‖ν‖L∞(Ω̂)

1
λ0

)
‖∇u‖‖∇v‖ =: M‖∇u‖‖∇v‖,

(2.10b)

|b(q)(v, π)| ≤ ‖γqDT−T
q ‖∞‖∇v‖‖π‖ ≤ 2(1 + d1 + d2)‖∇v‖‖π‖ =: Mb‖∇v‖‖π‖, (2.10c)

|F (q)(v)| ≤ ‖γq‖∞‖f‖[L2(Ω̂)]2‖v‖ + McR‖gD‖[H1/2(Γ3)]2‖∇v‖
+ ‖gN‖[H−1/2(Γ1)]2ctr‖∇v‖

≤ [cΩ̂(1 + d1 + d2)‖f‖[L2(Ω̂)]2 + McR‖gD‖[H1/2(Γ3)]2

+ ‖gN‖[H−1/2(Γ1)]2ctr]‖∇v‖
=: MF ‖∇v‖,

(2.10d)

where the constants αc, M, Mb, MF are independent of q.

The inf-sup condition for problem (2.8) reads
There exists a positive constant β, independent of q, such that

∀π ∈ P ∃v ∈ V : b(q)(v, π) ≥ β‖∇v‖‖π‖. (2.11)
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The validity of this property would allow to exploit the classical saddle-point-problem theory also for the
transformed problem (2.8).

To prove (2.11), we start considering the inf-sup condition on Ω0, with constant β̂ > 0, namely:

∀π ∈ P ∃v ∈ V such that b(0)(v, π) = −
∫

Ω0

π div v dΩ ≥ β̂‖π‖‖∇v‖. (2.12)

Employing the definition of b(q), the following holds for any q ∈ Qad

b(q)(v, π) = −
∫

Ω0

π∇v · γqDT−T
q dΩ = −

∫
Ω0

π∇v ·
(
�+ γqDT−T

q − �
)
dΩ

≥ −
∫

Ω0

π div v dΩ −
∣∣∣∣∫

Ω0

π∇v ·
(
γqDT−T

q − �
)
dΩ

∣∣∣∣ ≥ (β̂ − ‖γqDT−T
q − �‖∞)‖π‖‖∇v‖,

being π ∈ P and v ∈ V related through (2.12). As it holds

γqDT−T
q − � = cof(DTq) − � =

(
−q −(1 − y)q′
0 0

)
,

we get
b(q)(v, π) ≥ (β̂ − ‖q‖W 1,∞(I))‖π‖‖∇v‖.

Therefore, requiring ‖q‖W 1,∞(I) to be strictly smaller than β̂ yields the validity of the inf-sup (2.11), uniformly
on q.

It is easy to check (see, e.g., [14]) that on the domain Ω0 the inf-sup constant β̂ in (2.12) satisfies β̂ ≥ 1
4
√

2
.

Hence, in order to ensure the validity of (2.11) it is sufficient to require

‖q‖H3(I) ≤
ξ

8
, for some ξ ∈ (0, 1), (2.13)

in the definition of the set Qad of admissible controls.

Remark 2.6. We remark that condition (2.13) is representative of a class of sufficient conditions ensuring the
validity of (2.11). Most likely, less stringent conditions can be found. However, real world shape optimization
problems often deal with very smooth configurations, thus compatible with (2.13).

Having ensured that the bilinear form a is coercive and continuous (see (2.10a) and (2.10b)) and that b is
continuous (see (2.10c)) and satisfies the inf-sup condition (2.11), we can finally employ the classical results of
saddle-point theory to prove the following result (see, e.g., [8]):

Proposition 2.7. Under condition (2.13), for each q ∈ Qad the pulled-back problem (2.8) admits a unique
solution, and the following inequality holds

‖S(q)‖V ×P ≤ c
(
f ,gD,gN , η, ν, Ω̂

)
,

where the constant c is independent of q.

Concluding this section, we prove the existence of an optimal solution to (2.9). Existence results have already
been proved in more general settings (see, e.g., [33], where compressible Navier–Stokes equations are taken into
account), employing sophisticated analytical techniques. Anyway, for the following result we present a simpler
proof, based on the direct method of calculus of variations, and holding under the assumptions defining the
framework of the present paper.
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Theorem 2.8. Let Qad be a non-empty, convex, closed and bounded subset of H3(I) and let S : Qad →
[H1(Ω0)]2 ×L2(Ω0) be the solution operator of problem (2.8). Then, there exists a solution to the minimization
problem (2.9).

Proof. The proof follows standard ideas of calculus of variations. Hence, in the following we sketch the main
steps of the proof. From Remark 2.2, we know that Qad is a closed, bounded and convex subset of H3(I). This
set is also non-empty, since q ≡ 0 fulfills all its constraints.
Observing that j(q) ≥ 0 for any q ∈ Qad and that Qad �= ∅, we have that a minimizing sequence {qn}n∈N ⊂ Qad

exists, such that
lim

n→∞
j(qn) = inf

q∈Qad
j(q) =: j.

Being Qad bounded in H3(I), the sequence {qn} is bounded itself, then there exists a subsequence {qnk
} and

some q ∈ H3(I) such that,
qnk

⇀ q in H3(I) for k → ∞.

Moreover, being Qad closed and convex, the limit q belongs to Qad.
The next step is to show that we can take the limit also in the state variables sequence {S(qnk

)} = {(uk, pk)}.
For this purpose, following some ideas of the proof of ([22], Lem. 2.20), we consider the physical counterpart
{S̃(qnk

)} = {S(qnk
) ◦T−1

qnk
} of the sequence and the trivial extension to zero of its elements in Ω̂ ⊃ Ωq, denoted

by {Ŝ(qnk
)}.

Thanks to the well-posedness of problem (2.4), uniformly on q ∈ Qad, the sequence {Ŝ(qnk
)} is bounded

in V̂ × P̂ = H1(Ω̂) × L2(Ω̂). Hence, there exists a subsequence, for simplicity denoted by {Ŝ(ql)}, and some

Ŝ = (û, p̂) ∈ V̂ × P̂ such that,

Ŝ(ql) = (ûl, p̂l) ⇀ Ŝ = (û, p̂) in V̂ × P̂ for l → ∞.

Now we have to prove that S := Ŝ|Ωq
◦ Tq is the state solution corresponding to q, i.e. S = S(q). This can be

done transforming each term in problem (2.8) back on Ωql
, extending it on Ω̂ and then passing to the limit

for l → ∞. As a paradigmatic example, we consider the viscosity term. Let us take v ∈ Vq (see (2.5) for the
definition of the space) and its trivial extension v̂ to Ω̂, and let us denote by χl, χ the characteristic functions
of the domains Ωql

, Ωq, respectively. We want to prove that the following tends to zero, for l → ∞:∣∣∣∣∣
∫

Ωql

ν∇ũl · ∇v̂ dΩ −
∫

Ωq

ν∇ũ · ∇v̂ dΩ

∣∣∣∣∣ =
∣∣∣∣∫

Ω̂

χlν∇ûl · ∇v̂ dΩ −
∫

Ω̂

χν∇û · ∇v̂ dΩ

∣∣∣∣
≤
∣∣∣∣∫

Ω̂

χlν∇v̂ · (∇ûl −∇û) dΩ

∣∣∣∣+ ∣∣∣∣∫
Ω̂

(χl − χ) ν∇v̂ · ∇û dΩ

∣∣∣∣ .
(2.14)

To prove the nullity of the limit of (2.14), we remind that ql ⇀ q in H3(I), then, in particular, we have that
ql → q point-wise, and as a consequence χl(x) → χ(x) ∀x ∈ Ω̂. Being ν ∈ L∞(Ω̂), it holds that the whole
integrand of the last term in (2.14) belongs to L1(Ω̂), and then we can employ the dominated convergence
theorem to prove that the integral tends to zero. For the first term in the right-hand side of (2.14), we use the
fact that

since ∇ûl −∇û ⇀ 0, χlν∇v̂ → χν∇v̂ in [L2(Ω̂)]2×2, then (∇ûl −∇û, χlν∇v̂)Ω̂ → (0, χν∇v̂)Ω̂ ,

where the strong convergence of χlν∇v̂ is due to the point-wise convergence of χl to χ and the dominated
convergence theorem in [L2(Ω̂)]2×2.

Since for any l ∈ N the restriction v̂|Ωql
can be approximated by functions belonging to Vql

(see, e.g., the proof
of ([22], Lem. 2.20)), the limit taken in (2.14), together with the ones involving the other terms of problem (2.4),
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allows to take the limit in the whole problem (2.4) with q = ql, yielding that S̃ = Ŝ|Ωq
actually is the solution

to the limit problem. Therefore, its composition with the limit domain map, S = S̃ ◦ Tq, is the solution to the
pulled-back problem (2.8) with q = q.

Finally, using once again the dominated convergence theorem and the weak, lower semi-continuity of semi-
norms in a Banach space yields the weak, lower semi-continuity of functional j, allowing to conclude that

j(ql) → j(q) = j for l → ∞.

Hence q turns out to be a solution to the optimization problem (2.9). �

Remark 2.9. In general, we cannot expect the optimal control q to be unique. Indeed, even if the state
problem (2.8) is linear, the solution operator S is nonlinear, and the functional j is in general non-convex.
As a consequence, at the level of numerical approximation this lack of uniqueness requires the use of local
minimization algorithms.

3. A priori error estimates

In this section, we aim at deriving some a priori estimates for the numerical discretization error of the main
quantities involved in our problem, namely the control function q, the state variable S(q) and the reduced cost
functional j(q).

At first, we are going to discuss some differentiability properties of the state solution operator S, under
suitable assumptions (Cor. 3.2, Thm. 3.5). Then, we will introduce a discretization on the control space and
derive corresponding error estimates (Prop. 3.6). Afterwards, the discretization of the state problem will be
studied (Lems. 3.19 and 3.20). Finally, we will derive a convergence result for the complete shape optimization
problem (Thm. 3.21).

3.1. Solution operator properties

In order to provide some differentiability properties for the state solution operator and the cost functional,
we begin by considering the following generalization of the Implicit Function Theorem to Banach spaces:

Theorem 3.1 ([26], Thm. 3.3). Let F ∈ Ck(Xad ×Y, Z), k ≥ 1, where Y and Z are Banach spaces and Xad is
an open subset of Banach space X. Suppose that F(x∗, y∗) = 0 and F ′

y(x
∗, y∗) is continuously invertible. Then

there exist neighborhoods Θ of x∗ in X, Φ of y∗ in Y and a map g ∈ Ck(Θ, Y ) such that F(x, g(y)) = 0 for all
x ∈ Θ. Furthermore, F (x, y) = 0 for (x, y) ∈ Θ × Φ implies y = g(x).

As a direct consequence, we can prove the following result:

Corollary 3.2. Let the following assumptions hold:

η, ν ∈ C2(Ω̂), f ∈
[
C2(Ω̂)

]2
. (3.1)

Then, the solution operator S is at least twice continuously Fréchet-differentiable.

Proof. It is enough to use Theorem 3.1, with X = H3(I) ∩ H1
0 (I), Y = V × P, Z = Y ′, the open set Xad =

int(Qad) and the map F : Xad × Y → Z such that

F(q;u, p) =
(

a(q)(u, ·) + b(q)(·, p) − F (q)(·)
b(q)(u, ·) − G(q)(·)

)
for any q ∈ int(Qad),u ∈ V, p ∈ P.

Being each component of the map F a linear combination of the forms a, b, F, G, we deduce that F ∈ C2(Xad ×
Y, Z) if we prove that each form is C2. Let us detail the proof only for the application (q,u) �→ a(q)(u, ·), since
the regularity of the other forms can be proved by similar arguments.
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Being the form a(q)(·, ·) bilinear for any value of q ∈ Qad, and bounded if seen as a functional of its first
argument, the dependence of the form on u is C∞. Regarding the dependence on q, instead, we have to consider
the regularity of the coefficients. In particular, we have that the applications q �→ Tq and q �→ Aq belong to
C∞(Qad), as one can infer from the definition of Tq and Aq, and hence, under the hypothesis (3.1), we deduce
that the applications q �→ ηq and q �→ νq are C2. Therefore, a(q)(u, ·) is C2 also as a function of q.

Now, we show that F ′
y(x, y) is continuously invertible for any (x, y) ∈ Xad × Y . The computation of this

derivative along the direction (δu, δp) provides the following identity:

F ′
y(q;u, p)(δu, δp) =

(
a(q)(δu, ·) + b(q)(·, δp)

b(q)(δu, ·)

)
for any q ∈ int(Qad), u, δu ∈ V, p, δp ∈ P.

It follows that the invertibility and bicontinuity of the operator (δu, δp) �→ F ′
y(q;u, p)(δu, δp) is equivalent to

the well-posedness of the homogeneous version of the pulled-back Stokes problem (2.8), which has been proved
in Proposition 2.7.

Comparing the definition of F with problem (2.8), we can see that for any (q∗;u∗, p∗) ∈ Xad×Y , problem (2.8)
is equivalent to the equation F(q∗;u∗, p∗) = 0, hence this equation can be rewritten as F(q∗, S(q∗)) = 0.
Therefore, the operator S corresponds to the map g defined in Theorem 3.1. Hence, invoking Theorem 3.1 with
k = 2, the regularity result holding for g holds for S as well. Moreover, since we can apply Theorem 3.1 to any
element (x∗, y∗) = (q∗,u∗, p∗) ∈ Xad ×Y = int(Qad)×V ×P , the regularity of S can be extended to the whole
set int(Qad). �

Remark 3.3. The proof of Corollary 3.2 holds in the particular framework of the present paper, and it has
been reported for completeness. More general results on material differentiability can be found in literature (see,
e.g., [6, 25, 33] and the references therein), holding under less stringent assumptions and obtained resorting to
more refined properties, such as the Hadamard differentiability of metric projections in Banach spaces.

Now, let us collect some properties of the map Tq.

Proposition 3.4. Given q, r ∈ Qad, the maps defined in Remark 2.3, depending on Tq, Tr and their derivatives,
satisfy the following inequalities, for any admissible variation δq ∈ δQ:

(1) ‖γ′
q,δq‖∞ = ‖div(Tδq)‖∞ ≤ c‖δq‖L∞(I) ≤ c̄‖δq‖H1(I);

(2) ‖Tδq‖∞ ≤ c‖δq‖H1(I);
(3) ‖cof(DTδq)‖∞ = ‖DTδq‖∞ ≤ c‖δq‖H2(I);
(4) ‖A′

q,δq‖∞ ≤ c‖δq‖H2(I);
(5) ‖A′′

q,δq,δq‖∞ ≤ c‖δq‖2
H2(I);

(6) ‖Aq − Ar‖∞ ≤ c‖q − r‖H2(I);
(7) ‖A′

q,δq − A′
r,δq‖∞ ≤ c‖q − r‖H2(I)‖δq‖H2(I);

(8) ‖A′′
q,δq,δq − A′′

r,δq,δq‖∞ ≤ c‖q − r‖H2(I)‖δq‖2
H2(I);

where the constants c and c are independent of q and δq.

Proof. Each of the present results simply follows from the bounding of the explicit expression of the quantity to
be controlled, in terms of the variation δq, and from the continuous embedding of H2(I) in W k,p(I) for k = 0, 1
and p = 1, 2,∞. The proof of bounds (1)−(3) is detailed in ([17], p. 30), inequalities (4)−(6) are stated in ([26],
Lem. 1.7), while bounds (7)−(8) can be proved analyzing each entry of the matrices, separately. In the sequel,
we explicitly prove (7). The expression of A′

q,δq is the following:

A′
q,δq(x, y) =

(
−δq(x) −(1 − y)δq′(x)

−(1 − y)δq′(x) δq(x)+2(1−y)2q′(x)δq′(x)(1−q(x))+(1−y)2q′(x)2δq(x)
(1−q(x))2

)
.
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Since only the entry in position (2, 2) depends on q, this is the only term giving a nonzero contribution to
‖A′

q,δq −A′
r,δq‖∞. Employing the boundedness of Ω0 and the definition of Qad in (2.2)−(2.3) together with some

algebraic manipulations provides us with the estimate:

‖A′
q,δq − A′

r,δq‖∞ = ‖(A′
q,δq)2,2 − (A′

r,δq)2,2‖∞
≤ c1‖δq‖L∞(I)

(
‖(1 − r)2 − (1 − q)2‖L∞(I) + ‖q′2 − r′2‖L∞(I)

)
+ c2‖δq′‖L∞(I)

(
‖(1 − r) − (1 − q)‖L∞(I) + ‖q′ − r′‖L∞(I)

)
≤ c‖δq‖W 1,∞(I)‖q − r‖W 1,∞(I) ≤ c‖δq‖H2(I)‖q − r‖H2(I).

The inequality (8) can be proved in a completely analogous way. �

Thanks to Corollary 3.2, we know that the solution operator S is twice-differentiable; now, we want to
explicitly write the variational problems defining its first and second variation w.r.t. q.

The first and second variations of the solution operator S along the directions δq, τq ∈ δQ are defined as
follows:

(1) S′(q)(δq) = (δu, δp) ∈ V × P , where (δu, δp) is the solution of{
a(q)(δu,v) + b(q)(v, δp) = Ḟ (q, δq)(v) − ȧ(q, δq)(u,v) − ḃ(q, δq)(v, p) ∀ v ∈ V,

b(q)(δu, π) = Ġ(q, δq)(π) − ḃ(q, δq)(u, π) ∀ π ∈ P.
(3.2)

(2) S′′(q)(δq, τq) = (τδu, τδp) ∈ V × P , where (τδu, τδp) is the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(q)(τδu,v) + b(q)(v, τδp) =

F̈ (q, δq, τq)(v) − ä(q, δq, τq)(u,v) − b̈(q, δq, τq)(v, p)

− ȧ(q, δq)(τu,v) − ḃ(q, δq)(v, τp) − ȧ(q, τq)(δu,v) − ḃ(q, τq)(v, δp)

∀ v ∈ V,

b(q)(τδu, π) = G̈(q, δq, τq)(π) − b̈(q, δq, τq)(u, π)

− ḃ(q, δq)(τu, π) − ḃ(q, τq)(δu, π)
∀ π ∈ P,

(3.3)

with (τu, τp) = S′(q)(τq).

The forms and functionals employed in (3.2) and (3.3) are defined as follows:

Ḟ (q, δq)(v) =
∫

Ω0

(
γ′

q,δqf
q · v + γq∇fqTδq · v

)
dΩ − ȧ(q, δq)(RgD,v),

Ġ(q, δq)(π) = − ḃ(q, δq)(RgD, π),

ȧ(q, δq)(u,v) =
∫

Ω0

[(
γq∇ηq · Tδq + ηqγ′

q,δq

)
u · v

+ ∇νq · Tδqtr
(
∇uAq∇vT

)
+ νqtr

(
∇uA′

q,δq∇vT
)]

dΩ,

ḃ(q, δq)(v, π) = −
∫

Ω0

π∇v · cof (Tδq) dΩ,

F̈ (q, δq, τq)(v) =
∫

Ω0

[γ′′
q,δq,τqf

q · v + γ′
q,δq∇fqTτq · v + γ′

q,τq∇fqTδq · v

+ γq

(
∇̃2fqTτq + ∇fqDTτq

)
Tδq · v]dΩ − ä(q, δq)(RgD,v),

G̈(q, δq, τq)(π) = − b̈(q, δq, τq)(RgD , π) = 0,
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ä(q, δq, τq)(u,v) =
∫

Ω0

{[γ′
q,τq∇ηq · Tδq +

(
∇2ηqTτq + DT T

τq∇ηq
)
· Tδqγq

+ ηqγ′′
q,δq,τq + γ′

q,δq∇ηq · Tτq]u · v
+
(
∇2νq Tδq + DT T

τq∇νq
)
· Tδq tr

(
∇uAq∇vT

)
+ ∇νq · Tδq tr

(
∇uA′

q,τq∇vT
)

+ νq tr
(
∇uA′′

q,δq,τq∇vT
)

+ ∇νq · Tτq tr
(
∇uA′

q,δq∇vT
)
}dΩ,

b̈(q, δq, τq)(v, π) = 0,

with the differential operator ∇̃2 acting as (∇̃2ϕ)ijk = ∂2ϕi

∂xk∂xj
and the over-signed dots denoting the partial

Gateaux derivative w.r.t. the control q.

Theorem 3.5. Problems (3.2) and (3.3) are well-posed, and the following stability estimates hold:

‖S(q)‖V ×P ≤ c,

‖S′(q)(δq)‖V ×P ≤ c‖δq‖H2(I),

‖S′′(q)(δq, δq)‖V ×P ≤ c‖δq‖2
H2(I),

provided that the data satisfy the following regularity requirements:

η, ν ∈ W 2,∞(Ω̂), f ∈ [H1(Ω̂)]2.

Proof. We preliminary note that problems (3.2)−(3.3) have the same form of (2.8), but with different right-
hand sides. Therefore, the thesis can be proved in the same way as in Proposition 2.7. The only extra result to
be shown, similarly to (2.10d), is the continuity of the right-hand sides in (3.2)−(3.3). This is easily achieved
resorting to Proposition 3.4, which also makes the dependence on ‖δq‖H2(I) explicit.

Indeed, under the regularity assumptions on the data functions and employing Hölder inequality and the
boundedness of the coefficients (see Prop. 3.4, points 1−5) we get the following estimates, for any q ∈ Qad,
δq ∈ δQ, u,v ∈ V, π ∈ P :

ȧ(q, δq)(u,v) ≤ Ṁ‖δq‖H2(I)‖∇u‖‖∇v‖
ḃ(q, δq)(v, π) ≤ c‖δq‖H2(I)‖∇v‖‖π‖

Ḟ (q, δq)(v) ≤
(
c‖f‖[H1(Ω̂)]2‖δq‖H2(I) + Ṁc‖gD‖[H1/2(Γ3)]2‖δq‖H2(I)

)
‖∇v‖

Ġ(q, δq)(π) ≤ c‖δq‖H2(I)cR‖gD‖[H1/2(Γ3)]2‖π‖,

where Ṁ = c1‖η‖W 1,∞ + c2‖ν‖W 1,∞ , being c, c1, c2 constants that are independent of q, δq,u,v, π. Similar
estimates hold for the twice-dotted forms:

ä(q, δq, δq)(u,v) ≤ c‖δq‖2
H2(I)‖∇u‖‖∇v‖

b̈(q, δq, δq)(v, π) ≤ c‖δq‖2
H2(I)‖∇v‖‖π‖

F̈ (q, δq, δq)(v) ≤ c‖δq‖2
H2(I)‖∇v‖

G̈(q, δq, δq)(π) ≤ c‖δq‖2
H2(I)‖π‖.

Collecting all the above estimates, both the right-hand sides of problems (3.2)−(3.3) result to be continuous.
Finally, applying the results on saddle-point problems in [18] yields the thesis. �
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Hinging upon the problems (3.2)−(3.3) defining the first and second derivatives of the solution w.r.t. the
control, we are now ready to compute the derivatives of j, as follows:

j(q) = (∇uAq,∇u) +
α

2
‖q′′‖2

I +
β

2

(∫
I

q(x)dx − V

)2

, (3.4a)

j′(q)(δq) =
(
∇uA′

q,δq ,∇u
)

+ 2 (∇δuAq,∇u) + α
(
δq′′, q′′

)
I

+ β

(∫
I

q(x)dx − V

)∫
I

δq(x)dx,
(3.4b)

j′′(q)(δq, τq) =
(
∇uA′′

q,δq,τq,∇u
)

+ 2
(
∇τuA′

q,δq + ∇δuA′
q,τq,∇u

)
+ 2 (∇δuAq,∇τu) + 2 (∇τδu Aq,∇u)

+ α
(
δq′′, τq′′

)
I

+ β

∫
I

δq(x)dx

∫
I

τq(x)dx,

(3.4c)

where u, δu, τu, τδu are the same as in (3.2) and (3.3). The continuity of the derivatives is an easy consequence
of the regularity and symmetry of the matrix Aq and its derivatives.

The expressions (3.4b) and (3.4c) for the first and second derivatives of the functional j have been derived
employing the usual differentiation rules; the general structure for the derivatives of integral shape functionals
can be found, e.g., in [25].

3.2. Control discretization

Let {Ii = (xi−1, xi)}N
i=1 be a partition of the domain I, with discretization parameter σ = maxi∈{1,...,N} |Ii|.

We can then define the discrete controls set as

Qad
σ = Qad ∩ Qσ, with Qσ = {q ∈ C0(I) : q|Ii ∈ P4(Ii), i ∈ {1, . . . , N}}.

The semi-discretized optimization problem reads as follows

min
qσ∈Qad

σ

j(qσ) = min
qσ∈Qad

σ

J(qσ, S(qσ) ◦ T−1
qσ

). (3.5)

As Qad
σ ⊆ Qad, the minimization problem (3.5) inherits the existence and regularity properties holding for the

original continuous optimization problem (2.9).
Let us denote by Π4

σ : L2(I) → Qσ the classical polynomial interpolation operator and notice that Π4
σ(Qad) ⊆

Qad
σ . Standard interpolation error estimates hold (see, e.g., [7]): for r ≥ 1, 0 ≤ m ≤ r + 1, it holds that

|q − Πr
σq|Hm(I) ≤ cσr+1−m|q|Hr+1(I) ∀q ∈ Hr+1(I). (3.6)

In this section, we aim at proving the following convergence result:

Proposition 3.6. Let q ∈ Qad be the exact solution of (2.9), and qσ the solution of the partially discretized
problem (3.5). Then, assuming that the optimal control q belongs to H5(I), the following convergence error
estimate holds:

‖q − qσ‖H3(I) ≤ cσ2|q|H5(I).

We observe that Proposition 3.6 needs the optimal control q to belong to H5(I). To achieve this regularity,
there is no need to re-define the admissible controls set Qad, but it is sufficient to assume the validity of the
following regularity result for the classical Stokes problem.
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Assumption 3.7. Let Ωq be an open, bounded set of R
2 and let Γq be C1,1 and ∂Ωq \Γq polygonal, with ∂Ωq

having convex corners. Let us assume that data functions fulfill the following requests:

ν ∈ H3(Ω̂), η ∈ H2(Ω̂), f ∈ [H2(Ω̂)]2, gD ∈ [H5/2(Γ3)]2, gN ∈ [H3/2(Γ1)]2,

and suitable compatibility conditions. Then, for the solution (ũ, p̃) of (2.4), the following hold:

(a) (ũ, p̃) ∈ [H3(Ωq)]2 × H2(Ωq)
(b) ‖ũ‖[H3(Ωq)]2 + ‖p̃‖H2(Ωq) ≤ c(η, ν,gD,gN , f , Ω̂).

Remark 3.8. Assumption 3.7 might be proved by resorting to results similar to those presented in [21].

The proof that Assumption 3.7 implies the H5-regularity of the optimal control is reported in Appendix A:
see Theorem A.4.

In order to prove Proposition 3.6, we need to collect some preliminary results that will be derived under the
following two assumptions, already employed in [26].

Assumption 3.9 ([26], Assumption 1.5). For the optimal solution q of problem (2.9), the constraint q ≤ 1− ε
is not active, i.e.

∃δ > 0 such that q(x) ≤ 1 − ε − δ ∀x ∈ I.

Assumption 3.10 ([26], Assumption 3.1). For any local minimum q, we have

j′′(q)(δq, δq) > 0 ∀δq ∈ δQ \ {0}.

We start by proving some regularity results on the solution operator S and its derivatives.

Lemma 3.11. Let S be the solution operator of the transformed Stokes problem (2.8). If there exists some
k > 0 such that

η, ν ∈ Ck(Ω̂), f ∈ [Ck(Ω̂)]2,

then S is at least k times continuously Fréchet differentiable.

Proof. The proof is the same as in Corollary 3.2, simply applying the Implicit Function Theorem in the form
presented in Theorem 3.1. �

Based on the previous result, we can prove the following:

Lemma 3.12. Let k ∈ N and
η, ν ∈ Ck+1(Ω̂), f ∈ [Ck+1(Ω̂)]2,

then, for any q, r ∈ Qad and δq1, δq2, . . . , δqk ∈ δQ, the following inequalities hold:

‖S(i)(q)(δq1, . . . , δqi) − S(i)(r)(δq1, . . . , δqi)‖V ×P ≤ c‖q − r‖H2(I)

i∏
j=1

‖δqj‖H2(I), for i = 0, . . . , k.
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Proof. Let q and r be two control functions in Qad and δq1, . . . , δqk admissible control variations. Applying
Lemma 3.11 under the hypotheses of the present lemma, we get

S ∈ Ck+1(int(Qad); V × P ).

Let us consider k = 0. As S ∈ C1, given the control functions q, r ∈ Qad, the Mean Value Theorem ensures that

∃ξ ∈ Qad such that S(q) − S(r) = S′(ξ)(q − r).

Being the Fréchet derivative S′(ξ) a linear operator on the control variation, its continuity is equivalent to its
boundedness, thus we get

‖S(q) − S(r)‖V ×P = ‖S′(ξ)(q − r)‖V ×P ≤ c‖q − r‖H2(I).

We remark that c does not depend on q, r, even though ξ does: indeed, ‖S′(ξ)‖L (δQ;V ×P ) =
supδq∈δQ:‖δq‖H3(I)=1 ‖S′(ξ)(δq)‖V ×P , which is upper bounded by a constant depending only on the data of
the state problem, thanks to Theorem 3.5.

In the general case k > 0, for each i ∈ {0, . . . , k} there exists ξi ∈ Qad such that

S(i)(q) − S(i)(r) = S(i+1)(ξi)(q − r), (3.7)

where we remark that (3.7) is an equality between linear operators belonging to
Li := L (δQi; V × P ). Observing that S(i+1)(ξi) ∈ Li+1, we can proceed as before to obtain

‖S(i)(q)(δq1, . . . , δqi) − S(i)(r)(δq1, . . . , δqi)‖V ×P

≤ ‖S(i)(q) − S(i)(r)‖Li

i∏
j=1

‖δqj‖H2(I) = ‖S(i+1)(ξi)(q − r)‖Li

i∏
j=1

‖δqj‖H2(I)

≤ ‖S(i+1)(ξi)‖Li+1‖q − r‖H2(I)

i∏
j=1

‖δqj‖H2(I).

Finally, employing a similar result to Theorem 3.5, ‖S(i+1)(ξ)‖Li+1 can be bounded by a constant c > 0,
uniformly on ξ ∈ Qad. Hence the proof is complete. �

The continuity of the solution operator S directly implies the continuity of the functional j, as stated in the
following result.

Lemma 3.13. For any q, r ∈ Qad and any δq ∈ δQ, it holds that

(a) |j(q) − j(r)| ≤ c‖q − r‖H2(I),
(b) |j′(q)(δq) − j′(r)(δq)| ≤ c‖q − r‖H2(I)‖δq‖H2(I),
(c) |j′′(q)(δq, δq) − j′′(r)(δq, δq)| ≤ c‖q − r‖H2(I)‖δq‖2

H2(I).

Proof. Let us fix q, r ∈ Qad. To simplify the notation, let S(q) = (u, p) and S(r) = (z, s). As the proofs of
(a)−(c) are similar, we focus on (c), highlighting the most technical parts.

Bearing in mind the expression of j′′ (see (3.4c)), we first focus on the following term:∣∣(∇uA′′
q,δq,δq,∇u

)
−
(
∇zA′′

r,δq,δq,∇z
)∣∣

= |
(
(∇u −∇z)A′′

q,δq,δq,∇u + ∇z
)

+
(
∇z(A′′

q,δq,δq − A′′
r,δq,δq),∇z

)
|

≤ ‖A′′
q,δq,δq‖∞ (‖∇u‖ + ‖∇z‖) ‖∇u −∇z‖ + ‖∇z‖2‖A′′

q,δq,δq − A′′
r,δq,δq‖∞

≤ c‖q − r‖H2(I)‖δq‖2
H2(I),
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where the state variables have been bounded using Proposition 2.7 and Lemma 3.12, while the terms involving
A′′

q,δq,δq, A
′′
r,δq,δq has been handed employing Proposition 3.4.

Using the same results, it is easy to bound also the following term:

|
(
∇δuA′

q,δq,∇u
)
−
(
∇δzA′

r,δq,∇z
)
|

= |
(
(∇δu −∇δz)A′

q,δq ,∇u
)

+
(
∇δz(A′

q,δq − A′
r,δq),∇u

)
+
(
∇δzA′

r,δq ,∇u−∇z
)
|.

All the other terms entering in j′′ can be treated in a similar way, to get (c). �

The results stated so far are sufficient to prove the following coercivity result on j.

Lemma 3.14. If q is a local solution of (2.9), fulfilling Assumption 3.10, then there exist δ1, δ2 > 0 such that,
if ‖q − r‖H2(I) ≤ δ1 for r ∈ Qad, then

j′′(r)(δq, δq) ≥ δ2

2
‖δq‖2

H3(I) ∀δq ∈ δQ. (3.8)

Proof. Following the ideas of ([26], Thm. 3.13, Lem. 3.14), let us begin by proving by contradiction that in-
equality (3.8) holds for r = q. Assuming that it does not hold, there should exist a sequence {δqn}n∈N ⊂ δQ
such that ‖δqn‖H3(I) = 1 for any n ∈ N and

j′′(q)(δqn, δqn) <
1
n
·

Being the sequence {δqn} bounded, it has an accumulation point δq in H3(I), and thanks to the second order
optimality condition j′′(q)(δq, δq) ≥ 0 and to the lower semicontinuity of the functional δq �→ j′′(q)(δq, δq)
(whose proof can be found in Cor. B.2, in the Appendix), we have that

0 ≤ j′′(q)(δq, δq) ≤ lim inf
n→∞

j′′(q)(δqn, δqn) ≤ lim sup
n→∞

j′′(q)(δqn, δqn) ≤ lim
n→∞

1
n

= 0.

Therefore, the whole sequence satisfies j′′(q)(δqn, δqn) → j′′(q)(δq, δq) = 0. Thus, Assumption 3.10 would imply
δq = 0, which is impossible, since ‖δqn‖H3(I) = 1 ∀n ∈ N.

Having proved inequality (3.8) for r = q, the result can be easily extended to a whole neighborhood of q by
simple calculations and exploiting Lemma 3.13(c). �

Now, we are ready to conclude this section with the proof of Proposition 3.6.

Proof of Proposition 3.6. For sufficiently small σ, the Mean Value Theorem and Lemma 3.14 imply the existence
of some t ∈ [0, 1] such that, for ξ = t Π4

σq + (1 − t)qσ, we have

δ2

2
‖Π4

σq − qσ‖2
H3(I) ≤ j′′(ξ)(Π4

σq − qσ, Π4
σq − qσ)

= j′(Π4
σq)(Π4

σq − qσ) − j′(qσ)(Π4
σq − qσ)

a= j′(Π4
σq)(Π4

σq − qσ) − j′(q)(Π4
σq − qσ)

b
≤ c‖q − Π4

σq‖H3(I)‖Π4
σq − qσ‖H3(I)

c
≤ c σ2‖q‖H5(I)‖Π4

σq − qσ‖H3(I),

(3.9)
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where we used:

(a) j′(q)(Π4
σq−qσ) = j′(qσ)(Π4

σq−qσ) = 0, due to Assumption 3.9 and then the first order optimality condition;
(b) point b of Lemma 3.13 and the fact that ‖ · ‖H2(I) ≤ ‖ · ‖H3(I);
(c) the interpolation error estimate (3.6).

From (3.9), we obtain
‖Π4

σq − qσ‖H3(I) ≤ cσ2‖q‖H5(I).

Finally, triangular inequality gives the thesis. �

3.3. State discretization

Let Th be a regular triangulation of Ω0, with discretization parameter h = max
K∈Th

|K|. We can thus introduce
the finite element spaces

Xr
h(Ω0) = {ϕ ∈ C0(Ω0) : ϕ|K ∈ Pr(K) ∀K ∈ Th},

Vh = V ∩ [X2
h(Ω0)]2,

Ph = P ∩ X1
h(Ω0),

(3.10)

where Pr(K) is the space of polynomials on K having degree less than or equal to r.
Passing from the continuous to the discrete case, the variational forms involved in problem (2.8) preserve all

their properties, with the discrete inf-sup condition ensured by the following:

Proposition 3.15. There exists a positive constant β such that

∀πh ∈ Ph ∃vh ∈ Vh : b(q)(vh, πh) ≥ β‖∇vh‖‖πh‖, (3.11)

and β is independent of q ∈ Qad and of h ∈ [0, ĥ], for a certain ĥ > 0.

Proof. From FEM approximation of Stokes problem [18], we know that pair (Vh, Ph) is stable, i.e. there exists
a constant β̂ > 0 such that

∀πh ∈ Ph ∃vh ∈ Vh : b(0)(vh, πh) ≥ β̂‖∇vh‖‖πh‖, (3.12)

with β̂ independent of h ∈ [0, ĥ].
In order to show that such discrete spaces fulfill inf-sup condition also for the transformed form b(q), one

can just follow the steps presented in Section 2.2, with constant β̂ from (3.12). Indeed, no assumptions on the
spaces V, P have been made there, apart from the validity of the inf-sup condition for b(0). �

The finite element discretization of (2.8) reads as follows:

Find (uh, ph) ∈ Vh × Ph, such that{
a(qσ)(uh,vh) + b(qσ)(vh, ph) = F (qσ)(vh) ∀ vh ∈ Vh,

b(qσ)(uh, πh) = G(qσ)(πh) ∀ πh ∈ Ph.

(3.13)

The well-posedness of (3.13) stems from the validity of (3.11).
The discrete state solution operator, resulting from problem (3.13), and the corresponding discrete cost

functional are defined as

Sh : Qad
σ → Vh × Ph, with Sh(qσ) = (uh, ph), jh : Qad

σ → R, with j(qσ) = J
(
qσ, Sh(qσ) ◦ T−1

qσ

)
,

whereas the fully discretized shape optimization problem can be written as

min
qσ∈Qad

σ

jh(qσ) := min
qσ∈Qad

σ

J
(
qσ, Sh(qσ) ◦ T−1

qσ

)
.
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For future use, it is useful to explicitly write the problems defining the derivatives of Sh:

(1) S′
h(qσ)(δqσ) = (δuh, δph) ∈ Vh × Ph, where (δuh, δph) is the solution of⎧⎪⎨⎪⎩

a(qσ)(δuh,vh)+ b(qσ)(vh, δph) = Ḟ (qσ, δqσ)(vh)

− ȧ(qσ, δqσ)(uh,vh) − ḃ(qσ, δqσ)(vh, ph) ∀ vh ∈ Vh,

b(qσ)(δuh, πh) = Ġ(qσ, δqσ)(πh) − ḃ(qσ, δqσ)(uh, πh) ∀ πh ∈ Ph.

(3.14)

(2) S′′
h(qσ)(δqσ , τqσ) = (τδuh, τδph) ∈ Vh × Ph, where (τδuh, τδph) is the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(qσ)(τδuh,vh) + b(qσ)(vh, τδph) =

F̈ (qσ, δqσ, τqσ)(vh)

− ä(qσ, δqσ, τqσ)(uh,vh) − b̈(qσ, δqσ, τqσ)(vh, ph)

− ȧ(qσ, δqσ)(τuh,vh) − ḃ(qσ, δqσ)(vh, τph)

− ȧ(qσ, τqσ)(δuh,vh) − ḃ(qσ, τqσ)(vh, δph) ∀ vh ∈ Vh,

b(qσ)(τδuh, πh) = G̈(qσ, δqσ, τqσ)(πh) − b̈(qσ, δqσ, τqσ)(uh, πh)

− ḃ(qσ , δqσ)(τuh, πh) − ḃ(qσ, τqσ)(δuh, πh) ∀ πh ∈ Ph,

(3.15)

with (τuh, τph) = S′
h(qσ)(τqσ).

Like in the previous section, in order to study the convergence of the discrete quantities to their continuous
counterparts, we introduce projection operators onto the discrete spaces. Since there will be no room for misun-
derstanding, to avoid redundant notation, all of them will be indicated by the same symbol Πr

h, never minding
if returning functions in Vh, Ph, or Vh × Ph.
Referring to Xr

h, the following interpolation estimate is known (see e.g. [34], Sect. 3.4.2), for r ≥ 1, m = 0, 1:

|ϕ − Πr
hϕ|Hm(Ω0) ≤ chr+1−m|ϕ|Hr+1(Ω0). (3.16)

The particular choice of P2−P1 couple in the spaces defined in (3.10) leads us to assume the following regularity
on the state variables and their shape derivatives:

Assumption 3.16. For any q ∈ Qad, δq ∈ δQ, each of S(q), S′(q)(δq), S′′(q)(δq, δq) belongs to [H3(Ω0)]2 ×
H2(Ω0) and the following inequalities hold:

‖S(q)‖[H3(Ω0)]2×H2(Ω0) = ‖u‖[H3(Ω0)]2 + ‖p‖H2(Ω0) ≤ c1,

‖S′(q)(δq)‖[H3(Ω0)]2×H2(Ω0) = ‖δu‖[H3(Ω0)]2 + ‖δp‖H2(Ω0) ≤ c2‖δq‖H3(I),

‖S′′(q)(δq, δq)‖[H3(Ω0)]2×H2(Ω0) = ‖δδu‖[H3(Ω0)]2 + ‖δδp‖H2(Ω0) ≤ c3‖δq‖2
H3(I).

Remark 3.17. In Appendix A we prove (Thm. A.3) the validity of Assumption 3.16, that involves suitable
regularity assumptions on the data of the Stokes problem.

Assumption 3.16, together with (3.16), yields the following estimate:

‖u− Π2
hu‖V + ‖p− Π1

hp‖P ≤ c1h
2,

‖δu− Π2
hδu‖V + ‖δp− Π1

hδp‖P ≤ c2h
2‖δq‖H3(I),

‖δδu− Π2
hδδu‖V + ‖δδp − Π1

hδδp‖P ≤ c3h
2‖δq‖2

H3(I).

(3.17)

Remark 3.18. Under regularity Assumption 3.16, one can afford the optimal convergence rate for P2 − P1

discretization: lower regularity of the state variables would lead to a lower convergence rate in (3.17).
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The interpolation error estimates are once again the basis upon which we build our convergence result, which
reads as follows:

Lemma 3.19. For any qσ ∈ Qad
σ , δqσ ∈ δQσ = δQ ∩ Qσ, the following convergence estimates hold:

(a) ‖S(qσ) − Sh(qσ)‖V ×P ≤ ch2;
(b) ‖S′(qσ)(δqσ) − S′

h(qσ)(δqσ)‖V ×P ≤ ch2‖δqσ‖H3(I);
(c) ‖S′′(qσ)(δqσ, δqσ) − S′′

h(qσ)(δqσ, δqσ)‖V ×P ≤ ch2‖δqσ‖2
H3(I).

Proof. Since the discrete problems (3.13)−(3.15) fulfill the same properties as the continuous ones, we have that
Theorem 3.5 on the boundedness of the continuous solution operator S is true also for the discrete operator
Sh and its derivatives. Hinging upon this result and Assumption 3.16, we fix some qσ ∈ Qad

σ , δqσ ∈ δQσ and
proceed according to the following steps.

We first prove (a). From [18] and the independence of the continuity, coercivity and LBB constants from qσ

and h, we can obtain the classical convergence result for a saddle-point problem, i.e.,

‖S(qσ) − Sh(qσ)‖V ×P ≤ c(‖u− Π2
hu‖V + ‖p − Π1

hp‖P ) ≤ ch2,

with the last inequality exploiting interpolation error estimate (3.17).
We now proceed to prove (b). We set (u, p) = S(qσ), (δu, δp) = S′(qσ)(δqσ), (δδu, δδp) = S′′(qσ)(δqσ, δqσ),

with subscript ·h denoting the corresponding discrete quantities, and we introduce the “intermediate derivative”
(δûh, δp̂h), solution in Vh × Ph of the following problem:6⎧⎪⎨⎪⎩

a(qσ)(δûh,vh) + b(qσ)(vh, δp̂h) = Ḟ (qσ, δqσ)(vh)

− ȧ(qσ, δqσ)(u,vh) − ḃ(qσ, δqσ)(vh, p) ∀ vh ∈ Vh,

b(qσ)(δûh, πh) = Ġ(qσ, δqσ)(πh) − ḃ(qσ, δqσ)(uh, πh) ∀ πh ∈ Ph.

(3.18)

Thanks to (3.18), we can separate the error due to the discretization of the problem on S′(qσ)(δqσ) from the
one that is inherited from the discretization of S(qσ). Using triangular inequality yields

‖S′(qσ)(δqσ) − S′
h(qσ)(δqσ)‖V ×P

≤‖S′(qσ)(δqσ) − (δûh, δp̂h)‖V ×P + ‖(δûh, δp̂h) − S′
h(qσ)(δqσ)‖V ×P

= ‖δu− δûh‖V + ‖δûh − δuh‖V + ‖δp − δp̂h‖P + ‖δp̂h − δph‖P .

(3.19)

Considering the first term in (3.19), we have that, for any wh ∈ Vh,

αc‖∇δu−∇δûh‖2 ≤ a(qσ)(δu − δûh, δu − δûh)
= a(qσ)(δu − δûh, δu − wh) + a(qσ)(δu − δûh,wh − δûh)
= a(qσ)(δu − δûh, δu − wh) − b(qσ)(wh − δûh, δp − δp̂h),

(3.20)

with the equality holding thanks to the fact that the first equations in (3.2) and (3.18) share the same right-hand
side. Since (3.20) holds for every wh ∈ Vh, it still holds if we take the infimum w.r.t. wh. For the first term of
the right-hand side we get

inf
wh∈Vh

a(qσ)(δu − δûh, δu− wh) ≤ a(qσ)(δu − δûh, δu − Π2
hδu)

≤ M‖∇δu−∇δûh‖‖∇δu−∇Π2
hδu‖ ≤ ch2M‖∇δu−∇δûh‖‖δqσ‖H3(I),

(3.21)

where we employed the interpolation error estimate (3.17). Instead, taking wh = δûh in the second term yields

inf
wh∈Vh

[−b(qσ)(wh − δûh, δp − δp̂h)] ≤ 0. (3.22)

6The problem here introduced is a combination of problem (3.2) for S′(qσ)(δq) and its discrete counterpart (3.14): we solve a
discrete problem in spaces Vh, Ph, with the first equation being the same as in (3.2), and the second one as in (3.14).
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Using (3.21) and (3.22) in (3.20) and dividing both sides by αc‖∇δu −∇δûh‖, we eventually obtain

‖∇δu−∇δûh‖ ≤ c
M

αc
h2‖δqσ‖H3(I).

The second term in (3.19) can be estimated using the problems (3.14) and (3.18), fulfilled by δuh, δûh, together
with the coercivity of a and the continuity of the forms involved in such problems. We can thus obtain:

αc‖∇δûh −∇δuh‖2 ≤ a(qσ)(δûh − δuh, δûh − δuh)

= −ȧ(qσ , δq)(u − uh, δûh − δuh) − ḃ(qσ, δq)(δûh − δuh, p − ph)
− b(qσ)(δûh − δuh, δp̂h − δph)

≤ c‖δq‖H2(I)(‖∇u −∇uh‖ + ‖p − ph‖)‖∇δûh −∇δuh‖,

(3.23)

where the last inequality holds because b(qσ)(δûh, πh) = b(qσ)(δuh, πh) ∀πh ∈ Ph. After dividing by ‖∇δûh −
∇δuh‖ both sides of (3.23), the right-hand side can be controlled as in the first point of the present lemma,
leading to

‖∇δûh −∇δuh‖ ≤ ch2‖δqσ‖H3(I). (3.24)

Now we have to deal with pressure error terms in (3.19): taking a generic πh ∈ Ph, the first term can be split
as follows:

‖δp − δp̂h‖ ≤ ‖δp − πh‖ + ‖πh − δp̂h‖. (3.25)

We remark that, since inequality (3.25) holds for any πh ∈ Ph, it holds also taking the infimum w.r.t. πh. The
infimum of the first term is directly controlled by ch2‖δqσ‖H3(I) thanks to the interpolation error estimate (3.17)
and the boundedness of ‖δp‖H2(Ω0) asserted in Assumption 3.16. The second term goes to zero when passing
to the infimum, since δp̂h ∈ Ph.

Finally, for the last term in (3.19) we exploit LBB condition (3.11) and proceed as follows:

‖δp̂h − δph‖ ≤ sup
vh∈Vh

b(qσ)(vh, δp̂h − δph)

β̂‖∇vh‖

= sup
vh∈Vh

−ȧ(qσ, δqσ)(u − uh,vh) − ḃ(qσ, δqσ)(vh, p − ph) − a(qσ)(δûh − δuh,vh)

β̂‖∇vh‖

≤ 1

β̂

[
c‖δqσ‖H3(I) (‖∇u−∇uh‖ + ‖p− ph‖) + M‖∇δûh −∇δuh‖

]
.

From estimate (3.24) and point (a) of the present lemma, we get the desired bound ch2‖δqσ‖H3(I).
Collecting the estimates for the four terms in (3.19) yields the validity of point (b).

Finally, we prove (c), employing the regularity result for S′′(qσ)(δqσ, δqσ) given at the third point
of Assumption 3.16. The only difference from the previous point is the “intermediate derivative”
(δδûh, δδp̂h) ∈ Vh × Ph, defined as the solution of the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a(qσ)(δδûh,vh) + b(qσ)(vh, δδp̂h) =

F̈ (qσ, δqσ, δqσ)(vh) − ä(qσ, δqσ, δqσ)(u,vh) − b̈(qσ, δqσ, δqσ)(vh, p)

− 2 ȧ(qσ, δqσ)(δu,vh) − 2 ḃ(qσ, δqσ)(vh, δp)

∀ vh ∈ Vh,

b(qσ)(δδûh, πh) = G̈(qσ, δqσ, δqσ)(πh) − b̈(qσ, δqσ, δqσ)(uh, πh)

− 2 ḃ(qσ, δqσ)(δuh, πh)
∀ πh ∈ Ph.

All the previous steps performed to estimate S′ − S′
h can be easily adapted to the present context. �

A direct consequence of the previous lemma is the following convergence result for the discrete functional.
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Lemma 3.20. ∀qσ ∈ Qad
σ , δqσ ∈ δQσ it holds

(a) |j(qσ) − jh(qσ)| ≤ ch2;
(b) |j′(qσ)(δqσ) − j′h(qσ)(δqσ)| ≤ ch2‖δqσ‖H3(I);
(c) |j′′(qσ)(δqσ, δqσ) − j′′h(qσ)(δqσ, δqσ)| ≤ ch2‖δqσ‖2

H3(I).

Proof.
Let us fix a qσ ∈ Qad

σ , δqσ ∈ δQσ and define (u, p) = S(qσ), (δu, δp) = S′(qσ)(δqσ), (δδu, δδp) =
S′′(qσ)(δqσ, δqσ).

Let us first prove (a). It it easy to show that the following holds

|j(qσ) − jh(qσ)| = |((∇u −∇uh)Aqσ ,∇u + ∇uh)|
≤ ‖Aqσ‖∞(‖∇u‖ + ‖∇uh‖)‖∇u−∇uh‖ ≤ ch2,

where the last inequality employs the boundedness of Aqσ ,∇u,∇uh and Lemma 3.19.
Now we prove (b), according to the following steps:

|j′(qσ)(δqσ) − j′h(qσ)(δqσ)| ≤ |((∇u −∇uh)A′
qσ ,δqσ

,∇u + ∇uh)|
+ 2|((∇δu −∇δuh)Aqσ ,∇u)| + 2|(∇δuh Aqσ ,∇u −∇uh)|

≤ ch2‖δqσ‖H3(I).

Indeed, it holds ‖A′
qσ ,δqσ

‖∞ ≤ c‖δqσ‖H2(I) (see Prop. 3.4) while ‖∇u‖ and ‖∇δuh‖ are controlled thanks to
the continuous and discrete versions of Theorem 3.5, and the discretization error terms are bounded through
Lemma 3.19.

Finally, we prove (c), as follows:

|j′′(qσ)(δqσ, δqσ) − j′′h(qσ)(δqσ, δqσ)| ≤ |((∇u −∇uh)A′′
qσ ,δqσ ,δqσ

,∇u + ∇uh)|
+ 4|((∇δu−∇δuh)A′

qσ ,δqσ
,∇u)| + 4|(∇δuh A′

qσ ,δqσ
,∇u −∇uh)|

+ 2|((∇δu−∇δuh)Aqσ ,∇δu + ∇δuh)|
+ 2|((∇δδu−∇δδuh)Aqσ ,∇u)| + 2|(∇δδuh Aqσ ,∇u−∇uh)|.

To bound the terms not involving δδu and δδuh, one can employ Proposition 3.4 to handle the matrix terms,
together with similar techniques already used to prove (a) and (b). To bound the last two terms, we have to apply
Lemma 3.19, point c, and the discrete version of Theorem 3.5 in order to provide estimates for ‖∇δδu−∇δδuh‖
and ‖∇δδuh‖. �

Finally, collecting the previous results, we can prove the main result of this section, under the assumption
that the optimal control q is in H5(I).

Theorem 3.21 (A priori convergence estimates). Let Assumptions 3.9, 3.10 and 3.16 hold. If a local solution
q of (2.9) belongs to H5(I), then there exists a sequence {qσ,h}σ,h>0 of local optimal solutions of the discrete
problem

min
qσ∈Qad

σ

jh(qσ), (3.26)

such that

‖q − qσ,h‖H3(I) = O(σ2 + h2),

‖S(q) − Sh(qσ,h)‖V ×P = O(σ2 + h2),

|j(q) − jh(qσ,h)| = O(σ2 + h2).
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Proof. Let qσ, qσ,h denote the optimal controls for the semi-discrete problem (3.5) and the fully discretized
problem (3.26), respectively. The Mean Value Theorem ensures the existence of t ∈ (0, 1) such that, with
ξ = tqσ + (1 − t)qσ,h, we have

j′h(qσ)(δqσ) − j′h(qσ,h)(δqσ) = j′′h(ξ)(δqσ, qσ − qσ,h) ∀δqσ ∈ δQσ. (3.27)

Applying Lemma 3.14 and taking qσ − qσ,h as a variation, we get:

δ2

2
‖qσ − qσ,h‖2

H3(I) ≤ j′′(ξ)(qσ − qσ,h, qσ − qσ,h)

≤ j′′h(ξ)(qσ − qσ,h, qσ − qσ,h)
+ |j′′(ξ)(qσ − qσ,h, qσ − qσ,h) − j′′h(ξ)(qσ − qσ,h, qσ − qσ,h)|

≤ j′h(qσ)(qσ − qσ,h) − j′h(qσ,h)(qσ − qσ,h) + c1h
2‖qσ − qσ,h‖2

H3(I),

where the last inequality is obtained by (3.27) and Lemma 3.20(c). Using the fact that
j′h(qσ,h)(qσ − qσ,h) = j′(qσ)(qσ − qσ,h) = 0 in the right-hand side of (3.3), and then applying Lemma 3.20(b),
we obtain:

δ2

2
‖qσ − qσ,h‖2

H2(I) ≤ j′h(qσ)(qσ − qσ,h) − j′(qσ)(qσ − qσ,h) + c1h
2‖qσ − qσ,h‖2

H3(I)

≤ c2h
2‖qσ − qσ,h‖H3(I) + c1h

2‖qσ − qσ,h‖2
H3(I).

Therefore, for sufficiently small h, i.e. for

h ≤
(

δ2

2c1

)1/2

,

and employing Proposition 3.6, the following convergence error estimate holds:

‖q − qσ,h‖H3(I) ≤ ‖q − qσ‖H3(I) + ‖qσ − qσ,h‖H3(I) = O(σ2 + h2).

This result yields the second point of the thesis, since

‖S(q) − Sh(qσ,h)‖V ×P ≤ ‖S(q) − S(qσ,h)‖V ×P + ‖S(qσ,h) − Sh(qσ,h)‖V ×P , (3.28)

and the desired estimate for Sh follows from applying Lemmas 3.12 and 3.19 to the two terms at right-hand
side of (3.28). An analogous argument, using Lemmas 3.13 and 3.20, yields the estimate for jh. �

4. Optimality conditions

In this section, we want to write the first order optimality condition

j′(q)(δq) = 0 ∀δq ∈ δQ, (4.1)

in terms of the reference-domain state solution S(q). This is instrumental to design the descent algorithm (see
Sect. 5) for the numerical approximation of the minimization problem (2.9). Since the expression of the gradient
is exploited only in the numerical tests, we proceed formally in its derivation, as generally accepted and done
in the field of numerical shape optimization (see, e.g., [1, 11, 22, 30]).
In order to simplify computation, instead of differentiating the expression for functional j given in (2.9), we
exploit the fact that j(q) = j̃(q) for any q ∈ Qad, and start from the expression of j̃ defined in (2.7), i.e.,

j̃(q) =
∫

Ωq

|∇ũ|2 dΩ +
α

2
‖q′′‖2

L2(I) +
β

2

(∫
I

q(x)dx − V

)2

, (4.2)
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where ũ : Ωq → R
2, together with p̃ : Ωq → R, is the solution of Stokes problem (2.1). Through the Hadamard

formula (see, e.g., [35]), we are going to write the derivative j̃′(q)(δq) in terms of ũ and the solution of an adjoint
problem, and then to pull back the resulting expression into the reference domain.

The so-called shape-derivative of (ũ, p̃) can be defined as the solution (δ̃u, δ̃p ) of the following problem (see,
e.g., [30]): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηδ̃u − div(ν∇δ̃u) + ∇δ̃p = 0, in Ωq,

div(δ̃u) = 0 in Ωq,

ν∂nδ̃u− δ̃pn = 0, on Γ1,

∂nδ̃ux = 0, δ̃uy = 0, on Γ2,

δ̃u = 0, on Γ3,

δ̃u = −(Vq,δq · n)∂nũ, on Γq.

(4.3)

where Vq,δq is the vector field describing a transformation from Ωq to Ωq+δq , given by

Vq,δq(x, y) =
(

0
1−y

1−q(x)δq(x)

)
.

Differentiating expression (4.2) along direction δq, one obtains

j̃′(q)(δq) = 2(∇ũ,∇δ̃u)Ωq +
∫

Γq

|∇ũ|2Vq,δq · n dΓ + α(q′′, δq′′)I + β

(∫
I

q(x)dx − V

)∫
I

δq(x)dx.

In order to make the dependence of j̃′(q)(δq) on δq completely explicit, we introduce the adjoint state (z̃, s̃),
solution of the following adjoint problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ηz̃ − div(ν∇z̃) + ∇s̃ = −2Δũ, in Ωq,

div z̃ = 0, in Ωq,

ν∂nz̃− s̃n = 2∂nũ, on Γ1,

ν∂nz̃x = 2∂nũx, z̃y = 0, on Γ2,

z̃ = 0, on Γq ∪ Γ3.

(4.4)

Using both problems (4.3) and (4.4), and exploiting integration by parts, we can re-write the derivative of
the functional as depending only on ũ, z̃, q, δq, and no more on δ̃u, obtaining the following Hadamard formula
for j̃′:

j̃′(q)(δq) =
∫

Γq

∂nũ · (ν∂nz̃− ∂nũ)(Vq,δq · n) dΓ + α(q′′, δq′′)I + β

(∫
I

q(x)dx − V

)∫
I

δq(x)dx. (4.5)

Since we adopt a reference domain approach, we pass from (4.5) to an expression depending on the pulled-back
state variables (u, p) = S(q) and adjoint velocity z = z̃ ◦Tq: employing changes of variables from Ωq to Ω0, and
from Γq to I, the following result holds.

Lemma 4.1. Given the functional j(q) defined as in (2.9), its Gateaux-derivative in q along direction δq is
given by

j′(q)(δq) = α(q′′, δq′′)I + (Ψ(q), δq)I ∀q ∈ Qad, δq ∈ δQ, (4.6)
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where Ψ(q) : I → R is defined as

Ψ(q)(x) = Ψ1(q)(x) + Ψ2(q)(x) := β

(∫
I

q(t)dt − V

)
+

1
1 + q′(x)2

[∇uAqn](x, 0) · [(∇u − ν∇z)Aqn](x, 0),

with n = (0,−1) denoting the outward normal versor of the lower boundary segment Γ0 of the domain Ω0.

5. Numerical results

In this section, we present two sets of numerical results. The numerical implementation has been carried out
basing on the FEniCS project (see [29] and http://fenicsproject.org), and the optimal solution is obtained
iteratively, using the following gradient method [31]:

qold

ε ε > 0
(u, p), (z, s)

∇j(qold)
∇j(qold) G
G Γ0 I g

qnew = qold − εg
j(qnew) > j(qold) ε > εmin

qnew = qold − εg
ε = ε/2

In general, the functional gradient ∇j(qold), obtained as in Lemma 4.1, is not an admissible variation, since
one cannot prove the existence of some ε > 0 such that q = qold − ε∇j(qold) satisfies

q(0) = q(1) = 0.

This is why in the above gradient method the projection step (3) is required. The gradient ∇j(qold) is projected
onto H1

∂Ω0\Γ0
(Ω0) solving the following problem:⎧⎪⎨⎪⎩

−ΔG + G = 0, in Ω0,

G = 0, on ∂Ω0 \ Γ0,

−∂nG = −∇j(qold), on Γ0.

Then, step (4) of the algorithm reduces G, defined on Ω0, to a function g belonging to the space of controls.
The results obtained by the application of the above algorithm to the shape optimization problem (2.9) are

now presented and discussed. Two different functionals will be considered in the following two test cases.

Remark 5.1. We remark that we use finite element discretization, with P2 − P1 pair for state velocity and
pressure and with piecewise linear basis functions for the control. As we will see, even if the polynomial degree
for controls is not as high as assumed in the derivation of a priori estimates, the numerical results comply the
theoretical ones. In these numerical tests, we consider a unique discretization parameter, i.e. we set σ = h.

http://fenicsproject.org
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Figure 2. Independence of the optimal control from the initial configuration, for α = 10,
β = 10 000, V = [0.7 times the initial area of the parabolic case].

5.1. Test case 1

In this first test case, we take into account the following functional:

j̃(q) =
∫

Ω0

|∇u|2 dΩ +
α

2

∫
Γq

dΓ +
β

2

(∫
I

q(x) dx − V

)2

.

Its counterpart on the pulled-back formulation (2.8) reads

j(q) =
∫

Ω0

γq|∇uDT−1
q |2 dΩ +

α

2

∫
I

√
1 + (q′(x))2 dx +

β

2

(∫
I

q(x) dx − V

)2

. (5.1)

The gradient of this functional is given by

∇j(q) =
1

1 + (q′)2
[∇uAqn]|Γ0 · [(∇u − ν∇z)Aqn]|Γ0

− α

2
q′′

(1 + (q′)2)3/2
+ β

(∫
I

q(x)dx − V

)
.

The regularization term considered in (5.1) is often used in the literature (see, e.g., [13, 30]) and it consists in
the penalization of the perimeter of the moving portion Γq of the domain boundary. This new term is simpler
to handle than the curvature term ‖q′′‖2

L2(I): indeed, using the original term would require the introduction
of a further adjoint problem, to extract the Riesz representative in L2(I) of the functional δq �→ (q′′, δq′′)I .
Moreover, the perimeter term can be supposed to generally act in the same way as the curvature term, since a
shorter perimeter corresponds to less oscillations, and vice versa.

We first analyze the dependence of the optimal solution on the initial configuration. We consider three
different initial solutions, defined by a parabolic function (q(x) = 0.2[1 − 4(x − 0.5)2]), a sinusoidal function
(q(x) = 0.1 sin(2πx)2), and the flat function (q(x) ≡ 0). As shown in Figure 2, starting from different initial
controls, very similar optimal controls are obtained. The final configurations in Figure 2b are reached in less
than 10 iterations, with ε̂ = 0.1, εmin = 10−8, and the reaching of ε ≤ εmin as the stop criterion on the iterations
of the gradient method.

In Figure 3 the dependence of the solution on the value of the penalty parameters has also been analyzed,
starting from the parabolic configuration. With respect to the choice of the parameter α, a minimum value
has to be exceeded in order to prevent the gradient method from converging to a local, sub-optimal minimum.
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Figure 3. Final controls obtained by the optimization algorithm for different values of the
penalty parameters (jen is the energetic term of the functional j).

Indeed, Figure 3a shows that for lower values of α, oscillating controls are found at the end of the optimization
algorithm, though the value of the energetic part of the functional in such configurations is higher than the ones
corresponding to α = 10, 1000. Moreover, a maximum value must not be exceeded, otherwise the regularization
parameter dominates too much in the total functional value, leading to a nearly flat optimal control. On the
other hand, the parameter β is only needed to be chosen greater than a minimum threshold, this in order to
sufficiently enforce the volume constraint. Bearing in mind the above considerations, Figure 3 shows that the
values α = 10 and β = 10 000 are possible effective values for the two penalty parameters.

5.2. Test case 2

In this section, we report a numerical convergence analysis, carried out to validate the a priori error estimates
proved in Theorem 3.21. For this purpose, we would like to have an exact solution as a reference point. To this
end, we take into account the following functional:

j̃(q) =
∫

Ωq

|∇ũ −∇ũd|2 dΩ +
α

2

∫
Γq

dΓ,

with its pulled-back counterpart given by

j(q) =
∫

Ω0

(∇u −∇ud)Aq(∇u −∇ud)dΩ +
α

2

∫
I

√
1 + (q′(x))2 dx. (5.2)

The velocity ũd is obtained solving the Stokes problem (2.1) on a domain Ωqd
, identified by the given control

function
qd = 0.1 + 0.1 cos(2π(x − 0.5)),

and ud = ũd ◦ Tqd
.

Indeed, if no penalty terms are active, the minimum for this functional is zero, and it is reached for q = qd.
The functional (5.2) is a slight generalization of the functional defined in (2.9), and the theoretical results
presented in the previous sections can be easily generalized to the new functional.

Following the steps of Section 4, we can derive an expression for the shape gradient in q:

∇j(q) = −α

2
q′′

(1 + (q′)2)3/2
+

1
1 + (q′)2

[(∇u −∇ud)Aqn]|Γ0 · [(∇u −∇ud − ν∇zud
)Aqn]|Γ0 ,

where zud
is the adjoint velocity variable, solution of a problem obtained from a minimal modification of (4.4),

replacing any occurrence of ũ with ũ − ũd.
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Figure 4. Spatial convergence of discrete functional value jh(qh,opt) to its reference value
j(qopt). Each term of the functional is presented w.r.t. its corresponding term in j(qopt), which
is known for α = 0, and obtained by Richardson extrapolation for α �= 0.

Based on the functional defined in (5.2), different spatial convergence tests have been carried out, taking four
specific values for perimeter penalty parameter α, namely α = 0, 0.01, 0.1, 1.

The results reported in Figure 4 are in agreement with the a priori estimates of the convergence error proved
in Theorem 3.21, since an approximately quadratic convergence order is obtained, for a broad spectrum of values
of h. However, for h → 0, the graphs in Figure 4 show a sort of saturation bending. A reason for this can be
found in the stopping criterion of the optimization algorithm and in the lower bound imposed on the descent
step length, that introduce a finite error. This influence is amplified as α grows, to the point of polluting the
convergence behaviour, hence we do not report results for α > 1.

6. Conclusions

In this paper, we have studied a shape optimization problem, namely the minimization of the total energy
dissipation for the low-Reynolds flow of a viscous, incompressible fluid, modeled by two-dimensional, steady
Stokes equations. After the definition of the problem and the admissible set of control functions, we have
reformulated the problem onto a reference domain, by means of a control-dependent map. The well-posedness of
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the transformed problem has been inspected, and particular attention has been devoted to the inf-sup condition
on the form b(q), obtaining a control-independent lower bound on the inf-sup constant. The existence of an
optimal solution has also been proved, for the minimization problem at hand, and corresponding first order
optimality conditions have been provided.

After the inspection of some differentiability properties of the state solution operator, a FEM discretization
of the problem has been introduced. For this discretization, a priori error estimates have been derived, showing
a quadratic convergence rate. To our best knowledge, this is the first result about convergence rates obtained
for the discretization of two-dimensional Stokes problem in a shape optimization context. Numerical tests have
been performed to assess the validity of the theoretical results.

The present paper aims at representing a first step towards the application of the reference domain approach
to Navier–Stokes equations (two-dimensional or even three-dimensional), with the derivation of suitable con-
vergence rates for the FEM discretization errors. Such a goal will require a more general analytical framework,
and comprehensive results like those presented in [33] will be very useful.

Appendix A. Additional regularity

In this Appendix we want to show a possible way to derive the regularity properties stated in Assumption 3.16,
starting from suitable requests on data and a regularity result on Stokes problem with mixed boundary condi-
tions.

At first, let us state a preliminary result about the transformation of norms defined on the reference domain
(Ω0) and on the physical one (Ωq).

Lemma A.1. Let k ∈ N be fixed, ϕ ∈ Hk(Ω0) and q ∈ W k,∞(I). It holds that

ϕ ◦ T−1
q ∈ Hk(Ωq), c1‖q‖W k,∞(I)‖ϕ ◦ T−1

q ‖Hk(Ωq) ≤ ‖ϕ‖Hk(Ω0) ≤ c2‖q‖W k,∞(I)‖ϕ ◦ T−1
q ‖Hk(Ωq).

Vice versa, it holds that ϕ̃ ∈ Hk(Ωq) implies ϕ̃ ◦ Tq ∈ Hk(Ω0), together with similar inequalities.

In connection with this lemma, we restrict a little the set of admissible controls. From now on, the definition of
Qad will contain also the belonging of control functions q to W 3,∞(I) and the existence of a constant c∞ > 0
such that

‖q‖W 3,∞ ≤ c∞ ∀ q ∈ Qad,

that is
Qad := {q ∈ W 3,∞(I) ∩ H1

0 (I) : q(x) ≤ 1 − ε, ∀x ∈ I, and ‖q‖W 3,∞(I) ≤ c∞}. (A.1)

Thanks to the above definition and to Lemma A.1, when handling functions belonging to Hk(Ω0) or Hk(Ωq)
for k ≤ 3, we can indifferently consider their norm in the physical domain Ωq or in the reference domain Ω0.

The last ingredient that we need in order to prove a regularity result for the solution of our transformed
problem (2.8) is represented by additional regularity requests on data. Since we want regularity not only for
the solution of (2.8), but also for its derivatives w.r.t. the control, namely S′(q)(δq), S′′(q)(δq, δq), we have to
assume a slightly stronger regularity of data than that considered in Assumption 3.7.

Assumption A.2. Data functions have the following regularity:

ν ∈ H5(Ω̂), η ∈ H4(Ω̂), f ∈ [H4(Ω̂)]2, gD ∈ [H5/2(Γ3)]2, gN ∈ [H3/2(Γ1)]2,

and suitable compatibility conditions hold on data.

We are now ready to state a regularity result for the state variables and their shape derivatives, justifying
Assumption 3.16.
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Theorem A.3. Under Assumptions 3.7, A.2, there exist three positive constants c0, c1, c2, such that for any
q ∈ Qad and for any δq, τq ∈ δQ, and independently from them, it holds that

S(q), S′(q)(δq), S′′(q)(δq, τq) ∈ [H3(Ω0)]2 × H2(Ω0) and

(a) ‖S(q)‖[H3(Ω0)]2×H2(Ω0) ≤ c0

(b) ‖S′(q)(δq)‖[H3(Ω0)]2×H2(Ω0) ≤ c1‖δq‖H3(I)

(c) ‖S′′(q)(δq, τq)‖[H3(Ω0)]2×H2(Ω0) ≤ c2‖δq‖H3(I)‖τq‖H3(I).

Proof. Let q ∈ Qad, consider solution (u, p) = S(q) of the transformed problem (2.8) and remind that its
physical counterpart (ũ, p̃) = S̃(q) is the solution of Stokes problem (2.4) on Ωq.

Now, we can verify the hypotheses of Assumption 3.7: Ωq is surely an open bounded subset of R
2; its

boundary Γq is C1,1 because it is the graph of the control function q ∈ Qad ⊂ H3(I) ⊂ C1,1(Ωq) and for the
same reason its terminal points cannot present a concave angle; the regularity of external force and boundary
data, together with the compatibility conditions, are given by Assumption A.2. Then, Assumption 3.7 holds
and we have (ũ, p̃) ∈ [H3(Ωq)]2 × H2(Ωq) and ‖ũ‖[H3(Ωq)]2 + ‖p̃‖H2(Ωq) ≤ c(f ,gD,gN , Ω̂). Finally, the results
on (ũ, p̃) directly transfer to (u, p), thanks to Lemma A.1.

For points (b) and (c), the proof is exactly the same, considering Assumption A.2 in order to control the
more complex right-hand sides appearing dealing with S′(q)(δq) and S′′(q)(δq, τq), with the aim of proving the
validity of the hypotheses of Assumption 3.7. The dependence on ‖δq‖H3(I), ‖τq‖H3(I) of the right-hand side of
the inequalities comes out from the bounds on the coefficients, similar to those reported in Proposition 3.4. �

So far we have obtained a regularity result for the state variables: now we want to show that the optimal
control belongs to H5(I). Indeed, this regularity holds for any q ∈ Qad satisfying the first order optimality
condition, as stated in the following result:

Theorem A.4. Let q ∈ Qad be such that optimality condition (4.1) holds in q. Then it holds that q ∈ H5(I).

Proof. Let us take into account Hadamard formula for j′, given by Lemma 4.1, i.e. j′(q)(δq) = α(q′′, δq′′)I +
(Ψ, δq)I , with Ψ = Ψ(q) defined in (4.9). We start by showing that Ψ ∈ H1(I). We preliminary notice that
Ψ1(q) := β(

∫
I q(x)dx − V ) is constant, then it certainly belongs to H1(I).

Let us now discuss Ψ2(q) (see (4.6) for proper definition). The regularity Theorem A.3 can be applied to both
the state velocity u and the adjoint velocity z. Then, thanks to the definition (A.1) and Lemma A.1, we get

(ũ, z̃) = (u, z) ◦ Tq ∈ [H3(Ωq)]2 × [H3(Ωq)]2.

Taking the traces of ∇ũ,∇z̃ on the boundary Γq and using its parametrization γ : x �→ (x, q(x)), we get

(∇ũ,∇z̃) ∈ [H3/2(I)]2×2 × [H3/2(I)]2×2.

Thanks to this regularity, together with the continuous embedding H3/2(I) ↪→ W 1,4(I), we can conclude that
Ψ2(q) belongs to H1(I). Hence, Ψ(q) ∈ H1(I).

Now, taking q ∈ Qad such that the optimality condition j′(q)(δq) = 0 holds, we get∫
I

q′′δq′′dx = −
∫

I

1
α

Ψδq dx ∀δq ∈ C∞
0 (I). (A.2)

Finally, we observe that (A.2) is equivalent to say that the fourth weak derivative of q is exactly − 1
αΨ . Being α

a non-zero constant and belonging Ψ to H1(I), we get q(iv) ∈ H1(I). Since we already have q ∈ W 3,∞ ⊂ H3(I)
(see (A.1)), we obtain the thesis, i.e. q ∈ H5(I). �
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Appendix B. Results for the coercivity of functional j

In this appendix, we present two useful results for the proof of Lemma 3.14. The first concerns the sequential
continuity of the state operator derivatives w.r.t. the variations of control.

Lemma B.1. Let q ∈ Qad and consider a sequence {δqn}n∈N ⊂ δQ. If there exists a δq ∈ δQ such that δqn → δq
in C1(I), then

(a) S′(q)(δqn) → S′(q)(δq) in V × P
(b) S′′(q)(δqn, δqn) → S′′(q)(δq, δq) in V × P

Proof. Because of the linearity and the well-posedness of problems (3.2), (3.3), it suffices to prove the convergence
of the right-hand sides in V ′ × P ′: this is obtained from the continuity of Ḟ , ȧ, ḃ, F̈ , ä, b̈ w.r.t. the variation δq.

We just give an example of the steps to be taken, processing a term from ä(q, δq, δq)(u,v):∣∣∣(∇νq · Tδqn
∇uA′

q,δqn
,∇v
)
−
(
∇νq · Tδq∇uA′

q,δq,∇v
)∣∣∣

≤
∣∣∣(∇νq · Tδqn

∇u(A′
q,δqn

− A′
q,δq),∇v

)∣∣∣+ ∣∣(∇νq · (Tδqn
− Tδq)∇uA′

q,δq ,∇v
)∣∣

≤ ‖ν‖W 1,∞(Ω̂)‖∇u‖‖∇v‖
(
‖A′

q,δqn
− A′

q,δq‖∞‖Tδqn
‖∞ + ‖Tδqn

− Tδq‖∞‖A′
q,δq‖∞

)
.

The convergence of δqn in C1(I) implies the uniform convergence of A′
q,δqn

− A′
q,δq and Tδqn

− Tδq to zero, as
it can be seen from the definition of such quantities. Moreover, being {δqn} bounded in C1(I), Proposition 3.4
ensures that ‖Tδqn

‖∞, ‖A′
q,δq‖∞ are bounded themselves. �

From Lemma B.1, using the Dominated Convergence Theorem and the compact embedding H2(I) ⊂⊂ C1(I)
yields a similar result for the derivatives of the cost functional j:

Corollary B.2. Let q ∈ Qad and {δqn}n∈N ⊂ δQ such that there exists a δq ∈ δQ for which δqn ⇀ δq in
H2(I). Then,

j′(q)(δqn) −→
n→∞

j(q)(δq), j′′(q)(δq, δq) ≤ lim inf
n→∞

j′′(q)(δqn, δqn).
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