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PARALLELIZING THE KOLMOGOROV FOKKER PLANCK EQUATION

Luca GERARDO-GIORDA! AND MINH-BINH TRAN!

Abstract. We design two parallel schemes, based on Schwarz Waveform Relaxation (SWR) proce-
dures, for the numerical solution of the Kolmogorov equation. The latter is a simplified version of the
Fokker—Planck equation describing the time evolution of the probability density of the velocity of a
particle. SWR procedures decompose the spatio-temporal computational domain into subdomains and
solve (in parallel) subproblems, that are coupled through suitable conditions at the interfaces to re-
cover the solution of the global problem. We consider coupling conditions of both Dirichlet (Classical
SWR) and Robin (Optimized SWR) types. We prove well-posedeness of the schemes subproblems and
convergence for the proposed algorithms. We corroborate our findings with some numerical tests.
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1. INTRODUCTION

The Fokker—Planck equation describes the time evolution of the probability density function of the velocity
of a particle. It reads for (¢, z,v) € Ri x R x R, (d > 1)

Ou+v-Vau—ViV(r) Vyu=V, - (Vyu+ou), (1.1)

where V(z) is the external potential. Together with the theoretical study of the equation ([11,12]), there are a
lot of numerical studies on the Fokker—Plank and related equations ([4-6,9,25,27,30]), fractional Fokker—Plank
equation [10], Wigner—Fokker—Plank equation [15], Fokker—Planck-Landau equation [3,14,28], Vlasov—Fokker—
Planck system [1,8], Vlasov—Poisson—Fokker—Planck system [32], Maxwell-Fokker—Planck—Landau equation [13],
Vlasov—Fokker—Planck-Landau equation [7]. However, up to our knowledge, there has been no domain decom-
position scheme to parallelize the numerical resolution of these types of kinetic equations.

Parallel computing is a form of computation in which calculations are carried out in parallel, based on the
principle that large problems can be divided into smaller ones. Due to the physical constraints of computers,
parallelism has got more and more attention in the recent years. In the last two decades, domain decompo-
sition methods have become a very useful tool to parallelize the numerical resolution of partial differential
equations numerically. Schwarz waveform relaxation methods, together with its accelerated version optimized
Schwarz waveform relaxation algorithms, is a new class of domain decomposition algorithms adapted to the
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context of studying evolution equations numerically. For a survey on this, we refer to [23] and the pioneering
works [16,18-22].

The main feature of our present work is to design parallel schemes based on the Schwarz waveform relaxation
methods to solve numerically a simplified version of the Fokker—Planck model (1.1): the Kolmogorov equation

ou ou  0%u

E"‘U%—w:f, (12)

where f is some external force. As we can see from its form, the Kolmogorov equation diffuses not only in the

velocity variable, since it contains the diffusion term %, but also in the space variable, because of the hidden

interaction between the transport term v% and the diffusion term gff;. The hypoellipticity and the asymptotic

behavior of this operator have been studied in the work of Hormander [24] and of Villani [38]. Recently, the null
controllability property of this operator has been explored deeply by Beauchard and Zuazua in [2].

Since the principal part of the operator involves the second derivatives in v, we design some Schwarz wave-
form relaxation algorithms with Dirichlet (classical Schwarz method) or Robin (optimized Schwarz method)
transmission condition for this equation, by splitting the domain in the v direction. For the sake of simplicity,
we only split the domain into two subdomains, however, the extension to a larger number of subdomains does
not present any theoretical difficulties.

We provide some results on the existence and uniqueness of a solution for the Kolmogorov equation with
different boundary conditions, in order to prove that our algorithms are well-posed. The convergence proof of
Schwarz methods at the continuous level has been a very difficult task. In [33-37] a new class of techniques has
been introduced in order to study this convergence problem of domain decomposition methods. Based on these
techniques, we give a new proof of the convergence of our algorithms by some maximum principles and some
energy estimates.

The structure of the paper is the following;:

Section 2 is devoted to the definition of the equation and the algorithms. In Section 3 we prove existence and
uniqueness results for (2.1) with Dirichlet and Robin boundary conditions, ensuring the well-posedenss of the
algorithms introduced in Section 2. In Sections 4 and 5 we prove convergence for the Classical and Optimized
Schwarz Waveform Relaxation algorithms, respectively. Section 6 is devoted to numerical results, while the
conclusions of the paper are drawn in Section 7.

2. GENERAL SETTING
We are interested in the following 2 dimensional Kolmogorov model of [2]

%—?4—1}%— % = f,for (t,z,v) in (0,00) x 2 :=(0,00) x T x (=R, R),

u(t,z, —R) = u(t,z, R) = 0,for (¢,z) in (0,00) x T, (2.1)
u(0,x,v) = ugp(z,v), for (x,v) in T x (—R, R),

where T is the periodic domain R/Z, f € C([0,00), L*(T, L?*(-R,R)))N C'(0,00, L*(T,L*(—R,R)))
NL* (0,00, L*(T, L?>(— R, R)))NL*>((0,00)x Tx (— R, R))NL?(0, 00, L*(T, L>(—R, R))), up € L*(T, H*(—R, R)).

It is proved in [2] that the fundamental solution of the 2 dimensional Kolmogorov equation has the form of a
Gaussian. Therefore, similar to the heat equation, in order to perform numerical computations, which only work
for bounded domains, in this work we do a truncation of the whole space R? to a bounded domain (—R, R) x T
and impose homogeneous Dirichlet and periodic boundary conditions.

Notice that our results are valid for the general, multidimensional case. However, for the sake of simplicity
in presentation and to avoid unnecessarily heavy notations, we consider here the 2 dimensional case as studied
in [2].

Parallel domain decomposition algorithms consist of dividing the domain (2 into a number of (possibly over-
lapping) regions, and solve (2.1) in parallel in each subdomain. The solution to the global problem (2.1) in {2 is
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recovered through suitable coupling conditions at the interfaces between subdomains. For the sake of simplicity
in presentation, we consider here the domain §2 divided into two parts 2y := Tx (=R, L2) and {25 := Tx (Ly, R),
where —R < L1 < Ly < R, and solve (2.1) parallely on each subdomain {21 and (2.
The classical Schwarz waveform relaxation algorithm for (2.1) is then written

n n 2, n
8;; —I—U%L; — 88:; = f,for (t,z,v) in (0,00) x (21,
ul(t,z,—R) = 0,for (t,z) in (0,00) x T,

1( ) (t, ) in (0, 00) (2.2)

ul (0, z,v) = uo(x,v), for (z,v) in (21,

wi(t,x, L) = uy " (t,x, L), for (t,x) in (0,00) x T,

and

n n 2, n
%Lf +v8$;"’ - 88522 = f,for (t,z,v) in (0,00) x {29,

ul(t,x, R) = 0,for (¢t,z) in (0,00) x T,
ul(0,z,v) = uo(z,v), for (z,v) in 2,
ul(t,x, Ly) = u " (t,x, Ly), for (t,x) in (0,00) x T,

the initial guess u§(t,x, L2) and u(¢,z,L;) are chosen arbitrarily in L°(0, 00, L°°(T)) N L?(0, 00, L>(T)) N
C1(0, 00, L>(T)) N C(]0, 00), L>=(T)) and satisfy the compatibility conditions of the equations:

When n tends to oo, u} and uy are expected to converge to v on {21 and (2o.
For any two positive numbers p, ¢, the optimized Schwarz waveform relazation algorithm for (2.1) is defined

by replacing the Dirichlet transmission condition in (2.2)

n n 2 n
BaL; —I—vé%c1 — —83:21 = f, for (t,z,v) in (0,00) x {21,
ul (0, z,v) = ug(x,v), for (x,v) in 24,
1( ) = uo(x,v) (z,v) in £ (2.3)

uf(t,x,—R) =0, for (t,z) in (0,00) x T,
(p+ go)uit (t, 2, La) = (p + F;)uz ™ (t, @, La), for (t,z) in (0,00) x T,

and

n n 2. n
Gt +0%E — Gt = . in (0,00) x 12y,
u(0,z,v) = ug(z,v), for (z,v) in (2,

ul(t,x, R) =0, for (¢t,z) in (0,00) x T,

(¢ — %)u%’(t,x,Ll) =(q— %)u?_l(t,ac,lq), for (¢t,x) in (0,00) x T,

where at the first iteration the initial guesses w{, w3y €  L*(0,00,L®(T,H?*(—R,R))) N
L?(0,00, L>°(T, H*(—R, R))) N C*(0, 00, L>=(T, H?(—R, R))) N C([0, ), L°>*(T, H*(—R, R))) are chosen such



398 L. GERARDO-GIORDA AND M.-B. TRAN

that (p+ 2 )ud(t,z, L) and (¢— 2 )ul(t, x, L1) are in C([0, 00), L>(T))NC* (0, 00, L>(T))NL>*(0, 00, L=(T))N
L?(0, 0, L°° (T)) and satisfy the compatibility conditions of the equations:

ud(0, 2, Ly) = ug(w, Ly), on T,
u3(0,2, L1) = ug(z,L1), on T.

Compared with the classical Schwarz waveform relaxation algorithm, optimized ones require less iterations to
converge to the solution of (2.1). Moreover, optimized Schwarz algorithms converge also in the non-overlapping
case, a feature not shared by the classical ones.

3. EXISTENCE AND UNIQUENESS RESULTS FOR THE KOLMOGOROV EQUATIONS
In this section, we will prove the existence and uniqueness of a solution of the Kolmogorov equation

%—‘;—i—vg—z—%:ffor(t,x,v)e((),oo)x']l‘x(a,b)c(?, (3.1)
w(0,z,v) = up in T X (a,b).

where (a, b) could be (—R, R), (—R, Ls) or (L1, R), f € L§2.((0,00), L*(T x (a, b)) NC*((0,00), L*(T x (a,b))) N
C([0,00), L*(T x (a,b))), ug € L*(T, H*(a,b)).
Depending on each type of domains (—R, R), (—R, Lo) or (L1, R), the boundary conditions are of the following
types:
e For the problem on (a,b) = (=R, R)

u(t,z,—R) =0, on (0,00) x T,
(3.2)
u(t,z, R) = 0, on (0,00) x T.
e Dirichlet boundary condition
For (a,b) = (=R, L)
u(t,z,—R) =0, on (0,00) x T,
(3.3)
u(t,z, La) = ho(t,x), on (0,00) x T,
and for (a,b) = (L1, R)
u(t,z,R) =0, on (0,00) x T,
(3.4)
u(t,z,L1) = ho(t,x), on (0,00) x T.
e Robin boundary condition
For (a,b) = (=R, L2)
) =0, on (0,00) x T,
(3.5)
pu(t,z, L) + W:hl(t,x), on (0,00) x T,
and for (a,b) = (L1, R
u(t,z,R) =0, on (0,00) x T,
(3.6)
qu(t,z, L1) — 78“(%32’L1) hi(t,x), on (0,00) x T,

for ho, h1 € L2.((0,00), L*(T)) N C((0, 00), L*(T)) N C([0,00), L*(T)) and p, g are positive constants.
Theorem 3.1. Suppose that ho, b € L5, ((0,00), I2(T) 1 CH((0,00), I(T) 1 C([0,00), IX(T)), f €
o0), L?
3.

)

L$° ((0,00), L3(T x (a,b))) N C((0,00), L*(T x (a b))) N C([0, L*(T x (a,b))), uop € L*(T x (a,b)), equa-

loc

)N
tion (3.1), with one of the boundary conditions (3.2), (3.3), (3.4), (3.5), (3.6) has a wunique solution in
Li5e(0, 00, L*(T, H?(a, b))) N C*((0, 00), L*(T x (a,b))) N C([0,00), L*(T x (a,b))).
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Proof. Since there exist functions @y, @2, @g and @4 in L§S.((0,00), L3(T, H?(a,b))) N C1((0,00), L*(T)) N
C([0,00), L*(T)) such that
u1(t,z,—R) =0, on (0,00) x T, tg(t,z, R) =0, on (0,00) x T,
{ﬂl(t,az,Lg) = ho(t,z), on (0,00) x T, {ﬂg(t,az,Ll) = ho(t,z), on (0,00) x T,
and
as(t,z,—R) =0, on (0,00) x T, t4(t,z, R) =0, on (0,00) x T,
{pﬂg(t,w,Lg) + W = hi(t,x), {qﬂ4(t,w,L1) — % = hy(t,z), on (0,00) x T,

then by subtracting u with w4, o, us or u4, we can suppose that hg = hy = 0.
Take the Fourier transform in z of (3.1),

ou 0%a

E-’—Z’UCU—W

= f, for (t,¢,v) in(0,00) x R X (a,b). (3.7)
Split @ and f into their real and imaginary parts
i = iy + i, f=h+ifs

Equation (3.7) becomes

21O _ ity (¢) — L1l — f,(¢), on (0,00) x (a,b),

(3.8)
~ 2 A
Pl 4 uCin (¢) — T3 = fa(Q), on (0,00) x (a,b),
the four boundary conditions remain the same after this transformation.
e For the problem on (a,b) = (—R, R)
’l)l(t, Cv _R) = ’&2(t7 Ca _R) = 07 on (Oa OO) X Rv ( )
3.9
’l)l(t, CvR) = ’&2(tv CvR) =0, on (07 OO) x R.
e Dirichlet boundary condition
For (a,b) = (=R, L)
ﬁl(ta Ca _R) = ﬁ?(ta Ca _R) = 07 on (Oa OO) X Rv
(3.10)
’l)l(t, <7L2) = ’&2(tv <7L2) = Ov on (07 OO) X Ra
and for (a,b) = (L1, R)
U1(t, ¢, R) = t2(t,{,R) =0, on (0,00) x R ( )
3.11
’l)l(t, Ca Ll) = ’&2(t7 Ca Ll) = Ov on (07 OO) x R.
e Robin boundary condition
For (a,b) = (—R, Lo)
{ﬁl(tv Ca _R) = 'ELQ(ta Ca _R) = 07 on (Oa OO) X Ra
. . (3.12)
pin(t, ¢, La) + ZGEE) — pig(t, ¢, Ly) + 22LL2) — 0, on (0,00) x R,
and for (a,b) = (L1, R)
ﬂl(ta Ca R) = 'ELQ(ta Ca R) = 07 on (Oa OO) X Ra
) ) (3.13)
qui(t,m, L) — W = qhs(t,x,L1) — % =0, on (0,00) x R.
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For any given G, since (0 £(6) € L0201 120 b) 1 C'(0,50) 12, ) 01€(0.00), L2 ), her
exists a solution (a1(¢),a2(¢)) in L52.((0,00), H*(a,b)) NC((0,00), L*(a,b)) NC([0,0), L%(a,b)) of 3.8 (see,
for example [26], Chap. VII).

Choose ¢ to be an integer n and use @1(n) and z2(n) as test functions for the system (3.8),

L[y 2Bl 4y — [ o (n)iis (n)do — [ SR (n)do = [ fi(n)is (n)do,
2 f: am(n)l dv+f ondy (n)iz(n)dv — f: v gign) i (n)dv = f f2 (n)dv,

which implies
b a|u1 n)\ b . b 2 R
s dv — [ vndg(n)iy (n)dv + [, dv =[] fi(n)t(n)dv

+ 2y () (b) — %%ﬂnmw,

Dty (n)

3.14
8u2(n) ( )

dv = f; fa(n)ag(n)dv

+282()) g () (b) — 222 (@3, () (a).

beé)l"?n dv—i—f vndiy (n)ig(n) dv—i—f

For the boundary conditions (3.9), (3.10), (3.11), we have
91 (n)(b) du;(n)(a)

S G (0) = S () (@) = 0, = (1,2},
For the boundary condition (3.12), (3.13), the quantity
0t (n)(b) . 0u;(n)(a) . . . N .
D000, 1) — 25N ) a) is cither — pliy () B or — gl (@), 5 = {1,2).
Adding the two equations (3.14), and taking into account the fact that p and ¢ are positive, we get
1 (% 8]y (n)|? 1 [° 8]tz (n)|? b1 0ay(n) |? b1 Dtin(n) |’
5/(1 Tdv+§/a TdU—F/a T d’U+/a T dv

b b
< [ Awinman+ [ famismae

b
/\fl )|2dv + = /\ul( )Pdv + = /|f2 )Pdv + = /|ﬁ2(n)|2dv, (3.15)
then

b U 2 Gg(n)]? bA 2 N 2 b 2 ¢ 2
[ (a4 A Y oo [ aa + o) o < [ AR+ P

The previous inequality implies

b b
%(/WMW“H*MM%wwmw>s/(ﬁmW@+%mwﬁmmew

Thus

b
/Xmmwﬁﬂwmwmw
b

t b o A o 2
S/O /a exp(t — s)([f1(n)]" + [f2(n)] )dvds+exp(t)/ (|1 (n, 0)[2 + |z (n, 0)]?)dv

a
b

t b
szA/MWMMWmmwm@ﬂmmWHmmmm

a
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Summing up in Z the previous inequalities yields

/ Z (|@y (n, 1) + |tz (n, t)|*)dv < exp(t) // Z (If1(n) % + | fa(n)[?)dvds

nez @ nez

+exp(t /a Z (n,0)? + |iz(n,0)]?)dvds,

ne”Z

which together with the Parseval’s theorem implies

/ /|u§t\d§dv<exp / /||f HLQOt)dCdv—Fexp / /\uo ¢)[2d¢dw.

Therefore, the inverse Fourier transform u of 47 and s exists and

b b b
/ / lu(t)dvda < exp(t) / / £ @) 1220, dvdz + exp(t) / / o [2dvdz. (3.16)
TJa a JT a JT
The existence and uniqueness of a solution of (3.1) with one of the above boundary conditions then follow by a
classical argument as in [26], Chapter VIL. O

By a classical induction argument as in [17], we have also the well-posedness of the algorithm.

Theorem 3.2. Suppose that f € L°(0,00, L*(T,L*(—R,R))) N LOO((O x) x T x (—=R,R)) N
L2(0,00, L3(T, L*>(— R, R))) N C*((0,00), L*(T x (=R, R))) N C([0, oo) L*(Tx (—-R ))) up € L*(T x (—R, R))
and the initial guesses for the Dirichlet transmission condition uf, u3 € L2 ((0, ) 2(T))NC*((0, 00), LA(T))N
C([0,00), L3(T)), the initial guesses for the Robin transmission condition ul, u§ € L°°(O, ,L>(T, H*(—R, R)))
NL2(0,00, L°°(T, H*(—R, R))) NC(0, 00, L*(T x (—R, R))) NC([0,00), L*(T x (—R, R))) are chosen such that
(p + é?v)ul(t x,La) and (q — %)ug(t,x,Ll) are in L2 (0,00, L*(T)), equations (2.2) and (2.3) have unique
solutions in L5° (0,00, L*(T, H*(—R, L2))) NC*(0,00, L*(T x (—R, Ls))) NC([0,00), L*(T x (—R, L3))) and
L$° (0,00, L*(T, H?>(L1, R))) N C* (0,00, L*(T x (L1, R))) NC([0,00), L*(T x (L1, R))).

loc

4. CONVERGENCE OF THE CLASSICAL SCHWARZ WAVEFORM RELAXATION ALGORITHM
Theorem 4.1. Suppose that Ly < Lo. For all positive number T, the algorithm converges in the following sense
lim ||u’f — u‘|Loo((07T)><Ql) = 0,

n—oo

and
Jim [Jug = ull Lo ((0,1)x 22) = 0.

Proof. Since the problems are linear in w, we can prove the convergence on the error equation by letting
e =ul —u and e} = uy — u, then

aa——l— aa —8851—0 in (0,00) x {2y, 8%54—@%? 88;5_0, in (0,00) X {29,
e (0,z,v) =0, on {2y, e (0,z,v) =0, on {2, (4.1)
et(t,z,—R) =0, on (0,00) x T, e (t,z,R) =0, on (0,00) x T, .

e (t,x, Ly) = ef~(t,x, Ly), on (0,00) x T, | e (t, 2, L1) = €' (¢, 2, L1), on (0,00) x T.
Let o be a constant to be chosen later, following the classical strategy in [33,34,37], we define

D = (e)? exp(—a’t) exp(aw), Dy = (e5)? exp(—a’t) exp(aw).
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Again, following the classical routine of [33,34,37], we develop

%@” —a?(eh)? exp(—a?t) exp(aw) + 20;ek el exp(—a’t) exp(av),
%@” = 20,¢eFel exp(—a’t) exp(av),
%@? = a(e})? exp(—a®t) exp(av) + 20,efel exp(—a’t) exp(av),
2
%@? = a?(ef)? exp(—a?t) exp(aw) + 4ad, el el exp(—a’t) exp(av)
+2(0,€¥)? exp(—a®t) exp(aw) + 20,,ek el exp(—a’t) exp(av)
to get
9 n 82 n 9 n 9 n n\2 2
Eél 5 5?7 +v o — P —I—Qaa P} = —2(0yer)” exp(—a’t) exp(av) <0, (4.2)
and similarly
0 o? 0 0
—QL — —P — &L + 2a—d5 < 0. 4.
ot 2 8@22+U8x2+a8v2_0 (43)

Step 1: The maximum principle.
We prove that the solution w of (2.1) belongs to L>*([0,7] x T x (—R,R)). Let K be greater than

HfHLOO([O,T]xTx(—R,R)) and HHOHLw(Tx(—R,R)), then

{a(u Kt) v a(u Kt) 82(g—QKt) —f— K, in(0,T)x 2

(u— Kt)(0,2,v) = up(z,v), on T x (—R, R).

Set (u — Kt); = u — Kt for v > Kt and 0 for u < Kt. Using (u — Kt)4+ as a test function for the above

equation, we get

T /R
0 2/ / /g(u—Kt)( — Kt +dxdvdt—|—/ / /v— u— Kt)(u — Kt)ydaedodt
o J-rJr ot

T R 8
Lu— KL (u— Kt), dedvdt
+/0 /_R/Tavw )2~ Kt dedud,
which yields

T
02/ / /g(u—Kt) (u— Kt) +dxdvdt+/ / /v— u— Kt); (u — Kt)ydedudt
0 _

T R 8 8
+/0 /—R/’H‘ %(u - Kt)JF%(u - Kt)+dxdvdt,

Therefore

0>/_1;/T%| dxdv—i—/ / /( (u— Kt) >2dxdvdt.

Hence (u — Kt)4 = 0, then v < KT or u is bounded from above. By a similar argument, we can prove that
u is bounded from below, and u € L>([0,T] x T x (—R, R)).
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Let M = sup(t’m)e(o’T)XT{égfl(t,x,Lg)} and suppose that M < co. Notice that uJ € L>([0,7] x T) and
u € L®([0,T] xTx (=R, R)), then M < oo for n = 1. Set (P} — M)y = &Y — M for $7 > M and 0 for 7 < M.
Using it as a test function for (4.2), we obtain

T Lo 8 T Lo 8
0> / / / — (P} — M)(P} — M) dadvdt +/ / /U_@? — M)(@? — M), dedodt
0 —R JT at 0 —rRJT 83:

T ke 0 o T Lo P
—I—/O /_R /T%(@l —M)%(Sﬁl —M)+dxdvdt+2a/0 /—R/ﬂr%(él — M)(®} — M) dxdvdt.

This leads to
Lo P — M2 T pL» 2
0> / / Mgdxdv +/ / / (3(45? - M)+> dxdvdt
-R JT 2 o JorJr\Ov
T
+a / / (@7 — M)2 "2 dadt,
o Jr
which gives (&7 — M); = 0. As a consequence,
T < M,
or

7 (t,2,v) < sup  {Py(t,2', Ly)} on 0. (4.4)
(t,z’)e(0,T)xT

A similar argument leads to

Dy (t, x,v) < sup  {D7H(t,2',Ly)} on £y (4.5)
(t,z")e(0,T)xT

Step 2: The convergence estimates.
Denote

ie{1,2} \ (¢,2)€((0,T) x £2;)

E"™ = max ( sup (er)? exp(—oz%)) .
Since €{ and €3 are bounded, E™ is bounded.
Inequality (4.4) implies that for (¢,z) in (0,7) x T

(e} (t,, L)  exp(—a’t)exp(ali) < sup  (e5 ™' (t, 2, L2))” exp(—a’t) exp(aLs),
(t,x)e(0,T)xT

which yields

(P (t, @, L1))* exp(—a?t) < exp((Ly — Ly)a) sup  (eh "t z, Lo))? exp(—a’t).
(t,z)€(0,T)xT

Choosing o« = —ag where «g is a positive constant to get

(e?(t, @, L1))” exp(—a?t) < exp((Ly — La)ay) sup  (eB 7t x, Lo))? exp(—a’t).
(t,x)€(0,T)xT

Similarly, by using the same argument and replacing a by ag

(e3(t, x, L)) exp(—a®t) < exp((L1 — La)ag)  sup (] (£, L1))? exp(—a?t).
(t,x)€(0,T)xT
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Choose o = 0, (4.4) and (4.5) imply
B <max{ sup (en(t, x, Ly))? exp(—at), sup (B (t,x,L1))* exp(—a?t)}.
(t,z)e(0,T)XT (t,z)€(0,T)XT
The above inequality implies

B < exp((Ly — Lo)ay) max{ sup (eh(t, x, Ls))? exp(—a’t),
(t,z)e(0,T)xT

sup  (eh(t, x, Lo))? exp(—a’t)}.
(t,x)€(0,T)xT

< exp((L1 — La)ag)E™ 1,
which shows that the errors converge geometrically

lim EF = 0.

k—oo

5. CONVERGENCE OF THE SCHWARZ WAVEFORM RELAXATION METHODS
WITH ROBIN TRANSMISSION CONDITIONS

Again, we prove the convergence on the error equation by letting e} = v}’ —u and e} = uf — u, we consider

8(';5 +v ox
er(0,z,v) =0, on {2, (5.1)
ef(t,z,—R) =0, on (0,00) x T, .

(p+ £)et(t,x, La) = (p+ &)es ™ (t,x, L2), on (0,00) x T,

Oe™ 82 o1 .
= T 8;21 =0, in (0,00) x {21,

del dely 82en .
SE + gt — 54 =0, in (0,00) x £2,

eb(0,2,v) =0, on {2,

eb(t,z, R) =0, on (0,00) x T,

(9= Fp)es(t @, L) = (a = g)ei ™" (¢, L), on (0,00) x T

Let a be a constant larger than 1. For ¢ in L?(0, 00), we recall the following norm first introduced in [35]

a'+1 00 2 %
lgllla = sup [/ ([ etaresp-yajas) dy] ,

and the space
L3(0,00) = {y : ¢ € L*(0,00), [[[¢llla < oo}

Remark 5.1. Notice that in order to check |||.|||o is a norm, the properties

ller + eollla < Mleillla + lle2lllas Vi1, @2 € L3(0, 00),

M@l = Alll@lllas Y € LE(0,00), A € R,
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are easy to check. And the fact that |||¢|||o = 0 if and only if ¢ = 0 is classical (see, for example the book [39]).
The norm was introduced in [35] to overcome, provided « is large enough, the lack of energy structure in the
equation due to the coexistence of different boundary conditions.

For¢ € HY(—R, Ly), o € H'(L1, R) there exist the extensions ¢ € H(La, R), p € H'(—R, L1) and a constant
C not depending on ¢ and ¢ such that ¢(Ls) = §(L2), o(L1) = 9(L1), and

ISz (Lo,r) < Cllsllai(—RrLo)s  ISL2(Lar) S ClisliL2(—R,Lo)s
lollzr (—r,eyy < Cllellarz.,r)y,  llollz2(—r,zy) < Cllollz2(Ly,r)- (5.2)

Define C* to be the constant in the trace theorem

ls(L1)| < C*[[sllmr(=Rr,L1)s lo(L2)| < C*[loll (Lo, m)-

Let f3, f1 be strictly positive functions in C?([— R, R]) such that f3, f4 > 3, where 3 is some positive constant.
Suppose that fs3, fy satisfy the following assumptions on [— R, R]

f3(L2) = f3(L1) = fi(L1) = fi(L2) = 0, (5.3)
Ja(Ly) oo L falle) o1
o) max{1,C} (3 + ¢C*) < 5 alln) ax{1,C} 3+ pC*) < 3
Let k be an integer, set
/ / 2
ak>AkZ:(6R’R’|/€+2)3+2<‘§ +‘é +1> R (54)
31l falls

f1.1(t) = exp(—2ayt),
fo.i(z) = exp(2imkz).

For 0 € L*((0,00) x T), decompose ¢ under the form of a Fourier series in
> A
O(t,x) = Z 0(t, k) exp(2irkx),
where

o(t, k) :/TG(t,x) exp(—2irkax)dz.

Define the norm

Fa= D M6 R,

k=—o00

16

and the space
H={0: 6cL*(0,00) x T), 0|+ < o0}

For a function f(t,z,v) with (¢,z,v) € (0,00) x T X (a,b), with (a,b) = (—o0, L2) or (L1,00), we define the

following norm and space
b 1/2
||f||ll((0,oo)><']l‘><(a,b)) = </ Hf(a R 1})||?,sz> 5
a

L£((0,00) x T x (a,0)) = {f(t;2,0) | [[fll£((0,00)xTx(a,0)) <O}
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Theorem 5.2. The algorithm converges in the following sense
JimJuy = wl] £((0,00) xTx (~00,L2)) = 0

and

nhjr;o [u3 — ull £((0,00)xTx (L1,00)) = O-
Proof. Define
(Flz,ﬂ / / TNt 2, 0) fre(t) foe (@) f3(v)dadt,

QS’H / / SNt 2, 0) f1e(t) fo (@) f4(v)dzdt.

Following the strategy in [33-37], we compute

/ / %e?ﬂflakflkfsdwdt / / P oS fadadt = 204;@"*1
o Jr
o0 a .
/ / %6?+1f1,kf2,k:f3dl'dt / / n+1 f1 kf2 kfg,d$dt _7127_‘_]{:@?—};1’
o Jr

1k —/ /—e?ﬂfl,kfz,kfsd%dt-%;‘S@Tf,
8_2@n+1 3@n+1 +/ / +1f1 kf2 kfg,dxdt—l—Qf?’ Q5n+1 2 f_é (_15"+1
ov2 Lk 2 v Ts Lk

which implies

[ee] ‘/ 82 f
ntl 3 | 20 — 2 k—2(§> dadt — — @7 +223 —¢ 1 =0, 5.5
/0 /Tel Jikfokfs ( ay — iv2m 7, f3 502 2Lk T, Ou Lk (5.5)

and

> n+1 3 s o f4 o 8_2 n+1 f4 n+1
A /11-62 fl,ka,kf& <2ak w2tk — 2 (f4> f4> dadt 90 2(15 & +2f 90 (P =0. (56)

The Robin boundary conditions become

a o0
(p + %> P71 (Lo) / / (p + —) vt f ok fadadt +/ /6?+1f1,kf2,kf§dxdt
o Jr

0
- fie (v ) otz

and
9 fa(L1) 9
_ ot = — — | &V . (L1). .
( q+ (%) or (L1) a(L1) q+ 90 Lr(L1) (5.7)
Define
o0 Lo o 2 R R b 2
Sn:k:z_:oo /_R@ &l dv—i——/_R %Ql’k dv—i—/Ll@ &l dv—l——/ E™ dv),
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we will prove that

Sn S Sn—la (58)

which implies S,, < 5 LS, Therefore if Sp is bounded, then S, is also bounded for all n. Moreover, S,, converges
geometrically to 0 Wlth the rate 3n. We divide the rest of the proof into three steps:

Step 1: We prove that Sy is bounded. Denote

So = S5 + 555
s} Lo 2
isi= / ! k|dv+—/ D, av)
k=—oc0 -
oo (a0 g L 100 |
S = / @ dv—i——/ — dv | .
p= 3 ([ arans [ |, )

We prove that S¢ is bounded, and the fact that SZ is bounded will follow by the same argument. We have that

S = Z /L<

k=—o00

el exp(—2ayt) exp(i2mkx) f3(v )dasdt

( el fa(v) + e?fé(v)) exp(—2ayt) exp(i2mkx)dadt

2

2) dv
2) dv, (5.9)

Since f5 and f4 are continuous, they are bounded on [— R, Ls], then bounding f3 and f by || f3]|s and || f4|leo
in (5.9) and using the fact that oy > 1 we have

Lo
S;<C Z / (’/ )| exp(—2ayt)dt

koo
/0°° (’%é&)(k)’ + IeA‘f(k)> exp(—2at)dt

2

oo A

(k) exp(—2axt) f3(v)dt

gf“(

1

Qg

| (G000 + 1500 ) exv-2antiat

where el(k;) denotes the Fourier transform of € in the z variable.

2

1
+O—
(€75

<C (’/ )| exp(—2ayt)dt

k——oo

exp(—2ayt)dt

2> dv,  (5.10)
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where C' is some constant varying from lines to lines. Now, applying Holder’s inequality for the integrals in ¢ in

(5.10), we obtain

s Ly SR oo
! 2 —zQ expl—
Sy < Ck_ZOO/R (/0 €Y (k)|? exp((—2 k+1)t)dt/0 p(—t)dt

1 [*]0 4 2 0o
+a_k : %61(76) exp((—2ax + 1) )dt/O exp( )dt) dv
0 Lo 0o , 1 - A 9
=¢ / / 10k —2ap + D)t — || -el(k —2ay, + t)dt | d
k;m T ( o leY (k)| exp((—2au, )t) ar Jo 81}61( )| exp((—2ay )t) > v

2

R exp((—2a1+ 1)) + = | )

A exp((—2ay + 1)t)> dodt

. o - 2 o0
QP + |0k )dvexm—st)dt:o | 168 ey exol 811t

(5.11)

where in the last inequality, we use the fact that «p > 8. Since according to the hypothesis (2.1) f €
L2(0,00, L3(T, L?>(—R, L2)), Inequality (3.16) implies

b b b
// |u(t)\2dvdac§exp(t)/ /||f||2L2(0’Oo)dvdm+eXp(t)/ /|u0|2dvdx.
TJa a JT a JT

Therefore -
/0 [l 72 0r 12— R, L)) €XP(—8)dt < o0, (5.12)

Moreover, (3.15) implies

/ab (Mla(:”?dv + 8@;(:)?) dv + /ab (

b b . .
- / (I () 2do + Jia(m)?) dv < / (11 (m)Pdv + | fa(n) 2)do.

it (n)

2 .
Otz (n)
v i

ov

2
)dv

We argue similarly as to obtain (3.16)

’ b iy (n) |2 ta(n) |2
%( / (ﬂ1(n)2dv+ﬂz(n)|2)dvexp(—t)> | (855 ) [0t ) I
b
s/a (|f1(n)\2dv+ \ﬁ(n)ﬁ) dv exp(—t),
which leads to
8’&2(71

) ) exp(—s)duvds

ov

exp(— )/ (|t (n, 1)|2 + |z (n, t)] dv+// (

/ / exp(—=5) (| F1(m)]? + | fo(m))duds + / (I (n, 0)[2 + iz, 0)[2)d.

a
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Therefore

L |98a2(n) 2
v

) exp(—s)dvds

(e |

/ / exp(—5) (| F1 ()] + | folm))duds + / (21 (m, )| + |12 (m, 0)[2)dlv

a

s s b . i
S/O /a(|f1(n)‘ +‘f2(n)| )d’UdS"‘/a (‘U1(’I’L,0)| +|U2(7’l70)‘ )dU VteR+

Let ¢ tend to infinity, we deduce from the above inequality that

o0
/0 IVullZ2r,12(— R, Loy €xXP(—t)dt < 0. (5.13)

Since uf, u9 € L>(0, 00, L°°(T, H*(—R, R)))NL*(0, 00, L>°(T, H*(— R, R))), we deduce from the two inequal-
ities (5.12) and (5.13) that

o0
/0 1012 0111y €XD(—8E)dlE < 00,

which means (5.11) implies

0o
S(% < CA ||69H%2(T,H1(7R,L2)) exp(—8t)dt < 0.
Similarly
502 < CA ||68H%2(']I‘,H1(L1,R)) exp(—8t)dt < 00.

Step 2: We prove (5.8).
Consider (5.5) with the index n instead of n+1 on T x (—R, L1) and take ¢} in H'(—R, L1) as a test function,

then
Ly
0= / / /el fifafs <2a — w2k — 2 (jﬁi) + E) prdadtdv

L o2 f&
- — P  o1d —|—/ 252
a 2 *1,k¥1 v FS

@?k Pdv.

Intergrating by parts the term ff;{ 8‘9—;@?, ¥1dv in the above intergral, we get

(L) (L) — g (L) (L)

L1
/ / / et fieforfs <2ak — w2k — 2 (f3> + ) Tdzdtdv
I3 I3

$0 g D L5 0 W
[ L rars [ 2B D g a0t mer ) (514)
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Considering (5.6) on T x (L, R) and taking @5 in H*(L1, R) as a test function satisfying @5+ (L) =
1 (L), we get

D By Ly (L) + a5 (D) (L) (5.15)

/ / / o fikfokfs 2ak—zv27rk—2<f3> + 22 ) it dadtde
Ly f& fS

1 1 f3 1 1 1
/ G et + 2P gy Tl o g D) (L),

Since 5T (L1) = ¢} (L1), equation (5.7) leads to

T LR (L) + B L) (L) =~ B [ D (L () - atu(Eet ()]

which, together with (5.14) and (5.15) imply

L, poo
_;;1223 [/R /o /Te?fl,kfz,kfs <2ak — 027k — 2 <§2> + E) P dadtdy

L L
1 a a 1
+ —pido + / 2f3 5o PLrel dv—q@?(LMf(Lﬁ]

8 8’1} R f

/L / / 5 ik fon 3 <2ak — 2k — 2 (}cj) + ff—§> i dzdtde

/ 8,0 n+1 0 +1d’U-|— ;& @ZJ’glwngldv_’_q@nJrl(L )QOSLJFI(L )
3

In the above equality, choose 4,0;“ to be @g;l, and ¢} to be the extension of @g;l over (—R, L) like in (5.2)
such that there exists a constant C satisfying

et (—rLy <CNPS L N mrenry, T Iz2—riry < CIPE L L2 (L4, (5.16)

to get

L Ly e8] 4 2 Y
_ﬁELi; (/_R /0 /Te?fl,kfz,kf?) (2% — 2wk — 2 (%) + f_i> i drdtde

Ly o n 0 n f3 n . .
+ . %¢1,k%@1d’l}+ e Leetdo — q@7 ) (L1)et (L)

// / ST Lk fon S QOZk—iU?Wk—Q(fS) + 22 @g”,;ldwdtdv
Ly f3 f3

)
+/ —utt d + §_¢n+1q§n+1d v+ q(@5 1 (L)% (5.17)
Ly

v Bk f30
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We now bound the right hand side of (5.17) from below and the left hand side of (5.17) from above. Consider
the first term on the right hand side of (5.17)

R oo f‘/ 2 1
/ / / €g+1f1,kf2,kf3 20, — 021k — 2 <—3> + 23 @;’Zldxdtdv
L I3 I3 ’
= 2ay / / / 5 ke, kfs‘fﬁldxdtdv
Ly

7\ 2 "
+/ / /eg+1f1,kf2,kf3 —wzwk—2<§> + =3 | #H dedtdw
L f3 f3 :

= 2ay, / / / S fLfan f3 Py dadtdo
Ly
/
+/ K—wzwk 2 (Q) > (/ /e2+ flkfgkfgdasdt) 45”“
Ly f3
& f
= Qak/ @”H\Zdv—i—/ —w2mk — 2( 3) |<15”+1|2 dv
L1 L1 f3 f&
R / 2
> 2ak/ \@g“\Zdv — | [v27k| + 2 ‘ ’ / / / \62+ fi,kf2, kfg@”“\dxdtdv
L f3 s f3 s Ly

1
R

/ |¢n+1|2d’l}
L> Ly

where in the last inequality, we use (5.3), (5.4). Therefore the right hand side of (5.17) could be bounded from
below by the use of Cauchy inequality

dv

1
43

J3

/
43

fs

2 ’

= <2ak — |v2mk| — 2 ’

Lo

R
> Oék/ @nﬂ\zdv
L

1

2
Ra |¢n+1|2d n £@n+1 d f& @"+1@"+1d
k|®yp |7dv+ a0 2.k v+ f 2,k
Ll L1 3
R R 2
z/ |¢"+1|2dv+/ 3@;;1 dv—‘é / 2‘—@”“ |5 | do
Ly L, [Ov = I3l pee Ly
R R 2 / R 2
> [ aloytpav | 9 gn1] - ‘ Bl Doyt + g ) o
Ly L, [0v = I3llpee Ly 0 ’
R 1 R| g 2
> (ak Y )/ |<15”+1\2dv—|— (1 —€ Js )/ —@utt do
f3llp~/ Ji, fallpee/ Jo, 100 =
R, 2
z/ = |o5 1 Pdv + = / 3 dv, (5.18)
Ly v

the last inequality follows from (5.3), (5.4), % . )~L
By Cauchy inequality, the Sobolev imbedding theorem, Holder inequality and (5.2) with the notice that
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(_Rv Ll) - (_R, L2)

" &, (|t |dv < & o7, [2dv 2d
Rak‘ 1,k‘|901‘v77 | k| +_ |‘P1 v

Qe 1
< 7”@5 kHL2( R,L») +ck ||Q5n+ ||L2(L1, R)

1 [ 1 [
dv,g—/ 9 gn dv—l——/ 4
2/ & 2/ &

% 1,k Al
1 n+1
< 9 (—R,L2) +3 Hd) HHI(Lh R)

(%901
L1 a
/ 2’8_ Tk
Lo J-R v

I3
L g 2 Ak L ,
7/—R ov P fall oo /_R i e

<o} kHHl( R,L») +Cak||¢n+1||m (L1,R)*

2 2

0 pn dv,

0
%451,1@ T

v ¥1

Ly
L.
Ly
/ 2
R

0

ov

f3

fs

f n
=3 |Q01‘d’l),

”dv<‘

/

i

and by the trace theorem (5.3)

q|P7 (L7 (L) < aC* 19T ikl F (—mopyy + 4C 1O o (—RoL)
< ¢C*[|} k||H1 _R,Ly) T 4C” C”dsn—H”Hl(Ll R)-

Summing all of the above inequalites, we infer that the left hand side of (5.17) is bounded from above by

f4(L1) b n b 9 n
e (/R oxlollgtldo+ [

%451,1@

8 n
%901 dv

L ’
1 fg
/—R fal|ov bF | q| P 1 (L1)|let (L)
f4(L1) o +3 * /L2 n |2 3 « /Lz o " 2
< - _
= f3(L1) 2 +qc n ak|¢1,k| d'U+ 5 -|—qc . 8U " dU
f4(L1) 3Ckk +1 . /R B % ) /R 5 » )
+f3(L1)C 2 +aC Ly @2’k Fdv+ 2 +ac I 8v¢2k dv
f4(L1) (3 *> /L2 9 /Lz a 2
< — + C P d + 0 n 4
~ f3(L1) \2 g 7R| Lel"dv Enet v
fall) /R n+1 /R 0 ni1 ?
+ C(3+qC* 45 dv + 9% o
fs (Ll) ( ! ) L,y | | L, v 2k
1 L2 Lo 9 2
< — n |2 9
<3 (/_R ok |PT .| dv—I—/_R S| dv
1 f n+1)2 Bl ntl 2
+3 /L kP53 dv+/L 5,2 dv |, (5.19)

where we have used (5.4).
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Combine (5.17), (5.18) and (5.19)

1 " +1)2 Ra Jrl2 1 L n |2 L28n2
— @” dv +/ — do | <= / a|d dv+/ — dv
3 ([ owmsitpans [ S ([ awlonipaos [ |2,
LR g 10 guni|’
+= / | P \dv—i—/ —y dv | .
8 I 2,k I 8,11 2,k
Therefore
R R 2 L L 2
1 0 1 1 : n |2 *1o n
/l:l |¢g"£12d1}—|—a—k/1;1 % ;l:}; dv < 5 (/R ‘@Lk‘ dU+—/ % 1,k dv | .
Similarly
Lo a 2 1 R 8 2
n+1 n+1
/_ |<15+\2d+ /_R %451,; dv<§</ | % k\dv—l——/ e 5k dv .
Take the sum of the previous two inequalities to get
Lo 1 R ) 2
/ |(P"+1|2d +_/ Q;n-&-l dv+/ ‘an+1|2d +_ Q5n+1 dw
_ L 8’0 2,k
<1/@\d+ /L28"2d+/|¢|d+ /R8¢”2dv
- _ il v v+ —
3 1,k AU ar J_g |80 1,k L 2,k o2k )
which leads to
. Lo ey 2 R R| g 2
> / |¢?;1\2dv+—/ — @t dv+/ Dyt Pdv + — / —outt dv
ke oo —R ’ Qe —R 8’0 L, ik 31) 2,k
1 & Lo 9 2 R R 9 2
§§Z [ |7 k\dv+—[R%?7k dv+/L |®y k|dv+—/ 5o P3| dv ).
k=—o0 1
Step 3: We have proved that
C*
Sn < 3n50 < —/ |€1HL2(’H‘ HY(~R,L)) T H€2HL2(T H(— RLQ))) exp(—8t)dt = T

which leads to

o0

Lo R C*
S ([ Cwnras [Cwgpa) <
R ’ L1 ’ 3

k=—oc0
Since according to our hypothesis f3, f4 > 8 > 0 on [— R, R], we have that

oo

v)| = ’/ e (k)(v) exp(—agt)dt

f3(v) et (k) (v) exp(—ayt)dt|,

oo

|—] [ @ exp-annat] i) >

eB(k)(v) eXp(—akt)dt’ .
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Therefore
oo

kZOO(/LI: olv+/:z

Recall that in (5.4), we choose ay > Aj. Therefore (5.20) holds true for all o, > Aj. Moreover, since the

2

/000 (k) exp(—ayt)dt

/000 e (k) exp(—ayt)dt

2 C*
dv) <35 (5.20)

functions
Ls oo 2 R 0o 2
Fi(ag) = / / el (k) exp(—axt)dt| dv,Gilax) = / / eb (k) exp(—axt)dt| do,
-r 1Jo L 1Jo
are bounded and continous on [0,00), there exists aj such that Fy(a}) = suppa, ) Fr(ar), Grlar®) =
SUP[4,,00) Gk (). Then choose ay to be aj and aj* respectively in (5.20), we get
o Lo 0~ 2 C*
Z sup / / et (k) exp(—ayt)dt| dv | < —,
w arelAr,00) \J-r 1o 3p
oo R o 2 O+
Z sup / / ey (k) exp(—ayt)dt| dv | < —-
k,:_ooake[Ak,OO) Ly 0 3 /6
As a consequence, we get the convergence in the norm of L. O

6. NUMERICAL EXPERIMENTS
In this section we provide some numerical tests to support the theoretical analysis of the previous sections.

6.1. Model problem

We consider the initial boundary value problem

ou ou  9%*u

a—kv%—w:f in (0,7) x [0,1] x [—1,1]
ult,0,0) = ult, 1,v) on (0,T) x [~1,1] (6.1)

u(t,z,—1) =0 on (0,T) x [0,1]

u(t,z,1) =0 on (0,T) x [0,1]
equipped with homogeneous Dirichlet boundary conditions in v and periodic boundary conditions in x. We
claim that different choices of boundary condition in v = —1 and v = 1 do not affect the results we show in

what follows. Since the problem is linear, we can directly test the convergence on the error equation (i.e. letting
f = 0) whose unknown, with a little abuse of notation, we still denote by w.

6.2. Finite dimensional approximation on a single domain

We briefly describe here the numerical approximation of equation (6.1), and we focus for presentation purposes
on a single domain. We discretize equation (6.1) by an operator splitting technique (see e.g. [29]), where we first
solve a parabolic problem in (¢,v) for half the time step, and we correct it by explicitly advancing the transport

part of the equation in (¢, ). Let then At be the time discretization step, and set 7 = At/2.
2

Step 1. Solve, in [t,t + 7], for all z € [0, 1], %w(t,x,v) - 4

Ww(t,w,v) = 0.
Step 2. Forallz €[0,1], wu(t+ At,z,v)=w(t,x —Tv,v).
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We discretize the parabolic part of equations (6.1) with an implicit Euler scheme in ¢, and by finite elements in
the v direction (see e.g. [31]). The transport part is solved explicitly by interpolation on the solution computed
at Step 1. We denote by h, and h, the discretization steps in the x and v variable, respectively, and by N,
and 2N, the corresponding grid point numbers. We let z,, = mh, (m = 0,...,N, — 1), v; = =1 +ih,
(t=0,...,2N, — 1), we denote by {¢;};=0,..2~n,-1 a nodal basis for the finite element space associated to v,
and we can approximate u(t", x,,,v) by

N,
W(t™, T, v) ~ Uy (t",0) = Zuj7m(t”)<pj(v).
3=0

For the sake of compactness in notations, for all m = 0, ..., N, we let w,, () = [u1,m(t), ..., uan, m(t)]T and
ull, = U ().

The numerical approximation of (6.1) is then computed by the following operator splitting scheme.
Given {uzm}izl,...,2N,U,m:1,...,Nw

Step 1. Form=0,...,N, — 1, solve

1 1
= M2 4 Syt = 2 Ml (6.2)
T T
where M and S are the mass and stiffness matrices, whose entries (i, j) are given by
1 1
de; dy;
M];; = o, d Sli; = 2 dy. 6.3
M= [Cedo Sl [ B (63)
T
Let then uﬁfl/z = u?,tnl/z, e u;l;\s}l/ni]

Step 2. Fori=0,..,N, —1, set

ult = (1 — fog| T) w5 (il )l form=1,..,N, — 1
(6.4)
For ¢ = N,,..,2N, — 1, set
ultt = (1= foil )l 4 (il ) ul form=1,...,N, — 1
(6.5)
u?fl = u?ﬁi

Remark 6.1. In the numerical tests of the following section, we use linear finite elements and a Cavalieri—
Simpson quadrature rule to evaluate these entries. Since the Cavalieri-Simpson rule is third order accurate,
the matrices M and S are computed exactly. The numerical procedure described above is a classical operator
splitting technique (see [29]).

6.3. Schwarz Waveform relaxation
We decompose the computational domain 2 = [0, 7] x [0,1] x [—1, 1] into two subdomains
2, =10,T7] x [0,1] x [-1, 1] 2y =10,7] x [0,1] x [ex, 1], (6.6)

which may or may not overlap (5 — a > 0). As a matter of fact, even if the analysis was carried on in the
case of overlapping subdomains only, the use of Robin interface conditions in an Optimized Schwarz Waveform
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Relaxation (OSWR) algorithm guarantees convergence also in the absence of overlap, a feature not shared by
the Classical Schwarz Waveform Relaxation (CSWR) one. In what follows we denote by L = 3 — « the size of
the overlap between the two subdomains.

We introduce the interface variables

)\1(t,1',5) = Ql UQ(t,.’E,ﬂ) >\2(t7$70) = Qzul(t,l',()), (67)
where the operators @ and Qs are given by

Q1w = w Qow = w

0 0
Q1w=<p+%)w sz=<q—%)w

for the OSWR. With these positions, the Schwarz Waveform Relaxation algorithms read as follows.
Given \)(t,z, 3) on [0,T] x [0,1], solve for k& > 1 until convergence
out  ouk ol

ot v Ox Ov?
u’f(t,(),v) = u’f(t, 1,v) on [0, 1]

uf(t,z,~1) =0  on [0,T] x [0,1]

for the CSWR, and by

=0 in .Ql

[N u’f(t,x,ﬁ) = )\’ffl(t,x,ﬂ) on [0,7T] x [0, 1], (6.8)
Ms(t, 2, @) = Qpub(t,,0) on [0,T] x [0, 1], (6.9)
8_1/2“ ouk  0%uk

= 1 Q
ot v ox Ov? 0 e

ub(t,0,v) = ub(t,1,v) on [0,T] x [0,1]
ub(t,z,1) =0  on [0,T] x 0,1],
Qo ub(t,x, ) = \s(t,2,a) on [0,7] x [0, 1] (6.10)

Mot x, 8) = Qrub(t,x, B) on [0,T] x [0,1]. (6.11)

For a given tolerance € > 0, the Schwarz Waveform Relaxation algorithm (6.8)—-(6.11) is considered to have
reached convergence when

[ (8, 2, v) — ub(t, 2,0 < e (6.12)

) || L ([0,T]x[0,1]) X (,3)

Remark 6.2. The Schwarz waveform relaxation algorithm is serial in the form presented in (6.8)—(6.11), but
it can be easily parallelized by just replacing A5 (¢, z, ) with As71(¢, 2, @) in (6.10).

6.4. Optimization of the Robin parameters

Since an analytical optimization of the Robin parameters (p,¢) is not available, we perform an empirical
optimization both in the case of one-sided (p = ¢) and two-sided (p # ¢) interface conditions. We let T = 2,
and for the linearity of the problem we test directly the convergence on the error equation. We discretize the
domains {27 and (25 by a uniform grid. Since the mesh size in v is not affecting the size of the interface problem,
we use the same step h,, in both 2y and (25, with h, = h, = At = 0.01. As a consequence, the interface problems
features 20, 200 unknowns. We choose an overlap of three elements (L = 3h,,). We initialize the interface variable
with a random value for A{(t,z, 3), in order to have all the frequencies represented in the initial error. Finally,
we consider the algorithm to have converged when the error (6.12) drops below ¢ = 1076,
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Iterations
Error after 15 iterations

FIGURE 1. OSWR(p). Left: iteration counts to reach convergence as a function of the Robin
parameter p. Right: error after 15 iterations as a function of p.

6.4.1. One-sided optimized Schwarz waveform relazation: OSWR(p)

In Figure 1 (left) we plot the iteration counts needed to achieve convergence, as the parameter p varies. In
Figure 1 (right) we plot the error after 15 iteration for different values of p. The optimal parameter is numerically
identified as p* = 4.23, by sampling the interval (4, 5) with step 0.001. Although the iteration counts is the same
as for p = 4, the Robin parameter p* features a steeper convergence history. This is the case also for p = 5,
which requires 2 more iterations to converge, but has a smaller error than p = 4 after 15 iterations. Finally, we
consider the algorithm to have converged when the error (6.12) drops below £ = 1076,

6.4.2. Optimized two-sided Schwarz waveform relazation: OSWR(p,q)

In Figure 2 (left) we plot the iteration counts needed to achieve convergence, as the parameters p and ¢ vary.
In Figure 2 (right) we plot the error after 15 iteration for different values of p and ¢. The optimal parameters
are numerically identified as p* = 11 and ¢* = 2.5, by sampling the square (10.5,11.5) x (2, 3) with step 0.002
in both directions.

6.5. Comparison between optimized and classical Schwarz waveform relaxation

We compare in this section the performance of the Classical and Optimized algorithms. We consider both
non-overlapping and overlapping decompositions as in (6.6), always with the overlap of three element (L = 3h,).
Following the results from the previous section, we implemented OSWR(p) with p = 4.23, and with OSWR(p,q)
with p = 11 and ¢ = 2.5. We consider a reference mesh size At = h, = h, = 0.01, and test the behavior of the
algorithm in four successive dyadic mesh refinements, 7; = 277x 0.01 (7 = At, hy, hy), with j = 0,...,4. We
report the results in Table 1.

In the overlapping case, both OSWR(p) and OSWR(p,q) algorithm appear to be almost insensitive to the
mesh refinement, while the CSWR appears to be very sensitive to it. The two-sided OSWR(p,q) appears globally
more robust in terms of iteration counts with respect to the one-sided OSWR/(p), whose iteration counts still
remain more than reasonable. Both algorithms outperform the CSWR.

In the non-overlapping case, a similar pattern is observed for OSWR(p) and OSWR(p,q). Both algorithms
appear to be a little sensitive to the size of the interface problem. However, iteration counts are higher than in
the overlapping case, but not significantly higher. The OSWR(p,q) is more robust than the OSWR(p), featuring
an increase of around 50% in iterations for the most refined case, while the latter experiences a doubling. For
both algorithms, however, the iteration counts remain reasonable in all cases. As expected, CSWR does not
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FIGURE 2. OSWR(p,q). Left: iteration counts to reach convergence as a function of the Robin
parameters p and ¢. Right: error after 15 iterations as a function of (p, q).

Ay =277 %0.01 Overlapping

he =277 x 0.01 (L =3 x hy)
hy=2"9x001 j=0 j=1 j=2 j=3 j=4
CSWR 70 105 132 >150 >150
OSWR(p) 9 12 15 17 18
OSWR(p,q) 9 10 10 10 13
Ay =277 %x0.01 Non-overlapping

he =279 % 0.01 (L=0)

he =279 %001 j=0 j=1 j=2 j=3 j=4
CSWR - - - - -
OSWR(p) 12 17 20 23 26
OSWR(p,q) 11 12 13 14 16

TABLE 1. Classical vs. Optimized Schwarz Waveform Relaxation: iteration counts to achieve
convergence for successive dyadic refinements. Overlapping (L = 3h,), and non-overlapping
decomposition (L = 0).

converge in the absence of overlap. Finally, we plot in Figure 3 the convergence history of the three overlapping
algorithms at level j = 2 of refinement.

7. CONCLUSION

We have designed some new Schwarz waveform relaxation algorithms adapted to the context of the
Kolmogorov equations. The domain is split in the v-direction, which is the ’parabolic’ direction of the equa-
tion. The algorithms are proven to be well-posed, stable and useful in both numerical and theoretical senses.
The Kolmogorov operator is hypoelliptic and it has properties of both hyperbolic and parabolic operators. Do-
main decomposition methods for hyperbolic problems are sometimes unstable, even for optimized algorithms,
which means that the hyperbolicity of the operator really affects the convergence rates of the algorithm. In
our situation, the algorithms are stable in both cases: classical and optimized algorithms. The theoretical and
numerical results in this paper show that the equation is more parabolic than hyperbolic, in the regime of
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2

Error

----- OSWR(p) | ]
—e— OSWR(p,q)
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Iterations

F1GURE 3. Overlapping Schwarz Waveform Relaxation. Convergence history for the three dif-
ferent algorithm, CSWR, (blue dashed line), OSWR(p) (red dot-dashed line), and OSWR(p,q)
(green solid line).

domain decomposition. Moreover, according to our results, the Schwarz waveform relaxation algorithms for the
Kolmogorov equation have almost the same properties with an advection diffusion equation or a heat equation.
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