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THE DISPERSIVE WAVE DYNAMICS
OF A TWO-PHASE FLOW RELAXATION MODEL
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Abstract. We consider a general Euler-type two-phase flow model with relaxation towards phase
equilibrium. We provide a complete description of the transition between the wave dynamics of the
homogeneous relaxation system and that of the local equilibrium approximation. In particular, we
present generally valid analytical expressions for the amplifications and velocities of each Fourier com-
ponent. This transitional wave dynamics is fully determined by only two dimensionless parameters; a
stiffness parameter and the ratio of the sound velocities in the stiff and non-stiff limits. A direct calcu-
lation verifies that the stability criterion is precisely the subcharacteristic condition. We further prove
a maximum principle in the transitional regime, similar in spirit to the subcharacteristic condition; the
transitional wave speeds can never exceed the largest wave speed of the homogeneous relaxation system.
Finally, we identify the existence of a critical region of wave numbers where the sonic waves completely
disappear from the system. This region corresponds to the casus irreducibilis of the describing cubic
polynomial.
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1. Introduction

Based on the classical approach of Baer–Nunziato [5], a common way of modeling non-equilibrium two-phase
flows is through hyperbolic relaxation models [2, 3, 7, 12, 21, 25, 26]. Recently, there has been significant interest
in models for cavitation where a metastable gas-liquid mixture is moving with a single velocity [24, 27, 30].

In this paper, we consider 1D models of this type where thermal and mechanical equilibrium are assumed.
Such simplified models have applications to two-phase pipeline flow relevant for environmental engineering and
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the petroleum industry [18]. In particular, we look at models that can be written in the general form [9,11,17]

∂t(αgρg) + ∂x(αgρgu) =
1
ε
(μ� − μg), (1.1a)

∂t(α�ρ�) + ∂x(α�ρ�u) = −1
ε
(μ� − μg), (1.1b)

∂t(ρu) + ∂x(ρu2 + p) = 0, (1.1c)

∂tE + ∂x(u(E + p)) = 0. (1.1d)

Herein, αi is the volume fraction of phase i, satisfying

αg + α� = 1. (1.2)

Furthermore, ρi is the density, and u is the common velocity. We assume that we are in the metastable region,
so that each phase is equipped with separate state relations

pi = pi(ρi, ei), (1.3)
Ti = Ti(ρi, ei), (1.4)

where ei is the specific internal energy. The model is assumed to be in thermal and mechanical equilibrium, so
that

T = Tg = T�, (1.5)

p = pg = p�. (1.6)

The total energy E of the mixture is given by

E = ε +
1
2
ρu2, (1.7)

where

ρ = ρgαg + ρ�α�, (1.8)

ε = ρgαgeg + ρ�α�e� (1.9)

are the mixture density and internal energy, respectively. Finally, μi is the chemical potential given by

μi = ei +
p

ρi
− Tsi, (1.10)

where si is the specific entropy of phase i.
In this paper, our focus is on purely mathematical analysis of this model. In particular, we aim to provide

a complete as possible description of how the wave dynamics depend on the thermodynamic parameters and
the strength of the relaxation term. Herein, our analysis remains generally valid for any state relations (1.3)
and (1.4) satisfying standard thermodynamic stability conditions. We refer to [14] for a rigorous discussion on
how the concepts of phase equilibrium and metastable states can be extended to simplified thermodynamic
models like the stiffened-gas [10, 13, 24] law.

For general hyperbolic relaxation systems, the zero relaxation limit has been the topic of much
study [16,22, 23]. In the system (1.1a)–(1.1d), ε can be seen as a time-scale of the relaxation process. In the limit
ε → ∞, the phase compositions of the mixture are frozen and the model becomes a hyperbolic conservation law
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for the masses, the total momentum and the total energy. In the limit ε → 0, the relaxation system is formally
equivalent to the equilibrium system

μg = μ�, (1.11a)
∂tρ + ∂x(ρu) = 0, (1.11b)

∂t(ρu) + ∂x(ρu2 + p) = 0, (1.11c)
∂tE + ∂x(u(E + p)) = 0, (1.11d)

where the two mass balance equations are replaced with a single conservation law for the total mass.
The wave dynamics of the limiting cases for ε is well understood. In their recent work, Fl̊atten and Lund [11,17]

analyzed how the characteristic velocities of two-phase relaxation models depend on different assumptions
on chemical, thermal and mechanical equilibrium. They found that for models of the type (1.1a)–(1.1d), the
wave velocities of the equilibrium model will interlace those of the full model. This is known from the general
theory of hyperbolic relaxation systems as the subcharacteristic condition, which may be derived from entropy
considerations [8] and is closely related to the stability of the relaxation process [29].

However, in a practical application the relaxation parameter ε will take finite values depending on the rate
of mass transfer modeled by e.g. statistical rate theory [28]. Since the speed of sound in a pipeline can play
a crucial role in important transient events such as crack propagation and emergency depressurization, this
warrants the study of the wave dynamics in the transitional regime for which ε takes finite values.

While hyperbolic relaxation systems have been an active field of research for decades, the development of a
general theory for the wave-dynamics in this transitional regime has been limited. Recently, some of the present
authors studied the transitional regime of general 2×2 relaxation systems [4]. In this case, the transitional wave
speeds were found to fulfill a transitional subcharacteristic condition. Moreover, a critical transition point was
found for which the wave dynamics abruptly change from being similar to the equilibrium system to behaving
more like the frozen system.

The purpose of the present paper is to analyze the transitional wave dynamics of the 1D phase relaxation
model (1.1a)–(1.1d), by studying the individual Fourier components following the approach of [4,29]. In particu-
lar, we will show how the wave dynamics are fully determined by only two dimensionless parameters; a stiffness
parameter and the ratio of the sound velocities in the limiting equilibrium and frozen models.

Similarly to the observation made in [4], a critical transition region between the equilibrium dynamics and the
frozen dynamics will be identified. In this region, the sonic waves lose their physical meaning and are replaced
with an indeterminate wave moving with the fluid velocity. Mathematically, this interesting phenomenon corre-
sponds exactly to the casus irreducibilis of the cubic polynomial whose roots describe the Fourier components.

This paper is organized as follows. In Section 2, we review the theory of plane wave solutions to linear
relaxation systems. In Section 3, we present an explicit linearization of the two-phase flow relaxation system
considered in this paper. In Section 4, we present the characteristic polynomial whose roots describe the velocities
and amplifications of the transitional waves. This polynomial satisfies Galilean symmetry under a change of
inertial reference frame, which greatly simplifies the calculations.

These roots are analyzed in Section 5. In Sections 5.1–5.2, we verify that we recover the frozen and equilibrium
waves in the stiff and non-stiff limits. In Section 5.3, we verify that the transitional waves are stable if and only
if the subcharacteristic condition is satisfied. In Section 5.4, we prove a principle that carries the essence of
the subcharacteristic condition over to the transitional regime of finite relaxation time; for all wave numbers,
the maximum wave speed of the relaxation system can never exceed the maximum wave speed of the frozen
(non-stiff) limit of the system. In Section 5.5, we provide fully general closed-form expressions for the velocities
and amplifications of the transitional waves.

In Section 6, we provide some interpretations and illustrations of these analytical results. In particular, we
identify a critical region of wave numbers which appears if the ratio between the sound velocities in the stiff
and non-stiff limits is sufficiently small. Through this critical region, corresponding to the casus irreducibilis of
the describing cubic polynomial, all waves propagate with the fluid velocity u and a continuous labeling of the
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separate waves becomes impossible. Hence this region can be interpreted as a set of wave numbers where the
relaxation system, in a very qualitative way, changes character from behaving more like the equilibrium system
to acting more like the frozen system.

Finally, in Section 7, the main insights of the paper are summarized.

2. Linearized relaxation systems

The transitional dynamics can be studied through linear analysis. A hyperbolic relaxation system such as
the phase relaxation model (1.1a)–(1.1d) can be written in the general form [8]

∂tU + ∂xF (U) =
1
ε
Q(U ), (2.1)

where U = U(x, t) ∈ G ⊆ R
N for some state space G.

Now let Û be some constant equilibrium state, characterized by

Q(Û ) = 0. (2.2)

The relaxation system (2.1) linearized around Û can then be written as

∂tV + A∂xV =
1
ε
RV , (2.3)

where
V = U − Û , (2.4)

and the constant matrices
A =

∂F

∂U
and R =

∂Q

∂U
(2.5)

are evaluated at the equilibrium state Û .

Remark 2.1. Note that this linearization is valid also in the more general case where ε = ε(U), if it can be
assumed that ε is differentiable at equilibrium. Define

ε̂ = ε(Û). (2.6)

Then it follows from (2.2) that

1
ε̂
R =

∂

∂U

(
1
ε
Q(U)

)
= Q(Û)

∂

∂U

(
1
ε

)
+

1
ε̂

∂Q

∂U
=

1
ε̂

∂Q

∂U
· (2.7)

2.1. Plane-wave solutions

For an initial condition V (x, 0) ∈ L2(R), there exists a unique solution to (2.3) [15]. If V (x, 0) ∈ L2(T) with
T ⊂ R and T is of length T < ∞, the solution can be written in the general form

V (x, t) =
∑

k

V k(x, t) =
∑

k

exp(H(k)t) exp(ikx)V̂ (k), (2.8)

where k is the wave number and H is a wave-number dependent matrix given by

H(k) =
1
ε
R − ikA. (2.9)

We now assume that H is diagonalizable, i.e. it can be written in the form

H(k) = P ΛP−1, (2.10)
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where P is its matrix of eigenvectors and Λ the diagonal matrix of eigenvalues. By using (2.10), we may then
write the general solution (2.8) in terms of plane waves as

V (x, t) =
∑

k

N∑
j=1

V̄ j(k) exp(ikx + λjt), (2.11)

for some amplitudes V̄ j(k). Now to each eigenvalue λj of H(k) there is an associated plane wave with velocity

vj(k) = −1
k

Im(λj), (2.12)

and amplification factor
fj(k) = Re(λj), (2.13)

as can be seen by writing (2.11) as

V (x, t) =
∑

k

N∑
j=1

V̄ j(k) exp(fjt) exp (ik(x − vjt)) . (2.14)

It now follows from (2.9) that H satisfies the symmetry

H(k) = H(−k). (2.15)

Hence
λj(k) = λj(−k), (2.16)

and consequently

fj(k) = fj(−k), (2.17)
vj(k) = vj(−k). (2.18)

Hence we may with no loss of generality restrict the analysis of this paper to non-negative wave numbers,
i.e. we assume

k ∈ [0,∞). (2.19)

3. The phase relaxation system

We now aim to derive an explicit expression for the matrix H corresponding to the phase relaxation sys-
tem (1.1a)–(1.1d). In the context of (2.1), we have

U =

⎡
⎢⎣
ρgαg

ρ�α�

ρu
E

⎤
⎥⎦ . (3.1)

From (1.3) and (1.4) we may derive the thermodynamic parameters [12]:

Cp,i = ρiαicp,i = ρiαiT

(
∂si

∂T

)
p

, (3.2)

ζi =
(

∂T

∂p

)
si

= − 1
ρ2

i

(
∂ρi

∂si

)
p

· (3.3)
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The Jacobian matrix A for the system may now be obtained as outlined by Abgrall [1]. As stated by Proposi-
tions 9–10 in [12] and Propositions 1–2 in [19], we have

A =

⎡
⎢⎢⎣

(1 − Y )u −Y u Y 0
−(1 − Y )u Y u 1 − Y 0

ag − u2 a� − u2 2u − uPε Pε

u
(
ag − E+p

ρ

)
u
(
a� − E+p

ρ

)
E+p

ρ − u2Pε u (Pε + 1)

⎤
⎥⎥⎦ , (3.4)

where
Y =

ρgαg

ρ
, (3.5)

Pε =
ρc̃2

T

ζgCp,g + ζ�Cp,�

Cp,g + Cp,�
(3.6)

and

ai =
ρc̃2

ρi
+
(

1
2
u2 − ei − p

ρi

)
Pε, i ∈ {g, 	}. (3.7)

Furthermore, c̃ is the sound velocity corresponding to the limit ε → ∞ in (1.1a)–(1.1d), and is given by [12]:

c̃−2 =
αg

ρgc2
g

+
α�

ρ�c2
�

+
Cp,gCp,�(ζg − ζ�)2

T (Cp,g + Cp,�)
, (3.8)

where

c2
i =

(
∂p

∂ρi

)
si

(3.9)

are the one-phase sound velocities.

3.1. The relaxation matrix

In this section, we derive the linearized relaxation matrix R, i.e. the Jacobian of the vector

Q =

⎡
⎢⎣
μ� − μg

μg − μ�

0
0

⎤
⎥⎦ (3.10)

evaluated at equilibrium. We start with establishing a useful differential.

Lemma 3.1. The differential for the chemical potential difference can be written as

d (μg − μ�) =
(

ρc̃2β

ρg
− hgMε

)
d(ρgαg) +

(
ρc̃2β

ρ�
− h�Mε

)
d(ρ�α�) + Mε dε (3.11)

where

Θ =
ζgCp,g + ζ�Cp,�

Cp,g + Cp,�
, (3.12)

β = − 1
ρ2

(
∂ρ

∂Y

)
p,s

=
1
ρg

− 1
ρ�

+ Θ(s� − sg), (3.13)

Mε = Pεβ +
s� − sg

Cp,g + Cp,�
, (3.14)

hk = ek +
p

ρk
, k ∈ {g, 	}. (3.15)
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Proof. From the Legendre transform on the fundamental differential

dek = T dsk +
p

ρ2
k

dρk (3.16)

we obtain

d (μg − μ�) =
(

1
ρg

− 1
ρ�

)
dp + (s� − sg) dT. (3.17)

Furthermore, the following relation was derived as (110) in Fl̊atten et al. [12]:

d(ρgαg)
ρg

+
d(ρ�α�)

ρ�
=

(
αg

ρgc2
g

+
α�

ρ�c2
�

+
ζ2
gCp,g + ζ2

� Cp,�

T

)
dp − ζgCp,g + ζ�Cp,�

T
dT, (3.18)

and from (122), (159) and (160) in [12] we have:

dp =
(

ρc̃2

ρg
− Pεhg

)
d(ρgαg) +

(
ρc̃2

ρ�
− Pεh�

)
d(ρ�α�) + Pε dε. (3.19)

The result now follows from substituting (3.18) and (3.19) in (3.17). �

This result gives us an explicit formulation of the relaxation matrix.

Proposition 3.2. In the context of (2.5), the relaxation matrix R corresponding to the system (1.1a)–(1.1d)
is given by

R =

⎡
⎢⎣
−R1 −R2 −R3 −R4

R1 R2 R3 R4

0 0 0 0
0 0 0 0

⎤
⎥⎦ , (3.20)

where

R1 =
ρc̃2β

ρg
+
(

1
2
u2 − hg

)
Mε, (3.21)

R2 =
ρc̃2β

ρ�
+
(

1
2
u2 − h�

)
Mε, (3.22)

R3 = −uMε, (3.23)

R4 = Mε. (3.24)

Proof. With

U =

⎡
⎢⎣
U1

U2

U3

U4

⎤
⎥⎦ =

⎡
⎢⎣

ρgαg

ρ�α�

ρu
E

⎤
⎥⎦ , (3.25)

we have the relations

d(ρgαg) = dU1, (3.26)
d(ρ�α�) = dU2, (3.27)

dε =
1
2
u2 ( dU1 + dU2) − u dU3 + dU4. (3.28)

The result now follows from substituting (3.26)–(3.28) into (3.11). �



608 S. SOLEM ET AL.

4. The characteristic polynomial

From Proposition 3.2 and (3.4), we may now directly construct the wave-number dependent matrix H as
defined by (2.9). In equilibrium, the chemical potentials (1.10) are equal, so we may write

sg − s� =
hg − h�

T
· (4.1)

Then a direct calculation of the characteristic polynomial of H(k) gives:

λ4 +
(

γc̃2

εĉ2
+ 4iku

)
λ3 +

(
k2c̃2 − 6k2u2 + 3iku

γc̃2

εĉ

)
λ2 +

(
−3

k2u2

ε
γ

c̃2

ĉ2
+

k2

ε
c̃2γ − 4ik3u3 + 2ik3uc̃2

)
λ

+ k4u2(u2 − c̃2) − i
k3u3

ε

c̃2

ĉ2
γ + i

k3u

ε
c̃2γ = 0, (4.2)

where the parameter ĉ corresponds to the mixture sound velocity of the equilibrium system (1.11a)–(1.11b). It
is given by [11,20, 26]

ĉ−2 = ρ

(
αg

ρgc2
g

+
α�

ρ�c2
�

+ T

(
Cp,g

(
ζg

T
+ W

)2

+ Cp,�

(
ζ�

T
+ W

)2
))

, (4.3)

where
W =

1
ρgρ�

ρg − ρ�

hg − h�
· (4.4)

We have also introduced the shorthand

γ =
(hg − h�)2

T (Cp,g + Cp,�)
· (4.5)

Note that the sound velocities satisfy the subcharacteristic condition [8, 16]

ĉ ≤ c̃ (4.6)

subject only to fundamental thermodynamic stability constraints [11].

4.1. Galilean invariance

We can demonstrate that the roots of the characteristic polynomial possess the expected Galilean symmetry,
i.e. they are invariant under a change of inertial reference frame.

By introducing the dimensionless parameters

ϕ = kε
ĉ2

γc̃
, y =

λ

kc̃
, r =

ĉ

c̃
, (4.7)

we may transform the polynomial (4.2) to

ϕ
(
y + i

u

c̃

)2 (
y + i

(u

c̃
+ 1
))(

y + i
(u

c̃
− 1
))

+
(
y + i

u

c̃

)(
y + i

(u

c̃
+ r
))(

y + i
(u

c̃
− r
))

= 0. (4.8)

From (4.8) it is clear that the change of variables

z = y + i
u

c̃
(4.9)

yields the polynomial
ϕz2(z + i)(z − i) + z(z + ir)(z − ir) = 0, (4.10)

which is indeed independent of the velocity u.
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It is worth noting that the simple polynomial (4.10) now gives a complete description of the wave-number
dependent velocities and amplifications for a general relaxation model in the form (1.1a)–(1.1d). Remarkably,
this dynamics is uniquely determined only by the parameters ϕ and r as defined by (4.7). And, as stated by
Remark 2.1, the model presented in Section 3 is sufficiently general to represent any such model where the
relaxation term satisfies only two natural properties:

• The mass transfer term disappears in equilibrium where μg = μ�.
• The relaxation parameter ε is differentiable across the equilibrium state.

In the following sections, we will study the transitional wave dynamics in full detail.

5. Transitional wave dynamics

We first consider the wave dynamics in the limiting cases ε → ∞ and ε → 0 respectively, corresponding to
the frozen limit of (1.1a)–(1.1d) and the equilibrium limit (1.11a)–(1.11b).

5.1. The frozen limit

In the limit of infinite relaxation time, corresponding to ϕ → ∞, the polynomial (4.10) reduces to

z2(z + i)(z − i) = 0 (5.1)

with the following 4 roots:

• z = 0 with multiplicity 2, corresponding to two waves with velocity u and zero amplification.
• z = ±i, corresponding to two waves with velocities u ± c̃ and zero amplification.

This is precisely the wave structure of the frozen model (1.1a)–(1.1d) [11,12]. Herein, the two waves of velocity
u physically represent entropy and mass fraction waves, whereas the waves of velocity u ± c̃ are sonic waves.
Note that from (4.7), there are three distinct ways this frozen limit can be physically realized:

• the limit of infinite wave number k → ∞;
• the limit of infinite relaxation time ε → ∞;
• the limit of equal phasic enthalpies giving γ → 0 in (4.5).

5.2. The stiff limit

In the limit of zero relaxation time, corresponding to ϕ → 0, the polynomial (4.10) reduces to

z(z + ir)(z − ir) = 0. (5.2)

This has the following 3 roots:

• z = 0, corresponding to a wave with velocity u and zero amplification.
• z = ±ir, corresponding to two waves with velocities u ± ĉ and zero amplification.

Hence we recover the wave structure of the equilibrium model (1.11a)–(1.11d) [11,26]. Herein, the wave of velocity
u physically represents an entropy wave, whereas the waves of velocity u± ĉ are sonic waves. From (4.7), there
are now four distinct ways this stiff limit can be physically realized:

• the limit of zero wave number k → 0;
• the limit of zero relaxation time ε → 0;
• the limit of zero temperature giving γ → ∞ in (4.5);
• the limit of zero heat capacities giving γ → ∞ in (4.5).

Note that the limits considered above concern the wave-dynamics of the model. The state of the system must
still be sufficiently close to equilibrium for the linearization to be valid.
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5.3. Transitional stability

The results of [8,29] establish a direct link between the subcharacteristic condition (4.6) and the stability of
the transitional waves as described by (4.10). Chen et al. [8] introduce an entropy condition which implies both
the subcharacteristic condition and linear stability. Bouchut [6] proposes a reduced stability condition, weaker
than the entropy condition, which also ensures that the subcharacteristic condition is satisfied.

Yong [29] proves that the subcharacteristic condition is necessary for linear stability of relaxation systems
with a rank 1 relaxation operator.

For our current model, we here provide a concrete calculation showing that linear stability is equivalent to
the subcharacteristic condition. We first observe that for all ϕ, (4.10) has a trivial root z = 0 corresponding to
the entropy wave. Hence this wave may be fully described as follows; it will propagate with velocity u, and no
amplification, independent of the wave number and relaxation time.

Eliminating this trivial root from (4.10), we obtain

ϕz(z2 + 1) + (z2 + r2) = 0. (5.3)

For the plane wave solutions (2.8) to be stable, the amplification factors (2.13) must be non-positive. This is
equivalent to the requirement that the roots zi of (5.3) satisfy Re zi ≤ 0.

Proposition 5.1 (Linear Stability). Let ϕ ∈ (0,∞). The real part of the roots of the polynomial (5.3) are
nonpositive if and only if the subcharacteristic condition (4.6) is satisfied, i.e.

0 ≤ r ≤ 1. (5.4)

Proof. This general result follows as a special case of the Routh–Hurwitz theorem. For the purpose of illustration,
we also state below a simple direct proof for the case where two of the roots are complex conjugate. A direct
proof for the remaining case of distinct real roots may be derived along the same lines.

The polynomial (5.3) can be written in the form

z3 +
1
ϕ

z2 + z +
r2

ϕ
= (z − z2)(z − z1)(z − z0)

= z3 − (z2 + z1 + z0)z2 + (z2z1 + z1z0 + z0z2)z − z2z1z0 = 0. (5.5)

We can, without loss of generality, assume z2 is real while z1 and z0 are conjugate roots (z0z1 = |z0|2).
Assume first that the polynomial is stable, i.e. Re zi ≤ 0. We can then write

1
ϕ
· 1 = −(z2 + z1 + z0)(z2z1 + z1z0 + z0z2)

=
r2

ϕ
− z2

2(z0 + z1) − |z0|2(z0 + z1) − z2(z0 + z1)2 ≥ r2

ϕ
· (5.6)

by using (5.5).
For the converse statement, assume 0 ≤ r ≤ 1. From the positivity of ϕ we have

r2

ϕ
= −z2z1z0 = −z2|z0|2 ≥ 0, (5.7)

which directly implies z2 = Re z2 ≤ 0. It remains to show that z0 + z1 ≤ 0. Using the assumption and (5.5) we
can write, after multiplying by −1,

z0 + z1 + z2 ≤ z2|z0|2. (5.8)

Furthermore, we have
1 = z2z1 + z1z0 + z0z2 = |z0|2 + z2(z0 + z1), (5.9)

so we can then infer
z0 + z1 ≤ z2(|z0|2 − 1) = −z2

2(z0 + z1), (5.10)

which completes the proof. �
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5.4. A maximum principle

For general 2 × 2 relaxation systems, it was shown by Aursand and Fl̊atten [4] that the transitional wave
velocities always satisfy a monotonicity principle; the velocities vj(k) are in this case monotonic functions of
the stiffness parameter ϕ.

As will be demonstrated in Section 6, this monotonicity principle does not carry over to the relaxation model
considered in this paper. However, a weaker constraint on the velocities may be derived.

Proposition 5.2 (Maximum Principle). Let ϕ ∈ (0,∞). Assume that the subcharacteristic condition is satis-
fied, i.e. r2 ≤ 1 in the context of (5.3). Then the imaginary parts of the roots in (5.3) satisfy |Im(z)| ≤ 1.

Proof. Let z = a + ib, where b = Im(z) and a = Re(z). Then (5.3) is equal to

ϕ
(
a3 − 3ab2 + a

)
+ a2 − b2 + r2 + i

[
ϕ
(
3a2b − b3 + b

)
+ 2ab

]
= 0. (5.11)

Both the real and the imaginary part of (5.11) have to be equal to zero, giving us, for the imaginary part,

b2 − 1 =
2a

ϕ
+ 3a2. (5.12)

It follows from Proposition 5.1 that a ≤ 0 when r2 ≤ 1. If a = 0, then b2 = 1. For the case a < 0, let us
assume that |b| > 1. Then b2 − 1 > 0 and, dividing (5.12) by a, we are left with the inequality

a < − 2
3ϕ

, (5.13)

since a < 0. Multiplying the imaginary part of (5.11) with a/b and subtracting it from 3 times the real part,
we get

−8ϕab2 + 2ϕa + a2 − 3b2 + 3r2 = 0. (5.14)

By subtracting 1/3 times (5.12) from (5.14), we then have

a

(
−8ϕb2 + 2ϕ − 2

3ϕ

)
=

8
3
b2 − 3r2 +

1
3
· (5.15)

With a satisfying (5.13), we get

− 2
3ϕ

(
−8ϕb2 + 2ϕ − 2

3ϕ

)
<

8
3
b2 − 3r2 +

1
3
· (5.16)

which results in the inequality

−r2 >
8b2

9
− 5

9
+

4
27ϕ2

· (5.17)

With |b| > 1 the right hand side in (5.17) is positive, but the left hand side is negative, which is a contradiction.
Thus |b| ≤ 1. �

Physically, this result may be interpreted as a causality principle; the relaxation terms cannot be used to increase
the velocity of information propagation in a stable system. Note that for our particular two-phase flow relaxation
model, Proposition 5.2 is equivalent to the statement

u − c̃ ≤ vj(k) ≤ u + c̃ ∀j, k. (5.18)
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5.5. Analytical solutions

Given that (5.3) is a cubic polynomial, it can be solved exactly. In this section, we provide explicit expressions
for the roots and provide some interpretations of the results.

The discriminant of (5.3) is

Δ = −
(

2
3
(3ϕ2 − 1)

)2

−
(

r2 − 1
9

)
(27ϕ2r2 − 15ϕ2 + 4). (5.19)

It will now be convenient to introduce the auxiliary variables

s = r2 − 1
9
, (5.20)

ω = 3ϕ2 − 1, (5.21)

enabling us to write (5.19) in the simple form

Δ = −
(

2
3
ω − 3s

)2

− 9s2ω. (5.22)

Now the nature of the roots of (5.3) are determined by the sign of the discriminant as follows:

D1: Δ < 0: the equation (5.3) has one real root and two complex conjugate roots.
D2: Δ ≥ 0: the equation (5.3) has three real roots (casus irreducibilis).

Note that in the context of the transformation (4.9), a real root corresponds to a wave of velocity u. Hence
the situation D2 (casus irreducibilis) corresponds to a critical region in wave numbers and relaxation times
where the transitional sound velocities become zero. In fact, as will be described in the following, no continuous
labeling of the waves as “sonic” or “mass fraction” can be made through this critical region.

5.5.1. Critical region

We now define the critical region C(r) as

C(r) := {ϕ ∈ (0,∞) : Δ(ϕ, r) ≥ 0} . (5.23)

We may then state the following proposition.

Proposition 5.3. The equation (5.3) has three real roots if and only if

ϕ ∈ C(r), (5.24)

where

C(r) =

{
∅ if r > 1

3 ,

[ϕ−
c , ϕ+

c ] if r ∈ [0, 1/3].
(5.25)

Herein, ϕ±
c are given by:

ϕ−
c =

1
2
√

2

√
9(2r2 − 3r4) + 1 −

√
(r2 − 1)(9r2 − 1)3, (5.26)

ϕ+
c =

1
2
√

2

√
9(2r2 − 3r4) + 1 +

√
(r2 − 1)(9r2 − 1)3. (5.27)

Proof. The discriminant (5.22) changes sign when the parameter ω satisfies

ωcrit = s

(
9
2
− 81

8
s ± 27

8

√
9s2 − 8s

)
, (5.28)

which corresponds to real-valued ϕ only if r2 ≤ 1/9. In this case, the transformation (5.21) gives (5.26)–(5.27),
which are unconditionally positive. �
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We are now in the position to state explicit formulae for the roots inside and outside of the critical region.

5.5.2. One real and two complex solutions

We now assume that Δ < 0, i.e. ϕ /∈ C(r). We now define

Q =
1
2

(
8ω − 108sϕ2 + 12ϕ

√−3Δ
)1/3

. (5.29)

Then the real solution may be written as

z1 =
1

3ϕ

(
Q − ω

Q
− 1
)

, (5.30)

whereas the complex solutions are given by

z2,3 = − 1
6ϕ

(
Q − ω

Q
+ 2 ±

√
3i

(
Q +

ω

Q

))
. (5.31)

5.5.3. Casus irreducibilis

We now consider the case Δ ≥ 0, i.e. ϕ ∈ C(r). We may put the polynomial (5.3) in the reduced form

t3 + pt + q = 0, (5.32)

where

t = z +
1
3ϕ

, (5.33)

p =
3ϕ2 − 1

3ϕ2
=

ω

3ϕ2
, (5.34)

q =
2 − 9ϕ2 + 27r2ϕ2

27ϕ3
=

s

ϕ
− 2ω

27ϕ3
· (5.35)

Now the roots are given by (k = 0, 1, 2),

tk =
2

3ϕζ
cos
(

1
3

arccos
(

27sϕ2ζ3

2
+ ζ

)
+

π(2k − 1)
3

)
, (5.36)

where
ζ =

1√−ω
· (5.37)

This yields

zk =
1
3ϕ

(
2
ζ

cos
(

1
3

arccos
(

27sϕ2ζ3

2
+ ζ

)
+

π(2k − 1)
3

)
− 1
)

. (5.38)

6. Illustrations and discussion

The analytical expressions derived in the previous section are too intangible to provide much in terms of
direct insights into the structure of the transitional waves. In this section, we will illuminate this structure
through a graphical investigation of the expressions (5.30)–(5.31) and (5.38).

As the roots are continuous functions of the stiffness parameter ϕ, one would expect that we should be able
to identify sonic waves P± and a mass fraction wave Y that are continuously transformed between the frozen
and stiff limits. In fact, this näıve assumption breaks down in the critical region; herein, the waves “mix” and
no continuous labeling is possible. Similarly to the critical point found for the the general 2 × 2 system [4],
we may interpret the critical region as a well-defined “transitional regime” where the system changes character
from being equilibrium-like to behaving more like the frozen system. This interpretation will be made precise
in the following.
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6.1. Frozen-like and equilibrium-like waves

For the purposes of the ensuing discussion, it will be convenient to introduce the following labeling of the
waves, as given by the complex roots of equation (4.10).

• Frozen-like sonic waves P±
f , which continuously transform into the frozen sonic waves as the limit ϕ → ∞

is approached.
• Equilibrium-like sonic waves P±

e , which continuously transform into the equilibrium sonic waves as the limit
ϕ → 0 is approached.

• A frozen-like mass fraction wave Yf , which continuously transforms into the frozen mass fraction wave as
the limit ϕ → ∞ is approached.

• An equilibrium-like mass fraction wave Ye, whose amplification factor tends to −∞ as the limit ϕ → ∞ is
approached: i.e. the wave is fully damped and completely disappears from the system.

• An indeterminate wave X which exists only in the critical region. It can neither be interpreted as a mass
fraction nor a sonic wave, but instead serves to connect the equilibrium-like and frozen-like versions of these
waves.

• An entropy wave S, corresponding to the trivial root z = 0 in (4.10). The dispersive dynamics of this wave
is independent of ϕ; the velocity of propagation is u and the amplification factor is 0 for all values of ϕ.

We now present the corresponding analytical expressions for each of these waves in turn, disregarding the
trivial entropy wave. We consider first the case r > 1/3, where there is no critical region C(r).

6.1.1. Smooth transitional dynamics

Consider now the case r > 1/3. In this case, the transition between the frozen and equilibrium limits is
smooth, and the equilibrium-like and frozen-like waves are identical. We define the following labeling of the
solutions (5.30)–(5.31):

• Mass fraction wave:

Im (Yf) = Im (Ye) = 0, (6.1)

Re (Yf) = Re (Ye) =
1
3ϕ

(
Q − ω

Q
− 1
)

. (6.2)

• Sonic waves:

Re
(
P±

f

)
= Re

(
P±

e

)
= − 1

6ϕ

(
Q − ω

Q
+ 2
)

, (6.3)

Im
(
P±

f

)
= Im

(
P±

e

)
= ± 1

2
√

3ϕ

(
Q +

ω

Q

)
· (6.4)

The amplifications and velocities of these waves are plotted in Figure 1, for different values of the parameter
r ∈ [1/3, 1]. Herein, the variables are plotted as functions of a rescaled stiffness parameter χ, given by:

χ(ϕ) =
ϕ

ϕ + 1
, (6.5)

in order to limit the plotting domain to [0, 1).
For r = 1/3, a critical phenomenon emerges; at the point

ϕc =

√
1
3
, (6.6)

all the roots coincide, and the eigenspace of H as given by (2.9) degenerates. Hence the assumption (2.10)
leading to the plane wave solutions (2.11) breaks down at this point. The solutions corresponding to the sonic
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Figure 1. Transitional wave properties. Left: Im(z) (velocities). Right: Re(z) (amplifications).
Top to bottom: r = 1.0, r = 0.5, r = 0.34, r = 1/3.
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velocities abruptly become zero, meaning that the sound waves in this limit propagate with the fluid velocity
in the Eulerian frame. Also, around this point, the dampening of the sound waves is at its highest, and the
dampening of the mass fraction wave (which disappears in the equilibrium system) increases sharply. Hence
we can justify the statement that ϕc naturally divides the range of ϕ into an equilibrium-like and frozen-like
region.

Decreasing the parameter r further causes this critical point ϕc to expand into a critical region. In this region,
all the roots are distinct and the plane wave solutions (2.11) exist – but none of the solutions have a physical
interpretation corresponding to sonic waves. This phenomenon will be investigated in the next section.

6.1.2. Transition through critical region

We consider now the case r ∈ [0, 1/3], i.e. there exists a critical region and we assume that the subcharac-
teristic condition r ≤ 1 is satisfied (as indeed has been proved for our particular model [11]). We define the
following labeling of the solutions (5.30)–(5.31) and (5.38):

• Mass fraction wave:

Im (Yf) = 0 for ϕ ≥ ϕ−
c , (6.7)

Im (Ye) = 0 for ϕ ≤ ϕ+
c , (6.8)

Re (Yf) =

⎧⎨
⎩

1
3ϕ

(
Q − ω

Q − 1
)

for ϕ > ϕ+
c

1
3ϕ

(
2
ζ cos

(
1
3 arccos

(
27sϕ2ζ3

2 + ζ
)
− π

3

)
− 1
)

for ϕ−
c ≤ ϕ ≤ ϕ+

c ,
(6.9)

Re (Ye) =

⎧⎨
⎩

1
3ϕ

(
Q − ω

Q − 1
)

for ϕ < ϕ−
c

1
3ϕ

(
2
ζ cos

(
1
3 arccos

(
27sϕ2ζ3

2 + ζ
)

+ π
)
− 1
)

for ϕ−
c ≤ ϕ ≤ ϕ+

c .
(6.10)

• Sonic waves:

Re
(
P±

f

)
= − 1

6ϕ

(
Q − ω

Q
+ 2
)

for ϕ > ϕ+
c , (6.11)

Im
(
P±

f

)
= ± 1

2
√

3ϕ

(
Q +

ω

Q

)
for ϕ > ϕ+

c , (6.12)

Re
(
P±

e

)
= − 1

6ϕ

(
Q − ω

Q
+ 2
)

for ϕ < ϕ−
c , (6.13)

Im
(
P±

e

)
= ± 1

2
√

3ϕ

(
Q +

ω

Q

)
for ϕ < ϕ−

c . (6.14)

• Indeterminate wave:

Im (X) = 0 for ϕ ∈ [ϕ−
c , ϕ+

c ], (6.15)

Re (X) =
1
3ϕ

(
2
ζ

cos
(

1
3

arccos
(

27sϕ2ζ3

2
+ ζ

)
+

π

3

)
− 1
)

for ϕ ∈ [ϕ−
c , ϕ+

c ]. (6.16)

As we will see, this is the natural labeling if we want to assign a continuous physical interpretation of each
wave between the branching points where the roots change character from being complex to being real.

The amplifications and velocities of these waves are plotted in Figure 2 as functions of χ as given by (6.5).
Note in particular that the frozen-like and equilibrium-like mass fraction waves Yf and Ye overlap in the critical
region; herein, they are truly separate waves. They are ”backwardly connected” by the indeterminate wave X ,
which has no physical interpretation in terms of the waves existing in the frozen and equilibrium limit systems.
Note that the wave X also serves to connect the frozen-like and equilibrium-like sonic waves.
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Figure 2. Transitional wave properties. Left: Im(z) (velocities). Right: Re(z) (amplifications).
Top to bottom: r = 1/3, r = 0.15, r = 0.05, r = 0.
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6.2. Directions for further work

A highly relevant question is how the existence of the critical region will manifest itself in the solutions to
the full nonlinear model, and how these solutions are related to the actual physics of two-phase flows with
phase transfer. From the analysis, it is reasonable to expect that sound waves with wave numbers belonging
to the critical region should not be able to propagate through the two-phase medium modelled by (1.1a)–
(1.1d). At present, we are not aware of any experiments that may be directly connected to this mathematical
phenomenon. It would also be of interest to numerically investigate the behaviour of solutions to the nonlinear
model (1.1a)–(1.1d) in the critical region.

It should be noted that the critical region considered here is certainly physically feasible; as demonstrated
in [11], both water at 1 bar and CO2 at 50 bar satisfy r < 1/3 at phase equilibrium for liquid volume fractions
less than 0.05.

We also note that the relaxation processes considered in [11,17] all have the similar relationship between the
eigenstructures of the frozen and stiff limits. Hence it is probable that similar critical phenomena may arise in
these models.

Furthermore, the model (1.1a)–(1.1d) makes the assumption that the relaxation times for heat, volume and
momentum transfer are negligible compared to phase transfer. Consequently, it would be of great interest to
perform a similar analysis on two-phase flow models with several simultaneous relaxation processes.

7. Summary

We have investigated the wave dynamics of a two-phase flow model with relaxation towards phase equilibrium.
We have shown that for any given thermodynamic substance, physical state, relaxation rate and chosen wave
number k, the velocities and amplifications of the resulting plane waves are determined by only two dimensionless
numbers (denoted as r and ϕ in our paper). This, combined with the Galilean symmetry of the model, allows
for the highly simplified formulation (4.10) from which generally valid analytical results can be extracted. In
particular, we obtain closed-form expressions for the wave-number dependent wave velocities and amplifications
for any relaxation time. These analytical results unveil what is the main insight of this paper: if the ratio
behind the stiff and non-stiff sound velocities is sufficiently small, a critical region in the wave numbers emerges,
defining a non-smooth transition between the equilibrium and frozen limits. This extends the previous similar
observation of Aursand and Fl̊atten [4] for general 2 × 2 systems.
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