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RESIDUAL A POSTERIORI ERROR ESTIMATION FOR THE VIRTUAL
ELEMENT METHOD FOR ELLIPTIC PROBLEMS

L. BEIRAO DA VEIGA! AND G. MANZINI?3

Abstract. A posteriori error estimation and adaptivity are very useful in the context of the virtual
element and mimetic discretization methods due to the flexibility of the meshes to which these numerical
schemes can be applied. Nevertheless, developing error estimators for virtual and mimetic methods is
not a straightforward task due to the lack of knowledge of the basis functions. In the new virtual
element setting, we develop a residual based a posteriori error estimator for the Poisson problem with
(piecewise) constant coefficients, that is proven to be reliable and efficient. We moreover show the
numerical performance of the proposed estimator when it is combined with an adaptive strategy for
the mesh refinement.
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1. INTRODUCTION

The Virtual Element Method (VEM) is a very recent generalization of the Finite Element (FE) method [21,24]
that achieves a higher degree of flexibility in terms of meshes and properties of the scheme by avoiding an explicit
construction of the discrete shape functions. VEM was first introduced for the Poisson problem in [11] and,
then, further developed in the papers [1,9,12,19]. The method has clearly a connection with classical polygonal
and polyhedral finite elements, see for instance [15,16,29,33-37,40,41].

On the other hand, VEM makes use of a virtual discrete space and an approximated bilinear form A,
that mimics the original bilinear form withouth the need to integrate complex non-polynomial functions (and
still guaranteeing consistency and stability of the numerical problem). The latter is a remarkable difference
with respect to classical polyhedral/polygonal FEM. The Virtual Element Method has also a relation with the
Mimetic Finite Difference (MFD) schemes, for a very short list see for instance [6, 18,20, 23, 26, 28] and the
book [13] with the references therein.

Due to the large flexibility of the meshes to which the mimetic, polygonal and virtual methods are ap-
plied, mesh adaptivity becomes an appealing feature as mesh refinement and de-refinement strategies can be

Keywords and phrases. A posteriori error estimation, virtual element method, polygonal mesh, high-order scheme.
I Dipartimento di Matematica “F. Enriques”, Universitd degli Studi di Milano, via Saldini 50, 20133 Milano, Italy.
lourenco.beirao@unimi.it

2 Applied Mathematics and Plasma Physics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM
87545, USA. gmanzini@lanl.gov

3 IMATI del CNR, via Ferrata 1, 27100 Pavia, Italy.

Article published by EDP Sciences © EDP Sciences, SMAI 2015


http://dx.doi.org/10.1051/m2an/2014047
http://www.esaim-m2an.org
http://www.edpsciences.org

578 L. BEIRAO DA VEIGA AND G. MANZINI

implemented very efficiently. Hanging nodes can be introduced in the mesh without spreading the refined zones
in order to guarantee the mesh conformity. Polygonal cells with very general shapes are admissible thus allowing
us to adopt simple mesh coarsening algorithms.

There is a vast literature about a posteriori error estimations for finite elements, see for instance the
books [2,30,31,38] and the fundamental papers [4, 5]. Unfortunately, for the virtual element method the a
posteriori error analysis is more involved as there is no explicit knowledge of the basis functions inside the
elements and to devise residual-based error estimators (which are among the most popular ones in finite ele-
ment analysis) is particularly difficult. The same difficulty is encountered in the MFD method; this is reflected
by the fact that also in the mimetic literature (that is older than VEM) there are very few papers devoted
to the a-posteriori analysis. In references [6, 8], the authors circumvent the absence of the shape functions by
introducing a post-processed pressure solution that is used in the computation of the residual. This approach is
successful for the MFD method [20] for the diffusion problem in mixed form. Regarding the diffusion problem in
primal form, a hierarchical estimator has been recently proposed [3], which does not require any evaluation of
residuals. This estimator is suitable to the low-order method [18], but a direct extension to the arbitrary-order
mimetic method [10], which is based on variable polynomial degree, may be cumbersome.

In this work, we develop a residual-based estimator for the virtual element method for diffusion problems
in primal form [9]. This family of schemes is characterized by a general polynomial degree of accuracy m
and a general regularity index a € N, i.e., the numerical approximations they provide belong to C*(2). The
usefulness of developing methods with high regularity is discussed in reference [9]; for instance, it makes it
possible to compute derived quantities of interest such as the fluxes. In the present paper we concentrate our
attention on the C'!' case. Although the shape functions inside the elements are unknown, we are able to derive
a residual-based error estimator by exploiting some specific characteristics of the method. Such estimator is the
sum of local terms, each one of which being composed by three distinct parts associated with the residual ("),
the approximation of the loading term (n') and the approximation of the bilinear form (1°). A particularly
interesting point in the present analysis is the term 7n¢, that gives a direct evaluation of the error that stems
from the “virtual” approximation of the problem. Moreover we show that such term has a very natural and
simple form direcly related to the “non consistent” part of the discrete bilinear form. In order to derive and
analyze the proposed error estimator we need also to circumvent some technical difficulties related to the
particular construction of the virtual method. For intance, we introduce projected (and thus computable also in
the virtual setting) versions of the classical residual terms and derive inverse estimates for the virtual discrete
space.

The paper is organized as follows. In Section 2 we present the mathematical model. In Section 3 we briefly
review the virtual element method with arbitrary regularity [9] for & = 1 and a general positive integer m. In
Section 4 we introduce the a posteriori error estimator and we prove its reliability and efficiency in terms of the
energy error. In Section 5 we show the performance of such estimator when it is combined with an adaptive
strategy in the resolution of a set of model problems. Finally, in Section 6 we offer our final remarks and discusses
the open issues for future work.

2. THE MATHEMATICAL MODEL

Let us consider the Poisson problem for the scalar solution field u given by

—Au=f in £, (2.1)
u=g on 0f2, (2.2)

where (2 is a bounded, open, polygonal subset of R?, f in L?({2) is the forcing term, and g in H%(ﬁﬂ) is
the boundary datum. To ease the theoretical presentation, we consider the case of homogeneous Dirichlet
boundary conditions, i.e., g = 0 on 0f2, while the more general case of non-homogeneous boundary conditions
is investigated in the section of numerical experiments.
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Throughout the paper, we follow the usual notation for Sobolev spaces, inner products and norms, see,
e.g., [24]. We also represent the set of polynomials defined on a generic control volume P that have degree less
than or equal to the integer j by P;(P) and the L?(P) orthogonal projection onto IP;(P) by Wf.

Let us now consider the functional space H}(£2) = {v € H'(12), vjpo = 0}. Problem (2.1)~(2.2) with g = 0
can be restated in the variational form:

find uw € H}($2) such that
A(u,v) = (f,v) Yo € HY(9), (2.3)

where
.A(u,v) :/ Vu-VodV and (f,v) :/ fodV. (2.4)
7] 7]

The bilinear form A is continuous and coercive and the linear functional ( 1 ) is continuous, thus implying
the well-posedness of problem (2.3), i.e., existence and uniqueness of the weak solution [27].

3. A C' VIRTUAL ELEMENT METHOD

Let {25} be a sequence of decompositions of {2 into elements P labeled by the mesh size parameter h. For
the moment, we assume that each decomposition {2 is a finite number of simple polygons, i.e., open simply
connected subsets of {2 whose boundary is a non-intersecting line composed by a finite number of straight line
segments. The precise assumption about the mesh regularity, which is required to perform the convergence
analysis of the method, will be given in Section 3.7, see Assumption 1.

Let us consider the virtual element method with arbitrary regularity [9]. This method defines a family of
mimetic schemes for each couple of integers (a, m), where a > 0 is the regularity index and m > «a + 1 is
the consistency index. All these schemes provide a numerical approximation to the solution of (2.3) that is C*
regular and O(h™) accurate in the energy norm. In this paper we focus on the case o = 1 and consider the family
of mimetic schemes associated with each integer number m > 2 (see also Rem. 3.1). In the next subsections, for
every h we will construct a finite dimensional space Vj, C H}(§2), a family of bilinear forms A, : Vj, x Vi, — R,
which approximates the bilinear form A, and a loading term, ( fh,vh) (where f), is a suitable approximation
of f) which approximates the linear functional (f,v) in (2.4). The VEM method for the discretization of (2.3)
reads as:

find up, € Vi, such that:

A (uh,vh) = (fh,vh) Yo, € V). (3.1)

Remark 3.1. The same error estimator developed here immediately applies (with the same reliability proofs)
also to the case a > 1. Here, we prefer considering the case a = 1 as this case is probably the most useful in
applications.

3.1. Local discrete spaces

We denote a generic mesh vertex by v, a generic mesh edge by e and its length by |e|, the area of polygon
P by |P| and its boundary by dP. The orientation of each edge e is reflected by the unit vector ne, which is
orthogonal to e and fixed once and for all. For any polygon P and any edge e of OP, we define the unit normal
vector np  that points out of P. We denote the set of mesh vertices by V), and the set of mesh edges by &,.

For any integer s > 0 and any polygonal cell P, we consider the functional space of piecewise polynomials of
degree s defined on the boundary OP:

B, (9P) := {v € L*(OP) : vj. € Py(e), Ve € OP}.
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a=1, m=2

F1GURE 1. The degrees of freedom for a = 1 and m = 2, 3,4. The symbols shown in the plots
represent the nodal values (dots) at the mesh vertices and edges, the first-order derivatives at
the vertices (circles), the first-order normal derivatives at the mesh edges (arrows), and the
internal moments (squares).

Let us introduce the integers o := max{3,m} and a; := max{1,m — 1}. For any index m > 2, we consider
the local finite element space associated with the polygonal cell P given by:

Vip = {v € H?(P) with A%v € Py, _2(P) s. t. vjgp € Ba, (OP),

ov o
nlop € B, (OP), Vujgp € C (8P)}, (3.2)
where A? represents the biharmonic operator (see [9] for further explanations and details).

For example, for m = 2 we obtain the finite element space of functions in H?(P) such that:

e the trace on the boundary of P is continuous and is a piecewise polynomial of degree ay = 3;

e the gradient on the boundary is continuous and the normal derivative on each edge is a polynomial of degree
Q] = 1;

e in the interior of P, these functions satisfies the biharmonic equation A?v = p for some p € R.

Remark 3.2. The local space Vj,p in (3.2) is virtual in the sense that we do not need to build it explicitly for
the practical implementation of the family of schemes here proposed.
3.2. Local degrees of freedom

We distinguish three kinds of degrees of freedom that are associated with each polygonal cell P:

o Vi: vertex degrees of freedom of P;
e £b: edge degrees of freedom of P;
e Pp: interior degrees of freedom of P.

>

In Figure 1 we show the degrees of freedom for a pentagonal element for « =1 and m = 2,3, 4.

Vertex degrees of freedom. The vertex degrees of freedom of the function v associated with the vertex v are
the values of v and of the partial derivatives of v evaluated at v.

Edge degrees of freedom. The edge degrees of freedom of the function v are the values of v and of the normal
derivatives of v evaluated at certain distinct points along e. More precisely, on each open edge e we consider
the set of N distinct nodes {x{}i—1 .z where N = max(m — 3,0). The nodal degrees of freedom of v
associated with edge e are given by v(x?), i.e., the values of v at x?. We also consider the set of NJ* distinct

)
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nodes {xj}i—1,...am where N{" = max(m — 2,0). The normal derivative degrees of freedom of v associated
with edge e are given by dv(x;)/dn, i.e., the normal derivative of v at x;. The points of the sets {X?}i and
{le}Z can be uniformly spaced along e or chosen as the nodes of some integration rule like those provided by
Gauss-Lobatto formulas [10].

Internal degrees of freedom. The internal degrees of freedom of the function v are the polynomial moments
of v defined with respect to a certain basis of the local space of polynomials of degree up to m — 2 on P. More
precisely, let s = (s1,s2) with s1,s2 > 0 be a two-dimensional multi-index with the usual notation |s| := s1 + s2

and x® = z]'25? when x = (21, 22). We consider the set of m(m — 1)/2 monomials

MmQ:{(X;PXPf, s| <m—2}, (3.3)

which is a basis for the local polynomial space P,,_o(P). The internal degrees of freedom of a function v are
the m(m — 1)/2 moments:

ﬁ / () v(x) AV Vg € My_a(P).

Remark 3.3. On each edge e, the degrees of freedom V% plus ¥ uniquely determine a polynomial of degree
on each edge e of P representing the function value, and a polynomial of degree a1, representing the normal
derivative. Thus, prescribing the degrees of freedom VE plus &} is equivalent to prescribing v and dv/dn
on JP. On the other hand, prescribing the degrees of freedom P} is equivalent to prescribing the L2-orthogonal

projection 7r£l_2(v) onto the space of the polynomials of degree up to m — 2 defined on P.

Remark 3.4. As pointed out in reference [9], a better condition number of the stiffness matrix is obtained by
scaling the nodal degrees of freedom by an appropriate local mesh size factor.

For the space Vj,;p and the degrees of freedom VB plus S,’} plus P,’;’ we have the following unisolvence result,
whose proof is found in [9].

Proposition 3.5. Let P be a simple polygon with N,fh' edges, and the space Vi, p be generated by the monomials
in (3.2). The degrees of freedom VE plus EL plus P are unisolvent for Vip-

3.3. Construction of the finite element space Vy,

We can now design V}, the virtual element space on the whole domain 2. For every decomposition §2;, of {2
into simple polygons P we first define the space without boundary conditions:

Wy, ={veH*2) : vp€ Vyp VP € 2} (3.4)

In agreement with the local choice of the degrees of freedom of the previous subsection, in W}, we choose the
following global degrees of freedom:

e V": the value of vy, and Vuy, at the vertices of Vy;

e & the value of v;, and of vy, /On at, respectively, the A" and A" internal nodes defined in Section 3.2
for each edge e of &;

e P": the value of the moments

% /P g)on(x)dV Vg € Myn_o(P)

in each polygonal cell P.
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Finally, the discrete space Vi, = W), N H}(£2) is given by
Vi, = {v € H2(0) : vp € Vyp ¥P € 2y, 1o = 0}. (3.5)

Note that the condition v;, € V}, implies v, = 0 on the vertices and the edges of the boundary 9f2. Therefore,
the degrees of freedom of V}, are simply the ones introduced above, excluding the nodal degrees of freedom
associated with the function values (but not the derivatives) of the boundary vertices and edges.

3.4. Construction of Ay,

We build the discrete bilinear form Aj;, by assembling the local bilinear forms A p in accordance with

Ap (wh,vh) = Z Ah,p(wh,vh) Ywp, vp, € V. (3.6)

Pe2,

The local bilinear forms A, p are all symmetric and satisfy the following fundamental properties of consis-
tency, stability and continuity.

e Consistency: for all h and for all P in (2, it holds
Anp(p,vn) = Ap(p,vn)  Vp € Pp(P), Vou € Viyjp. (3.7)

where

Ap (p,vn) = / Vp - Vo, dV.
P
e Stability: there exist two positive constants «, and a*, independent of h and P, such that
a, Ap (vh,vh) < Ah,p(vh,vh) < a" Ap (vh,vh) Yun € Vi p. (3.8)

For simplicity, we will refer to the “Stability and Continuity” property using the single-word label “Stability”.

Let us assume that condition (3.7) is true and integrate by parts:

Anp(p,vn) Z/Vp~Vvth
’ (3.9)

—/(Ap)vth+/ vpnp - Vp dS.
P P

Since Ap € P,,,_2(P), the first integral in the right-hand side of (3.9) can be expressed through the polynomial
moments of vy, and can, thus, be computed exactly by using its internal degrees of freedom. On the other hand,
it holds that (np - Vp) € Py, —1(e) and vy € Py, (e) for all e C JP, so that the second integral in the right-
hand side of (3.9) can be computed exactly. Therefore, the right hand side of (3.7) can be computed explicitly
without knowing vy, in the interior of P. We formally summarize this result for future reference in the paper in
the following remark.

Remark 3.6. The local degrees of freedom allow us to compute exactly Ay p (p, v, ) for any p € P,,,(P) and for
any vp € Vh‘p.

We are left to show how to construct a computable Aj;, that satisfies (3.7) and (3.8). We review such con-
struction in Section 3.6 and we refer the reader interested to alternative possibilities to [9,11].
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3.5. Construction of the loading term

Let us define the function fj, on each element P of {2, as the L?(P)-projection of the function f onto the
space P,,,_o(P), that is,
fn=7"_5(f) on each P € (2),.

The loading term can be written as

(fn,on) = Z/fh'Uth_ Z/ 7o _o(f)vndV

Pe 2, Pe2;,
§ / Tm— 2 m 2 Uh dV E /fﬂ-m 2 Uh
Pes2y, Pes2y,

where the last two identities follows from the fact that vj, and 7F,_,(vs) have the same internal moments and
7P 5(f) is the L? orthogonal projection of f onto P, _o(P). Thus, the right-hand side of (3.1) can be computed

m—2
exactly by using the degrees of freedom of the functions in V}, that represent the internal moments.

3.6. Implementation of the local stiffness matrices

In this section, we briefly review the construction of the local stiffness matrix Mp, which is associated with
the local bilinear form Ay, p, following the general guidelines in [14].

Let np denote the dimension of the local space V,é‘. For each polygonal cell P € (2, the elemental stiffness
matrix MyEM € R > ig such that

T \VEM
App(wnp,vnp) =wp p Mg™™ v, o Ywnp, vnp € Viyp,

where the vectors wy, p and v, p represents the values of the local degrees of freedom of wy p and v p. The
global stiffness matrix is then obtained by a standard finite element-like assembly procedure.

Let x; be the function that returns the ith degree of freedom of its argument, and {¢;};"; the set of
“canonical” basis function of the local virtual space Vjp, €.g., xi(¢;) = 1if i = j and 0 if i # j. We enumerate
the whole set of mp = (m + 1)(m + 2)/2 scaled monomials that are used to define the degrees of freedom in
Section 3.1 by the local indices ¢ and j (resp., m; and m;).

To compute the stiffness matrix, we need two auxiliary matrices B and D, which are defined as follows. The
jth column of matrix B, for j = 1,... np, is defined by

,l/}j ds if m= 1,
Bij = (3.10)

/% dVv if m>2,
Bij Z/Vmi'v%' dVv, i=2,...,mp. (3.11)

P
The jth column of matrix D, for j = 1,...,mp, collects the degrees of freedom of the jth monomials and is
defined by:

Dij = xi(m;),  i=1,...,mp. (3.12)

Note that the matrices B, D are explicitly computable. In particular, the terms in (3.11) can be easily computed
recalling the integration by parts

P P oP

and using the degrees of freedom values of ;.
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Then, we consider the matrices G = BD, IT® = DG™'B and é, which is obtained from matrix G by setting its
first row to zero. The VEM stiffness matrix MYEM is the sum of two matrices, defined by the following formula:

MM = (G7'B)"G(G™'B) + (I - IT*)"S(I — IT%), (3.13)

where | is the identity matrix and S is a symmetric and positive definite matrix. The first matrix term corresponds
to the consistency property and the second term ensures stability. According to [11], we can set S = |, the identity
matrix. Nonetheless, the choice of S is not unique and, therefore, we have a family of virtual element schemes
that differ by this matrix.

3.7. A priori error estimates

Let us introduce the following mesh assumptions.

Assumption 1 (Mesh regularity). There exists a real number v > 0 such that, for all h, each element P in (2,
is star-shaped with respect to a ball of radius > vhp, where hp is the diameter of P. Moreover, there exists a
real number +' > 0 such that, for all h and for each element P in (2, the distance between any two vertices
of Pis > ~v'hp.

Then, the following convergence theorem holds, see reference [9] for the proof.

Theorem 3.7. Let the consistency and stability conditions (3.7)—~(3.8) and the mesh assumptions considered
above hold. Then, the discrete problem (3.1) has a unique solution and, if the solution u of (2.3) belongs to
Whee (), it holds that

lu = unl|lmr(0) <C Z hip |U‘Hs+1(|>) (3.14)
Pe2,

for all 1 < s < m, where C is a constant independent of h.

The condition u € W1°°(£2) can be relaxed [9].

4. A RELIABLE AND EFFICIENT ERROR ESTIMATOR

In this section we first present the error estimator, then prove its reliability and efficiency. Through the rest
of the paper we will assume the mesh conditions introduced in Section 3.7.

4.1. The error estimator

In order to introduce the error estimator we need a few preliminary definitions. We start by introducing, for
all P € 2y, the following energy projection IIF : H'(P) — P, o(P), where IP,, ¢ indicates the subpace of P, of
polynomials with zero average. For all v € H(P), the image II7 v € IP,, o(P) is uniquely defined as the energy
projection

Ap (HZv,p) =Ap (v,p) Vp € Py o(P). (4.1)

Due to the consistency condition (3.7) together with the symmetry of both Ap and Ay p, if v, € Vi p C HY(P),
then (4.1) is equivalent to
App(IIF vn,p) = App(vi, p) Vp € Py o(P). (4.2)

Therefore, IT7 vy, is explicitly computable for any function v, € V;, P
Now, let us recall that m represents the L?(P) projection on P,,(P). For all v, p € Vip and P € (2 the
projection 7P Awy, is explicitly computable. Indeed, integrating twice by parts, for all p € P,,(P) it holds

/(Avhvp)pdv = / vppApdV + / pnp - Vo p ds — vppp - VpdS. (4.3)
P P P P
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The first term in the right hand side is computable using the internal degrees of freedom (moments) of vy, since
Ap € P,,_2(P). The remaining terms involve the trace of v, and of its normal derivative along the polygonal
boundary dP, which are known explicitly, see Section 3.1.

We can now introduce, for all P € (2}, the following local and computable terms:

mp = hpllf + 7, (Aunp)ll2 ey, (4.4)

b = hpllf = fullL2ey, (4.5)
. 1/2

ne = Anp(unp — D unp,unp — 5 upp) / , (4.6)

where uy, is the solution of the discrete problem and wy, p its restriction to the generic element P.

The first term, where a kind of discrete residual appears, represents an estimation of the error stemming from
the Galerkin discretization of the problem. The second term estimates the right hand side approximation. The
third term bounds the error related to the inconsistency between the continuous and discrete bilinear forms, A
and Ay,.

The result here below shows the reliability of the proposed error estimator 7; the proof is postponed to the
next subsection.

Theorem 4.1. Let uy, be the solution of (3.1) and u the solution of (2.3). Let the global error estimator

= mg, where ng = (mp)>+ (mb)* + (nE)® VP € 2.
Pe),

Then, under Assumption 1 on the reqularity of the meshes, there exists a constant C independent of h such
that

lu — unl[g1 (o) < Cn.

Since the above estimator n? is the sum of local terms, it can be used for an adaptive mesh generation
strategy, as will be shown in the section of the numerical tests. Note that, differently from standard FEM
residual estimators, there are no jump terms since the solution uy, is globally C*.

The present error estimator can be easily generalized to the case of the Poisson problem. Indeed, let us
consider the more general bilinear form

A(u,v) :/QKVu~VUdV (4.7)

with a uniformly positive diffusion tensor K € [L°°(£2)]**2, which we assume to be piecewise constant with
respect to the mesh (2. In the presence of jumps in the material data, it may be convenient to locally relax
the continuity requirements in v, and allow for (only) C° continuity across selected edges of the mesh [9].
This is easily achieved by considering the same degrees of freedom for each element P, but those associated
with derivatives at the nodes of the chosen edges (extrema included) are no longer single-valued and may take
different values when referred to different elements. This strategy requires to modify only the assembly of the
global stiffness matrix while the construction of the local element matrices remains unchanged. Following the
proof shown in Section 4.2, it is easy to check that in such a case the error estimator must be simply modified
as follows.

(1) The residual term of the estimator must be changed as
np = hel|f + 7, (div (KVunp)) |2y VP € 24

Using a double integration by parts analogous to (4.3) immediately shows that 7F,, (div (K Vuy, p)) is explic-
itly computable for all P € (2;,.
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(2) The estimator must be enriched by adding the computable jump term

>R with (i) :% 3 hPH [KVu;,ne}] ‘2

)
L2
Pe, ecoPNJp ()

where [-] denotes the standard jump operator and J;, C &, is the subset of mesh edges across which vy, is
only of C? regularity and/or jumps of the material data K occur.

With arguments that are similar to the original case, one can easily prove also the following result.

Corollary 4.2. Let uy, be the solution of (3.1) and u the solution of (2.3), for the case with the more general
bilinear form (4.7) and piecewise constant coefficients K. Let 1 be the error estimator presented in Theorem 4.1,
with the two modifications above. Then, under Assumption 1 on the reqularity of the meshes, there exists a
constant C independent of h (but depending on ||K|| (0 and ||K || (0)) such that

lw = unllgrpy < Cn.

Remark 4.3. We note that the constants appearing above are uniform in the mesh size but not explicitly
known. Another interesting (and different) approach would be that of developing guaranteed error estimators,
that need the solution of auxiliary (local) problems but give an explicit value of all the constants involved, see
for instance the recent paper [39] and citations therein.

Remark 4.4. We end this section with an important observation regarding the consistency of the error estima-
tor ng. The term 7§ can be computed in a very direct way, in accordance with the stiffness matrix construction
discussed in Section 3.6. Indeed, by writing (4.2) and (4.6) in terms of matrices, using Definition (3.13) one can
derive

(np)* = Mg,P (I=11)"s(1 - 17) Up,p

where we recall that u;, p represents the local degree of freedom of uy, p.

4.2. Proof of Theorem 4.1

In this section we show the proof of Theorem 4.1. We will make use of the following two lemmas. In general,
we cannot apply the standard scaling arguments since the functions of Vj,p are not associated with a fixed
reference space (independent of P) on some reference element.

Lemma 4.5. It exists a constant C independent of h such that
hp|’l}h|H2(p) < C ‘Uh|H1(P) VP € (2, Yo, € Vh‘p. (4.8)

Proof. We follow here a generalized scaling argument in the spirit of [7,32]. In view of Assumption 1, all
the polygonal elements in {2}, have at most N edges and N is independent of h. Therefore, it is not
restrictive to assume that the number of edges n of each polygonal cell with 3 < n < N®» is fixed. Given any
polygon P of the mesh family with n edges and vertices, let X = {X1, Xo,..., X,,} represent the position of
the n (anti-clockwise) vertices defining P = P(X). Since inequality (4.8) scales with the size of the element, it
is not restrictive to assume that the diameter hp = 1 and, by a simple translation, that X; = (0,0). Since the
space Vjp is finite dimensional, it holds that:

lnlg2py < Clonlmpy  VYon € Vap, (4.9)

where the factor C' = C(X) depends on X.
Due to the diameter property above, the set X of vectors X € IR?" representing all possible scaled polygons P
with n edges and X7 = (0,0) constitutes a bounded set. Moreover, X' is also closed, and, hence, a compact set.
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In fact, property hp = 1 combined with Assumption 1 does not allow the vectors in X to be arbitrarily close
to inadmissible vectors X ¢ X that do not correspond to a (non-degenerate) polygon. For instance, hp = 1
combined with the second condition in Assumption 1 implies that any two vertexes of the polygon must be at
least at distance 4/, thus preventing convergence to degenerate polygons where two vertices are collapsed into
a single vertex. Therefore, if C(X) is the factor in (4.9) associated with the element P defined by X, we need
to show that the function

he|vn| g2 P

O(X) = (4.10)

v €EVhp/R |Uh|H1(P)
is a continuous function of X. The maximum of C(X) on X is the constant appearing in (4.8). Note that in
equation (4.10), although we can assume hp = 1, we prefer to keep the term hp for better clarity in the following.

Now, let {X}, k € N, be any convergent sequence to X and Pj be the polygonal cell associated with X},
Clearly, P, — P as k tends to co. To prove that C(X) is continuous with respect to X we need to show that
limg oo O(X%) = C(X). Let v, be the function in Vj,p that achieves the maximum in (4.10). For every £,
we consider the degrees of freedom defined on P and P with respect to the corresponding vertices and edges.
Then, we consider the function vﬁ € Vip, whose degrees of freedom on the element Py have the same value as
the corresponding ones of v, on P. Moreover, for k sufficiently large, it can always be built a sequence ¢* of
W2 invertible mappings from P to Py, such that ¢* converge to the identity (in W2°) as k — oo. Using such
mappings it can then be shown that, as X — X, the seminorms \v,’ﬂHs(pk) — |vn| s (py, s = 1,2. This can be
done by checking that vf o ¢ converges to v, in H?(P). Without showing the details, such simple calculation
involves writing the biharmonic variational problem associated with the definition of Vj,p and Vjp,, a change
of variables through the mapping ¢*, and noting that {¢*}; converge to the identity in W2> as X¥ — X.
Since ‘U’]§|H5(Pk) — |vp|ge(py for s = 1,2, the construction above immediately implies that

helvi |2 p)

lim C'(Xg) > lim =C(X).
Jmn ) = i [0k 1 (p) o
The converse is shown with an analogous reasoning in the opposite direction. O

With a similar argument also the following inverse estimate, useful in the proof of the next Lemma, can be
shown:
hP"l}h‘Hl(P) <C thHLz(p) VP € 2y, Yo, € Vh|P- (4.11)

Lemma 4.6. [t exists a Clément-type interpolant H}(£2) — V" such that for any function v € HL(£2) and all
P € (2, the interpolant ve satisfies

v — ’U¢||L2(p) + hP|U¢‘H1(p) < ChP|U|H1(wP) (4.12)
with C independent of h and where wp is the union of all elements P that share a vertexr with P.

Proof. Let the subspace XA/h C V" be defined as the space of all functions in V" such that the value of all the
degrees of freedom associated with the pointwise derivatives and the first- or higher-order moments are zero.
Let =} denote the set of the vertices and the edge nodes of 2, associated with the degrees of freedom that
are defined through a pointwise evaluations, i.e., the set of all the nodes associated with V* and &" for the
derivative order j = 0. Then, given any v € Hg(£2), we define v¢ € Vi, by

1

jwu |

1 1
ﬁ/deV:ﬁ/vdV VPEQ}L,
P P

ve(v) = / vdV Yv € Ep,

(4.13)
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where the symbol v indicates a generic vertex and
w, ={UP : v € 9dP}.

Note that, for all P € 25, if v : wp — R is constant, then ve|p = v|p; the above operator preserves local
constants. Assume, for the moment, that the following continuity property holds

HUQ:HL2(P) < CHUHL2(wp) VP € (2, Yv € H&(Q), (4.14)

with a constant factor C' independent of h and P € (2. Then, for all v € H}(£2) and P € (2, let ¥ denote
the average of v on wp. First by a triangle inequality and recalling that the operator preserves constants, then
using (4.14), finally by standard approximation estimates on star shaped domains, we get
lv—vell2py < [lv =llL2p) + (v = V)ellL2(p)
< Cllv =7l p2(wp) < Chplv]H1 (wp)s

which is a part of (4.12). The remaining part follows by using again the constant preserving property, inverse
estimate (4.11), bound (4.14) and standard approximation properties

vel ey = 1(v = D)elin ey < Clhe)72[|(v = Dell72(p)
< Clhe)?[Jo =2 (4p) < Clofin

U)P)'

To conclude the proof, we are left to show inequality (4.14). From the definition of ve it follows that

|P|< 3 v¢<u>|2+‘%Av¢dv

veERNOP

2
) < ClJv]l72 ()

for all P € (2, v € H}(£2). Inequality (4.14) follows if there exists a constant C' independent of h such that

1 ? -
||'UhH%2(P) <C |P| ( Z ‘Uh(l/)|2 + ‘W/th dv > Yoy, € Vi, (4.15)

veZ,NOP

This inequality can be proved by the using the same argument of the proof of Lemma 4.5. Essentially, once
the values of degrees of freedom of vy, € XA/h are fixed, we must show that both left and right hand sides in (4.15)
vary continuously with respect to X € X, i.e., on the corresponding set of polygons P(X). Such property is
obvious for the right-hand side in (4.15) since this latter can be directly expressed in terms of the degrees of
freedom of vy, i.e., pointwise values at vertices and average on P. For the left-hand side, we argument as follows
in accordance with the proof of Lemma 4.5. Given any sequence of polygonal cells P, = P (X)) convergent to P
for kK — 400, we build the functions v,’i € YA/h‘P as in the proof of Lemma 4.5. Then, using again the maps ¢,
k € N, we obtain that [[vf|z2p,) — [|vnllr2p) as k — +oc. O

We can now show the proof of Theorem 4.1. Let the error e = u — uy,. First using the stability property (3.8)
and the coercivity of .A(-, -), then by simple manipulations, we obtain

alu—uplfpg < Alu—up,e) =T, + T + T, (4.16)
where « is a strictly positive constant and

T, :A(u—uh,e—eg),
Ty = A(u, e¢) — An(un, ec),
TC S .Ah (uh, 6@) — A(uh, 6@).
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We first bound the term 7).. We apply equation (2.3), integrate by parts on the whole domain {2 recalling
that u, € H2(£2) N Hg (£2), use the Cauchy—Schwarz inequality and Lemma 4.6 to obtain

T.=(f,e—ec)+ (Aup, e — eg)

< F A+ Aunlapylle = eell 2 p)
P2,

<C Y hellf + Aunllzze) lel )
Pe2y,

1/2
<C ( > h%||f+A’LLh||2L2(P)> lelm (o) (4.17)

Pe2;,

Note that in the last bound above we used the fact that, thanks to Assumption 1, it is easy to check that every
polygon P has a uniformly bounded number of neighbors. By definition of L? projection, 7" Awuj, minimizes
the L? distance from Auyin the space P, (P). Therefore, since AIIF uj, € P, _o(P) C P, (P), it holds

hel||Aup, — W;AuhHL?(P) < hp||Auyp, — AHZUhHL%P)- (4.18)

In view of inequality (4.18), the inverse estimate in Lemma 4.5, the coercivity of Ap and the stability
property (3.8), it holds that

hp||Aup, — W;AuhHL?(P) < hplup, — quh‘H%P) < Clup, — quh‘Hl(P)
1/2

< CAp (up — TP up,, up — Hﬁluh) < Cnp. (4.19)
Combining (4.17) with (4.19) it easily follows
1/2

T, <C ( > hp (Hf + 7, Aun | F2py + (775)2)> el (@) (4.20)

Pe2,

1/2

=C ( Yo )+ (775)2> el (2)- (4.21)

Pe2,

In order to bound T}, we observe that (2.3) and (3.1) imply that

Ty = (f,ee) = (fn,ec)-

Now, let €¢ be the piecewise constant function given, on each element P, by the average of e¢ on P. Since on
each element f, = 7" ,(f), m > 2, it holds that

Ty = (f = faee —2e) < > |If = fallezellee — ellL2p)- (4.22)
Pe2;,

We apply a standard error estimate, we use the result of Lemma 4.6 and the definition of 75 in (4.5), and,
then, we apply the Cauchy—Schwarz inequality. Inequality (4.22) becomes

1/2
T,<C Y npleelmpy <C ( > (77|l>)2> lelm(n)- (4.23)

Pe2, Pe,
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To bound the last term, we add and subtract II” uj, in the arguments of T, we use the consistency prop-
erty (3.7) and we apply the Cauchy—Schwarz inequality on the bilinear forms A, and A. We obtain:

T.= A (uh — H,F:luh, 6@) — A(uh — H,F:luh, eg)
< Ap(un — IIY up, up, — quh)lmAh (ec, 6@)1/

+ A(up — 7wy, up, — H,F:luh)lmfl(e@, e¢)1/2.

2

(4.24)

Then, in (4.24) we use the stability property (3.8), the H' continuity of A, and the results of Lemma 4.6 and
we obtain the final inequality

1/2
T. < C A (up, — I} g, up — I up ) / lee|m (o)
1/2
<C ( > (U§)2> lelm (o) (4.25)
Pe2,

Finally, the assertion of Theorem 4.1 follows by combining equation (4.16) with inequalities (4.20), (4.23)
and (4.25).

We end this section with the following corollary, which states that the error estimator 7 is also a bound from
above of the approximation error.

Corollary 4.7. Under the same mesh assumptions of Theorem 4.1 it holds

lu— uhH%{l(Q) + Z lu— H:;,“E—P(P) <cn?
Pes2,

with C' independent of h.
Proof. From the stability property in (3.8) and the coercivity/continuity properties in H' of Ap it follows that
np = un — Iy up i ey, (4.26)

where the equivalence holds up to mesh independent constants. Therefore, by using the triangle inequality, the
bound in (4.26) and the H' continuity of the projection II7 we have

|lu — HE’LL|H1(p) < |u-— ’LLh|H1(p) + |up, — quh‘Hl(p) + |H7':,uh — HE’LL|H1(p)
< O (lu—unlmipy +15) -
The assertion of the corollary follows from summing over all the elements and applying Theorem 4.1. O

4.3. Efficiency of the error estimator

In the present section we discuss the efficiency of our error estimator. For simplicity, we assume that the
loading term f is a piecewise polynomial of a fixed degree. This is a rather standard assumption in deriving the
efficiency of error estimators, that allows to neglect oscillation effects (see for instance [17,25]).

Theorem 4.8. Let f be a piecewise polynomial of a fized degree. Under the same assumptions of Theorem 4.1
and the assumption above on f, it holds

(np)* + (np)? + (np)> < C (|U — unlfppy + Ju— quuﬁ{l(P)) VP € (2,

with C' independent of P.
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Proof. We show this proof briefly. The consistency term 75 can be bounded through (4.26) and the triangle
inequality

np < |up — U‘H1(p) + |u— H&“|H1(P) + \H,'Zu — Hf:luh‘}p(P),
and, then, by recalling the H' continuity of the projection operator IT7 .

To derive an upper bound for the residual term 7p, we first add and subtract Auy p, and, then, we apply the
triangle inequality to obtain

b < hellf + Aunpllc2ey + hell(T = 7},) Auppll2(p) (4.27)

where Z denotes the identity operator. As f is polynomial on each element by hypothesis, the first term in the
right-hand side of inequality(4.27) can be bounded using standard techniques of the finite element analysis (see
for instance [38])
hellf + Aunpllr2p) < Clu — un|m(p).
For the second term in (4.27), we make use of the same argument as in the derivation of (4.19). More precisely,
from the definition of ﬂ; and the fact that AH,';uh € P,,,_2(P) it follows that

1(Z = ) Aunpll 2y = (T = ) Alunp — iun)l| 22 p)-
The above bound, the L? continuity of 77, and the inverse estimate (4.5) yield the inequality
hp|[(Z — Fz)AUh7p||L2(P) < Clupp — H::th‘Hl(P). (4.28)

Finally, the bound for the second term in (4.27) follows from (4.28), (4.26) and from recalling that the term ng
has already been bounded.
For the loading term, by using (2.1) and the definition of the discrete load in Section 3.5 we have

b = hel|Au — 7y Aul| L2 (p) = hp||(T — 7o) Al L2(p).-
Then, from arguments and manipulations similar to those used above for the nj term, we obtain
1b < hell Alu — IT50) | 2(e). (4.20)

Let us now recall that f = —Au is a piecewise polynomial of a given degree on P and the same holds for A(IIP u).
Therefore, from multiplication by a bubble function and usual techniques in a-posteriori error estimation it
follows that (4.29) that

b < Clu — Iy ul g py

with C is a constant factor independent of the element P. O

Remark 4.9. The result above shows that the error estimator is bounded by the error plus an approximation
term of the same order, ensuing from the (necessary) projections in the estimator. Note that, as shown in
Corollary 4.7, the error estimator 7 is an upper bound also for such approximation term.

5. NUMERICAL EXPERIMENTS

In this section, we investigate the behavior of the error estimator by solving the boundary value problem (2.3)
in two benchmark cases that differ in the shape of the computational domain {2 and in the regularity of the
exact solution. We show the performance of the estimator coupled with a simple mesh adaptive strategy by
comparing the convergence errors obtained on a sequence of meshes that are either uniformly or adaptively
refined starting from a given base mesh. These meshes are formed by different types of cells such as pattern-
distorted quadrilaterals and hexagons. The first mesh of each sequence is shown in Figure 2. Other choices of
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1

R
R

FIGURE 2. The starting mesh of the sequence of adaptive and uniform refinement for test case 1
(left plot) and test case 2 (right plot).

cells were considered in a preliminary stage of this work in agreement with the mesh regularity constraint of
Assumption 1 and using these meshes we obtained very similar results.

The uniform refinement process is implemented by generating the refined mesh with a finer mesh size param-
eter. Specific details are given in the description of each test case. This strategy preserves the conformity and
shape regularity of the mesh. Instead, an adaptively refined mesh is generated from a given mesh by refining
each element that has been marked for refinement in accordance with the local error estimate provided by
our error indicator. To refine a marked element P with zp vertices and edges we subdivide it into zp nested
sub-elements by connecting the edge midpoints of each pair of consecutive edges of OP to the center of P. As all
the cells of these meshes are convex, we take the barycenter of P as such internal point. All the sub-elements
generated by this process are quadrilaterals disregarding the shape of the parent mesh element. Starting from
the coarsest base mesh, the adaptively refinement strategy proceeds as follows:

(i) we calculate all the local element error indicators np, for P € (2p;
(ii) we sort the elements in accordance with the value of the estimated error;

(iii) we mark the elements for refinement starting from the one with the biggest estimated error until one of
the two following conditions is satisfied:

e at least 20% of the elements has been marked;
e the sum of the estimated errors 7p of the cells that are marked for refinement is bigger than an assigned
fraction (typically 30-50%) of the total estimated error;

(iv) we sub-divide all marked elements as described above.

This strategy preserves the shape regularity of the base mesh but leads in general to non-conforming meshes,
which are still acceptable for the VEM. As the VEM can be applied to non-conforming meshes, we avoid the
artificial refinement of the unmarked neighboring elements as is required, for example, in the red-blue-green
strategies for triangular meshes [38]. Note that the theoretical error estimates for the method are valid for
mesh families with the uniform bound on the number of edges required by our mesh regularity assumptions.
Therefore, we should, in principle, insert an automatic check in order to avoid an uncontrolled growth of the
number of hanging nodes. However, in all the tests that we performed, the presence of such a check proved
almost worthless as the number of edges per element seemed to stay naturally rather limited.
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For each test case, we first present a plot of the convergence errors for the uniform and the adaptive refinement,
followed by a plot for the three different terms

1/2
n* = ( Z (77;)2> with x=rl,c

Pe 2,

where 75, nb, and ng are defined in (4.4), (4.5), (4.6), respectively. We also show a picture of the adaptively
refined mesh for each adaptive calculation at an intermediate refinement step. Finally, we present a comparison
(ratio) between the estimated error n and the error ||u —up||1 5, evaluated in a discrete H'-type norm described
below. Although such quantity is not a true efficienty index (the reason being that we are not using exactly the
H'! norm in evaluating the error), the ratio above still gives valuable information on the estimator’s behaviour.

Since the discrete solution uy, is unknown inside the element, we evaluate the H'-norm of the error through
the following mesh-dependent norm:

[lvnllf = (5-1)

Pe2;,

where each term th||ih7P is a local approximation of the square of the energy seminorm of vy,. For m > 2, this
local contribution reads as:

= Z he |’Uh|§{1(e) + Z he|OnvnZa(e)

ecoP ecOP

<F1)/vhdv m,p> +Z > (|P/vhqdv>2, (5.2)

J=1 geM;(

where T, p is the arithmetic mean of the values that vy, takes at the N,l} " vertices of the element P (here denoted
by v,), i.e

Tpp = NV;L Z Vy. (5.3)
veorP

It is easy to check that the kernel of seminorm (5.2) is given by the constant functions, and that this seminorm
scales like the H'-seminorm. Therefore, norm ||-||1 5 represents an H'-type discrete norm. Recalling Theorem 3.7,
we therefore expect that, under the same hypotheses, the rate of convergence measured by norm (5.1) will satisfy

lun = ull1,np < CA™ ‘u|Hm+1(Q) )
as it holds for the H'-norm.

5.1. Test Case 1: the L-shaped domain

Let us consider the boundary value problem (2.3) on the L-shaped domain obtained by carving out the
lower right quarter from the square domain [—1,1]?. The source term f is zero everywhere, and the boundary
conditions are set in accordance with the exact solution

u(r,0) = 1%/ sin(26/3),
which is here expressed in terms of the polar coordinates (r, 8) in the plane. The initial grid adopted in this test
is given by applying a coordinate transformation mapping
x =&+ ¢sin(2w€) sin(27(),
y = ( + ¢sin(27E) sin(27(),
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F1GURE 3. Test 1. Solution with a corner singularity on an L-shaped domain using distorted
quadrilateral meshes. Relative error curves for the adaptively refined calculations (circles) and
the uniformly refined calculations (squares) for the virtual element schemes using m = 2 (left
plot) and m = 3 (right plot).

with distortion parameter ¢ = 1 to a regular grid of squares in the coordinates system (&, (), see, e.g., refer-
ence [22] for more details. Although the load is regular, the exact solution u is only in H°/3(§2) due to the
presence of the re-entrant corner. Thus, the expected asymptotic rate of convergence on the sequence of the
uniformly refined meshes is err = O(N~1/3), where N is the total number of degrees of freedom, since on such
meshes the scaling N = O(h~?) approximately holds. Conversely, a successful adaptive strategy should recover
the optimal convergence rate of regular problems, which is err = O(N~"/2). Therefore, we expect err = O(N 1)
for quadratic polynomials and err = O(N =3/2) for cubic polynomials.

We illustrate the numerical results Figures 3-5 and the refined meshes in Figure 6. The plots on the left
refer to the calculations for m = 2, the plots on the right to the calculations for m = 3. The good behavior
of the adaptive strategy combined with the a-posteriori estimator is reflected by the slopes of the error curves
of the two plots in Figure 3. These errors are marked by circles when the meshes are adaptively refined and
by squares when the meshes are uniformly refined. The slopes of the error curves are close to —1 for m = 2
and —3/2 for m = 3 for the adaptive calculations, while they are close to —1/3 when the meshes are uniformly
refined in agreement with the regularity of the solution. The plots in Figure 4 show the behavior of the different
terms forming the error estimator in Theorem 4.1, i.e., 5" (circles) and 7° (squares). Since the load term of this
problem is zero, the third term 7' is always zero and is not displayed. As expected from theoretical consideration,
these two terms properly scale like O(N~"/2). The two plots in Figure 5 show the good (robust in ) behavior
of the ratio among 7 and the discrete H'-type norm of the error ||u — upl|1 5. The two plots in Figure 6 show
how the adaptive strategy correctly refines near the re-entrant corner.

5.2. Test Case 2: load with strong internal layer

In this test case, we consider the boundary value problem (2.3) defined on the square domain 2 =10, 1[?> by
choosing the boundary conditions and the load term consistent with the exact solution:

u(z,y) = 162(1 — z)y(1 — y) arctan(25z — 100y + 50), (x,y) € £2.
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F1GURE 5. Test 2. Solution with a corner singularity on an L-shaped domain using distorted
quadrilateral meshes. Ratio among 1 and |[u — up||1,5 for the virtual element schemes using
m = 2 (left plot) and m = 3 (right plot).

The starting mesh for both uniformly and adaptively refined calculations is mainly formed by hexagons built
by a dualization procedure from a uniform triangle-based mesh.

As the exact solution u belongs to H?(§2) and the domain 2 is regular, the asymptotic convergence rate of the
numerical approximation on uniformly and adaptively refined meshes is expected to be err = O(N -1/ 2), where
N is the total number of degrees of freedom, because of the approximate scaling N = O(h~?2). Nonetheless, the
exact solution u is characterized by a region with a very strong gradient around the line of equation y = 1/2+x/4
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FI1GURE 6. Test 1. The mesh after four adaptive refinements for the virtual element schemes
using m = 2 (left plot) and m = 3 (right plot).
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F1GURE 7. Test 2. Strong internal layer solution on a square domain using mainly hexagonal
meshes. Relative error curves for the adaptively refined calculations (circles) and the uniformly
refined calculations (squares) for the virtual element schemes using m = 2 (left plot) and m = 3
(right plot).

and the numerical approximation to v will attain the theoretical convergence rate only after that this internal
layer has been resolved. To resolve this internal layer requires that the size of the elements in this strong gradient
region become sufficiently small. When the mesh is uniformly refined such meshes are characterized by a very
large number of mesh elements N and the VEM requires a huge number of degrees of freedom. Conversely,
we expect the solutions obtained with the adaptive strategy to follow the theoretical rate in N also for rather
inexpensive grids.

We illustrate the numerical results in Figures 7-9 and the refined meshes in Figure 10. As for the previous
test case, the plots on the left refer to the calculations for m = 2, the plots on the right to the calculations
for m = 3. The two plots in Figure 7 shows the curves for the approximation errors given by the adaptive
strategy driven by the a-posteriori estimator (circles) and when the uniform refinement is adopted (squares).
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FI1GURE 8. Test 2. Strong internal layer solution on a square domain using mainly hexagonal
meshes. Estimator terms " (circles), ' (squares) and 7° (diamonds) for the scheme with m = 2
(left plot) and m = 3 (right plot).
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FIGURE 9. Test 2. Strong internal layer solution on a square domain using mainly hexagonal
meshes. Ratio among n and ||u — up|1,, for the scheme with m = 2 (left plot) and m = 3 (right
plot).

In both cases, the slopes of the error curves are asymptotically close to —1 for m = 2 and 3/2 for m = 3 for
the adaptive calculations. However, the adaptive strategy requires about one tenth of the degrees of freedom
of the uniformly refined strategy to provide a numerical solution with about the same level of accuracy. The
plots in Figure 8 show the behavior of the different terms forming the error estimator in (4.4), (4.5), and (4.6),
i.e., n" (circles), n (squares), and n° (diamonds). As expected from theoretical consideration, these two terms
properly scale like O(N~"/2). The two plots in Figure 9 show the good (robust in k) behavior of the ratio
among 7 and the discrete H'-type norm of the error ||u — up||1,,. Note moreover that the value of such ratio is,
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1

FIGURE 10. Test 2. The mesh after four adaptive refinements for the scheme with m = 2 (left
plot) and m = 3 (right plot).

for Test cases 1,2 (and fixed m = 2 or 3), always around the same value. This seems to indicate a robustness of
the error indicator also with respect to the problem and not only with respect to the mesh. Such observation
suggests that a rather accurate indication of the global error could be computed by scaling the estimator by a
fixed factor depending on m. A thorough numerical investigation would be required to assess this point. Finally,
the two plots in Figure 10 show how the adaptive strategy correctly refines in a neighborhood of the internal
layer.

6. CONCLUSIONS

A residual based a posteriori error estimator for the virtual element method introduced in reference [9] was
proposed. Indeed, the mesh flexibility of the virtual element method makes it a very appealing ground for the
application of mesh adaptation strategies. The challenge in this work is that the lack of knowledge of the basis
functions makes the development and theoretical analysis of error estimators rather involved. The reliability
and efficiency of the estimator was theoretically proved and its performance in combination with an adaptive
strategy was investigated numerically.
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