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EFFICIENT PRECONDITIONING OF VARIATIONAL TIME DISCRETIZATION
METHODS FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS ∗, ∗∗
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Abstract. This paper is concerned with the design of efficient preconditioners for systems arising from
variational time discretization methods for parabolic partial differential equations. We consider the first
order discontinuous Galerkin method (dG(1)) and the second order continuous Galerkin Petrov method
(cGP(2)). The time-discrete formulation of these methods leads to a coupled 2× 2 block system whose
efficient solution strongly depends on efficient preconditioning strategies. The preconditioner proposed
in this paper is based on a Schur complement formulation for the so called essential unknown. By intro-
ducing an inexact factorization of this ill-conditioned fourth order operator, we are able to circumvent
complex arithmetic and prove uniform bounds for the condition number of the preconditioned system.
In addition, the resulting preconditioned operator is symmetric and positive definite, therefore allowing
for the usage of efficient Krylov subspace solvers such as the conjugate gradient method. For both the
dG(1) and cGP(2) method, we provide optimal choices for the sole parameter of the preconditioner and
deduce corresponding upper bounds for the condition number of the resulting preconditioned system.
Several numerical experiments including the heat equation and a convection-diffusion example confirm
the theoretical findings.

Mathematics Subject Classification. 65M12, 65M60.

Received March 19, 2014. Revised August 21, 2014
Published online February 5, 2015.

1. Introduction

For the numerical solution of parabolic partial differential equations using the finite element method, vari-
ational time discretization approaches based on a space-time formulation of the problem exhibit attractive
properties. Let us just mention a few of them (with many more pointed out in [8]):

• Stability: for many of the variational time discretization approaches, and in particular for the dG(k) and
cGP(k) methods which we consider in this paper, A-stability (or even strong A-stability in the case of
dG(k)) [7, 10] can be proved for arbitrary degree k.
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• Convergence properties: many variational time discretization schemes possess the superconvergence property,
for instance dG(k) is convergent of order 2k + 1 at the nodal points [13].

• Generality: being of variational type, time discretization is treated similar to space discretization. Conse-
quently, finite element techniques which have been studied in great detail for space discretization may be
directly applied to time discretization. Let us just mention higher order or adaptive methods.

However, efficient solution strategies are not easy to design: For general variational time discretization formu-
lations, a typical finite element discretization of the space-time domain using continuous test and trial functions
will lead to a huge system of coupled equations. This can be avoided if (at least) the test space consists of piece-
wise discontinuous functions: allowing discontinuous test functions leads to a decoupling of the whole system
into a series of smaller systems for each time step.

In this paper we are interested in the aforementioned class of methods and consider the first order discontin-
uous Galerkin (dG(1)) and second order continuous Galerkin Petrov (cGP(2)) methods. While for the dG(1)
method both the trial and test space consist of discontinuous, piecewise first order polynomial functions in time,
in the cGP(2) method continuous, piecewise second order polynomial functions are used for the trial space while
the test space still consists of discontinuous, piecewise first order polynomials in time.

The time-discrete formulation for both approaches leads to a coupled 2 × 2 block system. Despite their
similar structure, dG(1) and cGP(2) methods differ in the following properties: the dG(1) method is convergent
of second order in time (with third order nodal superconvergence) while the cGP(2) is convergent of third order
in time (with fourth order nodal superconvergence). However, dG(k) methods are known to be strongly A-
stable [7] while cGP(k) methods are A-stable only [9]. The particular choice of either dG(1) or cGP(2) therefore
depends on the requirements of the individual application.

For the numerical solution of the coupled 2 × 2 block system, various techniques were proposed: Schötzau
et al. [11, 12, 14] consider the dG(k) methods for time-independent linear operators and decouple the arising
system into linear problems which have the same structure as an implicit Euler discretization of the problem,
but are complex valued. In [8] Richter et al. consider an efficient solution strategy for nonlinear parabolic
problems discretized by dG(k) methods. In order to circumvent complex arithmetic, their approach is based on
an (inexact) Newton method applied to the approximate factorization of the block eliminated dG(k) system.
For linear equations however, this approach turns out to be quite costly. In [4], an efficient solution approach
based on a multigrid preconditioned BiCGStab solver for the coupled system is presented.

Our approach in constructing a simple to implement yet efficient preconditioned method was guided by the
following requirements:

(1) While the semi-discrete formulation of dG(1) and cGP(2) leads to a coupled 2 × 2 block system for the
unknowns, essentially only one of these unknowns is needed within a time stepping procedure. It therefore
might be desirable to consider a reduced formulation of the problem for this essential unknown.

(2) A direct factorization of the reduced formulation leads to a complex-valued problem, which we would like
to avoid for the sake of efficiency as well as simple implementation.

(3) The problem under consideration is of symmetric, positive definite nature. Consequently, we would like to
use methods which profit from these properties (e.g. the CG method) or in other words: time discretization
should not destroy symmetry of the problem.

(4) The conditioning of the discretized parabolic operator under consideration should not have any influence
on the condition number of the preconditioned fully discrete system, i.e. we expect the condition number
of the preconditioned system to be uniformly bounded in space and time discretization parameters.

(5) The preconditioner should consist of “simple” components only, allowing for an efficient numerical realiza-
tion. In particular, the preconditioner should profit from efficient solution strategies designed for the PDE
under consideration (for instance from efficient techniques available for an implicit Euler time discretization
of the problem).

In order to fulfill requirements (1) to (3), for each time discretization method we employ a particular set of ba-
sis functions for which the Schur complement formulation in the essential unknown defines a symmetric, positive
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definite operator of fourth order. While at a first glance this approach seems unfavorable due to the inherent bad
conditioning of discretized fourth order operators, we proceed by applying an efficient preconditioning technique
introduced for a class of fourth order problems in [2]. This preconditioner consists of the concatenation of the
(slightly modified) parabolic operators under consideration and consequently can be realized very efficiently.
For the resulting left-right preconditioned symmetric operator, we can prove uniform bounds for the condition
number with respect to the discretization parameters.

2. Problem and notation

We will assume a parabolic equation of the following form on a given time interval I := (0, T ) and a domain
Ω ⊂ R

d, d ∈ {2, 3}:
∂tu(t, x) + ∇ · (−ε(x)∇u(t, x)) = f(t, x) in I ×Ω

u = 0 on I × ∂Ω

u(0) = u0 in Ω

⎫⎪⎬
⎪⎭ (2.1)

where the matrix ε = ε(x) is symmetric and uniformly positive definite.
For the ease of notation we will restrict ourselves to homogeneous Dirichlet boundary conditions, the extension

to more general boundary conditions is straightforward.

Remark 2.1. For the analysis we assume a diffusion coefficient ε = ε(x) that is constant in time. A more
general variant ε = ε(t, x) can also be treated, however the preconditioning techniques need to be modified in
this case (see also the remark at the end of Chap. 4).

We will use a weak formulation of equation (2.1) in both space and time. For that purpose, we consider
the space of square integrable functions L2(Ω), the Sobolev space of once weakly differentiable functions V :=
H1

0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}, and its dual space V
∗ = H−1(Ω). We now define the bilinear form

a : V × V → R by

a(u, v) :=
∫

Ω

ε(x)∇u · ∇v dx. (2.2)

For the weak formulation in time, we define the function space

X := {v ∈ L2((0, T ),V) : ∂tv ∈ L2((0, T ),V∗)}. (2.3)

We can now restate (2.1) in a weak setting as follows: Find u ∈ X such that
∫ T

0

〈∂tu, v〉dt+
∫ T

0

a(u, v) dt+ (u(0), v(0)) =
∫ T

0

〈f, v〉dt+ (u0, v(0)) (2.4)

for all v ∈ X . Here, (·, ·) denotes the L2-inner product and 〈·, ·〉 is the duality pairing on V. We require an
initial value u0 ∈ V and right-hand side f ∈ L2((0, T ),V∗). Note that under these assumptions, existence and
uniqueness of a weak solution can be proved (see e.g. [5]).

3. Variational time discretization for parabolic partial differential

equations

In order to discretize equation (2.4) in time, we divide the time interval I = (0, T ) in N subintervals In =
(tn−1, tn], where 0 = t0 < t1 < · · · < tN = T . We define the time step size as τn := tn − tn−1.

The general idea of variational time discretization is to approximate the function u : I → V by a piecewise
polynomial function uτ where uτ |In

∈ Pk(In,V). To this end, we define the discontinuous space

P
dc
k := {v ∈ L2((0, T ),V) : v|In

∈ Pk(In,V) ∀n = 1, . . . , N} (3.1)
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and its continuous counterpart

P
c
k := {v ∈ C0([0, T ],V) : v|In

∈ Pk(In,V) ∀n = 1, . . . , N}, (3.2)

where

Pk(In,V) := {v : In → V : v(t) =
k∑

j=0

wjt
j ∀t ∈ In, wj ∈ V ∀j = 0, . . . , k}

denotes the space of V-valued polynomials of order k in time. For functions v ∈ P
dc
k , we define the jump at tn

as follows:

v−n := lim
t↗tn

vτ (t), v+
n := lim

t↘tn

vτ (t), [vτ ]n := v+
n − v−n

where v−0 is to be understood as vτ (0) := v0, i.e. some prescribed initial value.
For discontinuous Galerkin methods, the trial space as well as the test space are chosen as P

dc
k ; for continuous

Galerkin–Petrov methods the trial space is P
c
k, while the test space is P

dc
k−1.

3.1. Discontinuous Galerkin methods

The discontinuous Galerkin method of order k ≥ 0 (dG(k)) reads:
For given uτ (0) = u0 and f ∈ L2((0, T ),V∗), find uτ ∈ P

dc
k , such that

∫
In

(∂tuτ , v) + a(uτ , v) dt+ ([uτ ]n−1, v
+
n−1) =

∫
In

(f, v) dt ∀v ∈ P
dc
k , 1 ≤ n ≤ N. (3.3)

This method is known to be strongly A-stable (L-stable) (Chap. 4.1.3, Lems. 3 and 5 in [10]). While the
method is of second order when measured in ‖ · ‖L2((0,T ),V), it is super convergent of order 2k + 1 when only
considering the solution at the nodal values uτ (tn) (Thm. 12.3, p. 211 in [13]).

To derive an efficient solution strategy which still profits from the superconvergence property, we only consider
k = 1 in the following. To this end, we need to choose a basis of P

dc
1 .

Following [10], we remark that uτ may be written in terms of a Lagrange basis {ϕn,j ∈ Pk(In,R), j =
1, . . . , k + 1}

uτ (t) =
k+1∑
j=1

U j
nϕn,j(t) ∀t ∈ In (3.4)

where U j
n ∈ V. Correspondingly, any test function vj ∈ P

dc
k can be decomposed on the time interval In as a sum

of terms of the form:

v(x)ϕ(t) (3.5)

where v ∈ V is constant in time and ϕ ∈ Pk(In,R). The latter space has a finite dimensional basis ϕn,j , j =
1, . . . , k + 1.

We use basis functions with ϕn,j(tn,i) = δi,j , where tn,i correspond to the nodes of the k+1-point right-sided
Gauß–Radau formula. For k = 1, those are tn,1 = tn−1 + τn/3; tn,2 = tn−1 + τn = tn and the basis functions are
defined via the unit interval as ϕn,1(t) = ϕ̃1(t̃) = 3

2 (1 − t̃) and ϕn,2(t) = ϕ̃2(t̃) = 3
2 (t̃− 1

3 ) where t = tn−1 + τnt̃
for t̃ ∈ [0, 1].
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Using these basis functions as test and trial functions, and evaluating the integrals in equation (3.3), we
derive the following formulation of our problem for each time interval In:

For given U2
n−1 ∈ V from the previous time step or initial data, find U1

n, U
2
n ∈ V such that the following

equations hold for all v ∈ V:

3
4
(U1

n, v) +
1
4
(U2

n, v) +
τn
2
a(U1

n, v) = (U2
n−1, v) +

∫
In

(1 − t̃)〈f, v〉 dt

−9
4
(U1

n, v) +
5
4
(U2

n, v) +
τn
2
a(U2

n, v) = −(U2
n−1, v) +

∫
In

3(t̃− 1
3
)〈f, v〉 dt. (3.6)

Remark 3.1. Note that this particular choice of basis functions leads to a formulation in which the term
a(U2

n, v) vanishes in the first equation and a(U1
n, v) in the second. In other words, the equations are only coupled

by the occurrence of the terms (U i
n, v) in both equations. This fact will later be exploited by our preconditioner.

3.2. Continuous Galerkin–Petrov methods

The continuous Galerkin–Petrov method of order k ≥ 1 (cGP(k)) reads:
For given uτ (0) = u0 and f ∈ L2((0, T ),V∗), find uτ ∈ P

c
k, such that∫

In

(∂tuτ , v) + a(uτ , v) dt =
∫

In

(f, v) dt ∀v ∈ P
dc
k−1, 1 ≤ n ≤ N. (3.7)

In contrast to the dG(k) method, cGP(k) is known to be A-stable but not strongly A-stable (Thm. 5.1 in [9]).
However, for the case of k = 2, which we consider in this paper, the convergence properties are more favorable:
cGP(2) is convergent of order 3 in the L2-sense and superconvergent of order 4 at the nodal points (Thm. 4.2
in [1]).

As before, we will use a Lagrange basis for trial and test functions on In, and get

uτ (t) =
k∑

j=0

U j
nϕn,j(t) ∀t ∈ In (3.8)

vj(t, x) := v(x)ψn,j(t) j = 1, . . . , k (3.9)

where U j
n, v ∈ V and vj , j = 1, . . . , k form a basis of P

dc
k−1, ϕ are Lagrange functions of order k with Lagrange

nodes corresponding to the k-point Gauß–Lobatto formula. For k = 2, the Lagrange nodes are tn,0 = tn−1, tn,1 =
tn−1 + τn/2, tn,2 = tn. ψn,j are polynomial functions of order k − 1 such that

∫
In
ϕn,iψn,j = δij ; i, j = 1, . . . , k.

The continuity of uτ (t) is enforced by the additional condition

Uk
n = U0

n+1, n = 0, . . . , N − 1 (3.10)

with U0
0 := uτ (0) = u0 ∈ V.

We derive the following problem:
For given U0

n = U2
n−1 ∈ V from the previous time step or initial data, find U1

n, U
2
n ∈ V such that the following

equations hold for all v ∈ V:

(U1
n, v) +

1
4
(U2

n, v) +
τn
2
a(U1

n, v) =
5
4
(U0

n, v) −
τn
4
a(U0

n, v) +
3
2

∫
In

(1 − t̃)〈f, v〉 dt

−4(U1
n, v) + 2(U2

n, v) +
τn
2
a(U2

n, v) = −2(U0
n, v) −

τn
2
a(U0

n, v) +
1
2

∫
In

(2t̃− 1)〈f, v〉 dt. (3.11)

Note that the structure of this system is essentially the same as in the dG(1) case, (3.6).
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3.3. Space discretization and Schur-complement formulation

We will first describe both dG(1) and cGP(2) in a common setting. To this end, define the abstract problem:
For n = 1, . . . , N , find U1

n, U
2
n ∈ V, such that the following equations hold:

μ1(U1
n, v) + α(U2

n, v) +
τn
2
a(U1

n, v) = fn(v)∀v ∈ V

−β(U1
n, v) + μ2(U2

n, v) +
τn
2
a(U2

n, v) = gn(v)∀v ∈ V (3.12)

where α, β, μi ∈ R+, fn, gn ∈ V
∗ are given as follows:

dG(1)

μ1 =
3
4

μ2 =
5
4

α =
1
4

β =
9
4

fn(v) = (U2
n−1, v) +

∫
In

(1 − t̃)〈f, v〉 dt

gn(v) = −(U2
n−1, v) +

∫
In

3(t̃− 1
3
)〈f, v〉 dt

cGP(2)

μ1 = 1 μ2 = 2 α =
1
4

β = 4

fn(v) =
5
4
(U0

n, v) +
τn
4
a(U0

n, v) +
3
2

∫
In

(1 − t̃)〈f, v〉 dt

gn(v) = −2(U0
n, v) −

τn
2
a(U0

n, v) +
1
2

∫
In

(2t̃− 1)〈f, v〉 dt

(3.13)

Let us denote by Vh ⊂ V a conforming finite element space. On Vh, we introduce the operators Ah, Ah,i :
Vh → Vh for i = 1, 2 by:

(AhUh, vh) = a(Uh, vh) ∀Uh, vh ∈ Vh (3.14)

(Ah,iUh, vh) = μi(Uh, vh) +
τn
2
a(Uh, vh) ∀Uh, vh ∈ Vh (3.15)

and the right-hand sides:

(Fh, vh) = fn(vh) ∀vh ∈ Vh (3.16)
(Gh, vh) = gn(vh) ∀vh ∈ Vh. (3.17)

On each time interval In, we can restate problem (3.12) as a matrix valued problem on Vh as follows:(
Ah,1 αI

−βI Ah,2

)(
U1

h

U2
h

)
=

(
Fh

Gh

)
. (3.18)

We first note from (3.12), (3.13) that during the time-stepping procedure, the unknown U1
h is not necessarily

needed at the next time interval. Thus, we reduce (3.18) to a Schur-complement formulation for the essential
unknown U2

h :
Solve

ShU
2
h = Ah,1Gh + βFh, where Sh := αβI +Ah,1Ah,2. (3.19)
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Remark 3.2.

• Note that the operators Ah,1, Ah,2 defined in (3.15) share the same eigenvectors, and therefore Ah,1Ah,2 =
Ah,2Ah,1. As a consequence, Sh is a symmetric operator, while the original formulation is in general not
symmetric.

• Sh is a fourth order operator, i.e. the condition of problem (3.19) is even worse than the condition of (3.18).
• The efficient solution of (3.19) using iterative solvers will only be possible with a suitable preconditioner

which will be constructed in the next section.

4. Efficient preconditioning of the Schur-complement formulation

In [2], a preconditioner for a class of fourth order problems was introduced and analyzed. The main ingredient
is an inexact factorization of the Schur complement S, for which uniform bounds can be proved. Note that an
exact factorization is also possible, but leads to complex-valued equations, as was pointed out in [8].

To simplify notation in this section, we omit the subindex h indicating the discrete space level of the objects
and write τ instead of τn.

As a motivation, let us first consider the (symmetric) left-right preconditioned operator A−1
1 SA−1

1 . Note that
the spectrum σ(Ai) is given by:

σ(Ai) =
{
μi +

τ

2
λ : λ ∈ σ(A)

}
⊂ (μ1,∞). (4.1)

Therefore, for fixed λ1 ∈ σ(A1), the corresponding eigenvalue of the preconditioned operator A−1
1 SA−1

1 reads
as follows:

λ̃(λ1) =
αβ + λ2

1 + λ1(μ2 − μ1)
λ2

1

(4.2)

and since λ̃ is monotonously decreasing in λ1, we have

sup
ξ∈σ(A1)

λ̃(ξ) ≤ λ̃(μ1) =
αβ + μ1μ2

μ2
1

(4.3)

inf
ξ∈σ(A1)

λ̃(ξ) ≥ lim
λ1→∞

λ̃(λ1) = 1 (4.4)

and consequently σ(A−1
1 SA−1

1 ) ⊂ (1, αβ+μ1μ2
μ2

1
). Hence, the condition number of the preconditioned operator is

bounded by

κ(A−1
1 SA−1

1 ) ≤ αβ + μ1μ2

μ2
1

· (4.5)

For dG(1), this yields κ ≤ 8
3 and for cGP(2) κ ≤ 3, i.e. this preconditioned operator is already uniformly

bounded with respect to space and time discretization parameters. However, this bound can be easily improved
in the following way: instead of taking A−1

1 as both left- and right-preconditioner, we choose A∗ := μ∗I + τ
2A,

with μ∗ to be determined. Note that A∗ = A1+(μ∗−μ1)I and consequently its spectrum is shifted by a constant
μ∗ − μ1 compared to A1:

σ(A∗) = {ξ + (μ∗ − μ1) : ξ ∈ σ(A1)}. (4.6)

The eigenvalues of S∗ := A−1
∗ SA−1

∗ are given by

λ∗(μ∗, λ1) =
αβ + λ2

1 + λ1(μ2 − μ1)
(λ1 + (μ∗ − μ1))2

, λ1 ∈ σ(A1). (4.7)

Note that since all operators commute, S∗ is symmetric and positive definite, which makes it well-suited for
the method of conjugate gradients (CG).
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Now we determine the optimal parameter μopt for each method, such that the condition number of the
preconditioned operator is minimized, i.e. we solve

μopt = argmin
μ∗∈R+

κ(S∗) = argmin
μ∗∈R+

supλ1∈σ(A1) λ∗(μ∗, λ1)
infλ1∈σ(A1) λ∗(μ∗, λ1)

· (4.8)

A tedious, but elementary computation yields the following values:

dG(1) cGP(2)

μopt

√
6

2

√
3

κ(Sopt) ≤ 6 − 2
√

6 ≈ 1.10 ≤ 8 − 4
√

3 ≈ 1.07.

In the following we use the notation Aopt := μoptI + τ
2A for the optimal preconditioner (where for the sake

of brevity we do not distinguish between μopt for dG(1) and cGP(2)).

Remark 4.1.

• So far we have assumed A to be symmetric and positive definite. Numerical experiments suggest that the
preconditioner also works if this condition is violated. In particular, for a convection-diffusion problem, the
method works even if the diffusion part is very small (see Sect. 6.4).

• In the case of a time dependent diffusion coefficient ε(t, x) the induced operators A1, A2 no longer commute.
In this case, the discrete Schur complement operator S = αβI + A1A2 is no longer symmetric, and the
analysis presented here for the symmetrically preconditioned operator does not apply. However, following [2],
the application of a non-symmetric left-right preconditioner of the form A−1

1 SA−1
2 might form a possible

extension.
Also, the time dependent coefficient will change the structure of equations (3.6) and (3.11) as the terms
a(U2

n, v), a(U
1
n, v) will no longer vanish in the first and second equation, correspondingly. However, if the

time dependent term is approximated by the same Radau/Lobatto rules used for the basis functions, this
difficulty vanishes. This approach is comparable to approximating a nonlinearity in the underlying PDE by
numerical quadrature, which does not change the order of the method, as has been demonstrated in [10].

5. Numerical realization

In this chapter we elaborate on the choice of a concrete finite element space and comment on our
implementation.

5.1. Choice of finite element space

We will now go into some detail about the choice of our FE space Vh. Note that for the estimates in the
last chapter, we did not require any special kind of space discretization, conformity (Vh ⊂ V) being the only
exception. This makes our preconditioner suitable for a broad class of finite element discretizations.

In our numerical realization, we chose a polynomial ansatz on simplicial elements. To this end, let Th be a
shape regular triangulation, and define the space of continuous, piecewise polynomial functions on Ω:

Vh = Vh,k := {v ∈ C0(Ω) : v|T ∈ Pk(T,R) ∀T ∈ Th}. (5.1)

For a basis ϕi, i = 1, . . . , ndof of Vh,k, define the mass matrix, stiffness matrix, and right-hand sides by

Mij = (ϕj , ϕi) i, j = 1, . . . , ndof (5.2)

Aij = a(ϕj , ϕi) i, j = 1, . . . , ndof (5.3)
Fi = (Fh, ϕi) i = 1, . . . , ndof (5.4)
Gi = (Gh, ϕi) i = 1, . . . , ndof . (5.5)
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With the above defined matrices M,A and vectors F,G it holds:

(IUh, ϕl) = (Uh, ϕl) = (MU)l (5.6)
(AhUh, ϕl) = a(Uh, ϕl) = (AU)l (5.7)

(Ah,iUh, ϕl) = μi(Uh, ϕl) +
τ

2
a(Uh, ϕl) =

(
(μiM +

τ

2
A)U

)
l
=: (AiU)l (5.8)

(Fh, ϕl) = Fl (5.9)
(Gh, ϕl) = Gl (5.10)

for l = 1, . . . , ndof , where U ∈ R
ndof , U = (Ui)i=1,...,ndof is the coefficient vector of Uh ∈ Vh,k.

To derive the matrix-vector equation that corresponds to the operator equation (3.19) in Vh we explain at
first the isomorphism rm : L(Vh,Vh) → R

N×N , N = ndof , that assigns to a linear operator A : Vh → Vh its
matrix representation rm(A) ∈ R

N×N in the following way (see [2]): let rv : Vh → R
N denote the finite element

isomorphism that assigns to a function Uh ∈ Vh its nodal vector representation U = rv(Uh) ∈ R
N as described

above. Then, the matrix representation rm(A) ∈ R
N×N is defined by the property

rv(AUh) = rm(A)rv(Uh) ∀Uh ∈ Vh.

If we define as above the matrix M ∈ R
N×N and the matrix A ∈ R

N×N assigned to A by means of
Akj := (Aϕj , ϕk) for all k, j = 1, . . . , N , we can show that rm(A) = M−1A. For two operators A1, A2 with
corresponding matrices A1,A2 we get rm(A1A2) = M−1A1M−1A2. Now, using the fact that rv(Gh) = M−1G
and the analog for Fh, we get that the operator equation (3.19) for Uh ∈ Vh is equivalent to the following
matrix-vector equation for the nodal vector U = rv(Uh) ∈ R

N :(
I +

1
α

M−1A1
1
β
M−1A2

)
U =

1
α
M−1A1

1
β
M−1G +

1
α
M−1F. (5.11)

The preconditioner Aopt has the matrix representation

I +
τ

2μopt
M−1A. (5.12)

Note that an operator Ah has the same eigenvalues as its matrix representation rm(Ah) such that the results
of Section 4 on the preconditioning directly can be applied to the iterative solution of the corresponding matrix-
vector equation (5.11).

The solution of equation (5.11) can be done using the preconditioned Conjugate Gradient method. A pseu-
docode variant containing the operators from our setting is shown in Algorithm 1. Note that we have removed
all unnecessary explicit inversions of M by an appropriate scaling of equations (5.11) and (5.12).

Remark 5.1. The main numerical effort in Algorithm 1 lies in the evaluation of the preconditioner (μoptM +
τ
2A)−1. This evaluation corresponds to solving one step of the implicit Euler method with time step size τ

2μopt
.

This problem is very well studied and can be solved efficiently with many methods, e.g. Multigrid methods,
Krylov subspace methods etc. Additionally, one inversion of the mass matrix M is necessary per iteration (in
the application of the Schur-complement operator). This can be realized with any existing solver as above.

5.2. Implementation

The implementation was carried out with the help of the finite element framework FEniCS [6]. Due to the
high level of abstraction in this framework, we were able to perform numerical experiments with polynomial
bases of different degrees (1 to 4) with nearly no additional implementational effort.

For the application of the preconditioner, a Conjugate Gradient method preconditioned by the AMG precon-
ditioner from the “hypre” library [3] was used. For the outer CG iteration (Algorithm 1), we used a relatively
small (absolute) tolerance of tol = 1e-10, and a somewhat smaller tolerance of 1e-12 for the inner solvers.
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Algorithm 1. Uniformly, symmetrically preconditioned Conjugate Gradient method.
p← p0 � Initial guess p0

b← (
A1M

−1G + βF
)

� Compute right-hand side

r ← (
αβM + A1M

−1A2

)
p− b � Compute initial residual

d← (μoptM + τ
2
A)−1M(μoptM + τ

2
A)−1r � Compute preconditioned residual

δ ← 〈r, d〉
δnew ← δ
loop

q ← (
αβM + A1M

−1A2

)
d � Apply operator

ρ← 〈d, q〉
return if ρ = 0
ρ← δ

ρ

p← p− ρd � Update solution
r ← r − ρq � Update residual
q ← (μoptM + τ

2
A)−1M(μoptM + τ

2
A)−1r � Apply preconditioner

δnew ← 〈r, q〉
return if

√
δnew < tol

β ← δnew
δ

δ ← δnew

d← q + βd � Update search direction
end loop

6. Numerical results

In this chapter we demonstrate the efficiency and stability of our preconditioner on a number of test problems
which are introduced in the following.

6.1. Test problems

As the first numerical test case, we define the following problem on the domain Ω = (0, 1)2 ⊂ R
2 and time

interval I = (0, 0.2). This problem was also considered in [4].

Problem 1 (P1). Find u such that

ut −Δu = f in I ×Ω

u = 0 on I × ∂Ω (6.1)

where
f := 2 sin(aπt)(x(1 − x) + y(1 − y)) + aπ cos(aπt)x(1 − x)y(1 − y) (6.2)

and a > 0.

The analytical solution to this problem is

u = sin(aπt)x(1 − x)y(1 − y). (6.3)

In all following numerical examples, we fix the oscillation frequency of the solution to a = 10.

Remark 6.1. For fixed t, the solution and right-hand side of this problem can be fully resolved with fourth
order elements. This means that the error exhibited by the fully discrete scheme will only be due to time
discretization. We will use this fact to compute the experimental order of convergence in time.
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Our second problem will be a 3d example to illustrate that our estimates hold in any space dimension. We
consider the domain Ω = (0, 1)3 and time interval I = (0, 0.2) and pose the following problem:

Problem 2 (P2). Find u such that

ut −Δu = h in I ×Ω

u = 0 on I × ∂Ω (6.4)

where h is chosen such that the exact solution is of the form

u = exp(t) sin(πx) sin(πy) sin(πz). (6.5)

The last problem will feature a convection part, i.e. the induced operator is no longer symmetric and positive
definite. We use the same domain as in P1, namely Ω = (0, 1)2 and time interval I = (0, 0.2).

Problem 3 (P3). For given ε > 0, find u such that

ut − εΔu+ b · ∇u = g in I ×Ω

u = 0 on I × ∂Ω (6.6)

where b = [y,−x]	, and g is chosen such that the exact solution is given by

u = sin(aπt)x(1 − x)y(1 − y) (6.7)

as in problem P1.

6.2. Convergence results

To validate our implementation of the methods at hand, we computed their convergence rates, and compared
them to known a priori estimates. We introduce the following notation.

For a numerical solution uh, define the L2 error e2(uh) :=
∫ T

0
||u − uh||2L2(Ω) and the discrete L∞ error

e∞(uh) := maxn ‖u(tn) − un
h‖L2(Ω).

Throughout this section, we use uniform time step size τ (k)
n = τ (k) on each time refinement level k. For the

numerical experiments, we choose τ (k) = 1e-1/2k−1.
The experimental order of convergence (EOC) is given by the formula:

EOCi
k :=

log
(

ei

(
u
(k)
h

)
ei

(
u
(k+1)
h

)
)

log
(

τ (k)

τ (k+1)

) (6.8)

where u(k)
h is the discrete solution computed with time step size τ (k).

We first consider problem P1 discretized by polynomial elements of fourth order in space. This means that
the discretization error is only due to time discretization and not space discretization.

The resulting convergence rates can be found in Tables 1 and 2. The numerical results exhibit second order
convergence for the L2-error for dG(1) and third order superconvergence at t = tn as expected. For cGP(2),
third order convergence in the L2-sense and fourth order superconvergence are also clearly visible.
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Table 1. Experimental convergence rates for dG(1).

k e2(uh) EOC2 e∞(uh) EOC∞

1 1.43e-02 – 7.20e-03 –
2 3.40e-03 2.07 1.18e-03 2.61
3 8.73e-04 1.96 1.71e-04 2.78
4 2.21e-04 1.98 2.22e-05 2.95
5 5.53e-05 2.00 2.84e-06 2.96
6 1.38e-05 2.00 3.58e-07 2.99
7 3.46e-06 2.00 4.49e-08 3.00
8 8.64e-07 2.00 5.59e-09 3.01
9 2.16e-07 2.00 7.05e-10 2.99

Table 2. Experimental convergence rates for cGP(2).

k e2(uh) EOC2 e∞(uh) EOC∞

1 3.98e-03 – 4.07e-03 –
2 5.03e-04 2.98 1.98e-04 4.36
3 6.48e-05 2.96 1.44e-05 3.78
4 8.28e-06 2.97 8.84e-07 4.02
5 1.03e-06 3.00 5.58e-08 3.99
6 1.28e-07 3.01 3.49e-09 4.00
7 1.60e-08 3.00 2.39e-10 3.87

Table 3. Maximum number of operator evaluations per step needed to converge for dG(1),
refinement level k (with fixed time step size).

Method\k 1 2 3 4 5 6
BiCGStab (no) 32 60 118 210 436 886

BiCGStab (AMG) 6 8 8 12 10 8
CG (Schur) 6 36 161 668 2765 11 101
CG (μ = μ1) 4 5 5 5 5 5

CG (μ = μopt) 4 4 4 4 4 4

6.3. Progression of residual norm

We consider the following solution strategies for (3.18), applied to problem P1:

• BiCGStab (no): Unpreconditioned BiCGStab applied to the fully coupled system of equations (3.18),
• BiCGStab (AMG): BiCGStab, applied to the fully coupled system of equations (3.18), but preconditioned

by an algebraic multigrid method (see Sect. 5.2),
• CG (Schur): Unpreconditioned CG, applied to the Schur complement formulation (3.19), and
• CG (μ ∈ {μ1, μopt}): CG, preconditioned using the left-right preconditioner Aμ as in Algorithm 1, where μ

is chosen either to be the suboptimal value μ1, or the optimal choice μopt.

In Table 3, we record the maximum number of operator evaluations per time step needed for each strategy on
different refinement levels to reach a residual of norm < 1e-10. One operator evaluation includes the application
of the Schur-complement operator and the inversion of the preconditioner, this happens once per iteration step
for CG and twice for BiCGStab.

Let us mention that while for all numerical experiments in this subsection dG(1) was used, cGP(2) will lead
to very similar results.
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Figure 1. Progression of residual norm for different solution strategies for equation (3.18) for
problem P1.

As can be seen, the iteration number depends on the mesh size for all unpreconditioned operators (BiCGStab
(no), CG (Schur)). For the coupled system, which is an operator of second order in space, the number of
iterations roughly doubles for each additional refinement step. For the fourth-order operator defined by the
Schur-complement formulation, the number of iterations grows by a factor of four per refinement level.

For the AMG-preconditioned BiCGStab applied to the coupled system, we observe uniform behavior with
respect to space discretization and typical iteration counts of 10.

When applying our proposed preconditioning scheme, we observe uniform behavior in all cases, however the
number of Matrix-vector operations depends on the choice of μ and is lowest for the optimal parameter μ = μopt

as expected.
To differentiate further between the methods, we depict the residual progression on a typical refinement level

for the aforementioned methods in Figure 1. As can be seen, the two unpreconditioned methods BiCGStab
(no) and CG (Schur) do not significantly reduce the residual norm within the first 20 iterations. The AMG
preconditioned BiCGStab converges to the desired tolerance within 12 operator evaluations, while the proposed
preconditioned CG needs only 4 evaluations. The dependency on the parameter μ is not very pronounced in
this case.

6.4. Iteration count for the preconditioner

In this section we are concerned with the sensitivity of the preconditioner with respect to space and time
discretization parameters.

To this end, we first consider problem P1, discretized by Lagrange finite elements of order p = 1, . . . , 4 in
space. We vary both mesh size and time step size, and trace the maximum number of iterations needed to reach
a prescribed tolerance. In Table 4, the results are shown for dG(1), and in Table 5 for cGP(2). As expected, no
dependency on polynomial degree, mesh or time step size occurs. 6 iterations suffice in every case to reach the
desired tolerance. In the case of cGP(2), the lower condition number of the preconditioned system leads to a
slightly faster convergence.

We repeated a similar numerical experiment for the 3-dimensional problem P2, with the same findings: as
shown in Table 6, the number of iterations is never higher than 5 both for dG(1) and for cGP(2), confirming
the uniform bound for the preconditioned system also in the 3d case.

To demonstrate the applicability of our method to more general operators, we proceed to apply our precon-
ditioning scheme to P3. Due to the presence of convection, the preconditioned operator is no longer positive
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Table 4. Maximum number of outer CG iterations for dG(1) with polynomial degree 1/2/3/4
for problem P1.

τ\h 2.83e-01 1.41e-01 7.07e-02 3.54e-02 1.77e-02 8.84e-03
1.00e-01 5/6/5/5 5/5/5/5 6/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5
1.00e-02 4/5/6/6 5/6/6/6 5/6/6/6 6/6/6/6 6/6/6/6 6/6/6/6
1.00e-03 4/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5
1.00e-04 3/3/4/4 3/4/4/4 3/4/4/4 4/4/4/4 4/4/4/4 4/4/4/4
1.00e-05 2/2/2/2 2/2/2/2 2/2/2/2 2/2/2/3 2/2/3/3 2/3/3/3
1.00e-06 1/2/2/2 2/2/2/2 2/2/2/2 2/2/2/2 2/2/2/2 2/2/2/2

Table 5. Maximum number of outer CG iterations for cGP(2) with polynomial degree 1/2/3/4
for problem P1.

τ\h 2.83e-01 1.41e-01 7.07e-02 3.54e-02 1.77e-02 8.84e-03
1.00e-01 5/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5
1.00e-02 4/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5
1.00e-03 4/5/5/5 4/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5 5/5/5/5
1.00e-04 3/3/3/3 3/3/3/4 3/4/4/4 4/4/4/4 4/4/4/4 4/4/4/4
1.00e-05 2/2/2/2 2/2/2/2 2/2/2/2 2/2/2/2 2/2/2/2 2/2/2/2
1.00e-06 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1 1/1/1/1

Table 6. Maximum number of outer CG iterations for dG(1)/cGP(2) for problem P2 dis-
cretized by Vh,1-functions.

τ\h 3.46e-01 1.73e-01 8.66e-02 4.33e-02
1.00e-01 5/5 5/5 5/4 5/4
1.00e-02 4/4 4/4 4/4 4/4
1.00e-03 4/4 4/4 4/4 4/4
1.00e-04 3/3 3/3 3/3 3/3
1.00e-05 2/2 2/2 2/2 2/2
1.00e-06 1/1 1/1 1/1 1/1

definite, and we cannot use CG in this case, but switch to BiCGStab, still using Aopt as a left-right preconditioner
as before.

The influence of convection on the operator is varied by choosing different parameters ε ∈ {1,1e-2,1e-6}. The
results are depicted in Table 7. Even for very small diffusion (ε = 1e-6) the maximum number of outer iterations
is bounded by 5. Note that the number of iterations is typically somewhat lower than in the CG case, however
BiCGStab needs two operator evaluations per iteration step whereas CG only needs one.

6.5. Computational costs

In this section we measure the computational costs of the preconditioned dG(1) method compared to the
implicit Euler method. For this comparison, we solve problem P1 discretized by Vh,1-functions with both
methods. As an inner solver for the preconditioned dG(1) method, we use CG preconditioned with AMG,
whereas for the implicit Euler method the system is solved with the same implementation of CG preconditioned
with AMG. For the execution time per time step both the application of the preconditioner and the Schur
complement operator (which involves an inversion of the mass matrix) are included. Since the number of outer
iterations is uniformly bounded, the computational overhead of the dG(1) method should only be a constant
factor.

The computations were carried out on a workstation with an Intel Xeon E5 processor (2.7 GHz).
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Table 7. Maximum number of BiCGStab iterations for dG(1) and cGP(2) with ε = 1/1e-2/1e-6
for problem P3 (including convection) discretized by Vh,1-functions.

dG(1)
τ\h 2.83e-01 1.41e-01 7.07e-02 3.54e-02

1.00e-01 3/4/5 3/4/5 3/4/5 3/4/5
1.00e-02 3/3/3 3/3/3 3/3/3 3/3/3
1.00e-03 2/2/2 2/2/2 3/2/2 2/2/2
1.00e-04 2/1/1 2/1/1 2/1/1 2/1/1

cGP(2)
1.00e-01 3/4/4 3/4/4 3/4/4 3/4/4
1.00e-02 3/2/2 3/2/2 3/3/3 3/3/3
1.00e-03 2/2/2 2/2/2 2/2/2 2/2/2
1.00e-04 1/1/1 2/1/1 2/1/1 2/1/1

Table 8. Computation time per time step of the implicit Euler and dG(1) method in comparison.

τ\h 1.41e-1 7.07e-2 3.54e-2 1.77e-2 8.84e-3
Avg. comp. time (ms) per time step for implicit Euler

1.00e-01 2.21 4.67 10.49 26.63 102.19
1.00e-02 2.62 3.33 8.79 26.23 104.40
1.00e-03 2.01 3.01 7.26 24.02 97.72
1.00e-04 1.93 2.56 5.30 20.11 91.10
Avg. comp. time (ms) per time step for preconditioned dG(1)
1.00e-01 11.43 29.27 61.33 211.47 815.21
1.00e-02 11.79 22.96 62.60 229.58 911.95
1.00e-03 8.91 16.02 48.26 180.72 729.92
1.00e-04 7.18 11.01 24.63 94.54 508.75

Ratio of comp. times of dG(1)/implicit Euler
1.00e-01 5.18 6.26 5.85 7.94 7.98
1.00e-02 4.50 6.89 7.12 8.75 8.74
1.00e-03 4.44 5.33 6.65 7.52 7.47
1.00e-04 3.71 4.30 4.65 4.70 5.58

Table 8 summarizes our findings. As we have already demonstrated in the last section, the number of outer
iterations for the uniformly preconditioned dG(1) method is bounded by approximately 5. In each outer iteration,
two problems equivalent to one implicit Euler time step have to be solved. Thus, we expect the ratio of the
computing times for both methods to be bounded by approximately 10. The numerical findings support this
estimate.

To illustrate the benefits that the preconditioned higher order methods dG(1) and cGP(2) have over tradi-
tional low order methods (implicit Euler and Crank–Nicolson, respectively), we conducted the following bench-
mark: For each method, we measured the total CPU time (over all time steps) needed to reach a prescribed
tolerance for the error measure e∞ from Section 6.2 for problem P1. To this end, for each tolerance and method,
we chose uniform time step sizes τ as large as possible to reach the prescribed error tolerance. For all methods,
we solved the arising systems using the same solvers based on an AMG preconditioned CG. Our findings are
depicted in Figure 2. We observed that for relatively large error tolerances >10−2, lower order methods are com-
petitive with the variational ones. This is to be expected, since computational costs for one time step are roughly
10 times larger for the variational methods, as was shown in the previous example. However, already for error
tolerances in the range of 10−3, variational methods start to outperform the traditional methods: for instance,
to reach an error tolerance of 10−7, the implicit Euler method needed 2132.5 s, Crank–Nicolson 4.65 s while
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Figure 2. Progression of residual norm for different solution strategies for equation (3.18) for
problem P1.

dG(1) needed 1.08 s and cGP(2) only 0.58 s. Consequently, even for moderate tolerances, the preconditioned
higher-order methods considered in this paper are clearly superior over traditional lower order methods.

7. Conclusion

In this paper we have introduced an efficient preconditioning strategy for systems which arise from variational
time discretization using first order discontinuous Galerkin (dG(1)) and second order continuous Galerkin Petrov
(cGP(2)) methods. These time discretization schemes lead to a 2 × 2 coupled system of two unknowns.

The main ingredient of our method is a Schur-complement formulation for the essential unknown in the
coupled system. The resulting ill-conditioned fourth-order operator is efficiently preconditioned by an inexact
left-right factorization which avoids complex arithmetic and for which we can prove uniform bounds on the
condition number.

Furthermore, the preconditioned operator retains symmetry and positive definiteness of the continuous oper-
ator. In contrast to other known methods this enables us to use the (symmetrically preconditioned) CG method
as a solver.

The overall computational costs to solve the preconditioned operator are roughly equal to numerically in-
verting the operators resulting from an implicit Euler scheme twice.

In numerical experiments, we have demonstrated the efficiency and robustness of our method. While the
analysis for the condition number is restricted to parabolic, time-independent operators, we successfully applied
the method to a convection-diffusion problem.
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[12] D. Schötzau and C. Schwab, hp-discontinuous galerkin time-stepping for parabolic problems. C. R. Acad. Sci. Ser. I Math.
333 (2001) 1121–1126.

[13] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Number 1054 in Springer Lect. Notes Math. 2nd edition.
Springer (1984).
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