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ON THE STABLE NUMERICAL APPROXIMATION OF TWO-PHASE FLOW
WITH INSOLUBLE SURFACTANT
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Abstract. We present a parametric finite element approximation of two-phase flow with insoluble
surfactant. This free boundary problem is given by the Navier–Stokes equations for the two-phase flow
in the bulk, which are coupled to the transport equation for the insoluble surfactant on the interface
that separates the two phases. We combine the evolving surface finite element method with an approach
previously introduced by the authors for two-phase Navier–Stokes flow, which maintains good mesh
properties. The derived finite element approximation of two-phase flow with insoluble surfactant can
be shown to be stable. Several numerical simulations demonstrate the practicality of our numerical
method.
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1. Introduction

The presence of surface active agents (surfactants) has a noticeable effect on the deformation of fluid-fluid
interfaces, because these impurities lower the surface tension. In addition, surfactant gradients along the fluid-
fluid interface cause tangential stresses leading to fluid motion (the Marangoni effect). As a result, the presence
of surfactants can have a dramatic effect on droplet shapes during their evolution. Surfactants are applied in a
wide range of technologies to increase the efficiency of wetting agents, detergents, foams and emulsion stabilisers.

In this paper we study the effect of an insoluble surfactant in a two-phase flow. The mathematical model
consists of the Navier–Stokes equations in the two phases, together with jump conditions at the free boundary
separating the two phases. In particular, the Laplace–Young condition has to hold, which is a force balance
involving forces resulting from the two fluids. These forces are expressed with the help of the stress tensor
as well as surface tension forces and tangential Marangoni forces, where the latter two involve the surfactant
concentration. The insoluble surfactant is transported on the interface by advection and possibly by diffusion.
The overall system is quite complex, as a free boundary problem for the Navier–Stokes equations and an
advection-diffusion equation on the evolving interface have to be solved simultaneously.

The mathematical analysis for the two-phase fluid flow problem with surfactants is still in its early stages.
We refer to [26], where a dissipation inequality for free surface flow with an insoluble surfactant was derived,
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and to [12–14], where well-posedness and stability of equilibria for two-phase flows with soluble surfactants
were shown. In particular, in [13] an energy inequality was crucial in order to study the stability of equilibria.
Although these two-phase results are for soluble surfactants, the techniques should be applicable to show local
existence of strong solutions for the case of insoluble surfactants. To the best of the authors’ knowledge no
existence and uniqueness results for two-phase flow with insoluble surfactants are available in the literature at
present. In this paper, it is our aim to develop a numerical method that fulfills a discrete variant of this energy
inequality and, in addition, conserves the surfactant mass and the volume of the two phases. Here we note that
many of the existing numerical methods for two-phase flow with insoluble surfactant may lose mass of one of
the fluid phases, or may face stability issues. In fact, to our knowledge, the numerical method presented in this
paper is the first approximation of two-phase flow with insoluble surfactant in the literature that can be shown
to satisfy a discrete energy law.

Different interface capturing and interface tracking methods have been used to numerically compute two-
phase flows with (in-)soluble surfactants. Popular such approaches are volume of fluid methods, [1, 17, 30, 35];
level set methods, [28, 38, 40, 41]; front tracking methods, [31–33,39] and arbitrary Lagrangian-Eulerian meth-
ods, [24, 34, 42]. Another approach to model and numerically simulate two-phase fluids involving surfactants
involves diffuse interface approaches and we refer to [21, 25, 37] and [23] for details.

In this work we use parametric finite elements to describe the fluid-fluid interface with an unfitted coupling
to the fluid flow in the bulk, which is also discretized with the help of finite elements. Unfitted in this context
means that the mesh points used to describe the interface are not, in general, mesh points of the underlying bulk
finite element mesh. Our approach is based on earlier work by the authors on two-phase flow for incompressible
Stokes and Navier–Stokes flow involving surface tension effects, see [3,9] for details. As mentioned above, apart
from capturing the interface in a two-phase flow, one also has to accurately capture the advection and diffusion
of the surfactant on the interface. Here we make use of a variant of the evolving surface finite element method
(ESFEM) introduced in [19,20]. In order to accurately discretize the advection-diffusion equation on the evolving
interface, it is important to evolve the grid points representing the interface in such a way, that the mesh does
not degenerate. In particular, it is important to avoid the coalescence of vertices or a velocity induced coarsening
at parts of the interface, see e.g. Figures 2 and 3 in Section 5. It turns out that moving vertices with the fluid
velocity or with the normal part of the fluid velocity typically leads to mesh degeneracies. Hence in this paper
we follow the approach from [3] and allow the grid points to have a tangential velocity that is independent of
the surrounding fluid motion. We note that the idea to allow for an implicit, nonzero discrete tangential velocity
goes back to earlier work by the present authors, who introduced novel numerical methods with excellent mesh
properties for curvature driven flows and moving boundary problems in e.g. [6–8]. In fact, we are able to show
that our semidiscrete continuous-in-time finite element approximations lead to equidistributed mesh points on the
interface in two space dimensions, and to conformal polyhedral surfaces, which also have good mesh properties,
in three space dimensions. Using this approach also ensures that, due to the good mesh properties, the surface
partial differential equation for the insoluble surfactant can be solved accurately.

An important issue in surface tension driven flows is to compute curvature quantities with the help of the
chosen interface representation. Our approach uses a parametric approximation of the interface, and hence we
use a variant of an idea by Dziuk to compute the mean curvature. In fact, in [18] the identity

Δs
�id = �κ, (1.1)

is used in a discrete setting to compute an approximation of the mean curvature. Here Δs is the Laplace–
Beltrami operator, �κ is the mean curvature vector and �id denotes the identity function in R

d. This idea was
used in [2] for an approximation of free capillary flows, and in [11] for two-phase flows. A discretization of
a variant of (1.1) was used by the present authors in [3, 9] to derive approximations of two-phase flow with
better mesh properties. As mentioned above, this approach leads to tangential motion of the mesh points on the
interface that is independent of the fluid motion. This has to be taken into account when solving the advection-
diffusion equation on the interface, and in our case we naturally obtain the so-called arbitrary Lagrangian
Eulerian evolving surface finite element method (ALE ESFEM), see [22].
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The structure of this article is as follows. In the next section we first state the mathematical formulation
of the problem and discuss the relevant conserved quantities and an energy identity. In addition, different
weak formulations are introduced, which form the basis for the semidiscrete (continuous-in-time) finite element
approximations in Section 3 and their fully discrete counterparts in Section 4. In each case we state finite element
approximations based on two different approaches for the approximation of curvature. The first method uses the
curvature discretization from [18], and we denote the resultant semidiscrete scheme by (Asd), see Section 3.1.
The second method uses the curvature discretization introduced by the present authors in [3,6,7], and we denote
this semidiscrete scheme by (Bsd), see Section 3.2. The corresponding fully discrete finite element schemes are
denoted by (Afd) and (Bfd), see Section 4.1 and Section 4.2, respectively. Let us now state the main features of
the different finite element approximations.

(a) Stability and energy bounds.
The semidiscrete methods (Asd) and (Bsd) fulfill an energy inequality in two space dimensions.

(b) Mass (volume) conservation of the phases.
An XFEM variant of (Bsd), which only uses one additional basis function, leads to exact mass (volume)
conservation of the two phases.

(c) Conservation of the total amount of surfactant concentration.
The semidiscretizations (Asd), (Bsd) and the fully discrete methods (Afd), (Bfd) all conserve the total sur-
factant concentration.

(d) Discrete maximum principle for the surfactant concentration.
The semidiscrete approximation (Asd) allows for a discrete maximum principle, i.e. the surfactant concen-
tration remains nonnegative if the initial concentration has this property. A weaker lower bound can be
shown for the surfactant concentration of the scheme (Bsd), see Remark 3.7 below.

(e) Interface mesh quality.
For the semidiscrete version (Bsd) good mesh properties can be shown, i.e., in particular, in two space
dimensions for each time the distance between consecutive mesh points is constant. In practice this leads to
very good mesh properties also for the fully discrete method (Bfd). The discretizations (Asd), (Afd) can lead
to a poor mesh quality resulting, for example, in the coalescence of grid points.

(f) Existence and uniqueness.
For the fully discrete approximations (Afd), (Bfd) existence and uniqueness can be shown. In contrast, no
existence and uniqueness results are known for the semidiscrete versions (Asd) and (Bsd).

In Section 5 we present several numerical simulations for (Afd) and (Bfd), in both two and three space dimensions,
which in particular show the effect of surfactants on the interface evolution. Taking the above list of properties
and the numerical simulations presented into account, we prefer the method (Bfd) in practice.

2. Mathematical formulation

2.1. Governing equations

Let Ω ⊂ Rd be a given domain, where d = 2 or d = 3. We now seek a time dependent interface (Γ (t))t∈[0,T ],
Γ (t) ⊂ Ω, which for all t ∈ [0, T ] separates Ω into a domain Ω+(t), occupied by one phase, and a domain
Ω−(t) := Ω \Ω+(t), which is occupied by the other phase. Here the phases could represent two different liquids,
or a liquid and a gas. Common examples are oil/water or water/air interfaces. See Figure 1 for an illustration.
For later use, we assume that (Γ (t))t∈[0,T ] is a sufficiently smooth evolving hypersurface without boundary that
is parameterized by �x(·, t) : Υ → Rd, where Υ ⊂ Rd is a given reference manifold, i.e. Γ (t) = �x(Υ, t). Then

�V(�z, t) := �xt(�q, t) ∀ �z = �x(�q, t) ∈ Γ (t) (2.1)
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Γ(t)

Ω−(t)

Ω+(t)

Figure 1. The domain Ω in the case d = 2.

defines the velocity of Γ (t), and �V . �ν is the normal velocity of the evolving hypersurface Γ (t), where �ν(t) is the
unit normal on Γ (t) pointing into Ω+(t). Moreover, we define the space-time surface

GT :=
⋃

t∈[0,T ]

Γ (t) × {t}. (2.2)

Let ρ(t) = ρ+ XΩ+(t) + ρ−XΩ−(t), with ρ± ∈ R>0, denote the fluid densities, where here and throughout
XA defines the characteristic function for a set A. Denoting by �u : Ω × [0, T ] → Rd the fluid velocity, by
σ : Ω × [0, T ] → Rd×d the stress tensor, and by �f : Ω × [0, T ] → Rd a possible forcing, the incompressible
Navier–Stokes equations in the two phases are given by

ρ (�ut + (�u.∇) �u) −∇. σ = �f := ρ �f1 + �f2 in Ω±(t), (2.3a)
∇. �u = 0 in Ω±(t), (2.3b)

�u = �0 on ∂1Ω, (2.3c)

�u.�n = 0, σ �n.�t = 0 ∀ �t ∈ {�n}⊥ on ∂2Ω, (2.3d)

where ∂Ω = ∂1Ω ∪ ∂2Ω, with ∂1Ω ∩ ∂2Ω = ∅, denotes the boundary of Ω with outer unit normal �n and
{�n}⊥ := {�t ∈ Rd : �t. �n = 0}. Hence (2.3c) prescribes a no-slip condition on ∂1Ω, while (2.3d) prescribes a
free-slip condition on ∂2Ω. In addition, the stress tensor in (2.3a) is defined by

σ = μ (∇ �u + (∇ �u)T ) − p Id = 2μD(�u) − p Id, (2.4)

where Id ∈ Rd×d denotes the identity matrix, D(�u) := 1
2 (∇�u + (∇�u)T ) is the rate-of-deformation tensor,

p : Ω × [0, T ] → R is the pressure and μ(t) = μ+ XΩ+(t) + μ− XΩ−(t), with μ± ∈ R>0, denotes the dynamic
viscosities in the two phases. On the free surface Γ (t), the following conditions need to hold:

(a) [�u]+− = �0, (b) [σ �ν]+− = −γ(ψ) κ �ν −∇s γ(ψ), (c) �V. �ν = �u. �ν on Γ (t), (2.5)

where γ ∈ C1([0, ψ∞)), with ψ∞ ∈ R>0 ∪ {∞} and

γ′(r) ≤ 0 ∀ r ∈ [0, ψ∞), (2.6)

denotes the surface tension which depends on the surfactant concentration ψ : GT → [0, ψ∞), recall (2.2), and
∇s denotes the surface gradient on Γ (t). In addition, κ denotes the mean curvature of Γ (t), i.e. the sum of
the principal curvatures of Γ (t), where we have adopted the sign convention that κ is negative where Ω−(t) is
locally convex. In particular, on letting �id denote the identity function in Rd, it holds that

Δs
�id = κ �ν =: �κ on Γ (t), (2.7)
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where Δs = ∇s.∇s is the Laplace–Beltrami operator on Γ (t), with ∇s. denoting surface divergence on Γ (t).
Moreover, as usual, [�u]+− := �u+ − �u− and [σ �ν]+− := σ+ �ν − σ− �ν denote the jumps in velocity and normal
stress across the interface Γ (t). Here and throughout, we employ the shorthand notation �g± := �g |Ω±(t) for a
function �g : Ω × [0, T ] → Rd; and similarly for scalar and matrix-valued functions. The surfactant transport
(with diffusion) on Γ (t) is then given by

∂•t ψ + ψ∇s.�u−∇s. (DΓ ∇s ψ) = 0 on Γ (t), (2.8)

where DΓ ≥ 0 is a diffusion coefficient, and where

∂•t ζ = ζt + �u.∇ ζ ∀ ζ ∈ H1(GT ) (2.9)

denotes the material time derivative of ζ on Γ (t). Here we stress that the derivative in (2.9) is well-defined,
and depends only on the values of ζ on GT , even though ζt and ∇ ζ do not make sense separately; see e.g. [20],
page 324. The system (2.3a–d), (2.4), (2.5), (2.8) is closed with the initial conditions

Γ (0) = Γ0, ψ(·, 0) = ψ0 on Γ0, �u(·, 0) = �u0 in Ω, (2.10)

where Γ0 ⊂ Ω, �u0 : Ω → Rd, with ∇. �u0 = 0, and ψ0 : Γ0 → [0, ψ∞) are given initial data.
For later purposes, we introduce the surface energy function F , which satisfies

γ(r) = F (r) − r F ′(r) ∀ r ∈ (0, ψ∞), (2.11a)

and
lim
r→0

r F ′(r) = F (0) − γ(0) = 0. (2.11b)

This means in particular that
γ′(r) = −r F ′′(r) ∀ r ∈ (0, ψ∞). (2.12)

It immediately follows from (2.12) and (2.6) that F ∈ C([0, ψ∞)) ∩ C2(0, ψ∞) is convex. Typical examples for
γ and F are given by

γ(r) = γ0 (1 − β r), F (r) = γ0 [1 + β r (ln r − 1)] , ψ∞ = ∞, (2.13a)

which represents a linear equation of state, and by

γ(r) = γ0

[
1 + β ψ∞ ln

(
1 − r

ψ∞

)]
, F (r) = γ0

[
1 + β

(
r ln

r

ψ∞ − r
+ ψ∞ ln

ψ∞ − r

ψ∞

)]
, (2.13b)

the so-called Langmuir equation of state, where γ0 ∈ R>0 and β ∈ R≥0 are further given parameters, where we
note that the special case β = 0 means that (2.13a,b) reduce to

F (r) = γ(r) = γ0 ∈ R>0 ∀ r ∈ R. (2.14)

Moreover, we observe that (2.13a) can be viewed as a linearization of (2.13b) in the sense that γ in (2.13a) is
affine, and γ and γ′ agree at the origin with γ and γ′ from (2.13b).

2.2. Weak formulation with fluidic tangential velocity

Before introducing our finite element approximation, we will state an appropriate weak formulation. With
this in mind, we introduce the function spaces

U := {�ϕ ∈ [H1(Ω)]d : �ϕ = �0 on ∂1Ω, �ϕ.�n = 0 a.e. on ∂2Ω}, P := L2(Ω),

P̂ := {η ∈ P :
∫

Ω

η dLd = 0}, V := L2(0, T ; U) ∩H1(0, T ; [L2(Ω)]d), S := H1(GT ).
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Let (·, ·) and 〈·, ·〉Γ (t) denote the L2–inner products on Ω and Γ (t), respectively. We recall from [3] that it follows
from (2.3b–d) and (2.5c) that

(ρ (�u.∇) �u, �ξ) =
1
2

[
(ρ (�u.∇) �u, �ξ) − (ρ (�u.∇) �ξ, �u) −

〈
[ρ]+− �u. �ν, �u. �ξ

〉
Γ (t)

]
∀ �ξ ∈ [H1(Ω)]d (2.15)

and
d
dt

(ρ �u, �ξ) = (ρ �ut, �ξ) + (ρ �u, �ξt) −
〈
[ρ]+− �u. �ν, �u. �ξ

〉
Γ (t)

∀ �ξ ∈ V,

respectively. Therefore, it holds that

(ρ �ut, �ξ) =
1
2

[
d
dt

(ρ �u, �ξ) + (ρ �ut, �ξ) − (ρ �u, �ξt) +
〈
[ρ]+− �u. �ν, �u. �ξ

〉
Γ (t)

]
∀ �ξ ∈ V,

which on combining with (2.15) yields that

(ρ [�ut + (�u.∇) �u], �ξ) =
1
2

[
d
dt

(ρ �u, �ξ) + (ρ �ut, �ξ) − (ρ �u, �ξt) + (ρ, [(�u.∇) �u]. �ξ − [(�u.∇) �ξ]. �u)
]

∀ �ξ ∈ V. (2.16)

Moreover, it holds on noting (2.3d) and (2.5b) that for all �ξ ∈ U∫
Ω+(t)∪Ω−(t)

(∇. σ). �ξ dLd = −2 (μD(�u), D(�ξ)) + (p,∇. �ξ) +
〈
γ(ψ) κ �ν + ∇s γ(ψ), �ξ

〉
Γ (t)

. (2.17)

Similarly to (2.9) we define the following time derivative that follows the parameterization �x(·, t) of Γ (t),
rather than �u. In particular, we let

∂◦t ζ = ζt + �V .∇ ζ ∀ ζ ∈ S, (2.18)

recall (2.1). Here we stress once again that this definition is well-defined, even though ζt and ∇ ζ do not make
sense separately for a function ζ ∈ S. On recalling (2.9) we obtain that

∂◦t = ∂•t if �V = �u on Γ (t). (2.19)

We note that the definition (2.18) differs from the definition of ∂◦ in [20], page 327, where ∂◦ ζ = ζt+(�V. �ν)�ν.∇ ζ
for the “normal time derivative”. It holds that

d
dt

〈χ, ζ〉Γ (t) = 〈∂◦t χ, ζ〉Γ (t) + 〈χ, ∂◦t ζ〉Γ (t) +
〈
χ ζ,∇s. �V

〉
Γ (t)

∀ χ, ζ ∈ S, (2.20)

see [20], Lemma 5.2, and that

〈ζ,∇s. �η〉Γ (t) + 〈∇s ζ, �η〉Γ (t) = −〈ζ �η, �κ〉Γ (t) ∀ ζ ∈ H1(Γ (t)), �η ∈ [H1(Γ (t))]d, (2.21)

see [20], Definition. 2.11. For later use we remark that it follows from (2.21) that〈
γ(ψ) �κ + ∇s γ(ψ), �ξ

〉
Γ (t)

=
〈
γ(ψ) κ �ν + ∇s γ(ψ), �ξ

〉
Γ (t)

= −
〈
γ(ψ),∇s. �ξ

〉
Γ (t)

∀ �ξ ∈ U. (2.22)

The natural weak formulation of the system (2.3a–d), (2.4), (2.5), (2.8), which is based on �V = �u |Γ (t) as
opposed to (2.5c), is then given as follows. Find Γ (t) = �x(Υ, t) for t ∈ [0, T ] with �V ∈ [L2(GT )]d, and functions
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�u ∈ V, p ∈ L2(0, T ; P̂), �κ ∈ [L2(GT )]d and ψ ∈ S such that for almost all t ∈ (0, T ) it holds that

1
2

[
d
dt

(ρ �u, �ξ) + (ρ �ut, �ξ) − (ρ �u, �ξt) + (ρ, [(�u.∇) �u]. �ξ − [(�u.∇) �ξ]. �u)
]

+ 2 (μD(�u), D(�ξ)) − (p,∇. �ξ) −
〈
γ(ψ) �κ + ∇s γ(ψ), �ξ

〉
Γ (t)

= (�f, �ξ) ∀ �ξ ∈ V, (2.23a)

(∇. �u, ϕ) = 0 ∀ ϕ ∈ P̂, (2.23b)〈
�V − �u, �χ

〉
Γ (t)

= 0 ∀ �χ ∈ [L2(Γ (t))]d, (2.23c)

〈�κ, �η〉Γ (t) +
〈
∇s

�id,∇s �η
〉

Γ (t)
= 0 ∀ �η ∈ [H1(Γ (t))]d, (2.23d)

d
dt

〈ψ, ζ〉Γ (t) + DΓ 〈∇s ψ,∇s ζ〉Γ (t) = 〈ψ, ∂◦t ζ〉Γ (t) ∀ ζ ∈ S, (2.23e)

as well as the initial conditions (2.10), where in (2.23c) we have recalled (2.1). Here (2.23a–d) can be derived
analogously to the weak formulation presented in [3], recall (2.16) and (2.17), while (2.23e) is a direct consequence
of (2.20) and (2.21); see [20]. Of course, it follows from (2.23c) and (2.19) that ∂◦t in (2.23e) can be replaced
by ∂•t .

Remark 2.1. For ease of presentation, in this paper we restrict ourselves to the case of two-phase Navier–
Stokes flow, i.e. ρ± > 0. However, it is a simple matter to generalize the results in this paper to two-phase
Stokes flow in the bulk, i.e. to ρ+ = ρ− = 0. For example, the weak formulation (2.23a–e) then holds with
ρ = 0 and with V replaced by L2(0, T ; U); and analogous simplifications can be applied to the finite element
approximations that will be introduced later in this paper, see also [9]. For example, the presented fully discrete
schemes in Section 4 are valid for arbitrary choices of ρ± ≥ 0.

2.3. Energy bounds

In what follows we would like to derive an energy bound for a solution of (2.23a–e). All of the following con-
siderations are formal, in the sense that we make the appropriate assumptions about the existence, boundedness
and regularity of a solution to (2.23a–e). In particular, we assume that ψ ∈ [0, ψ∞). Choosing �ξ = �u in (2.23a)
and ϕ = p(·, t) in (2.23b) yields that

1
2

d
dt

‖ρ 1
2 �u‖2

0 + 2 ‖μ 1
2 D(�u)‖2

0 = (�f, �u) + 〈γ(ψ) �κ + ∇s γ(ψ), �u〉Γ (t) . (2.24)

In what follows, assuming that γ is not constant, recall (2.14), we would like to choose ζ = F ′(ψ) in (2.23e). As
F ′ in general is singular at the origin, recall (2.12), we instead choose ζ = F ′(ψ + α) for some α ∈ R>0 with
ψ + α < ψ∞. Then we obtain, on recalling (2.11a) and (2.20), that

d
dt

〈F (ψ + α) − γ(ψ + α), 1〉Γ (t) + DΓ 〈∇s (ψ + α),∇s F
′(ψ + α)〉Γ (t)

= 〈ψ + α, ∂◦t F
′(ψ + α)〉Γ (t) + α

〈
F ′(ψ + α),∇s. �V

〉
Γ (t)

. (2.25)

Moreover, choosing χ = γ(ψ + α), ζ = 1 in (2.20), and then choosing �η = �V, ζ = γ(ψ + α) in (2.21) leads to

d
dt

〈γ(ψ + α), 1〉Γ (t) = 〈∂◦t γ(ψ + α), 1〉Γ (t) +
〈
γ(ψ + α),∇s. �V

〉
Γ (t)

= 〈∂◦t γ(ψ + α), 1〉Γ (t) −
〈
γ(ψ + α) �κ + ∇s γ(ψ + α), �V

〉
Γ (t)

. (2.26)
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In addition, it follows from (2.12) that

∂◦t γ(ψ + α) = γ′(ψ + α) ∂◦t ψ = −(ψ + α)F ′′(ψ + α) ∂◦t ψ = −(ψ + α) ∂◦t F
′(ψ + α). (2.27)

Combining (2.25), (2.26) and (2.27) yields that

d
dt

〈F (ψ + α), 1〉Γ (t) + DΓ 〈∇s F(ψ + α),∇s F(ψ + α)〉Γ (t)

= −
〈
γ(ψ + α) �κ + ∇s γ(ψ + α), �V

〉
Γ (t)

+ α
〈
F ′(ψ + α),∇s. �V

〉
Γ (t)

, (2.28)

where, on recalling (2.12) and (2.6),

F(r) =
∫ r

0

[F ′′(y)]
1
2 dy.

Letting α→ 0 in (2.28) yields, on recalling (2.11b), that

d
dt

〈F (ψ), 1〉Γ (t) + DΓ 〈∇s F(ψ),∇s F(ψ)〉Γ (t) = −
〈
γ(ψ) �κ + ∇s γ(ψ), �V

〉
Γ (t)

. (2.29)

We note that (2.29) is still valid in the case (2.14), on noting (2.20) and (2.22). Combining (2.29) with (2.24)
implies the a priori energy equation

d
dt

(
1
2
‖ρ 1

2 �u‖2
0 + 〈F (ψ), 1〉Γ (t)

)
+ 2 ‖μ 1

2 D(�u)‖2
0 + DΓ 〈∇s F(ψ),∇s F(ψ)〉Γ (t) = (�f, �u). (2.30)

Moreover, the volume of Ω−(t) is preserved in time, i.e. the mass of each phase is conserved. To see this, choose
�χ = �ν in (2.23c) and ϕ = XΩ−(t) in (2.23b) to obtain

d
dt

Ld(Ω−(t)) =
〈
�V , �ν

〉
Γ (t)

= 〈�u, �ν〉Γ (t) =
∫

Ω−(t)

∇. �u dLd = 0. (2.31)

In addition, we note that it immediately follows from choosing ζ = 1 in (2.23e) that the total amount of
surfactant is preserved, i.e.

d
dt

∫
Γ (t)

ψ dHd−1 = 0. (2.32)

2.4. Weak formulation with free tangential velocity

It will turn out that another weak formulation of the overall system (2.3a–d), (2.4), (2.5), (2.8) will lead to
finite element approximations with better mesh properties. In order to derive the weak formulation, and on
recalling (2.19), we note that if we relax �V = �u |Γ (t) to

�V . �ν = �u. �ν on Γ (t),

as in (2.5c), then it holds that
∂◦t ζ = ∂•t ζ + (�V − �u).∇s ζ ∀ ζ ∈ S. (2.33)

Our preferred finite element approximation will then be based on the following weak formulation. Find Γ (t) =
�x(Υ, t) for t ∈ [0, T ] with �V ∈ [L2(GT )]d, and functions �u ∈ V, p ∈ L2(0, T ; P̂), κ ∈ L2(GT ) and ψ ∈ S such that
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for almost all t ∈ (0, T ) it holds that

1
2

[
d
dt

(ρ �u, �ξ) + (ρ �ut, �ξ) − (ρ �u, �ξt) + (ρ, [(�u.∇) �u]. �ξ − [(�u.∇) �ξ]. �u)
]

+ 2 (μD(�u), D(�ξ)) − (p,∇. �ξ) −
〈
γ(ψ) κ �ν + ∇s γ(ψ), �ξ

〉
Γ (t)

= (�f, �ξ) ∀ �ξ ∈ V, (2.34a)

(∇. �u, ϕ) = 0 ∀ ϕ ∈ P̂, (2.34b)〈
�V − �u, χ�ν

〉
Γ (t)

= 0 ∀ χ ∈ L2(Γ (t)), (2.34c)

〈κ �ν, �η〉Γ (t) +
〈
∇s

�id,∇s �η
〉

Γ (t)
= 0 ∀ �η ∈ [H1(Γ (t))]d, (2.34d)

d
dt

〈ψ, ζ〉Γ (t) + DΓ 〈∇s ψ,∇s ζ〉Γ (t) +
〈
ψ (�V − �u),∇s ζ

〉
Γ (t)

= 〈ψ, ∂◦t ζ〉Γ (t) ∀ ζ ∈ S, (2.34e)

as well as the initial conditions (2.10), where in (2.34c,e) we have recalled (2.1). The derivation of (2.34a–d) is
analogous to the derivation of (2.23a–d), while for the formulation (2.34e) we note (2.20) and, on recalling (2.21)
and (2.33), the identity〈

∂◦t ψ + ψ∇s. �V , ζ
〉

Γ (t)
= 〈∂•t ψ + ψ∇s. �u, ζ〉Γ (t) +

〈
(�V − �u).∇s ψ + ψ∇s. (�V − �u), ζ

〉
Γ (t)

= 〈∂•t ψ + ψ∇s. �u, ζ〉Γ (t) −
〈
ψ (�V − �u),∇s ζ

〉
Γ (t)

,

where we have used the fact that 〈�V−�u, ψ ζ �κ〉Γ (t) = 0 due to (2.34c). In fact, a simpler way of seeing that (2.34e)
is consistent with (2.23e) is to recall that the latter holds with ∂◦t replaced by ∂•t , and so the desired result
follows immediately from (2.33).

The main differences between (2.23a–e) and (2.34a–e) are that for the latter the scalar curvature κ is sought
as part of the solution, rather than �κ, that in the latter only the normal part of �u affects the evolution of the
parameterization �x, and that as a consequence the weak formulation of the advection-diffusion has to account
for the additional freedom in the tangential velocity of the interface parameterization.

Similarly to (2.24)–(2.30), we can formally show that a solution to (2.34a–e) satisfies the a priori energy
bound (2.30). First of all we note that since �κ = κ �ν, a solution to (2.34a–e) satisfies (2.24). Secondly we
observe that the analogue of (2.29) has as right hand side

−
〈
γ(ψ) �κ + ∇s γ(ψ), �V

〉
Γ (t)

−
〈
ψ (�V − �u),∇s F

′(ψ)
〉

Γ (t)

= −
〈
γ(ψ) κ �ν + ∇s γ(ψ), �V

〉
Γ (t)

+
〈
∇s γ(ψ), �V − �u

〉
Γ (t)

= −〈γ(ψ) κ �ν + ∇s γ(ψ), �u〉Γ (t) , (2.35)

where we have used (2.12) and (2.34c) with χ = γ(ψ) κ. Of course, (2.35) now cancels with the last term
in (2.24), and so we obtain (2.30). Moreover, the properties (2.31) and (2.32) also hold.

3. Semidiscrete finite element approximations

For simplicity we consider Ω to be a polyhedral domain. Then let T h be a regular partitioning of Ω into
disjoint open simplices oh

j , j = 1, . . . , Jh
Ω. Associated with T h are the finite element spaces

Sh
k := {χ ∈ C(Ω) : χ |o∈ Pk(o) ∀ o ∈ T h} ⊂ H1(Ω), k ∈ N,

where Pk(o) denotes the space of polynomials of degree k on o. We also introduce Sh
0 , the space of piece-

wise constant functions on T h. Let {ϕh
k,j}

Kh
k

j=1 be the standard basis functions for Sh
k , k ≥ 0. We intro-

duce �Ih
k : [C(Ω)]d → [Sh

k ]d, k ≥ 1, the standard interpolation operators, such that (�Ih
k �η)(�p

h
k,j) = �η(�ph

k,j) for
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j = 1, . . . ,Kh
k ; where {�ph

k,j}
Kh

k

j=1 denotes the coordinates of the degrees of freedom of Sh
k , k ≥ 1. In addition we

define the standard projection operator Ih
0 : L1(Ω) → Sh

0 , such that (Ih
0 η) |o= 1

Ld(o)

∫
o
η dLd for all o ∈ T h.

Our approximation to the velocity and pressure on T h will be finite element spaces Uh ⊂ U and Ph(t) ⊂ P.
We require also the space P̂h(t) := Ph(t) ∩ P̂. Based on the authors’ earlier work in [3, 9], we will select veloc-
ity/pressure finite element spaces that satisfy the LBB inf-sup condition (see e.g. [27], p. 114), and augment the
pressure space by a single additional basis function, namely by the characteristic function of the inner phase.
For the obtained spaces (Uh,Ph(t)) we are unable to prove that they satisfy an LBB condition. The extension
of the given pressure finite element space, which is an example of an XFEM approach, leads to exact volume
conservation of the two phases within the finite element framework. For the non-augmented spaces we may
choose, for example, the lowest order Taylor–Hood element P2–P1, the P2–P0 element or the P2–(P1+P0)
element on setting Uh = [Sh

2 ]d ∩U, and Ph = Sh
1 , S

h
0 or Sh

1 +Sh
0 , respectively. We refer to [3,9] for more details.

The parametric finite element spaces in order to approximate �x, as well as �κ and κ in (2.23a–e) and (2.34a–e),
respectively, are defined as follows. Similarly to [7], let Γ h(t) ⊂ Rd be a (d−1)-dimensional polyhedral surface, i.e.
a union of non-degenerate (d− 1)-simplices with no hanging vertices (see [16], p. 164, for d = 3), approximating
the closed surface Γ (t). In particular, let Γ h(t) =

⋃JΓ

j=1 σ
h
j (t), where {σh

j (t)}JΓ

j=1 is a family of mutually disjoint
open (d− 1)-simplices with vertices {�qh

k (t)}KΓ

k=1. Then let

V (Γ h(t)) := {�χ ∈ [C(Γ h(t))]d : �χ |σh
j

is linear ∀ j = 1, . . . , JΓ } =: [W (Γ h(t))]d ⊂ [H1(Γ h(t))]d,

where W (Γ h(t)) ⊂ H1(Γ h(t)) is the space of scalar continuous piecewise linear functions on Γ h(t), with
{χh

k(·, t)}KΓ

k=1 denoting the standard basis of W (Γ h(t)), i.e.

χh
k(�qh

l (t), t) = δkl ∀ k, l ∈ {1, . . . ,KΓ}, t ∈ [0, T ]. (3.1)

For later purposes, we also introduce πh(t) : C(Γ h(t)) → W (Γ h(t)), the standard interpolation operator at the
nodes {�qh

k (t)}KΓ

k=1, and similarly �πh(t) : [C(Γ h(t))]d → V (Γ h(t)).
For scalar and vector functions η, ζ on Γ h(t) we introduce the L2-inner product 〈·, ·〉Γ h(t) over the polyhedral

surface Γ h(t) as follows

〈η, ζ〉Γ h(t) :=
∫

Γ h(t)

η. ζ dHd−1.

If η, ζ are piecewise continuous, with possible jumps across the edges of {σh
j }JΓ

j=1, we introduce the mass lumped
inner product 〈·, ·〉hΓ h(t) as

〈η, ζ〉hΓ h(t) :=
1
d

JΓ∑
j=1

Hd−1(σh
j )

d∑
k=1

(η. ζ)((�qh
jk

)−), (3.2)

where {�qh
jk
}d

k=1 are the vertices of σh
j , and where we define η((�qh

jk
)−) := lim

σh
j 
�p→�qh

jk

η(�p).

On choosing an arbitrary fixed t0 ∈ (0, T ), we can represent each �z ∈ Γ h(t0) as �z =
∑KΓ

k=1 χ
h
k(�z, t0) �qh

k (t0).
Now we can parameterize Γ h(t) by �Xh(·, t) : Γ h(t0) → Rd, where �z �→

∑KΓ

k=1 χ
h
k(�z, t0) �qh

k (t), i.e. Γ h(t0) plays
the role of a reference manifold for (Γ h(t))t∈[0,T ]. Then, similarly to (2.1), we define the discrete velocity for
�z ∈ Γ h(t0) by

�Vh(�z, t0) :=
d
dt

�Xh(�z, t0) =
KΓ∑
k=1

χh
k(�z, t0)

d
dt
�qh
k (t0) , (3.3)

which corresponds to [20], (5.23). In addition, similarly to (2.18), we define

∂◦,h
t ζ(�z, t0) =

d
dt
ζ( �Xh(�z, t0), t0) = ζt(�z, t0) + �Vh(�z, t0).∇ ζ(�z, t0) ∀ ζ ∈ H1(Gh

T ), (3.4)
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where, similarly to (2.2), we have defined the discrete space-time surface

Gh
T :=

⋃
t∈[0,T ]

Γ h(t) × {t}.

It immediately follows from (3.4) that ∂◦,h
t

�id = �Vh on Γ h(t). For later use, we also introduce the finite element
spaces

W (Gh
T ) := {χ ∈ C(Gh

T ) : χ(·, t) ∈W (Γ h(t)) ∀ t ∈ [0, T ]}, WT (Gh
T ) := {χ ∈ W (Gh

T ) : ∂◦,h
t χ ∈ C(Gh

T )}.

On differentiating (3.1) with respect to t, it immediately follows that

∂◦,h
t χh

k = 0 ∀ k ∈ {1, . . . ,KΓ }, (3.5)

see also [20], Lemma 5.5. It follows directly from (3.5) that

∂◦,h
t ζ(·, t) =

KΓ∑
k=1

χh
k(·, t) d

dt
ζk(t) on Γ h(t) (3.6)

for ζ(·, t) =
∑KΓ

k=1 ζk(t)χh
k(·, t) ∈W (Γ h(t)). Moreover, it holds that

d
dt

∫
σh

j (t)

ζ dHd−1 =
∫

σh
j (t)

∂◦,h
t ζ + ζ∇s. �Vh dHd−1 ∀ ζ ∈ H1(σh

j (t)), j ∈ {1, . . . , JΓ }, (3.7)

see ([20], Lem. 5.6). It immediately follows from (3.7) that

d
dt

〈η, ζ〉Γ h(t) =
〈
∂◦,h

t η, ζ
〉

Γ h(t)
+
〈
η, ∂◦,h

t ζ
〉

Γ h(t)
+
〈
η ζ,∇s. �Vh

〉
Γ h(t)

∀ η, ζ ∈WT (Gh
T ), (3.8)

which is a discrete analogue of (2.20). It is not difficult to show that the analogue of (3.8) with numerical
integration also holds. We establish this result in the next lemma, together with a discrete variant of (2.21), on
recalling (2.7), for the case d = 2.

Lemma 3.1. It holds that

d
dt

〈η, ζ〉hΓ h(t) =
〈
∂◦,h

t η, ζ
〉h

Γ h(t)
+
〈
η, ∂◦,h

t ζ
〉h

Γ h(t)
+
〈
η ζ,∇s. �Vh

〉h

Γ h(t)
∀ η, ζ ∈ WT (Gh

T ). (3.9)

In addition, if d = 2, it holds that

〈ζ,∇s. �η〉Γ h(t) + 〈∇s ζ, �η〉Γ h(t) =
〈
∇s

�id,∇s �π
h (ζ �η)

〉
Γ h(t)

∀ ζ ∈ W (Γ h(t)), �η ∈ V (Γ h(t)). (3.10)

Proof. Choosing ζ = 1 in (3.7) yields that

d
dt

Hd−1(σh
j (t)) = Hd−1(σh

j (t))∇s. �Vh(·, t) on σh
j (t). (3.11)

Differentiating (3.2) with respect to t, and combining with (3.11) and (3.6), yields the desired result (3.9).
For arbitrary ζ ∈ H1(Γ h(t)) and �η ∈ [H1(Γ h(t))]2 we have for d = 2 that

〈∇s. (ζ �η), 1〉Γ h(t) =
〈
�ids, (ζ �η)s

〉
Γ h(t)

=
〈
�ids, (�πh [ζ �η])s

〉
Γ h(t)

=
〈
∇s

�id,∇s �π
h (ζ �η)

〉
Γ h(t)

,

which yields the desired result (3.10) on noting that ∇s. (ζ �η) = ζ∇s. �η + �η.∇s ζ. �
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Given Γ h(t), we let Ωh
+(t) denote the exterior of Γ h(t) and let Ωh−(t) denote the interior of Γ h(t), so that

Γ h(t) = ∂Ωh
−(t) = Ωh−(t) ∩ Ωh

+(t). We then partition the elements of the bulk mesh T h into interior, exterior
and interfacial elements as follows. Let

T h
− (t) := {o ∈ T h : o ⊂ Ωh

−(t)}, T h
+ (t) := {o ∈ T h : o ⊂ Ωh

+(t)}, T h
Γ h(t) := {o ∈ T h : o ∩ Γ h(t) �= ∅}.

Clearly T h = T h
− (t)∪T h

+ (t)∪T h
Γ (t) is a disjoint partition. Moreover, we introduce the discrete density ρh(t) ∈ Sh

0

and the discrete viscosity μh(t) ∈ Sh
0 as

ρh(t) |o=

⎧⎪⎨⎪⎩
ρ− o ∈ T h− (t),
ρ+ o ∈ T h

+ (t),
1
2 (ρ− + ρ+) o ∈ T h

Γ h(t),
and μh(t) |o=

⎧⎪⎨⎪⎩
μ− o ∈ T h− (t),
μ+ o ∈ T h

+ (t),
1
2 (μ− + μ+) o ∈ T h

Γ h(t).

In what follows we will introduce two different finite element approximations for the free boundary prob-
lem (2.3a–d), (2.4), (2.5), (2.8). Here �Uh(·, t) ∈ Uh will be an approximation to �u(·, t), while P h(·, t) ∈ P̂h(t)
approximates p(·, t) and Ψh(·, t) ∈ W (Γ h(t)) approximates ψ(·, t). When designing such a finite element ap-
proximation, a careful decision has to be made about the discrete tangential velocity of Γ h(t).

3.1. Scheme (Asd) – approximation with fluidic tangential velocity

The most natural choice is to select the velocity of the fluid, i.e. (2.23c) is appropriately discretized. This then
gives a natural discretization of the surfactant transport equation (2.8). Note also that the approximation of
curvature, recall (2.7), where now �κ = κ �ν is discretized directly, goes back to the seminal paper [18]. Overall, we
then obtain the following semidiscrete continuous-in-time finite element approximation, which is the semidiscrete
analogue of the weak formulation (2.23a–e). Given Γ h(0), �Uh(·, 0) ∈ Uh and Ψh(·, 0) ∈ W (Γ h(0)), find Γ h(t)
such that �id |Γ h(t)∈ V (Γ h(t)) for t ∈ [0, T ], and functions �Uh ∈ H1(0, T ; Uh), P h ∈ Ph

T := {ϕ ∈ L2(0, T ; P̂) :
ϕ(t) ∈ P̂h(t) for a.e. t ∈ (0, T )}, �κh ∈ [W (Gh

T )]d and Ψh ∈ WT (Gh
T ) such that for almost all t ∈ (0, T ) it holds

that

1
2

[
d
dt

(
ρh �Uh, �ξ

)
+
(
ρh �Uh

t ,
�ξ
)
− (ρh �Uh, �ξt)

]
+ 2

(
μhD(�Uh), D(�ξ)

)
+

1
2

(
ρh, [(�Uh.∇) �Uh]. �ξ − [(�Uh.∇) �ξ]. �Uh

)
−
(
P h,∇. �ξ

)
=
(
ρh �fh

1 + �fh
2 ,
�ξ
)

+
〈
γ(Ψh)�κh + ∇s π

h [γ(Ψh)], �ξ
〉h

Γ h(t)
∀ �ξ ∈ H1(0, T ; Uh), (3.12a)(

∇. �Uh, ϕ
)

= 0 ∀ ϕ ∈ P̂
h(t), (3.12b)〈

�Vh, �χ
〉h

Γ h(t)
=
〈
�Uh, �χ

〉h

Γ h(t)
∀ �χ ∈ V (Γ h(t)), (3.12c)〈

�κh, �η
〉h

Γ h(t)
+
〈
∇s

�id,∇s �η
〉

Γ h(t)
= 0 ∀ �η ∈ V (Γ h(t)), (3.12d)

d
dt

〈
Ψh, χ

〉h

Γ h(t)
+ DΓ

〈
∇s Ψ

h,∇s χ
〉

Γ h(t)
=
〈
Ψh, ∂◦,h

t χ
〉h

Γ h(t)
∀ χ ∈WT (Gh

T ), (3.12e)

where we recall (3.3). Here we have defined �fh
i (·, t) := �Ih

2
�fi(·, t), i = 1, 2, where here and throughout we assume

that �fi ∈ L2(0, T ; [C(Ω)]d), i = 1, 2. We observe that (3.12c) collapses to �Vh = �πh �Uh |Γ h(t)∈ V (Γ h(t)), which
on recalling (3.4) turns out to be crucial for the stability analysis for (3.12a–e). It is for this reason that we use
mass lumping in (3.12c), which then leads to mass lumping having to be used in the last term in (3.12a), as
well as for the first term in (3.12d).

We remark that the formulation (3.12e) for the surfactant transport equation (2.8) falls into the framework
of ESFEM (evolving surface finite element method) as coined by the authors in [19]. In this particular instance,
the velocity of Γ h(t) is not a priori fixed, rather it arises implicitly through the evolution of Γ h(t) as determined
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by (3.12a–e). Here we recall the important property (3.5), which means that (3.12e) simplifies if formulated in
terms of the basis functions {χh

k(·, t)}KΓ

k=1 of W (Γ h(t)).
In the following lemma we derive a discrete analogue of (2.24).

Lemma 3.2. Let {(Γ h, �Uh, P h, �κh, Ψh)(t)}t∈[0,T ] be a solution to (3.12a–e). Then

1
2

d
dt

‖[ρh]
1
2 �Uh‖2

0 + 2 ‖[μh]
1
2 D(�Uh)‖2

0 = (ρh �fh
1 + �fh

2 , �U
h) +

〈
γ(Ψh)�κh + ∇s π

h [γ(Ψh)], �Uh
〉h

Γ h(t)
. (3.13)

Proof. The desired result (3.13) follows immediately on choosing �ξ = �Uh in (3.12a) and ϕ = P h in (3.12b). �

The next theorem derives a discrete analogue of the energy law (2.30). Here, similarly to (2.25), it will be
crucial to test (3.12e) with an appropriate discrete variant of F ′(Ψh). It is for this reason that we have to make
the following well-posedness assumption.

Ψh(·, t) < ψ∞ on Γ h(t), ∀ t ∈ [0, T ]. (3.14)

The theorem also establishes nonnegativity of Ψh under the assumption that∫
σh

j (t)

∇sχ
h
i .∇sχ

h
k dHd−1 ≤ 0 ∀ i �= k, ∀ t ∈ [0, T ], j = 1, . . . , JΓ . (3.15)

We note that (3.15) always holds for d = 2, and it holds for d = 3 if all the triangles σh
j (t) of Γ h(t) have no

obtuse angles. A direct consequence of (3.15) is that for any monotonic function G ∈ C0,1(R) it holds that

LG

〈
∇s ξ,∇s π

h [G(ξ)]
〉

Γ h(t)
≥
〈
∇s π

h [G(ξ)],∇s π
h [G(ξ)]

〉
Γ h(t)

∀ ξ ∈W (Γ h(t)), ∀ t ∈ [0, T ], (3.16)

where LG ∈ R>0 denotes its Lipschitz constant. For example, (3.16) holds for G(r) = [r]− := min{0, r} with
LG = 1.

For the following theorem, we denote the L∞–norm on Γ h(t) by ‖ ·‖∞,Γ h(t), i.e. ‖z‖∞,Γ h(t) := ess supΓ h(t) |z|
for z : Γ h(t) → R.

Theorem 3.3. Let {(Γ h, �Uh, P h, �κh, Ψh)(t)}t∈[0,T ] be a solution to (3.12a–e). Then

d
dt

〈
Ψh, 1

〉
Γ h(t)

= 0. (3.17)

In addition, if DΓ = 0 or if (3.15) and

max
0≤t≤T

‖∇s. �Vh‖∞,Γ h(t) <∞ (3.18)

hold, then
Ψh(·, t) ≥ 0 ∀ t ∈ (0, T ] if Ψh(·, 0) ≥ 0. (3.19)

Moreover, if d = 2 and if (3.19) and (3.14) hold, then

d
dt

(
1
2
‖[ρh]

1
2 �Uh‖2

0 +
〈
F (Ψh), 1

〉h

Γ h(t)

)
+ 2 ‖[μh]

1
2 D(�Uh)‖2

0 ≤
(
ρh �fh

1 + �fh
2 , �U

h
)
. (3.20)

Proof. The conservation property (3.17) follows immediately from choosing χ = 1 in (3.12e).
If DΓ = 0 then it immediately follows from (3.12e), on recalling (3.5), that

d
dt

〈
Ψh, χh

k

〉h

Γ h(t)
=

d
dt

[〈
1, χh

k

〉
Γ h(t)

Ψh(�qh
k (t), t)

]
= 0,
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for k = 1, . . . ,KΓ , which yields the desired result (3.19) if DΓ = 0. If DΓ > 0, then choosing χ = πh [Ψh]−
in (3.12e) yields, on noting (3.16) with G = [·]− and (3.9), that

d
dt

〈
[Ψh]2−, 1

〉h

Γ h(t)
=

d
dt

〈
Ψh, [Ψh]−

〉h

Γ h(t)
≤
〈
Ψh, ∂◦,h

t πh [Ψh]−
〉h

Γ h(t)
=
〈
[Ψh]−, ∂

◦,h
t πh [Ψh]−

〉h

Γ h(t)

=
1
2

〈
∂◦,h

t πh [Ψh]2−, 1
〉h

Γ h(t)
=

1
2

d
dt

〈
[Ψh]2−, 1

〉h

Γ h(t)
− 1

2

〈
[Ψh]2−,∇s. �Vh

〉h

Γ h(t)

≤ −
〈
[Ψh]2−,∇s. �Vh

〉h

Γ h(t)
≤ ‖∇s. �Vh‖∞,Γ h(t)

〈
[Ψh]2−, 1

〉h

Γ h(t)
.

A Gronwall inequality, together with (3.18), now yields our desired result (3.19).
For the proof of (3.20) we note that the assumption (3.14) means that we can choose χ = πh [F ′(Ψh + α)]

in (3.12e), with α ∈ R>0 such that Ψh + α < ψ∞, to yield, on recalling (2.11a) and (3.9), that

d
dt

〈
F (Ψh + α) − γ(Ψh + α), 1

〉h

Γ h(t)
+ DΓ

〈
∇s (Ψh + α),∇s π

h [F ′(Ψh + α)]
〉

Γ h(t)

=
〈
Ψh + α, ∂◦,h

t πh [F ′(Ψh + α)]
〉h

Γ h(t)
+ α

〈
F ′(Ψh + α),∇s. �Vh

〉h

Γ h(t)
, (3.21)

similarly to (2.25). For the remainder of the proof we assume that d = 2. It follows from (2.12), (3.2) and (3.6)
that we have a discrete analogue of (2.27), i.e.〈

Ψh + α, ∂◦,h
t πh [F ′(Ψh + α)]

〉h

Γ h(t)
= −

〈
∂◦,h

t πh [γ(Ψh + α)], 1
〉h

Γ h(t)
, (3.22)

which means that (3.21), together with (3.9), (3.10) and (3.12c,d), implies that

d
dt

〈
F (Ψh + α), 1

〉h

Γ h(t)
+ DΓ

〈
∇s (Ψh + α),∇s π

h [F ′(Ψh + α)]
〉

Γ h(t)

=
〈
πh [γ(Ψh + α)],∇s. �Vh

〉
Γ h(t)

+ α
〈
F ′(Ψh + α),∇s. �Vh

〉h

Γ h(t)

=
〈
∇s

�id,∇s π
h [γ(Ψh + α) �Vh]

〉
Γ h(t)

−
〈
∇s π

h [γ(Ψh + α)], �Vh
〉

Γ h(t)
+ α

〈
F ′(Ψh + α),∇s. �Vh

〉h

Γ h(t)

= −
〈
�κh, γ(Ψh + α) �Uh

〉h

Γ h(t)
−
〈
∇s π

h [γ(Ψh + α)], �Uh
〉h

Γ h(t)
+ α

〈
F ′(Ψh + α),∇s. �Vh

〉h

Γ h(t)
. (3.23)

Next, on noting for DΓ > 0 that G(·) = F ′(· + α) is monotonic, as F is convex, and has a finite Lipschitz
constant, on noting (3.19), it follows from our assumptions and (3.16) that

DΓ

〈
∇s (Ψh + α),∇s π

h [F ′(Ψh + α)]
〉

Γ h(t)
≥ 0, (3.24)

and so we obtain that

d
dt

〈
F (Ψh + α), 1

〉h

Γ h(t)
≤ −

〈
�κh, γ(Ψh + α) �Uh

〉h

Γ h(t)
−
〈
∇s π

h [γ(Ψh + α)], �Uh
〉h

Γ h(t)

+ α
〈
F ′(Ψh + α),∇s. �Vh

〉h

Γ h(t)
. (3.25)

Passing to the limit α → 0 in (3.25), noting (2.11b), and combining with (3.13), yields the desired
result (3.20). �
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Clearly, (3.17) and (3.20) are natural discrete analogues of (2.32) and (2.30), respectively.
We stress that the stability proof in Theorem 3.3 is restricted to the case d = 2. However, it is possible to

prove stability for d = 2 and d = 3 for a variant of (3.12a–e), which, on recalling (2.22), is given by

1
2

[
d
dt

(
ρh �Uh, �ξ

)
+
(
ρh �Uh

t ,
�ξ
)
− (ρh �Uh, �ξt)

]
+ 2

(
μhD(�Uh), D(�ξ)

)
+

1
2

(
ρh, [(�Uh.∇) �Uh]. �ξ − [(�Uh.∇) �ξ]. �Uh

)
−
(
P h,∇. �ξ

)
=
(
ρh �fh

1 + �fh
2 ,
�ξ
)
−
〈
γ(Ψh),∇s. �π

h �ξ
〉h

Γ h(t)
∀ �ξ ∈ H1(0, T ; Uh), (3.26)

together with (3.12b,c,e). Here we observe that in this new discretization it is no longer necessary to compute
the discrete curvature vector �κh. It is then not difficult to prove the following theorem.

Theorem 3.4. Let {(Γ h, �Uh, P h, Ψh)(t)}t∈[0,T ] be a solution to (3.26), (3.12b,c,e). Then (3.17) and

1
2

d
dt

‖[ρh]
1
2 �Uh‖2

0 + 2 ‖[μh]
1
2 D(�Uh)‖2

0 = (ρh �fh
1 + �fh

2 , �U
h) −

〈
γ(Ψh),∇s. �π

h �Uh
〉h

Γ h(t)
(3.27)

hold. In addition, if DΓ = 0 or if (3.15) and (3.18) hold, then we have (3.19). Moreover, if (3.14) and (3.19)
hold, and DΓ = 0 or (3.15) holds, then

d
dt

(
1
2
‖[ρh]

1
2 �Uh‖2

0 +
〈
F (Ψh), 1

〉h

Γ h(t)

)
+ 2 ‖[μh]

1
2 D(�Uh)‖2

0 ≤
(
ρh �fh

1 + �fh
2 , �U

h
)
. (3.28)

Proof. The desired results (3.17) and (3.27) follow immediately on choosing χ = 1 in (3.12e) and on choosing
�ξ = �Uh in (3.26) and ϕ = P h in (3.12b), respectively. The nonnegativity result (3.19) can be shown as in the
proof of Theorem 3.3. The stability bound (3.28) follows as in the proof of Theorem 3.3, on combining the first
equation in (3.23) with (3.27) and �Vh = �πh �Uh |Γ h(t), and on recalling that (3.24) holds if our assumptions are
satisfied. We note that this proof is valid for d = 3, as we do not use (3.10). �

We recall that the assumption (3.15) always holds for d = 2, but for d = 3 it will in general only be satisfied
if all the triangles σh

j (t) of Γ h(t) have no obtuse angles. Unfortunately, in practice this will in general not be
the case. Consequently, the scheme (3.26), (3.12b,c,e) offers no practical advantages over (3.12a–e), and as the
latter is closer to the approximation in Section 3.2, we do not pursue (3.26), (3.12b,c,e) further in this paper.

We note that while (3.12a–e) and (3.26), (3.12b,c,e) are very natural approximations, in particular (3.12e)
for the surfactant transport, see also [19], a drawback in practice is that the finitely many vertices of the
triangulations Γ h(t) are moved with the flow, which can lead to coalescence. If a remeshing procedure is applied
to Γ h(t), then theoretical results like stability are no longer valid. It is with this in mind that we would like to
introduce an alternative finite element approximation.

3.2. Scheme (Bsd) – approximation with implicit tangential velocity

This will be based on the weak formulation (2.34a–e), and on the schemes from [3,9] for the two-phase flow
problem in the bulk. Of course, the discretization of (2.34e) is going to be more complicated than (3.12e), but
the advantage is that good mesh properties can be shown for Γ h(t). In practice this means that no remeshings
or reparameterizations need to be performed for Γ h(t).

The main difference to (3.12a–e) is that (3.12c) is replaced with a discrete variant of (2.34c). In particular,
the discrete tangential velocity of Γ h(t) is not defined via �Uh(·, t), but it is chosen totally independent from
the surrounding fluid. In fact, the discrete tangential velocity is not prescribed directly, but it is implicitly
introduced via the novel approximation of curvature which was first introduced by the authors in [6] for the
case d = 2, and in [7] for the case d = 3. This discrete tangential velocity is such that, in the case d = 2, Γ h(t)
will remain equidistributed for all times t ∈ (0, T ]. For d = 3, a weaker property can be shown, which still
guarantees good meshes in practice. We refer to [6, 7] for more details.
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For this new finite element approximation we are unable to guarantee the nonnegativity of Ψh(·, t), which is
in contrast to the result (3.19) for the scheme (3.12a–e). It is for this reason that, following similar ideas in [4,5],
we introduce regularizations Fε ∈ C2(−∞, ψ∞) of F ∈ C2(0, ψ∞), where ε > 0 is a regularization parameter.
In particular, we set

Fε(r) =

{
F (r) r ≥ ε,

F (ε) + F ′(ε) (r − ε) + 1
2 F

′′(ε) (r − ε)2 r ≤ ε,
(3.29a)

which in view of (2.11a) leads to

γε(r) =

{
γ(r) r ≥ ε,

γ(ε) + 1
2 F

′′(ε) (ε2 − r2) r ≤ ε,
(3.29b)

so that
γε(r) = Fε(r) − r F ′

ε(r) and γ′ε(r) = −r F ′′
ε (r) ∀ r < ψ∞. (3.30)

We propose the following semidiscrete continuous-in-time finite element approximation, which is the semidis-
crete analogue of the weak formulation (2.34a–e). To this end, we let �νh(t) be the piecewise constant unit
normal to Γ h(t) such that �νh(t) points into Ωh

+(t). Given Γ h(0), �Uh(·, 0) ∈ Uh and Ψh(·, 0) ∈ W (Γ h(0)), find
Γ h(t) such that �id |Γ h(t)∈ V (Γ h(t)) for t ∈ [0, T ], and functions �Uh ∈ H1(0, T ; Uh), P h ∈ Ph

T , κh ∈ W (Gh
T ) and

Ψh ∈ WT (Gh
T ) such that for almost all t ∈ (0, T ) it holds that

1
2

[
d
dt

(
ρh �Uh, �ξ

)
+
(
ρh �Uh

t ,
�ξ
)
− (ρh �Uh, �ξt)

]
+ 2

(
μhD(�Uh), D(�ξ)

)
+

1
2

(
ρh, [(�Uh.∇) �Uh]. �ξ − [(�Uh.∇) �ξ]. �Uh

)
−
(
P h,∇. �ξ

)
=
(
ρh �fh

1 + �fh
2 ,
�ξ
)

+
〈
πh [γε(Ψh)κh]�νh, �ξ

〉
Γ h(t)

+
〈
∇s π

h [γε(Ψh)], �ξ
〉h

Γ h(t)
∀ �ξ ∈ H1(0, T ; Uh), (3.31a)(

∇. �Uh, ϕ
)

= 0 ∀ ϕ ∈ P̂
h(t), (3.31b)〈

�Vh, χ �νh
〉h

Γ h(t)
=
〈
�Uh, χ �νh

〉
Γ h(t)

∀ χ ∈W (Γ h(t)), (3.31c)〈
κh �νh, �η

〉h

Γ h(t)
+
〈
∇s

�id,∇s �η
〉

Γ h(t)
= 0 ∀ �η ∈ V (Γ h(t)), (3.31d)

d
dt

〈
Ψh, χ

〉h

Γ h(t)
+ DΓ

〈
∇s Ψ

h,∇s χ
〉

Γ h(t)
=
〈
Ψh, ∂◦,h

t χ
〉h

Γ h(t)
−
〈
Ψh

�,ε

(
�Vh − �Uh

)
,∇s χ

〉h

Γ h(t)
∀ χ ∈ WT (Gh

T ),

(3.31e)

where we recall (3.3). Here Ψh
�,ε = Ψh for d = 3 and, on recalling (3.30),

Ψh
�,ε =

{
− γε(Ψh

k )−γε(Ψh
k−1)

F ′
ε(Ψh

k )−F ′
ε(Ψh

k−1)
F ′

ε(Ψ
h
k−1) �= F ′

ε(Ψ
h
k ),

1
2 (Ψh

k−1 + Ψh
k ) F ′

ε(Ψh
k−1) = F ′

ε(Ψh
k ),

on [�qh
k−1, �q

h
k ] ∀ k ∈ {1, . . . ,KΓ} (3.32)

for d = 2. Here we have introduced the shorthand notation Ψh
k (t) = Ψh(�qh

k (t), t), for k = 1, . . . ,KΓ , and for
notational convenience we have dropped the dependence on t in (3.32). The definition in (3.32) is chosen such
that for d = 2 it holds that〈

Ψh
�,ε �η,∇s π

h [F ′
ε(Ψ

h)]
〉h

Γ h(t)
=
〈
Ψh

�,ε �η,∇s π
h [F ′

ε(Ψ
h)]

〉
Γ h(t)

= −
〈
�η,∇s π

h [γε(Ψh)]
〉

Γ h(t)
∀ �η ∈ V (Γ h(t)),

(3.33)
which will be crucial for the stability proof for (3.31a–e). Note that here the regularization (3.29a,b) is required
in order to make the definition (3.32) well-defined, where we recall from (2.11a) that F ′ in general is only
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well-defined on the positive real line. We observe that (3.33) for �η = �Vh − �πh �Uh |Γ h(t) mimics (2.35) on the
discrete level.

Similarly to Theorem 3.3 we are only able to prove stability for the scheme (3.31a–e) in the case d = 2. Hence
in the case d = 3 the definition (3.32) is not required, and so γε in (3.31a) may also be replaced by γ.

We remark that the formulation (3.31e) for the surfactant transport equation (2.8) falls into the framework of
ALE ESFEM (arbitrary Lagrangian Eulerian evolving surface finite element method) as coined by the authors
in [22]. In this particular instance, the tangential velocity of Γ h(t) is not a priori fixed, rather it arises implicitly
through the evolution of Γ h(t) as determined by (3.31a–e).

Similarly to Lemma 3.2, in the following lemma we derive a discrete analogue of (2.24).

Lemma 3.5. Let {(Γ h, �Uh, P h, κh, Ψh)(t)}t∈[0,T ] be a solution to (3.31a–e). Then

1
2

d
dt

‖[ρh]
1
2 �Uh‖2

0 + 2 ‖[μh]
1
2 D(�Uh)‖2

0

= (ρh �fh
1 + �fh

2 , �U
h) +

〈
πh [γε(Ψh)κh]�νh, �Uh

〉
Γ h(t)

+
〈
∇s π

h [γε(Ψh)], �Uh
〉h

Γ h(t)
. (3.34)

Proof. The desired result (3.34) follows immediately on choosing �ξ = �Uh in (3.31a) and ϕ = P h

in (3.31b). �

The next theorem derives a discrete analogue of the energy law (2.30), similarly to Theorem 3.3, together
with an exact volume conservation property.

Theorem 3.6. Let {(Γ h, �Uh, P h, κh, Ψh)(t)}t∈[0,T ] be a solution to (3.31a–e). Then

d
dt

〈
Ψh, 1

〉
Γ h(t)

= 0. (3.35)

Moreover, if XΩh
−(t) ∈ Ph(t) then

d
dt

Ld(Ωh
−(t)) = 0. (3.36)

In addition, if d = 2 and if the assumption (3.14) holds, then

d
dt

(
1
2
‖[ρh]

1
2 �Uh‖2

0 +
〈
Fε(Ψh), 1

〉h

Γ h(t)

)
+ 2 ‖[μh]

1
2 D(�Uh)‖2

0 ≤
(
ρh �fh

1 + �fh
2 ,
�Uh

)
. (3.37)

Proof. The conservation property (3.35) follows immediately from choosing χ = 1 in (3.31e). Moreover, choosing

χ = 1 in (3.31c) and ϕ = (XΩh
−(t) −

Ld(Ωh
−(t))

Ld(Ω)
) ∈ P̂h(t) in (3.31b), we obtain that

d
dt

Ld(Ωh
−(t)) =

〈
�Vh, �νh

〉
Γ h(t)

=
〈
�Vh, �νh

〉h

Γ h(t)
=
〈
�Uh, �νh

〉
Γ h(t)

=
∫

Ωh
−(t)

∇. �Uh dLd = 0,

which proves the desired result (3.36). For the remainder of the proof we assume that d = 2.
The assumption (3.14) means that we can choose χ = πh [F ′

ε(Ψh)] in (3.31e) to yield, similarly to (3.21)–
(3.23), with α = 0 and F replaced by Fε, on recalling (3.30), (3.9), (3.10), (3.33) and (3.31c,d), that

d
dt

〈
Fε(Ψh), 1

〉h

Γ h(t)
+ DΓ

〈
∇s Ψ

h,∇s π
h [F ′

ε(Ψ
h)]

〉
Γ h(t)

=
〈
∇s

�id,∇s π
h [γε(Ψh) �Vh]

〉
Γ h(t)

−
〈
∇s π

h [γε(Ψh)], �Vh
〉

Γ h(t)
+
〈
�Vh − �πh �Uh,∇s π

h [γε(Ψh)]
〉

Γ h(t)

= −
〈
κh �νh, γε(Ψh) �Vh

〉h

Γ h(t)
−
〈
�Uh,∇s π

h [γε(Ψh)]
〉h

Γ h(t)

= −
〈
πh [γε(Ψh)κh]�νh, �Uh

〉
Γ h(t)

−
〈
∇s π

h [γε(Ψh)], �Uh
〉h

Γ h(t)
. (3.38)
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Since d = 2 we can apply (3.16) to the function G = F ′
ε, where we recall (3.14) and that Fε ∈ C2(−∞, ψ∞)

is convex, and obtain that the second term on the left hand side of (3.38) is nonnegative. Hence the desired
result (3.37) follows from combining (3.38) with (3.34). �

Clearly, (3.35), (3.36) and (3.37) are natural discrete analogues of (2.32), (2.31) and (2.30), respectively. We
remark that the condition XΩh

−(t) ∈ Ph(t) is always satisfied for the XFEMΓ approach as introduced in [3, 9].
In addition, it is possible to prove that the vertices of the solution Γ h(t) to (3.31a–e) are well distributed.

As this follows already from the equations (3.31d), we refer to our earlier work in [6, 7] for further details. In
particular, we observe that in the case d = 2, i.e. for the planar two-phase problem, an equidistribution property
for the vertices of Γ h(t) can be shown. These good mesh properties mean that for fully discrete schemes based
on (3.31a–e) no remeshings are required in practice for either d = 2 or d = 3.

We remark that for the scheme (3.12a–e) it is not possible to prove (3.36), even if mass lumping was to
be dropped from the right hand side of (3.12c), because �χ = �νh is not a valid test function in (3.12c). As a
consequence, the volume of the two phases will in general not be conserved in practice. This is an additional
advantage of the formulation (3.31a–e) over (3.12a–e). A disadvantage is the fact that it does not appear possible
to derive a discrete maximum principle similarly to (3.19). However, the following remark demonstrates that
also for the scheme (3.31a–e) the negative part of Ψh can be controlled. Moreover, in practice we observe that
for a fully discrete variant of (3.31a–e) the fully discrete analogues of Ψh(·, t) remain positive for positive initial
data.

Remark 3.7. The convex nature of F , together with the fact that F ′ is singular at the origin, allows us to
derive upper bounds on the negative part of Ψh for the two cases (2.13a,b). On recalling (3.29a) and (2.11a),
it holds that

Fε(r) = γ(ε) + F ′(ε) r +
1
2
F ′′(ε) (r − ε)2 ≥ 1

2
F ′′(ε) r2 ≥ 1

2
ε−1 γ0 β r

2 ∀ r ≤ 0,

provided that ε is sufficiently small. Hence the bound (3.37), via a Korn’s inequality, implies that〈
[Ψh]2−, 1

〉h

Γ h(t)
≤ C ε ∀ t ∈ (0, T ] if Ψh(·, 0) ≥ 0,

for some positive constant C, and for ε sufficiently small.

Remark 3.8. We note that in the special case of constant surface tension, i.e. when (2.14) holds, then, similarly
to (2.29), the stability results (3.20), (3.37) and (3.28) remain valid and reduce to

d
dt

(
1
2
‖[ρh]

1
2 �Uh‖2

0 + γ0 Hd−1(Γ h(t))
)

+ 2 ‖[μh]
1
2 D(�Uh)‖2

0 ≤
(
ρh �fh

1 + �fh
2 , �U

h
)
, (3.39)

where we note that Fε = F = γ0 in (3.37). The bound (3.39) recovers the stability results for the semidiscrete
variants of the fully discrete schemes from [3] for two-phase Navier–Stokes flow.

Finally, on recalling Theorem 3.4, we remark that it does not seem possible to derive a stability result for
the scheme (3.26), (3.31b–e) in the case d = 2 or d = 3.

4. Fully discrete approximations

In this section we consider fully discrete variants of the schemes (3.12a–e) and (3.31a–e) from Section 3.
Here we will choose the time discretization such that existence and uniqueness of the discrete solutions can be
guaranteed, and such that we inherit as much of the structure of the stable schemes in [3, 9] as possible, see
below for details.
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We consider the partitioning tm = mτ , m = 0, . . . ,M , of [0, T ] into uniform time steps τ = T/M . The time
discrete spatial discretizations then directly follow from the finite element spaces introduced in Section 3, where
here in order to allow for local mesh refinements we consider bulk finite element spaces that change in time.

For all m ≥ 0, let T m be a regular partitioning of Ω into disjoint open simplices om
j , j = 1, . . . , Jm

Ω . We set
hm := maxj=1,...,Jm

Ω
diam(om

j ). Associated with T m are the finite element spaces Sm
k for k ≥ 0. We introduce

also �Im
k : [C(Ω)]d → [Sm

k ]d, k ≥ 1, the standard interpolation operators, and the standard projection operator
Im
0 : L1(Ω) → Sm

0 . For the approximation to the velocity and pressure on T m will use the finite element spaces
Um ⊂ U and Pm ⊂ P, which are the direct time discrete analogues of Uh and Ph(tm), as well as P̂m ⊂ P̂.
We recall that (Um,Pm) are said to satisfy the LBB inf-sup condition if there exists a constant C0 ∈ R>0

independent of hm such that

inf
ϕ∈P̂m

sup
�ξ∈Um

(ϕ,∇. �ξ)
‖ϕ‖0 ‖�ξ‖1

≥ C0. (4.1)

Following the XFEMΓ approach introduced in [3,9], we will often augment Pm by the single basis function XΩm
− .

For this extended finite element space it does not appear possible to show that (4.1) holds, but the scheme (Bfd)
with XFEMΓ shows excellent volume conservation properties in practice; recall Theorem 3.6.

Similarly, the parametric finite element spaces are given by

V (Γm) := {�χ ∈ [C(Γm)]d : �χ |σm
j

is linear ∀ j = 1, . . . , JΓ } =: [W (Γm)]d,

for m = 0, . . . ,M−1. Here Γm =
⋃JΓ

j=1 σ
m
j , where {σm

j }JΓ

j=1 is a family of mutually disjoint open (d−1)-simplices
with vertices {�qm

k }KΓ

k=1. We denote the standard basis of W (Γm) by {χm
k (·, t)}KΓ

k=1. We also introduce πm :
C(Γm) → W (Γm), the standard interpolation operator at the nodes {�qm

k }KΓ

k=1, and similarly �πm : [C(Γm)]d →
V (Γm). Throughout this paper, we will parameterize the new closed surface Γm+1 over Γm, with the help of a
parameterization �Xm+1 ∈ V (Γm), i.e. Γm+1 = �Xm+1(Γm).

We also introduce the L2–inner product 〈·, ·〉Γ m over the current polyhedral surface Γm, as well as the the
mass lumped inner product 〈·, ·〉hΓ m . Given Γm, we let Ωm

+ denote the exterior of Γm and let Ωm− denote the
interior of Γm, so that Γm = ∂Ωm

− = Ωm− ∩ Ωm
+ . We then partition the elements of the bulk mesh T m into

interior, exterior and interfacial elements as before, and we introduce ρm, μm ∈ Sm
0 , for m ≥ 0, as

ρm |om=

⎧⎪⎨⎪⎩
ρ− om ∈ T m− ,

ρ+ om ∈ T m
+ ,

1
2 (ρ− + ρ+) om ∈ T m

Γ m ,

and μm |om=

⎧⎪⎨⎪⎩
μ− om ∈ T m− ,

μ+ om ∈ T m
+ ,

1
2 (μ− + μ+) om ∈ T m

Γ m .

(4.2)

We also set ρ−1 := ρ0.
We introduce the following pushforward operator for the discrete interfaces Γm−1 and Γm. Let �Πm

m−1 :
[C(Γm−1)]d → V (Γm) such that

( �Πm
m−1 �z)(�q

m
k ) = �z(�qm−1

k ), k = 1, . . . ,KΓ , ∀ �z ∈ [C(Γm−1)]d, (4.3)

for m = 1, . . . ,M − 1, and set �Π0
−1 := �π0. Analogously to (4.3) we also introduce Πm

m−1 : C(Γm−1) →W (Γm).

4.1. Scheme (Afd) – approximation with fluidic tangential velocity

Our proposed fully discrete equivalent of (3.12a–e) is then given as follows. Let Γ 0, an approximation to
Γ (0), and �U0 ∈ U0, as well as �κ0 ∈ V (Γ 0) and Ψ0 ∈W (Γ 0) be given. For m = 0, . . . ,M − 1, find �Um+1 ∈ Um,
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Pm+1 ∈ P̂m, �Xm+1 ∈ V (Γm) and �κm+1 ∈ V (Γm) such that

1
2

(
ρm �Um+1 − (Im

0 ρm−1) �Im
2
�Um

τ
+ (Im

0 ρm−1)
�Um+1 − �Im

2
�Um

τ
, �ξ

)
+ 2

(
μmD(�Um+1), D(�ξ)

)
+

1
2

(
ρm, [(�Im

2
�Um.∇) �Um+1]. �ξ − [(�Im

2
�Um.∇) �ξ]. �Um+1

)
−
(
Pm+1,∇. �ξ

)
=
(
ρm �fm+1

1 + �fm+1
2 , �ξ

)
+
〈
γ(Ψm) �Πm

m−1 �κ
m + ∇s π

m [γ(Ψm)], �ξ
〉h

Γ m
∀ �ξ ∈ U

m, (4.4a)(
∇. �Um+1, ϕ

)
= 0 ∀ ϕ ∈ P̂

m, (4.4b)〈
�Xm+1 − �id

τ
, �χ

〉h

Γ m

=
〈
�Um+1, �χ

〉h

Γ m
∀ �χ ∈ V (Γm), (4.4c)

〈
�κm+1, �η

〉h

Γ m +
〈
∇s

�Xm+1,∇s �η
〉

Γ m
= 0 ∀ �η ∈ V (Γm) (4.4d)

and set Γm+1 = �Xm+1(Γm). Then find Ψm+1 ∈ W (Γm+1) such that

1
τ

〈
Ψm+1, χm+1

k

〉h

Γ m+1 + DΓ

〈
∇s Ψ

m+1,∇s χ
m+1
k

〉
Γ m+1 =

1
τ
〈Ψm, χm

k 〉hΓ m ∀ k ∈ {1, . . . ,KΓ }. (4.4e)

Here we have defined �fm+1
i := �Im

2
�fi(·, tm+1), i = 1, 2. We observe that (4.4a–e) is a linear scheme in that it

leads to a linear system of equations for the unknowns (�Um+1, Pm+1, �Xm+1, �κm+1, Ψm+1) at each time level. In
particular, the system (4.4a–e) clearly decouples into (4.4a,b) for (�Um+1, Pm+1), then (4.4c,d) for ( �Xm+1, �κm+1)
and finally (4.4e) for Ψm+1.

Remark 4.1. Of course, the natural analogue of (4.4a–e) that is based on the semidiscrete scheme from
Theorem 3.4, is given by: Find �Um+1 ∈ Um, Pm+1 ∈ P̂m, �Xm+1 ∈ V (Γm) and Ψm+1 ∈ W (Γm+1) such
that (4.4a–c,e) hold with 〈γ(Ψm)�κm + ∇s π

m [γ(Ψm)], �ξ〉hΓ m in (4.4a) replaced by −〈γ(Ψm),∇s. �π
m �ξ〉hΓ m .

When the velocity/pressure space pair (Um, P̂m) does not satisfy (4.1), we need to consider the following
reduced version of (4.4a,b), where the pressure Pm+1 is eliminated, in order to prove existence of a solution.
Let

U
m
0 := {�U ∈ U

m : (∇. �U, ϕ) = 0 ∀ ϕ ∈ P̂
m}.

Then any solution (�Um+1, Pm+1) ∈ U
m × P̂

m to (4.4a,b) is such that �Um+1 ∈ U
m
0 satisfies (4.4a) with U

m

replaced by Um
0 . In addition, we make the following very mild well-posedness assumption.

(A) We assume for m = 0, . . . ,M − 1 that Hd−1(σm
j ) > 0 for all j = 1, . . . , JΓ , and that Γm ⊂ Ω.

Moreover, and similarly to (3.15), we note that the assumption∫
σm+1

j

∇sχ
m+1
i .∇sχ

m+1
k dHd−1 ≤ 0 ∀ i �= k, j = 1, . . . , JΓ (4.5)

is always satisfied for d = 2, and for d = 3 if all the triangles σm+1 of Γm+1 have no obtuse angles.

Theorem 4.2. Let the assumption (A) hold. If the LBB condition (4.1) holds, then there exists a unique solution
(�Um+1, Pm+1) ∈ Um × P̂m to (4.4a,b). In all other cases there exists a unique solution �Um+1 ∈ Um

0 to the
reduced equation (4.4a) with Um replaced by Um

0 . In either case, there exists a unique solution ( �Xm+1, �κm+1) ∈
V (Γm) × V (Γm) to (4.4c,d). Finally, there exists a unique solution Ψm+1 ∈ W (Γm+1) to (4.4e) that satisfies〈

Ψm+1, 1
〉

Γ m+1 = 〈Ψm, 1〉Γ m (4.6a)
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and, if DΓ = 0 or if the assumption (4.5) holds,

Ψm+1 ≥ 0 if Ψm ≥ 0. (4.6b)

Proof. As all the systems are linear, existence follows from uniqueness. In order to establish the latter, we will
consider the homogeneous system in each case. We begin with: Find (�U, P ) ∈ Um × P̂m such that

1
2 τ

(
(ρm + Im

0 ρm−1) �U, �ξ
)

+ 2
(
μmD(�U), D(�ξ)

)
−
(
P,∇. �ξ

)
+

1
2

(
ρm, [(�Im

2
�Um.∇) �U ]. �ξ − [(�Im

2
�Um.∇) �ξ]. �U

)
= 0 ∀ �ξ ∈ U

m, (4.7a)(
∇. �U, ϕ

)
= 0 ∀ ϕ ∈ P̂

m. (4.7b)

Choosing �ξ = �U in (4.7a) and ϕ = P in (4.7b) yields that

1
2

(
(ρm + Im

0 ρm−1) �U, �U
)

+ 2 τ
(
μmD(�U), D(�U)

)
= 0. (4.8)

It immediately follows from (4.8), on recalling ρ± > 0, that �U = �0 ∈ Um. Moreover, (4.7a) with �U = �0 implies,
together with (4.1), that P = 0 ∈ P̂

m. This shows existence and uniqueness of (�Um+1, Pm+1) ∈ U
m × P̂

m. The
proof for the reduced equation is very similar. The homogeneous system to consider is (4.7a) with Um replaced
by Um

0 , where we note that the latter is a linear subspace of Um. As before, (4.8) yields that �U = �0 ∈ Um
0 , and

so the existence of a unique solution �Um+1 ∈ Um
0 to the reduced equation.

Next we consider: Find ( �X,�κ) ∈ V (Γm) × V (Γm) such that

〈
�X, �χ

〉h

Γ m
= 0 ∀ �χ ∈ V (Γm),

〈�κ, �η〉hΓ m +
〈
∇s

�X,∇s �η
〉

Γ m
= 0 ∀ �η ∈ V (Γm),

which immediately implies that �X = �0 and hence �κ = �0. Finally, (4.4e) is clearly a symmetric, positive definite
linear system with a unique solution Ψm+1 ∈ W (Γm+1). The desired result (4.6a) follows on summing (4.4e)
for k = 1, . . . ,KΓ . In order to prove (4.6b) we assume that Ψm ≥ 0 and observe from (4.4e) that this implies
that 〈

Ψm+1, [Ψm+1]−
〉h

Γ m+1 + τ DΓ

〈
∇s Ψ

m+1,∇s π
m+1 [Ψm+1]−

〉
Γ m+1 ≤ 0. (4.9)

Similarly to (3.16) it follows that under our assumptions the second term in (4.9) is nonnegative, which yields
that 〈

[Ψm+1]−, [Ψm+1]−
〉h

Γ m+1 =
〈
Ψm+1, [Ψm+1]−

〉h

Γ m+1 ≤ 0,

i.e. Ψm+1 ≥ 0. �

4.2. Scheme (Bfd) – approximation with implicit tangential velocity

Our proposed fully discrete equivalent of (3.31a–e) is given as follows, where we recall the regularization
parameter ε > 0 and the definitions (3.29a,b). Let Γ 0, an approximation to Γ (0), and �U0 ∈ U0, as well as
κ0 ∈W (Γ 0) and Ψ0 ∈ W (Γ 0) be given. For m = 0, . . . ,M − 1, find �Um+1 ∈ Um, Pm+1 ∈ P̂m, �Xm+1 ∈ V (Γm)
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and κm+1 ∈W (Γm) such that

1
2

(
ρm �Um+1 − (Im

0 ρm−1) �Im
2
�Um

τ
+ (Im

0 ρm−1)
�Um+1 − �Im

2
�Um

τ
, �ξ

)
+ 2

(
μmD(�Um+1), D(�ξ)

)
+

1
2

(
ρm, [(�Im

2
�Um.∇) �Um+1]. �ξ − [(�Im

2
�Um.∇) �ξ]. �Um+1

)
−
(
Pm+1,∇. �ξ

)
=
(
ρm �fm+1

1 + �fm+1
2 , �ξ

)
+
〈
πm [γε(Ψm)Πm

m−1 κ
m]�νm, �ξ

〉
Γ m

+
〈
∇s π

m [γε(Ψm)], �ξ
〉h

Γ m
∀ �ξ ∈ U

m,

(4.10a)(
∇. �Um+1, ϕ

)
= 0 ∀ ϕ ∈ P̂

m, (4.10b)〈
�Xm+1 − �id

τ
, χ�νm

〉h

Γ m

=
〈
�Um+1, χ �νm

〉
Γ m

∀ χ ∈ W (Γm), (4.10c)

〈
κm+1 �νm, �η

〉h

Γ m +
〈
∇s

�Xm+1,∇s �η
〉

Γ m
= 0 ∀ �η ∈ V (Γm) (4.10d)

and set Γm+1 = �Xm+1(Γm). Then find Ψm+1 ∈ W (Γm+1) such that

1
τ

〈
Ψm+1, χm+1

k

〉h

Γ m+1 + DΓ

〈
∇s Ψ

m+1,∇s χ
m+1
k

〉
Γ m+1

=
1
τ
〈Ψm, χm

k 〉hΓ m −
〈
Ψm

�,ε

(
�Xm+1 − �id

τ
− �Um+1

)
,∇s χ

m
k

〉h

Γ m

∀ k ∈ {1, . . . ,KΓ }, (4.10e)

where Ψm
�,ε = Ψm for d = 3 and, similarly to (3.32),

Ψm
�,ε =

{
− γε(Ψm

k )−γε(Ψm
k−1)

F ′
ε(Ψm

k
)−F ′

ε(Ψm
k−1)

F ′
ε(Ψm

k−1) �= F ′
ε(Ψm

k ),
1
2 (Ψm

k−1 + Ψm
k ) F ′

ε(Ψm
k−1) = F ′

ε(Ψm
k ),

on [�qm
k−1, �q

m
k ] ∀ k ∈ {1, . . . ,KΓ }

for d = 2, where Ψm =
∑KΓ

k=1 Ψ
m
k χm

k . We observe that (4.10a–e) is a linear scheme in that it leads to a linear
system of equations for the unknowns (�Um+1, Pm+1, �Xm+1, κm+1, Ψm+1) at each time level. In particular,
the system (4.10a–e) clearly decouples into (4.10a,b) for (�Um+1, Pm+1), then (4.10c,d) for ( �Xm+1, κm+1) and
finally (4.10e) for Ψm+1.

In order to prove the existence of a unique solution to (4.10c,d) we need to make the following very mild
additional assumption.

(B) For k = 1, . . . ,KΓ , let Ξm
k := {σm

j : �qm
k ∈ σm

j } and set

Λm
k :=

⋃
σm

j ∈Ξm
k

σm
j and �ωm

k :=
1

Hd−1(Λm
k )

∑
σm

j ∈Ξm
k

Hd−1(σm
j ) �νm

j .

Then we further assume that dim span{�ωm
k }KΓ

k=1 = d, m = 0, . . . ,M − 1.

We refer to [6] and [7] for more details and for an interpretation of this assumption, but we note that (B) is
always satisfied if Γm has no self-intersections. Given the above definitions, we introduce the piecewise linear
vertex normal function

�ωm :=
KΓ∑
k=1

χm
k �ωm

k ∈ V (Γm),
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and note that

〈�v, w �νm〉hΓ m = 〈�v, w �ωm〉hΓ m ∀ �v ∈ V (Γm), w ∈W (Γm). (4.11)

Theorem 4.3. Let the assumption (A) hold. If the LBB condition (4.1) holds, then there exists a unique solution
(�Um+1, Pm+1) ∈ Um × P̂m to (4.10a,b). In all other cases there exists a unique solution �Um+1 ∈ Um

0 to the
reduced equation (4.10a) with Um replaced by Um

0 . If the assumption (B) holds, then there exists a unique solution
( �Xm+1, κm+1) ∈ V (Γm) × W (Γm) to (4.10c,d). Finally, there exists a unique solution Ψm+1 ∈ W (Γm+1)
to (4.10e) that satisfies (4.6a).

Proof. The results for �Um+1, Pm+1 and Ψm+1 can be shown exactly as in the proof of Theorem 4.2. For the
remaining result we consider: find ( �X, κ) ∈ V (Γm) ×W (Γm) such that〈

�X, χ�νm
〉h

Γ m
= 0 ∀ χ ∈W (Γm), (4.12a)

〈κ�νm, �η〉hΓ m +
〈
∇s

�X,∇s �η
〉

Γ m
= 0 ∀ �η ∈ V (Γm). (4.12b)

Choosing χ = κ in (4.12a) and �η = �X in (4.12b) yields that〈
∇s

�X,∇s
�X
〉

Γ m
= 0. (4.13)

It immediately follows from (4.13) that �X = �Xc ∈ Rd. Together with (4.12a), (4.11) and the assumption (B)
this yields that �X = �0. Now (4.12b) with �η = �πm[κ �ωm], recall (4.11), implies that κ = 0. �

Remark 4.4. On replacing κm in (4.10a) with κm+1 the subsystem (4.10a–d) no longer decouples. However,
this system, for the special case of constant surface tension, as in (2.14), i.e. for a two-phase flow problem
without surfactants, has been considered by the authors in [3]. For this finite element approximation of two-
phase flow, the authors proved the existence of a unique solution (�Um+1, �Xm+1, κm+1) ∈ Um

0 ×V (Γm)×W (Γm)
to the reduced system (4.10a,c,d), with Um replaced by Um

0 , and with κm in (4.10a) replaced by κm+1, which
in addition satisfies the following stability bound:

1
2

(ρm �Um+1, �Um+1) + γ0 Hd−1(Γm+1) +
1
2

(
(Im

0 ρ
m−1) (�Um+1 − �Im

2
�Um), �Um+1 − �Im

2
�Um

)
+ 2 τ

(
μmD(Um+1), D(Um+1)

)
≤ 1

2
(Im

0 ρm−1 �Im
2
�Um, �Im

2
�Um) + γ0 Hd−1(Γm) + τ

(
ρm �fm+1

1 + �fm+1
2 , �Um+1

)
.

The same stability result, in the case (2.14), can be shown for the scheme (4.4a–e), once again on replacing
�κm in (4.4a) with �κm+1.

The above remark motivates our choice of time discretizations in (4.10a–d). As it does not appear possible
to prove a stability result similar to (3.37) for the fully discrete scheme (4.10a–e) for general choices of γ such
as (2.13a,b), we prefer to use κm in (4.10a) rather than κm+1, which simplifies the existence and uniqueness
proof, as well as the solution procedure.

Remark 4.5. For ease of presentation we have assumed so far that the number of vertices, KΓ , and the number
of elements, JΓ , of the discrete interface Γm remain constant over time. However, it is a simple matter to allow
for a localized refinement procedure as employed in [3]. Here any newly introduced basis function for Γm+1,
say, needs to be traced back to Γm so that (4.10e), and similarly (4.4e), remain well-defined.
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5. Numerical results

For details on the assembly of the linear system arising at each time step of (4.10a–e), as well as details on
the adaptive mesh refinement algorithm and the solution procedure, we refer to [3]. The main new ingredient
is (4.10e), which decouples from (4.10a–d) and so is straightforward to solve. In fact, the computational effort
for the solution of (4.10e) is negligible compared to the two-phase flow solver for (4.10a–d). An analogous
comment holds for the scheme (4.4a–e). The schemes are implemented with the help of the finite element
toolbox ALBERTA, see [36]. Note that the evaluation and the assembly of interface-bulk cross terms, such as
the right hand side in (4.10c), is an independent software development by the authors, which is not available
as a built-in capability in ALBERTA. Details on these developments can be found in [3, 8, 10]. Moreover, we
recall from [3] that for the bulk mesh adaptation we use a strategy that results in a fine mesh size hf around
Γm and a coarse mesh size hc further away from it. Here hf = 2 min{H1,H2}

Nf
and hc = 2 min{H1,H2}

Nc
are given by

two integer numbers Nf > Nc, where we assume from now on that Ω is given by ×d
i=1(−Hi, Hi).

For the scheme (Bfd) we fix ε = 10−5, and in all our numerical experiments presented in this section the
discrete surfactant concentration Ψm remained above ε throughout the evolution, so that γε(Ψm) = γ(Ψm),
recall (3.29b). Unless otherwise stated we use the linear equation of state (2.13a) for the surface tension, and
for the numerical simulations without surfactant we set β = 0 in (2.13a). We set Ψ0 = ψ0 = 1, unless stated
otherwise. In addition, we employ the lowest order Taylor–Hood element P2–P1, together with the XFEMΓ

extension from [3, 9], in all computations and set �U0 = �I0
2 �u0, where �u0 = �0 unless stated otherwise. For the

initial interface we always choose a circle/sphere of radius R0 and set κ0 = − d−1
R0

for the scheme (Bfd). For the
scheme (Afd) we let �κ0 ∈ V (Γ 0) be the solution of (4.4d) with m and m+1 replaced by zero. To summarize the
discretization parameters we use the shorthand notation n adaptk,l from [3]. The subscripts refer to the fineness of
the spatial discretizations, i.e. for the set n adaptk,l it holds thatNf = 2k andNc = 2l. For the case d = 2 we have
in addition that KΓ = JΓ = 2k, while for d = 3 it holds that (KΓ , JΓ ) = (770, 1536), (1538, 3072), (3074, 6144)
for k = 5, 6, 7. Finally, the uniform time step size for the set n adaptk,l is given by τ = 10−3/n, and if n = 1 we
write adaptk,l.

5.1. Convergence experiments for convection diffusion equation

In this subsection we test the two approximations (4.4c,e) and (4.10c–e) for the convection diffusion equa-
tion (2.8), in a situation where the evolution of the surface Γ (t) is given. In particular, we perform convergence
experiments for the true solution from the Appendix; that is, ψ(�z, t) = e−6 t z1 z2 is fixed on the moving ellipsoid
Γ (t) with time dependent x1-axis. To this end, we replace �Um+1 in (4.4c) and (4.10c,e) with �u(·, tm+1) as defined
in (A.2), and set DΓ = 1. In addition, we add the term〈

fm+1
Γ , χm+1

k

〉h

Γ m+1

to the right hand sides of (4.4e) and (4.10e), where fm+1
Γ ∈ W (Γm+1) is defined such that

fm+1
Γ (�qm+1

k ) = fΓ ( �ΠΓ (tm+1) �q
m+1
k , tm+1) k = 1, . . . ,KΓ ,

with fΓ given as in (A.3), and with �ΠΓ (t) : Rd → Γ (t) denoting the orthogonal projection onto Γ (t) for t ∈ [0, T ].
In practice this projection can be computed with the help of a Newton iteration. In Table 1 we report on the
error

‖Ψ − ψ‖L2 :=

[
M∑

m=1

τ
〈
[Ψm − ψ(·, tm) ◦ �ΠΓ (tm)]2, 1

〉h

Γ m

] 1
2

for convergence experiments for d = 2 and d = 3, respectively. Here we choose the time interval [0, T ] with
T = 1, and for the uniform time step size we take τ = h2

0, where h0 denotes the maximal element diameter
of Γ 0. Of course, for the last time step we use the time step size T − tM−1 = T − (M − 1) τ . We observe that
both schemes show very similar errors, indicating a convergence order of at least O(h2

0).
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Figure 2. (adapt7,3) Vertex distributions for the final bubbles for the benchmark problem 1
at time T = 3 for the scheme (Afd) without local refinement on Γm (left), and with local
refinement (right).

Table 1. The scaled errors ‖Ψ − ψ‖L2/h2
0 for the convergence experiment for d = 2 (left) and

d = 3 (right).

h0 (4.4c,e) (4.10c–e)
3.9018e-01 3.9128e-02 3.9394e-02
1.9603e-01 6.3381e-03 6.3457e-03
9.8135e-02 2.1812e-02 2.1788e-02
4.9082e-02 3.7650e-03 3.7589e-03
2.4543e-02 2.2126e-03 2.2088e-03

h0 (4.4c,e) (4.10c–e)
7.6537e-01 5.3318e-02 6.8256e-03
4.0994e-01 1.5836e-02 1.6530e-02
2.0854e-01 9.5588e-03 9.7333e-03
1.0472e-01 1.9850e-03 2.0285e-03
5.2416e-02 2.1950e-03 2.2494e-03

5.2. Numerical simulations in 2d

In this section we consider some numerical simulations for two-phase flow with insoluble surfactant in two
space dimensions. We begin with a comparison between the schemes (Afd) and (Bfd) for a rising bubble exper-
iment that is motivated by the benchmark problems in [29] for two-phase Navier–Stokes flow.

5.2.1. Rising bubble benchmark problem 1

We use the setup described in [29], see Figure 2 there; i.e. Ω = (0, 1) × (0, 2) with ∂1Ω = [0, 1] × {0, 2} and
∂2Ω = {0, 1}× (0, 2). Moreover, Γ0 = {�z ∈ R2 : |�z− (1

2 ,
1
2 )T | = 1

4}. The physical parameters from the test case 1
in Table I of [29], in the absence of surfactant, are given by

ρ+ = 1000, ρ− = 100, μ+ = 10, μ− = 1, γ0 = 24.5, �f1 = −0.98 �ed, �f2 = �0, (5.1)

where, here and throughout, {�ej}d
j=1 denotes the standard basis in Rd. The time interval chosen for the sim-

ulation is [0, T ] with T = 3. For the surfactant problem we choose the parameters DΓ = 0.1 and (2.13a) with
β = 0.5.

We start with a simulation for the scheme (Afd), i.e. (4.4a–e), using the discretization parameters adapt7,3.
The results can be seen on the left of Figure 2. Here two things should be noted. Firstly, the area of the inner
phase has decreased in time. In fact, in this computation the relative area loss for the inner phase is 62%.
And secondly, we see that the vertices of the approximation Γm are transported, similarly to the surfactant,
with the fluid flow. This means that many vertices can be found at the bottom of the bubble, with hardly any
vertices left at the top. The second behaviour can be improved by allowing local mesh refinements on Γm, recall
Remark 4.5. In particular, we refine an element σm on Γm whenever Hd−1(σm) > 7

4 maxj=1,...,JΓ Hd−1(σ0
j ).

Then the interface remains well resolved, and the final number of elements is JM
Γ = 252 > 128 = J0

Γ . However,
coalescence of vertices can still be observed at the bottom of the bubble, see the plot on the right of Figure 2.
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Figure 3. (adapt7,3) Vertex distributions for the final bubbles for the benchmark problem 1
at time T = 3 for a variant of the scheme (Afd) without local refinement on Γm (left) and with
local refinement (right). The loss of symmetry is caused by coalescence of vertices.
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Figure 4. (adapt7,3) Vertex distributions for the final bubble for the benchmark problem 1 at
time T = 3 for the scheme (Bfd). On the left the computation with β = 0, on the right with
β = 0.5.

We remark that for the latter computation the area of the inner phase decreases by 14%. For completeness
we note that this dramatic area loss is connected to mass lumping being employed on the right hand side
of (4.4c). To visualize this effect, we repeat the above computations now for 〈�Um+1, �χ〉hΓ m in (4.4c) replaced by
〈�Um+1, �χ〉Γ m . The semidiscrete variant of this new approximation then no longer satisfies the stability result
in Theorem 3.3. However, in practice this approximation appears to perform much better, with the relative
area loss of the inner phase now down to 1.4% for the simulation without local refinement. The simulation with
local refinement leads to coalescence of vertices and a clear loss of symmetry, which is of course unphysical, see
Figure 3.

The same computation for our preferred scheme (Bfd), i.e. (4.10a–e), where no local refinements need to be
performed because the tangential movement of vertices yields an almost equidistributed approximation of Γm,
can be seen in Figure 4, where we compare the run with β = 0.5 also to the case of constant surface tension,
i.e. β = 0. We remark that for these computations the areas of the two phases, as well as the total surfactant
mass on Γm, were conserved.

In Figure 5 we show the surfactant concentrations ΨM on the final bubble for the two schemes (Afd) and (Bfd),
where in the computation for the former scheme we employ local mesh refinements. We observe that the
numerical results are in rough agreement, apart from the smaller bubble for the scheme (Afd) because of the
loss of area for the inner phase. We also show a plot of the discrete surface energy 〈F (Ψm), 1〉hΓ m , where for
the scheme (Bfd) it holds that 〈Fε(Ψm), 1〉hΓ m = 〈F (Ψm), 1〉hΓ m throughout the evolution. Here it can be seen
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Figure 5. (adapt7,3) The surfactant concentration on the final bubbles for the benchmark
problem 1 at time T = 3 for the schemes (Afd) and (Bfd). The grey scales linearly with the
surfactant concentration ranging from 0.4 (white) to 1.4 (black). Below we present plots of
〈F (Ψm), 1〉hΓ m over time for the two schemes.

that the plots for the two approximations differ significantly, most probably because of the area loss for the
scheme (Afd).

The poor mesh properties of the scheme (Afd), together with the fact that the volume of the two phases
is in general not conserved, mean that this scheme is not very practical. Of course, the same applies to the
scheme from Remark 4.1. It is for this reason that from now on we only consider numerical experiments for the
scheme (Bfd).

The parameters in (5.1) were proposed in Table I of [29], in order to define a test case for two-phase flow, in the
absence of surfactant, for which benchmark computations can be performed. We now report on these benchmark
quantities also in the presence of surfactant. To this end, we recall from [3] our fully discrete approximations
for the x2-component of the bubble’s centre of mass, the bubble’s “degree of circularity” and the rise velocity:

ym
c =

1
L2(Ωm− )

∫
Ωm

−

x2 dL2, c/m = 2 [πL2(Ωm
− )]

1
2 [H1(Γm)]−1, V m

c = �vm. �ed, (5.2)

where �vm = [(ρm
− , 1)]−1

∫
Ω ρ

m
− �Um dLd, with ρm

− ∈ Sm
0 defined as in (4.2) but with ρ+ replaced by zero. Finally,

we also define the relative overall area/volume loss as

Lloss =
Ld(Ω0

−) − Ld(ΩM
− )

Ld(Ω0−)
·

In Table 2 we report on these quantities for simulations with and without surfactant for our preferred scheme
(Bfd). Here we note that the numbers for the simulations without surfactant differ slightly from the ones in [3],
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Figure 6. (5 adapt11,5) The final bubble with surfactant for the benchmark problem 1 at time
T = 3. The clean bubble is shown dashed.

Table 2. Some quantitative results for the benchmark problem 1. Without surfactant (left)
and with surfactant (right).

adapt5,2 adapt7,3 2 adapt9,4 5 adapt11,5 adapt5,2 adapt7,3 2 adapt9,4 5 adapt11,5

0.0% 0.0% 0.0% 0.0% Lloss 0.0% 0.0% 0.0% 0.0%
0.9135 0.9069 0.9034 0.9022 c/min 0.8779 0.8715 0.8681 0.8669
2.0760 1.9420 1.9105 1.9028 tc/=c/min 2.1330 2.0710 2.0550 2.0504
0.2477 0.2415 0.2413 0.2420 Vc,max 0.2279 0.2243 0.2236 0.2237
0.9470 0.9360 0.9255 0.9698 tVc=Vc,max 1.0080 0.9040 0.9010 0.8916
1.0906 1.0822 1.0814 1.0815 yc(t = 3) 1.0423 1.0449 1.0467 1.0473

Table 2, because the finite element approximations employed here is different, recall Remark 4.4. Nevertheless,
there is still good agreement with the corresponding numbers from the finest discretization run of group 3
in [29], which are given by 0.9013, 1.9000, 0.2417, 0.9239 and 1.0817. Here we note that of the three groups
in [29], group 3 shows the most accurate and the most consistent results for the test case 1. In what follows we
present some visualizations of the numerical results for the runs with the discretization parameters 5 adapt11,5.
A plot of ΓM can be seen in Figure 6, while the time evolution of the circularity, the centre of mass and the
rise velocity are shown in Figures 7 and 8.

5.2.2. Rising bubble benchmark problem 2

In a second set of benchmark computations, we fix

ρ+ = 1000, ρ− = 1, μ+ = 10, μ− = 0.1, γ0 = 1.96, �f1 = −0.98 �ed, �f2 = �0, (5.3)

as in test case 2 in Table I of [29]. For the surfactant problem we again let DΓ = 0.1 and let β = 0.5
in (2.13a). In Table 3 we report on some benchmark quantities for simulations with and without surfactant
for our preferred scheme (Bfd). Here we note that in contrast to the experiments in Section 5.2.1, there is little
difference between the numbers for the runs with and without surfactant. This is because in the simulations
for (5.3) the large values of ρ+

ρ− and μ+
μ− dominate the evolution. In particular, they lead to elongated fingers

developing at the bottom of the rising bubble which means that there is a significant growth in the overall
interface length. In order to account for this growth, we locally refine Γm in all the simulations for the parameters
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Figure 7. (5 adapt11,5) Circularity of the surfactant bubble for the benchmark problem 1. The
dashed line is for the clean bubble.
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Figure 8. (5 adapt11,5) Centre of mass and rise velocity for the surfactant bubble for the
benchmark problem 1. The dashed lines are for the clean bubble.

as in (5.3). Here, similarly to the experiment on the right of Figure 2, we refine an element σm on Γm whenever
Hd−1(σm) > 7

4 maxj = 1,...,JΓ Hd−1(σ0
j ). For completeness we note that the corresponding numbers from the

finest discretization run of group 3 in [29], in the absence of surfactant, are given by 0.5144, 3.0000, 0.2502,
0.7317, 0.2393, 2.0600 and 1.1376. In what follows we present some visualizations of the numerical results for
the runs with the discretization parameters 2 adapt9,4. A plot of ΓM can be seen in Figure 9, where we also
show the final surfactant concentration ΨM . Here we observe that most of the surfactant has accumulated at
the inner side walls of the lower part of the bubble. It is worth pointing out that our numerical method has
no difficulties in computing the evolution of the advection-diffusion equation on a highly deformed interface as
seen in Figure 9. As the surfactant in this experiment has hardly any effect on the circularity, the centre of mass
and the rise velocity of the bubble, we omit detailed plots for these quantities here. But the same plots for the
clean bubble can be found in [3].

5.2.3. Rising circular bubble

In the rising bubble simulations in the two previous subsections, the rise velocity of the bubble was not
dramatically altered by adding surfactant onto the interface. However, a lower rise velocity is often observed for
contaminated bubbles in experiments, see e.g. [15], and we want to highlight this effect in the next numerical
simulation.
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Figure 9. (2 adapt9,4) The final bubble with surfactant for the benchmark problem 2 at
time T = 3, with the surfactant concentration on the right. The grey scales linearly with the
surfactant concentration ranging from 0.1 (white) to 0.9 (black). The dashed curve on the left
represents the final shape of the clean bubble.

Table 3. Some quantitative results for the benchmark problem 2. Without surfactant (left)
and with surfactant (right).

adapt5,2 adapt7,3 2 adapt9,4 adapt5,2 adapt7,3 2 adapt9,4

0.0% 0.0% 0.0% Lloss 0.0% 0.0% 0.0%
0.5890 0.5198 0.5165 c/min 0.5449 0.4998 0.4891
3.0000 3.0000 3.0000 tc/ = c/min 3.0000 3.0000 3.0000
0.2584 0.2480 0.2489 Vc,max1 0.2563 0.2465 0.2476
0.8800 0.7610 0.7295 tVc = Vc,max 1 0.8830 0.7340 0.7390
0.2283 0.2305 0.2357 Vc,max2 0.2283 0.2326 0.2391
2.0000 1.9510 2.0485 tVc = Vc,max 2 2.2550 2.0330 2.0825
1.1275 1.1239 1.1319 yc(t = 3) 1.1217 1.1197 1.1294

We consider the same domain Ω = (0, 1) × (0, 2) as in Section 5.2.1, with the same boundary conditions as
there. As before, we let Γ0 = {�z ∈ R2 : |�z− (1

2 ,
1
2 )T | = 1

4}. The physical parameters, which we choose as in ([33],
Fig. 16), are given by

ρ+ = 1, ρ− = 0.1, μ+ =
1
2
, μ− =

1
80
, γ0 = 1, �f1 = −�ed, �f2 = �0,

with the time interval defined by [0, T ] with T = 30. For the surfactant problem we choose the parameters
DΓ = 0.01 and (2.13a) with β = 0.5. Overall this experiment corresponds to an insoluble surfactant variant
of the simulation presented in ([33], Fig. 16), where a soluble surfactant is considered. To demonstrate the
effect that adding surfactant to the bubble has on the velocity profile inside the bubble, in Figure 10 we plot
the relative velocity �UM − �vM , recall (5.2), for the two cases of clean and contaminated bubble. Clearly, the
two vortices inside the clean bubble almost vanish completely when surfactant is added. This reduces the rise
velocity significantly, as can be seen at the bottom of Figure 10.
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Figure 10. (adapt9,4) Relative velocity vectors �UM−�vM for the final bubble without surfactant
(left) and with surfactant (right) at time T = 30. Below a comparison of the rise velocities for
the two bubbles, where the dashed line is for the clean bubble.

5.2.4. Bubble in shear flow

In the literature on numerical methods for two-phase flow with insoluble surfactant it is often common to
consider shear flow experiments for an initially circular bubble in order to study the effect of surfactants and of
different equations of state. In this subsection, we will perform such simulations for our preferred scheme (Bfd).
Here we consider the setup from ([32], Fig. 1). In particular, we let Ω = (−5, 5) × (−2, 2) and prescribe the
inhomogeneous Dirichlet boundary condition �g(�z) = (1

2 z2, 0)T on ∂Ω = ∂1Ω. Moreover, Γ0 = {�z ∈ R2 : |�z| = 1}.
The physical parameters are given by

ρ+ = ρ− = 1, μ+ = μ− = 0.1, γ0 = 0.2, DΓ = 0.1, �f = �0, �u0 = �g. (5.4)

First we compare the evolutions for the linear equation of state (2.13a) for (i) β = 0, (ii) β = 0.25 and (iii)
β = 0.5. Our numerical results appear to agree very well with the ones in Figure 1 of [32]; see Figure 11 for
more details. On recalling (5.2), we note that the “circularities” c/M of the final bubbles are given by 0.68, 0.59
and 0.51, respectively. Moreover, we remark that for these simulations the relative overall area loss satisfies
|Lloss| < 0.02%, and the same holds true for all of the remaining numerical experiments in this subsection.

In the next experiment we choose the nonlinear equation of state (2.13b) with ψ∞ = 1
β (see also [32], Fig. 6).

We show the evolutions of the drop for β = 0.25 and for β = 0.5 in Figure 12. A detailed comparison of the
final drop shapes for the two equations of state (2.13a,b) can be seen in Figure 13. As expected, the difference
between the simulations for the two equations of state are more pronounced for the larger value of β.
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Figure 11. (2 adapt9,4) The time evolution of a drop in shear flow for (2.13a) with β = 0
(top), β = 0.25 (middle) and β = 0.5 (bottom). Plots are at times t = 0, 4, 8, 12. The grey
scales linearly with the surfactant concentration ranging from 0.2 (white) to 1.6 (black).
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Figure 12. (2 adapt9,4) The time evolution of a drop in shear flow for (2.13b) with β = 0.25
(top) and β = 0.5 (bottom). Plots are at times t = 0, 4, 8, 12. The grey scales linearly with the
surfactant concentration ranging from 0.2 (white) to 1.6 (black).

In Figure 14 we compare the previously used (2.13a) with β = 0.5 and (2.13b) with ψ−1∞ = β = 0.5 to (2.13b)
with β = 0.5 and ψ∞ = 1.3. This indicates that the initial drop should now be more unstable. However,
the evolution is not very different to what we saw before, see Figure 15. This is despite the maximum discrete
surfactant concentration being ≈ 1.08, which means that the discrete surface tension γ(Ψm) at times is negative.
In fact, the observed minimum value is < −0.03, compare with Figure 14, but this posed no problem for our
numerical method.
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Figure 13. (2 adapt9,4) Comparison of the final drop shapes in shear flow for a linear (2.13a)
and a nonlinear (2.13b) equation of state with β = 0.25 (left) and β = 0.5 (right). In each case
the shape for (2.13b) is more elongated.
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Figure 14. (β = 0.5) Plots of γ(r) for the linear equation of state (2.13a) and the nonlinear
equation of state (2.13b) with ψ∞ = 2 and 1.3.
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Figure 15. (2 adapt9,4) The time evolution of a drop in shear flow for (2.13b) with β = 0.5
and ψ∞ = 1.3. Plots are at times t = 0, 4, 8, 12. The grey scales linearly with the surfactant
concentration ranging from 0.3 (white) to 1.1 (black).

On returning back to the linear equation of state (2.13a), we also present a numerical simulation for different
densities and viscosities. In particular, we leave all the parameters as in (5.4), but now choose

ρ+ = 10, ρ− = 1, μ+ = 1, μ− = 0.1.

We show the evolution of the drop in Figure 16 for β = 0, 0.25 and 0.5. In contrast to Figure 11, the presence
of surfactant has very little impact on the shape of the drop here. However, the interfaces in Figure 16 are more
distorted and have higher curvatures at the ends, which is a well-known fact when the viscosity of the drop is
much less than the one of the surrounding fluid, see [35].
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Figure 16. (2 adapt9,4) The time evolution of a drop in shear flow for (2.13a) with β = 0
(top), β = 0.25 (middle) and β = 0.5 (bottom). Here ρ+ = 10, ρ− = 1, μ+ = 1, μ− = 0.1. Plots
are at times t = 0, 2, 4, 6. The grey scales linearly with the surfactant concentration ranging
from 0.3 (white) to 1.3 (black).

Table 4. Some quantitative results for the 3d benchmark problem 1. Without surfactant (left)
and with surfactant (right).

adapt5,2 adapt6,3 adapt5,2 adapt6,3

0.0% 0.0% Lloss 0.0% 0.0%
0.9570 0.9508 s/min 0.9347 0.9297
3.0000 3.0000 ts/=s/min 2.8300 2.9970
0.3822 0.3845 Vc,max 0.3252 0.3296
1.1930 1.0790 tVc=Vc,max 1.1230 0.8960
1.5515 1.5555 zc(t = 3) 1.3807 1.3902

5.3. Numerical simulations in 3d

In this section we consider some numerical simulations for two-phase flow with insoluble surfactant in three
space dimensions. Here we will always report on simulations for our preferred scheme (Bfd).

5.3.1. Rising bubble benchmark problem 1

Here we consider the natural 3d analogue of the problem in Section 5.2.1. To this end, we let Ω = (0, 1) ×
(0, 1) × (0.2) with ∂1Ω = [0, 1] × [0, 1] × {0, 2} and ∂2Ω = ∂Ω \ ∂1Ω. Moreover, we set T = 3, Γ0 = {�z ∈ R3 :
|�z−(1

2 ,
1
2 ,

1
2 )T | = 1

4}, and choose the physical parameters as in (5.1). The time interval chosen for the simulation
is again [0, T ] with T = 3. For the surfactant problem we choose the parameters DΓ = 0.1 and (2.13a) with
β = 0.5.

Some quantitative values for the evolution are given in Table 4, where we have introduced the natural
extensions of the quantities defined in (5.2). In particular, the discrete approximations of the x3-component of
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Figure 17. (adapt6,3) Side view of the final bubble for the 3d benchmark problem 1 at time
T = 3. Without surfactant (left) and with surfactant (right).

Figure 18. (adapt6,3) The final surfactant concentration ΨM on ΓM . Here the colour ranges
from red (0.5) to blue (1.2). (In color online).

the bubble’s centre of mass and the “degree of sphericity” are defined by

zm
c =

1
L3(Ωm− )

∫
Ωm

−

x3 dL3, s/m = π
1
3 [6L3(Ωm

− )]
2
3 [H2(Γm)]−1.

In what follows we present some visualizations of the numerical results for the runs with adapt6,3. A com-
parison of the final meshes for the runs with and without surfactant can be seen in Figure 17, while the discrete
surfactant concentration for the run with surfactant can be seen in Figure 18.

5.3.2. Bubble in shear flow

In this subsection we report on the 3d analogues of the computations shown in Figure 11. In particular,
in Figure 19 we show shear flow experiments on the domain Ω = (−5, 5) × (−2, 2)2 with ∂Ω = ∂1Ω and
�g(�z) = (1

2 z3, 0, 0)T . The physical parameters are as in (5.4), and we compare the evolutions for the linear
equation of state (2.13a) for (i) β = 0; (ii) β = 0.25; and (iii) β = 0.5. As the discretization parameters we
choose adapt�

5,2, which are the same as for adapt5,2, apart from τ = 0.01 and (KΓ , JΓ ) = (1538, 3072), i.e.
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Figure 19. (adapt�
5,2) The discrete surfactant concentrations Ψm at times t = 0, 4, 8, 12 for

β = 0 (top), β = 0.25 (middle) and β = 0.5 (bottom). The colour ranges from red (0.5) to
blue (1.9). (In color online).

adapt�
5,2 uses a larger time step size and a finer interface mesh compared to adapt5,2. Our three dimensional

results turn out to be very similar to the two dimensional results in Figure 11; see Figure 19 for more details.

Appendix A. Exact solution for the advection diffusion equation

Following [19], Example 7.3, we present a true solution to the inhomogeneous advection diffusion equation

∂•t ψ + ψ∇s.�u−Δs ψ = fΓ on Γ (t), (A.1)

recall (2.8), in a situation where the fluid velocity �u, and hence the evolution of Γ (t), is given. The surface is
given by Γ (t) = {�z ∈ R

d : φ(�z, t) = 1}, where

φ(�z, t) = [a(t)]−1 z2
1 +

d∑
i=2

z2
i ,

so that the moving surface Γ (t) is an ellipsoid with time dependent x1-axis. Here we choose a(t) = 1 + sin(π t),
and as the parameterization �x(·, t) : Sd−1 → Γ (t), where Sd−1 := {�q ∈ Rd : |�q| = 1}, we choose

�x(�q, t) = [a(t)]
1
2 q1 �e1 +

d∑
i=2

qi �ei ∀ �q ∈ S
d−1, t ∈ R≥0.

On recalling (2.1), for the fluid velocity we naturally choose

�u(�z, t) =
1
2

[a(t)]−1 a′(t) z1 �e1 �z ∈ Ω, (A.2)

so that �u(�z, t) |Γ (t)= �V(�z, t) for �z ∈ Γ (t). As an exact solution we choose ψ(�z, t) = e−6 t z1 z2, and hence it
remains to calculate the right hand side fΓ in (A.1) for our chosen ψ and �u. To this end we note that

fΓ = ∂•t ψ + ψ∇s.�u−Δs ψ, (A.3)
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with ∂•t ψ = (1
2 [a(t)]−1 a′(t)− 6)ψ, ψ∇s.�u = 1

2 [a(t)]−1 a′(t) (1− ν2
1 )ψ and −Δs ψ(�z, t) = e−6 t [2 ν1 ν2 − (ν1 z2 +

ν2 z1) κ(�z, t) ], where �ν(�z, t) = ∇φ(�z,t)
|∇φ(�z,t| ∈ R

d denotes the normal to Γ (t) at �z ∈ Γ (t), and where

κ = −∇s. �ν = −∇. �ν = −|∇φ|−1
d∑

i=1

[(
1 − |∇φ|−2

(
∂φ

∂zi

)2
)
∂2φ

∂z2
i

]
(A.4)

denotes the mean curvature of Γ (t). Of course, for our example we have that ∇φ(�z, t) = 2 [a(t)]−1 z1 �e1 +
2
∑d

i=2 zi �ei, and so (A.4) reduces to

κ = −2 |∇φ|−1 [a(t)]−1
(
1 − 4 |∇φ|−2 [a(t)]−2 z2

1

)
− 2 |∇φ|−1

d∑
i=2

(
1 − 4 |∇φ|−2 z2

i

)
.
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