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A POSTERIORI ERROR ESTIMATION FOR REDUCED ORDER SOLUTIONS

OF PARAMETRIZED PARABOLIC OPTIMAL CONTROL PROBLEMS ∗

Mark Kärcher1 and Martin A. Grepl2

Abstract. We consider the efficient and reliable solution of linear-quadratic optimal control problems
governed by parametrized parabolic partial differential equations. To this end, we employ the reduced
basis method as a low-dimensional surrogate model to solve the optimal control problem and develop
a posteriori error estimation procedures that provide rigorous bounds for the error in the optimal
control and the associated cost functional. We show that our approach can be applied to problems
involving control constraints and that, even in the presence of control constraints, the reduced order
optimal control problem and the proposed bounds can be efficiently evaluated in an offline-online
computational procedure. We also propose two greedy sampling procedures to construct the reduced
basis space. Numerical results are presented to confirm the validity of our approach.
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1. Introduction

Many problems in science and engineering can be modeled in terms of optimal control problems governed by
parametrized partial differential equations (PDEs), see e.g. [15, 26, 27] for theoretical results and applications.
While the PDE describes the underlying system or component behavior, the parameters often serve to identify
a particular configuration of the component – such as boundary and initial conditions, material properties, and
geometry. The solution of these problems using classical discretization techniques such as finite elements or finite
volumes is sometimes computationally expensive and time-consuming. One way to decrease the computational
burden is the surrogate model approach, where the original high-dimensional model is replaced by a reduced
order approximation. These ideas have received a lot of attention in the past and various model order reduction
techniques have been used in this context: proper orthogonal decomposition (POD) e.g. in [3, 24, 25, 35, 36],
reduction based on inertial manifolds in [19], and reduced basis methods in [6, 7, 20, 21, 29, 35]; for a review
of various model order reduction techniques we also refer to [2, 5]. However, the solution of the reduced order
optimal control problem is generally suboptimal and reliable error estimation is thus crucial.

In this paper we employ the reduced basis method [31, 33] as a surrogate model for the solution of optimal
control problems. We extend our previous work in [10, 23] in the following two directions: first, we consider
optimal control problems governed by time-dependent (parabolic) PDEs. To this end, we allow for multiple
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controls which are scalar functions of time. Second, we consider problems involving box constraints on the
controls, i.e., upper and lower bounds. We develop rigorous a posteriori error bounds for the optimal control
and the associated cost functional and show that the reduced order optimal control problem and error bounds
can be efficiently evaluated in an offline-online computational procedure. We note that the efficient, real-time
solution of optimal control problems is essential in model predictive control of PDEs, see e.g. [1, 18].

A posteriori error bounds for reduced order solutions of optimal control problems have been proposed for
proper orthogonal decomposition (POD) and reduced basis surrogate models in [36] and [6, 7, 29], respectively.
In [36], the authors estimate the distance between the computed suboptimal control and the unknown optimal
control using a perturbation argument proposed in [14,28]. The approach allows one to use the POD approxima-
tion to efficiently solve the optimal control problem. The evaluation of the a posteriori error bounds, however,
requires a forward-backward solution of the underlying high-dimensional state and adjoint equations and, as
pointed out in [36], is thus computationally expensive. In [6,7], reduced basis approximations and associated a
posteriori error estimation procedures have been derived to estimate the error in the optimal value of the cost
functional. However, although the estimator is efficient to evaluate, it is not a rigorous upper bound for the
error. Recently, a reduced basis approach to optimal control problems based on a saddle-point formulation has
been considered in [29]. The resulting a posteriori error bound follows directly from previous work on reduced
basis methods for saddle point problems [34]. However, the saddle point theory only provides a combined bound
for the error in the state, adjoint, and control variable. Furthermore, the approach is only applicable to opti-
mal control problems without control constraints involving stationary (time-independent) PDEs. The former
restriction is due to the fact that the results from [34] do not apply to variational inequalities, the latter since
calculating the stability constant of the space-time saddle point problem, i.e., (a lower bound to) the Babuška
inf-sup constant, is computationally prohibitive.

This paper is organized as follows. We introduce the optimal control problem in Section 2: we start with
the general problem statement, state the first order optimality conditions, and illustrate how the reduced basis
approximation can be used as a surrogate model. In Section 3 we turn to the a posteriori error estimation and
develop bounds for the optimal control and the associated cost functional. Finally, we present numerical results
for a model problem in Section 4 and offer concluding remarks in Section 5.

2. Optimal control problem

2.1. Preliminaries

Let Ye with H1
0(Ω) ⊂ Ye ⊂ H1(Ω) be a Hilbert space over the bounded Lipschitz domain Ω ⊂ Rd, d =

1, 2, 3, with boundary Γ .3 The inner product and induced norm associated with Ye are given by (·, ·)Ye and
‖·‖Ye

=
√

(·, ·)Ye
, respectively. We assume that the norm ‖·‖Ye

is equivalent to the H1(Ω)-norm and denote
the dual space of Ye by Y ′e . We also recall the Hilbert space W (0, T ) = {v ∈ L2(0, T ;Ye) : vt ∈ L2(0, T ;Y ′e )}
for a fixed final time T with its standard inner product, see for example [32]. We also introduce the control

space Ue = L2(0, T ;Rm),m ∈ N, together with its inner product (w, v)Ue =
∫ T
0

(w(t), v(t))Rmdt, induced norm

‖·‖Ue =
√

(·, ·)Ue , and associated dual space U ′e. Furthermore, let D ⊂ RP be a prescribed P -dimensional
compact parameter set in which our P -tuple (input) parameter µ = (µ1, . . . , µP ) resides.

We next introduce the (for the sake of simplicity) parameter-independent bilinear form m(w, v) = (w, v)L2(Ω),
∀w, v ∈ L2(Ω), and the parameter-dependent bilinear form a(·, ·;µ) : Ye×Ye → R. We shall assume that a(·, ·;µ)
is continuous,

γe(µ) = sup
w∈Ye\{0}

sup
v∈Ye\{0}

a(w, v;µ)

‖w‖Ye
‖v‖Ye

≤ γ0 <∞, ∀µ ∈ D, (2.1)

coercive,

αe(µ) = inf
v∈Ye\{0}

a(v, v;µ)

‖v‖2Ye

≥ α0 > 0, ∀µ ∈ D, (2.2)

3The subscript e denotes “exact”.
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and affinely parameter-dependent,

a(w, v;µ) =

Qa∑
q=1

Θqa(µ) aq(w, v), ∀w, v ∈ Ye, ∀µ ∈ D, (2.3)

for some (preferably) small integer Qa. Here, the coefficient functions Θqa : D → R are continuous and depend
on µ, but the continuous bilinear forms aq do not depend on µ. We also introduce the continuous and linear
operator Be : Ue → L2(0, T ;Y ′e ), given by

〈(Beue)(t), ·〉Y ′
e ,Ye

=

m∑
i=1

bi(·)ue,i(t), (2.4)

where 〈·, ·〉Y ′
e ,Ye

denotes the dual pairing between Y ′e and Ye, b1, . . . , bm are given bounded linear functionals

on L2(Ω) and ue ∈ Ue is the control with time-dependent control components ue,i ∈ L2(0, T ), 1 ≤ i ≤ m.
For simplicity, we assume that the functionals b1, . . . , bm do not depend on the parameter; however, (affine)
parameter dependence of the bi and thus of the operator Be itself is readily admitted [11]. Finally, we require
that all linear and bilinear forms are independent of time – the system is thus linear time-invariant (LTI).

2.2. General problem statement

We consider the parametrized optimal control problem

min Je(ye, ue;µ) s.t. (ye, ue) ∈W (0, T )× Ue,ad solves

d

dt
m(ye(t), v) + a(ye(t), v;µ) = 〈(Beue)(t), v〉Y ′

e ,Ye
, ∀v ∈ Ye, f.a.a. t ∈ (0, T ],

(Pe)

with initial condition ye(0) = y0 ≡ 0; the quadratic cost functional, Je(·, ·;µ) : W (0, T )× Ue → R, is given by

Je(ye, ue;µ) =
σ1
2

∫ T

0

‖ye − yd,e(µ)‖2L2(D) dt+
σ2
2
‖ye(T )− yd,e(T ;µ)‖2L2(D) +

λ

2
‖ue − ud,e‖2Ue . (2.5)

Here, D ⊂ Ω is a measurable set; yd,e(µ) ∈ L2(0, T ;L2(D)) and ud,e ∈ Ue are the desired state and control,
respectively; and λ > 0 and σ1, σ2 ≥ 0 are given regularization parameters governing the trade-off between the
cost associated with the deviation from the desired control and the desired state (over the whole time trajectory
and/or at the final time), respectively. We assume that the parameter-dependent desired state yd,e(µ) admits
the affine representation

yd,e(x, t;µ) =

Qyd∑
q=1

Θqyd(t;µ)yqd,e(x), (2.6)

with parameter-dependent and time-dependent coefficient functions Θqyd : [0, T ] × D → R and parameter-

independent functions yqd,e ∈ L2(D). For simplicity, we assume that the desired control ud,e is parameter-
independent; however, (affine) parameter dependence is readily admitted. We also introduce the non-empty
convex subset of admissible controls

Ue,ad = {ue ∈ Ue : ua,e(t) ≤ ue(t) ≤ ub,e(t)} ⊂ Ue, (2.7)

where ua,e, ub,e ∈ L2(0, T ;Rm), with ua,e(t) ≤ ub,e(t), f.a.a. t ∈ [0, T ], are given lower and upper bounds for the
control components and the inequalities are interpreted component-wise in Rm. It follows from our assumptions
that there exists a unique optimal solution (y∗e , u

∗
e) to (Pe) [27].

Employing a Lagrangian approach we obtain the first-order optimality system consisting of the state
equation, the adjoint equation, and the optimality condition: Given µ ∈ D, the optimal solution
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(y∗e , p
∗
e , u
∗
e) ∈W (0, T )×W (0, T )× Ue,ad satisfies

d

dt
m(y∗e (t), φ) + a(y∗e (t), φ;µ) = 〈(Beu∗e)(t), φ〉Y ′

e ,Ye
,∀φ ∈ Ye, f.a.a. t ∈ (0, T ], (2.8a)

y∗e (0) = y0 ≡ 0 (2.8b)

− d

dt
m(ϕ, p∗e(t)) + a(ϕ, p∗e(t);µ) = σ1(yd,e(t;µ)− y∗e (t), ϕ)L2(D),∀ϕ ∈ Ye, f.a.a. t ∈ [0, T ), (2.8c)

m(ϕ, p∗e(T )) = σ2(yd,e(T ;µ)− y∗e (T ), ϕ)L2(D),∀ϕ ∈ Ye, (2.8d)(
λ(u∗e − ud,e)− B>e p∗e , ψ − u∗e

)
Ue
≥ 0,∀ψ ∈ Ue,ad. (2.8e)

Here, pe is the adjoint variable and the superscript ∗ denotes optimality. Furthermore, the linear and bounded
dual operator of Be in (2.8e) is given by B>e : L2(0, T ;Ye)→ Ue, where we identify (L2(0, T ;Y ′e ))′ with L2(0, T ;Ye)
and U ′e with Ue. From the relationship

〈Beu, φ〉L2(0,T,Y )′,L2(0,T ;Y ) =

∫ T

0

m∑
i=1

bi(φ(t))ui(t)dt =

∫ T

0

(
u(t),

(
B>e φ

)
(t)
)
Rm dt =

(
u,B>e φ

)
Ue

(2.9)

it follows that, for given φ ∈ L2(0, T ;Ye), the dual operator B>e φ can be expressed as(
B>e φ

)
i
(t) = bi(φ(t)), 1 ≤ i ≤ m, t ∈ [0, T ]. (2.10)

We note that for the linear-quadratic optimal control problem (Pe) the first-order conditions (2.8) are necessary
and sufficient for the optimality of (y∗e , u

∗
e) [27].

Note that we consider here the classical initial value problem formulation to extend our earlier elliptic work [10,
23] to the parabolic case. Another approach worth pursuing is a space-time formulation of the optimal control
problem [12]; also see [37] for a reduced basis space-time formulation for parabolic problems. However, in the
context of the current paper – spatially coercive operators – there would be little quantitative improvement in
the results (cf. the very good performance of the state and adjoint energy-norm bounds in Table 1).

In practice, the regularization parameters often serve as design parameters which are tuned to achieve a
desired performance of the optimal controller. From a reduced basis point of view, however, the regularization
parameters may simply be considered input parameters of the parametrized optimal control problem. This allows
us to vary (say) λ online and thus to efficiently design the optimal controller with the approach presented here.
We note that the efficient online variation of the regularization parameters (or weights) in the cost functional is
also relevant in the framework of multiobjective optimization [17]. For our model problem in Section 4 we will
in fact consider λ as an additional (reduced basis) input parameter.

2.3. Truth approximation

In general, we of course cannot expect to find an analytic solution to (2.8). We thus consider a temporal
and spatial “truth” discretization: we divide the time interval [0, T ] into K subintervals of equal length τ = T

K
and define tk = k τ, 0 ≤ k ≤ K, and K = {1, . . . ,K}; we also introduce a finite element approximation space
Y ⊂ Ye of typically very large dimension N . Note that Y shall inherit the inner product and norm from Ye:
(·, ·)Y = (·, ·)Ye

and ‖·‖Y = ‖·‖Ye
. Clearly, the continuity and coercivity properties of the bilinear form a are

inherited by the truth approximation, i.e.,

γ(µ) = sup
w∈Y \{0}

sup
v∈Y \{0}

a(w, v;µ)

‖w‖Y ‖v‖Y
≤ γe(µ) ≤ γ0 <∞, ∀µ ∈ D, (2.11)

and

α(µ) = inf
v∈Y \{0}

a(v, v;µ)

‖v‖2Y
≥ αe(µ) ≥ α0 > 0, ∀µ ∈ D. (2.12)

We also define the operator B : U = (Rm)K → (Y ′)K by

〈(Bu)k, ·〉Y ′,Y =

m∑
i=1

bi(·)uki , k ∈ K, (2.13)
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where U = (Rm)K is the discretized control space with inner product (u, v)U = τ
∑K
k=1(uk, vk)Rm and induced

norm ‖·‖U =
√

(·, ·)U . Here, a control is denoted by u = (u1, . . . , uK), uk ∈ Rm, such that uki ∈ R corresponds
to the i-th control input at time tk, i.e., uki = ui(t

k).

We thus obtain the corresponding truth optimal control problem4

min J(y, u;µ) s.t. (y, u) ∈ Y K × Uad solves

m(yk, v) + τ a(yk, v;µ) = m(yk−1, v) + τ 〈(Bu)k, v〉Y ′,Y , ∀v ∈ Y, ∀k ∈ K,
(P)

with initial condition y0 = y0 = 0. Here, yk denotes the truth solution at time tk and the discretized cost
functional J(·, ·;µ) : Y K × U → R is given by

J(y, u;µ) =
σ1
2
τ

K∑
k=1

∥∥yk − ykd(µ)
∥∥2
L2(D)

+
σ2
2

∥∥yK − yKd (µ)
∥∥2
L2(D)

+
λ

2
τ

K∑
k=1

∥∥uk − ukd∥∥2Rm , (2.14)

ukd = ud,e(t
k) ∈ Rm, ykd(µ) ∈ Y is the L2–projection of yd,e(t

k;µ), and the discretized admissible control set is
Uad = {u ∈ U : uka ≤ uk ≤ ukb , k ∈ K}, where uka = ua,e(t

k) ∈ Rm and ukb = ub,e(t
k) ∈ Rm.

The associated first-order optimality system reads: Given µ ∈ D, the optimal solution (y∗, p∗, u∗) ∈ Y K ×
Y K × Uad satisfies

m
(
y∗,k − y∗,k−1, φ

)
+ τ a

(
y∗,k, φ;µ

)
= τ 〈(Bu∗)k , φ〉Y ′,Y

, ∀φ ∈ Y, ∀k ∈ K, (2.15a)

y∗,0 = y0 ≡ 0, (2.15b)

m
(
ϕ, p∗,k − p∗,k+1

)
+ τ a

(
ϕ, p∗,k;µ

)
= τ σ1

(
ykd(µ)− y∗,k, ϕ

)
L2(D)

, ∀ϕ ∈ Y, ∀k ∈ K, (2.15c)

m
(
ϕ, p∗,K+1

)
= σ2

(
yKd (µ)− y∗,K , ϕ

)
L2(D)

, ∀ϕ ∈ Y, (2.15d)(
λ (u∗ − ud)− B>p∗, ψ − u∗

)
U ≥ 0, ∀ψ ∈ Uad, (2.15e)

where the dual operator B> : Y K → U is given for φ ∈ Y K by (B>φ)ki = bi(φ
k), which is the discrete counterpart

to the dual operator B>e defined in (2.10). We further note that the Ansatz and test spaces are identical for
the state and adjoint equations. This ensures that the solution of the optimality system (2.15) is indeed also an
optimal solution of the truth optimal control problem (P).

The optimality system (2.15) constitutes a coupled set of equations (and variational inequalities) of dimension
2KN + Km and is thus expensive to solve, especially if one is interested in various values of µ ∈ D. Our goal
is therefore to significantly speed up the solution of (2.15) by employing the reduced basis approximation as a
surrogate model for the PDE constraint in (P).

2.4. Reduced basis approximation

We first assume that we are given the reduced basis spaces YN = span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax,
where the ζn, 1 ≤ n ≤ N , are mutually (·, ·)Y -orthogonal basis functions and N,Nmax are even. We comment
on the POD/Greedy sampling procedure to construct the spaces YN in Section 3.4.

We next replace the truth approximation of the PDE constraint in (P) with its reduced basis approximation.
The reduced basis optimal control problem is thus given by

min J(yN , uN ;µ) s.t. (yN , uN ) ∈ Y KN × Uad solves

m(ykN , v) + τ a(ykN , v;µ) = m(yk−1N , v) + τ 〈(BuN )k, v〉Y ′,Y , ∀v ∈ YN , ∀k ∈ K,
(PN)

with initial condition y0N = y0 = 0. Notice that the already low-dimensional truth control space U is not reduced,
although this is possible for problems with high-dimensional control spaces, e.g., problems with distributed
controls over parts of the domain or its boundary [22,29].

4We shall employ the backward Euler method for the time integration; we note, however, that the treatment of higher-order
schemes such as Crank-Nicolson (or a general Θ-scheme) is also possible.
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We can also directly state the associated first-order optimality system: Given µ ∈ D, find (y∗N , p
∗
N , u

∗
N ) ∈

Y KN × Y KN × Uad such that

m
(
y∗,kN − y∗,k−1N , φ

)
+ τ a

(
y∗,kN , φ;µ

)
= τ 〈(Bu∗N )k , φ〉Y ′,Y

, ∀φ ∈ YN , ∀k ∈ K, (2.16a)

y∗,0N = y0 ≡ 0, (2.16b)

m
(
ϕ, p∗,kN − p

∗,k+1
N

)
+ τ a

(
ϕ, p∗,kN ;µ

)
= τ σ1

(
ykd(µ)− y∗,kN , ϕ

)
L2(D)

, ∀ϕ ∈ YN , ∀k ∈ K, (2.16c)

m
(
ϕ, p∗,K+1

N

)
= σ2

(
yKd (µ)− y∗,KN , ϕ

)
L2(D)

, ∀ϕ ∈ YN , (2.16d)(
λ (u∗N − ud)− B>p∗N , ψ − u∗N

)
U ≥ 0, ∀ψ ∈ Uad. (2.16e)

The reduced basis optimality system is only of dimension 2KN +Km and can be evaluated efficiently using an
offline-online computational decomposition.

We note that we use a single “integrated” reduced basis Ansatz and test space for the state and adjoint
equations. The reason is twofold: first, the reduced basis optimality system (2.16) reflects the reduced basis
optimal control problem (PN) only if the spaces of the state and adjoint equations are identical; and second,
using different spaces may result in an unstable system (2.16). This issue is closely related to the stability of
reduced basis formulations for saddle point problems, see [9] for details. If we use the same space YN for the
state and the adjoint equation, on the other hand, the system (2.16) is provably stable. Finally, since the state
and adjoint solutions need to be well-approximated using the single space YN , we choose “integrated” spaces,
i.e., we integrate both snapshots of the state and adjoint equations into the reduced basis space YN .

2.5. Computational procedure

We now turn to the computational details of the reduced basis approximation of the optimality sys-
tem. To this end, we express the reduced basis state and adjoint solutions as ykN (µ) =

∑N
i=1 y

k
Ni(µ)ζi and

pkN (µ) =
∑N
i=1 p

k
Ni(µ)ζi and denote the coefficient vectors by yk

N
(µ) = [ykN1(µ), . . . , ykNN (µ)]T ∈ RN and

pk
N

(µ) = [pkN1(µ), . . . , pkNN (µ)]T ∈ RN , respectively. If we choose as test functions φ = ζi, 1 ≤ i ≤ N , and
ϕ = ζi, 1 ≤ i ≤ N , in (2.16), the reduced basis optimality system can be written as

(MN + τ AN (µ)) yk
N

(µ) = MN y
k−1
N

(µ) + τ BNu
k
N , k ∈ K, (2.17a)

y0
N

(µ) = 0, (2.17b)

(MN + τ AN (µ)) pk
N

(µ) = MN p
k+1
N

(µ) + τσ1 (Y kd,N (µ)−DN y
k
N

(µ)), k ∈ K, (2.17c)

MN p
K+1
N

(µ) = σ2 (Y Kd,N (µ)−DN y
K
N

(µ)), (2.17d)

(λ(ukN − ukd)−BTNpkN (µ), ψk − ukN )U ≥ 0, ∀ψk ∈ Ukad, k ∈ K. (2.17e)

Here, MN ∈ RN×N , BN ∈ RN×m, and DN ∈ RN×N are matrices with entries (MN )ij = m(ζj , ζi), 1 ≤ i, j ≤ N ,
(BN )ij = bj(ζi), 1 ≤ i ≤ N, 1 ≤ j ≤ m, and (DN )ij = (ζj , ζi)L2(D), 1 ≤ i, j ≤ N respectively. Invoking

the affine parameter dependence (2.3) yields the expansion AN (µ) =
∑Qa

q=1Θ
q
a(µ)AqN , where the parameter-

independent matrices AqN ∈ RN×N are given by (AqN )ij = aq(ζj , ζi), 1 ≤ i, j ≤ N, 1 ≤ q ≤ Qa. Similarly, from

(2.6) we obtain the affine representation of Y kd,N (µ) ∈ RN , k ∈ K, as Y kd,N (µ) =
∑Qyd

q=1 Θ
q
yd(t

k;µ)Y qd,N , where the

parameter-independent vectors Y qd,N ∈ RN are given by (Y qd,N )i = (yqd(x), ζi)L2(D), 1 ≤ i ≤ N, 1 ≤ q ≤ Qyd.
Finally, to allow an efficient evaluation of the cost functional in the online stage, we also compute and store the
matrix Ỹd ∈ RQyd×Qyd , given by (Ỹd)p,q = (ypd, y

q
d)L2(D).

The offline-online decomposition is now clear. In the offline stage – performed only once – we first construct the
reduced basis space YN . We then assemble the parameter-independent quantitiesAqN , 1 ≤ q ≤ Qa,MN ,DN ,BN ,
Y qd,N , 1 ≤ q ≤ Qyd, and Ỹd. The computational cost clearly depends on the truth finite element dimension N . In
the online stage – for each new parameter value µ – we first assemble the parameter-dependent quantities AN (µ)
and Y kd,N (µ), k ∈ K, in O(QaN

2) and O(QydKN) operations, respectively. We then solve the reduced basis
optimality system (2.17) iteratively with a BFGS Quasi–Newton method. The cost for one BFGS-iteration on
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the “reduced” cost functional jN (uN ;µ) := J(yN (uN ), uN ;µ) is to leading order O(N3+KN2+KNm+(Km)2).
In the control constrained case we use the primal dual active set method (PDAS) resulting in an outer loop
around the BFGS iteration. In our numerical tests we needed at most 4 PDAS iterations.

Given a reduced basis approximation, the cost functional can be evaluated efficiently from

J (yN , uN ;µ) =
σ1
2
τ

K∑
k=1

(yk
N

)T
DNy

k
N
− 2

(
Y kd,N (µ)

)T
yk
N

+

Qyd∑
p,q=1

Θpyd
(
tk;µ

)
Θqyd

(
tk;µ

) (
Ỹd

)
p,q



+
σ2
2

(yK
N

)T
DNy

K
N
− 2

(
Y Kd,N (µ)

)T
yK
N

+

Qyd∑
p,q=1

Θpyd
(
tK ;µ

)
Θqyd

(
tK ;µ

) (
Ỹd

)
p,q

+
λ

2
τ

K∑
k=1

∥∥ukN − ukd∥∥2Rm

(2.18)

in (to leading order) O(KN2 +KQydN +Q2
yd +Km) operations.

Hence, the computational cost for the online stage is independent of N , the dimension of the underlying
“truth” finite element approximation space. Since N � N , we expect significant computational savings in the
online stage relative to the solution of (2.15). However, we need to rigorously and efficiently assess the error
introduced.

3. A Posteriori error estimation

We will now develop a posteriori error bounds for the error in the optimal control and the error in the
associated cost functional. We discuss the control and cost functional bounds in Sections 3.1 and 3.2, respectively.
We summarize the computational procedure in Section 3.3 and discuss the greedy algorithm to generate YN in
Section 3.4.

3.1. Error bound for the optimal control

The point of departure for our bound is a result from [36], where the authors estimate the distance between
the computed POD suboptimal control and the unknown truth optimal control using a perturbation argument
proposed in [14, 28]. The idea is to introduce a perturbation function ζ ∈ U such that the RB optimal control
u∗N , i.e., the perturbed control, satisfies the optimality condition(

λ (u∗N − ud)− B>p̃+ ζ, ψ − u∗N
)
U ≥ 0, ∀ψ ∈ Uad, (3.1)

of a perturbed optimal control problem. Here, p̃ = p(y(u∗N )) is the solution of the (truth) adjoint equation
(2.15c) with y(u∗N ) instead of y∗(u∗) on the right-hand side, and ỹ = y(u∗N ) is the solution of the (truth) state
equation (2.15a) with control u∗N instead of u∗. It is then possible to explicitly construct ζ in terms of u∗N , ỹ, and
p̃ such that (3.1) holds and to bound the error in the optimal control, u∗ − u∗N , in terms of ζ. More specifically,
for notational convenience we define

ξ = λ(u∗N − ud)− B>p̃ (3.2)

with components ξki , i = 1, . . . ,m, k ∈ K. We then distinguish for every component ζki , i = 1, . . . ,m, k ∈ K,
the following three cases to construct ζ (see [36] for a more detailed discussion):

(1) If u∗,kN,i = uka,i, then ψki − u
∗,k
N,i ≥ 0 for all ψki ∈ Ukad,i and hence ξki + ζki ≥ 0 has to hold: we set ζki =

[
ξki
]
−.

(2) If u∗,kN,i = ukb,i, then ψki −u
∗,k
N,i ≤ 0 for all ψki ∈ Ukad,i and hence ξki + ζki ≤ 0 has to hold: we set ζki = −

[
ξki
]
+

.

(3) If u∗,kN,i ∈
(
uka,i, u

k
b,i

)
, then ψki − u∗,kN,i can attain positive and negative values for ψki ∈ Ukad,i and hence

ξki + ζki = 0 has to hold: we set ζki = −ξki .

Here, [ · ]+ and [ · ]− denote the positive and negative part functions, respectively. To summarize, ζ ∈ U is given
component-wise by

ζki =


[
ξki
]
− if u∗,kN,i = uka,i;

−
[
ξki
]
+

if u∗,kN,i = ukb,i;

−ξki if u∗,kN,i ∈
(
uka,i, u

k
b,i

)
.

(3.3)



1622 M. KÄRCHER AND M.A. GREPL

We can now state the main result (see Thm. 4.11 in [36]).

Theorem 3.1. Let u∗ and u∗N be the optimal solutions of the truth and reduced basis optimal control problems
(P) and (PN), respectively. The error in the optimal control then satisfies

‖u∗ − u∗N‖U ≤
1

λ
‖ζ‖U , ∀µ ∈ D. (3.4)

We note that evaluation of ζ and thus the bound in (3.4) is computationally expensive since it requires a
forward-backward solve of the truth state and adjoint equations. Our goal is to develop a bound which can be
computed using an offline-online decomposition such that the computational cost for the online-evaluation is
independent of N . The main idea is to replace the truth approximation p(y(u∗N )) in (3.4) with the reduced basis
approximation p∗N (y∗N (u∗N )) and to bound the error term p(y(u∗N ))− p∗N (y∗N (u∗N )).

Before we continue, let us make some notational remarks. Following the notation and terminology in [6], we
refer to ẽy,k = yk(u∗N )−y∗,kN (u∗N ) as the state predictability error and to ẽp,k = pk(y(u∗N ))−p∗,kN (y∗N (u∗N )) as the
adjoint predictability error. They reflect the ability of the corresponding reduced basis solutions to approximate
the truth state and adjoint solutions for a prescribed control. In contrast, we define the state, adjoint, and control
optimality errors as ey,∗,k = y∗,k(u∗) − y∗,kN (u∗N ), ep,∗,k = p∗,k (y∗(u∗)) − p∗,kN (y∗N (u∗N )), and eu,∗ = u∗ − u∗N ,
respectively. We start with the following definition.

Definition 3.2. The residuals for the state equation, the adjoint equation, and the optimality condition are
defined by

ry,k(φ;µ) = 〈(Bu∗N )k , φ〉Y ′,Y
− a

(
y∗,kN , φ;µ

)
− 1

τ
m
(
y∗,kN − y∗,k−1N , φ

)
, ∀φ ∈ Y, ∀k ∈ K, (3.5)

rp,k(ϕ;µ) = σ1

(
ykd(µ)− y∗,kN , ϕ

)
L2(D)

− a
(
ϕ, p∗,kN ;µ

)
− 1

τ
m
(
ϕ, p∗,kN − p

∗,k+1
N

)
, ∀ϕ ∈ Y, k ∈ K \ {K},

(3.6)

rp,K(ϕ;µ) =
(
σ1 +

σ2
τ

)(
yKd (µ)− y∗,KN , ϕ

)
L2(D)

− a
(
ϕ, p∗,KN ;µ

)
− 1

τ
m
(
ϕ, p∗,KN

)
, ∀ϕ ∈ Y, (3.7)

ru,ki (ψ;µ) =
(
λ
(
u∗,kN,i − u

k
d,i

)
− bi

(
p∗,kN

))
ψki , ∀ψki ∈ Ukad,i, ∀k ∈ K, i = 1, . . . ,m. (3.8)

Before turning to the bound for the optimal control we require two intermediate results for the state and adjoint
predictability errors. We specify the inner product (v, w)Y = 1

2

(
a(v, w;µref) + a(w, v;µref)

)
, where µref ∈ D is

a reference parameter value, and assume that we are given a positive lower bound αLB(µ) : D → R+ for the
coercivity constant α(µ) such that

α(µ) ≥ αLB(µ) ≥ α0 > 0, ∀µ ∈ D; (3.9)

various recipes exist to construct this lower bound [16,31,38]. We can now state

Lemma 3.3. Let ẽy,k = yk (u∗N )− y∗,kN (u∗N ) be the state predictability error and define

∣∣∣∣∣∣vk∣∣∣∣∣∣y
µ
≡

(
m
(
vk, vk

)
+

k∑
k′=1

τ a
(
vk

′
, vk

′
;µ
)) 1

2

, ∀k ∈ K. (3.10)

The state predictability error satisfies∣∣∣∣∣∣ẽy,k∣∣∣∣∣∣y
µ
≤ ∆̃y,k

N (µ), ∀µ ∈ D, ∀k ∈ K, (3.11)

where the error bound ∆̃y,k
N (µ) is defined as

∆̃y,k
N (µ) ≡

(
τ

αLB(µ)

k∑
k′=1

∥∥∥ry,k′(·;µ)
∥∥∥2
Y ′

) 1
2

. (3.12)



A POSTERIORI REDUCED BASIS ERROR BOUNDS FOR OPTIMAL CONTROL PROBLEMS 1623

This is the standard a posteriori error bound for parabolic PDEs; for a proof see [11]. We state the corresponding
result for the adjoint in the following lemma; see Appendix A.1 for the proof.

Lemma 3.4. Let ẽp,k = p̃k − p∗,kN be the adjoint predictability error and define

∣∣∣∣∣∣vk∣∣∣∣∣∣p
µ
≡

(
m
(
vk, vk

)
+

K∑
k′=k

τ a
(
vk

′
, vk

′
;µ
)) 1

2

. (3.13)

and CD ≡ supv∈Y \{0}
‖v‖L2(D)

‖v‖Y
5. The adjoint predictability error satisfies∣∣∣∣∣∣ẽp,k∣∣∣∣∣∣p

µ
≤ ∆̃p,k

N (µ), ∀µ ∈ D, ∀k ∈ K, (3.14)

where the error bound ∆̃p,k
N (µ) is defined as

∆̃p,k
N (µ) ≡

(
2τ

αLB(µ)

K∑
k′=k

∥∥∥rp,k′(·;µ)
∥∥∥2
Y ′

+

(
2C4

Dσ
2
1

αLB(µ)2
+
σ2
2

2

)(
∆̃y,K
N (µ)

)2) 1
2

. (3.15)

For simplicity of exposition we first derive the control error bound for the unconstrained case in the following
section and then turn to the constrained case in Section 3.1.2.

3.1.1. Problems without control constraints

We obtain the following result for the error in the optimal control.

Proposition 3.5. Let u∗ and u∗N be the optimal solutions of the truth and reduced basis optimal control problems

(P) and (PN), respectively. Given ∆̃p,k
N (µ) defined in (3.15), the error in the optimal control satisfies

‖u∗ − u∗N‖U ≤ ∆
u,∗
N (µ) ≡ 1

λ
√
αLB(µ)

(
m∑
i=1

‖bi‖2Y ′

) 1
2

∆̃p,1
N (µ), ∀µ ∈ D. (3.16)

Proof. In the unconstrained case ζ ∈ U is given by

ζ = −
(
λ (u∗N − ud)− B>p̃

)
. (3.17)

We add ±B>p∗N and note that λ(u∗N − ud)− B>p∗N = 0 to obtain

ζ = B> (p̃− p∗N ) , (3.18)

or component-wise

ζki = bi

(
p̃k − p∗,kN

)
, ∀i = 1, . . . ,m, ∀k ∈ K. (3.19)

We can then bound ∣∣ζki ∣∣ ≤ ‖bi‖Y ′

∥∥∥p̃k − p∗,kN ∥∥∥
Y
, ∀i = 1, . . . ,m, ∀k ∈ K, (3.20)

and thus arrive at

‖u∗ − u∗N‖U ≤
1

λ
‖ζ‖U ≤

1

λ

(
τ

K∑
k=1

m∑
i=1

‖bi‖2Y ′

∥∥∥p̃k − p∗,kN ∥∥∥2
Y

) 1
2

=
1

λ

(
m∑
i=1

‖bi‖2Y ′

) 1
2
(
τ

K∑
k=1

∥∥∥p̃k − p∗,kN ∥∥∥2
Y

) 1
2

.

(3.21)

5Note that if the Y -norm is chosen to be the full H1-norm, then CD ≤ 1. However, this is not generally true if the Y -norm is
only equivalent to the H1-norm.
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Finally, it follows from Lemma 3.4 that(
τ

K∑
k=1

∥∥∥p̃k − p∗,kN ∥∥∥2
Y

) 1
2

≤ 1√
αLB(µ)

(
τ

K∑
k=1

a
(
ẽp,k, ẽp,k;µ

)) 1
2

≤ 1√
αLB(µ)

(
m
(
ẽp,1, ẽp,1

)
+ τ

K∑
k=1

a
(
ẽp,k, ẽp,k;µ

)) 1
2

≤ 1√
αLB(µ)

∆̃p,1(µ). (3.22)

The desired result directly follows from (3.21) and (3.22). �

3.1.2. Problems with control constraints

The construction of ζ from (3.3) in the control constrained case requires evaluation of the positive and
negative part functions of ξ defined in (3.2). Again, we want to avoid an explicit evaluation of ξ since this would
require a forward-backward truth solve. The idea here is to construct an efficiently evaluable upper and lower
bound for ξ and to conservatively replace the positivity resp. negativity condition by the lower resp. upper
bound in order to obtain an approximation of ζ. To this end, we first define

ξN = λ (u∗N − ud)− B>p∗N (3.23)

and realize that
ξki = ξkN,i − bi

(
p̃k − p∗,kN

)
, ∀i = 1, . . . ,m. ∀k ∈ K. (3.24)

We can then prove the following lemma.

Lemma 3.6. The function ξ defined in (3.2) satisfies

ξkN,i,LB(µ) ≤ ξki ≤ ξkN,i,UB(µ), ∀i = 1, . . . ,m. ∀k ∈ K, (3.25)

where the upper and lower bound are given by

ξkN,i,LB(µ) ≡ ξkN,i −∆
ξ,k
N,i(µ), ξkN,i,UB(µ) ≡ ξkN,i +∆ξ,k

N,i(µ), ∀i = 1, . . . ,m. ∀k ∈ K, (3.26)

the error bound, ∆ξ,k
N,i(µ), is defined as

∆ξ,k
N,i(µ) ≡ 1√

2

∥∥∥b̃i∥∥∥
L2(Ω)

∆̃p,k
N (µ), ∀i = 1, . . . ,m. ∀k ∈ K, (3.27)

and b̃i is the L2(Ω) Riesz representation of bi ∈ Y ′.

Proof. We note that∣∣∣bi (p̃k − p∗,kN )∣∣∣ ≤ ∥∥∥b̃i∥∥∥
L2(Ω)

∥∥∥p̃k − p∗,kN ∥∥∥
L2(Ω)

≤
∥∥∥b̃i∥∥∥

L2(Ω)

1√
2
∆̃p,k
N (µ) = ∆ξ,k

N,i(µ), (3.28)

where we used the L2-norm bound ‖ẽp,k‖L2(Ω) ≤ ∆̃p,k
N (µ)/

√
2, ∀k ∈ K, (see [13]) and Lemma 3.4 for the last

inequality. The desired result directly follows from (3.24) �

To clarify the next steps we sketch the various quantities involved in constructing the control error bound
in Figure 1. For simplicity, we only consider a single control component. On top we show the (unknown)
truth optimal control, u∗(t), and reduced basis optimal control, u∗N (t), over time. The function ξ(t) and its
approximation ξN (t) as well as the upper and lower bounds ξN,UB(t) ξN,LB(t) are shown in the middle. We note
that ξN (t) is identically zero if the constraints for u∗N (t) are inactive and that ξ(t) is bounded from below and
above by ξN,LB(t) and ξN,UB(t), respectively. Given u∗N (t) and ξ(t) we may now evaluate ζ from (3.3); we plot
the absolute value of ζ on the bottom of Figure 1.

To construct an upper bound for |ζ(t)|, we first note from Lemma 3.6 that

|ξki | ≤ |ξkN,i|+∆ξ,k
N,i(µ) = max

(
|ξkN,i,LB(µ)|, |ξkN,i,UB(µ)|

)
, ∀i = 1, . . . ,m, ∀k ∈ K. (3.29)
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} } } }

Figure 1. Sketch of the error bound construction for control constraints.

Furthermore, we can conservatively replace the positive and negative part function of ξ(t) in (3.3) by the lower
and upper bound of ξ(t): For example, assume that for some index (i, k) we have u∗,kN,i = uka,i. If additionally

ξkN,i,LB(µ) > 0 we know that ξki > 0 and thus
[
ξki
]
− = 0, i.e., there is no contribution to the error bound. This

corresponds to the index set I1 defined next. To distinguish the relevant different cases we define the index sets

I1 = {(i, k) ∈ {1, . . . ,m} ×K : u∗,kN,i = uka,i and ξi,kLB(µ) ≥ 0}

∪ {(i, k) ∈ {1, . . . ,m} ×K : u∗,kN,i = ukb,i and ξi,kUB(µ) ≤ 0};

I2 = {(i, k) ∈ {1, . . . ,m} ×K : u∗,kN,i = uka,i and ξi,kLB(µ) < 0} (3.30)

∪ {(i, k) ∈ {1, . . . ,m} ×K : u∗,kN,i = ukb,i and ξi,kUB(µ) > 0};

I3 = {(i, k) ∈ {1, . . . ,m} ×K : u∗,kN,i ∈ ((ua)i, (ub)i)}.

We note that I1 corresponds to the indices where the constraint is active and we can guarantee the positivity or
negativity of ξki , I2 corresponds to the indices where the constraint is active but we do not know if ξki is positive
or negative, and I3 corresponds to the indices where the constraint is inactive. Note that we can evaluate the
index sets I1,2,3 efficiently online. We may thus define

ζkN,i =

{
0 if (i, k) ∈ I1∣∣ξkN,i∣∣+∆ξ,k

N,i(µ) if (i, k) ∈ I2 ∪ I3.
(3.31)

It follows by construction that |ζki | ≤ |ζkN,i|, ∀i = 1, . . . ,m, ∀k ∈ K. We sketch |ζkN,i| and mark the index sets
I1,2,3 in the bottom coordinate system of Figure 1. To summarize, we obtain the following result for the error
in the optimal control.

Proposition 3.7. Let u∗ and u∗N be the optimal solutions of the truth and reduced basis optimal control problems
(P) and (PN), respectively. The error in the optimal control satisfies

‖u∗ − u∗N‖U ≤ ∆
u,∗
N (µ) ≡ 1

λ
‖ζN‖U , ∀µ ∈ D, (3.32)

where ζN is defined in (3.31).

Proof.
The result directly follows from Theorem 3.1, (3.3), (3.29), and the definition of the index sets (3.30). �
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We again note that we overestimate the error bound (3.4) for two reasons: first, we replace |ξ(t)| by the upper
bound (3.29) which we can efficiently evaluate using the standard offline-online decomposition; and second,
we incur additional contributions to the bound by including the time-intervals where we cannot guarantee the
required sign of ξ. In Figure 1 we denote these additional intervals by ∆I . However, since the error bound
∆ξ,k
N,i(µ) defined in (3.27) converges to zero as N increases, we can expect ∆I to decrease. We will confirm this

numerically in Section 4.
Finally, we stress that ∆I is not identical to the index set I2: consider some index (i, k) where u∗,kN,i = uka,i

and ξki < 0, then
[
ξki
]
− in (3.3) is nonzero and we need to rightfully account for its contribution to the error

bound (see the rightmost interval I2 in Fig. 1). We do this by replacing ξki with the upper bound (3.29) and
by including all contributions in I2 in (3.31). Also note that we cannot determine ∆I online, since this would
require the evaluation of ξki . In fact, we introduce ∆I solely for the presentation of the numerical results, i.e.,
to show the convergence of ∆I to zero as N increases.

3.2. Error bound for the cost functional

Given the error bound ∆u,∗
N (µ) for the optimal control we may readily derive a bound for the error in the cost

functional. We again distinguish between the control constrained and control unconstrained case in Sections 3.2.1
and 3.2.2, respectively. However, we first require the following two preparatory lemmata stating the a posteriori
error bounds for the state and adjoint optimality errors. We note that the proofs of these lemmata are similar
to the Proof of Lemma 3.4, i.e., the error in the optimal control – or, more precisely, the error bound of the
optimal control – propagates and appears as an additional term in the state and adjoint optimality error bound.

Lemma 3.8. The state optimality error ey,∗,k = y∗,k(u)− y∗,kN (u∗N ) satisfies∣∣∣∣∣∣ey,∗,k∣∣∣∣∣∣y
µ
≤ ∆y,∗,k

N (µ), ∀µ ∈ D, ∀k ∈ K, (3.33)

where the error bound ∆y,∗,k
N (µ) is defined as

∆y,∗,k
N (µ) ≡

(
2τ

αLB(µ)

k∑
k′=1

∥∥∥ry,k′(·;µ)
∥∥∥2
Y ′

+
2

αLB(µ)

(
m∑
i=1

‖bi‖2Y ′

)(
∆u,∗
N (µ)

)2) 1
2

. (3.34)

We refer the reader to Appendix A.2 for the Proof of Lemma 3.8.

Lemma 3.9. The adjoint optimality error ep,∗,k = p∗,k − p∗,kN satisfies∣∣∣∣∣∣ep,∗,k∣∣∣∣∣∣p
µ
≤ ∆p,∗,k

N (µ), ∀µ ∈ D, ∀k ∈ K, (3.35)

where the error bound ∆p,∗,k
N (µ) is defined as

∆p,∗,k
N (µ) ≡

(
2τ

αLB(µ)

K∑
k′=k

∥∥∥rp,k′(·;µ)
∥∥∥2
Y ′

+

(
2C4

Dσ
2
1

αLB(µ)2
+
σ2
2

2

)(
∆y,∗,K
N (µ)

)2) 1
2

. (3.36)

Proof. The desired result follows directly from the Proof of Lemma 3.4 by replacing ẽy,k with ey,∗,k, ẽp,k with
ep,∗,k, and finally invoking Lemma 3.8. We therefore omit the detailed proof. �

3.2.1. Problems without control constraints

We can now state

Proposition 3.10. Let J∗ = J(y∗, u∗;µ) and J∗N = J(y∗N , u
∗
N ;µ) be the optimal values of the cost functionals

of the truth and reduced basis optimal control problems, respectively. The error then satisfies

|J∗ − J∗N | ≤ ∆
J,∗
N (µ) ≡ 1

2

(
∆y,K
N (µ)∆p,∗,1

N (µ) +∆p,1
N (µ)∆y,∗,K

N (µ)
)
, ∀µ ∈ D, (3.37)
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where the standard “spatio-temporal” energy norm error bounds ∆y,k
N (µ) and ∆p,k

N (µ) for the state and adjoint
equations are given by

∆y,k
N (µ) ≡

(
τ

αLB(µ)

k∑
k′=1

∥∥∥ry,k′(·;µ)
∥∥∥2
Y ′

) 1
2

(3.38)

and

∆p,k
N (µ) ≡

(
τ

αLB(µ)

K∑
k′=k

∥∥∥rp,k′(·;µ)
∥∥∥2
Y ′

) 1
2

, (3.39)

respectively.

Proof. We use the standard result from [4] to estimate the error in the cost functional by

J∗ − J∗N =
1

2
τ

K∑
k=1

ry,k
(
ep,∗,k;µ

)
+

1

2
τ

K∑
k=1

rp,k
(
ey,∗,k;µ

)
, ∀µ ∈ D. (3.40)

From the Cauchy–Schwarz inequality we then obtain

|J∗ − J∗N | ≤
1

2

(
τ

K∑
k=1

∥∥ry,k(·;µ)
∥∥2
Y ′

) 1
2
(
τ

K∑
k=1

∥∥ep,∗,k∥∥2
Y

) 1
2

+
1

2

(
τ

K∑
k=1

∥∥rp,k(·;µ)
∥∥2
Y ′

) 1
2
(
τ

K∑
k=1

∥∥ey,∗,k∥∥2
Y

) 1
2

≤ 1

2

(
∆y,K
N (µ)

∣∣∣∣∣∣ep,∗,1∣∣∣∣∣∣p
µ

+∆p,1
N (µ)

∣∣∣∣∣∣ey,∗,K∣∣∣∣∣∣y
µ

)
, (3.41)

where we used the fact that (see (3.22))

(
τ

K∑
k=1

∥∥ey,∗,k∥∥2
Y

) 1
2

≤ 1√
αLB(µ)

∣∣∣∣∣∣ey,∗,K∣∣∣∣∣∣y
µ

and

(
τ

K∑
k=1

∥∥ep,∗,k∥∥2
Y

) 1
2

≤ 1√
αLB(µ)

∣∣∣∣∣∣ep,∗,1∣∣∣∣∣∣p
µ
.

(3.42)
The result then follows from Lemmas 3.8 and 3.9. �

3.2.2. Problems with control constraints

There are two main differences between the cost functional error bound for the constrained case compared
to the unconstrained case. First, we cannot bound the absolute value of the error, J∗ − J∗N , and thus only
obtain an upper bound for the value of J∗; and second, we need to account for the non-vanishing residual of
the optimality condition in the formulation of the bound. We thus obtain the following result.

Proposition 3.11. Let J∗ = J(y∗, u∗;µ) and J∗N = J(y∗N , u
∗
N ;µ) be the optimal values of the cost functionals

of the truth and reduced basis optimal control problems, respectively. The error then satisfies

J∗ − J∗N ≤ ∆
J,∗
N (µ) ≡ 1

2

∆y,K
N (µ)∆p,∗,1

N (µ) +∆p,1
N (µ)∆y,∗,K

N (µ) +

(
τ

m∑
i=1

K∑
k=1

∣∣∣r̃u,ki ∣∣∣2)
1
2

∆u,∗
N (µ)

 , ∀µ ∈ D,

(3.43)
where r̃u,ki = λ(u∗,kN,i − ukd,i)− bi(p

∗,k
N ).

Proof. We again use the standard result from [4] to estimate the error in the cost functional by

J∗ − J∗N ≤
1

2
τ

K∑
k=1

ry,k
(
ep,∗,k;µ

)
+

1

2
τ

K∑
k=1

rp,k
(
ey,∗,k;µ

)
+

1

2
τ

m∑
i=1

K∑
k=1

ru,ki

(
eu,∗,ki ;µ

)
, ∀µ ∈ D, (3.44)
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where eu,∗,ki = (u∗,kN,i−u
∗,k
i ), i = 1, . . . ,m, k ∈ K. We can bound the first two terms in (3.44) following the proof

of Proposition 3.10. For the last term we obtain

1

2
τ

m∑
i=1

K∑
k=1

ru,ki

(
eu,∗,ki ;µ

)
≤ 1

2
τ

m∑
i=1

K∑
k=1

∣∣∣r̃u,ki ∣∣∣ ∣∣∣eu,∗,ki

∣∣∣ ≤ 1

2

(
τ

m∑
i=1

K∑
k=1

∣∣∣r̃u,ki ∣∣∣2)
1
2
(
τ

m∑
i=1

K∑
k=1

∣∣∣eu,∗,ki

∣∣∣2)
1
2

=
1

2

(
τ

m∑
i=1

K∑
k=1

∣∣∣r̃u,ki ∣∣∣2)
1
2

‖eu,∗‖U . (3.45)

The result then follows directly by invoking Proposition 3.7. �

We remark that the cost functional bound for the unconstrained case defined in (3.37) converges superlinearly
with respect to the state and adjoint optimality errors. The bound for the constrained case defined in (3.43)
on the other hand loses this property if the optimal control has active sets, i.e., one of the control constraints

is active. The reason is that the last term in (3.43) contains the sum of the residuals
∣∣∣r̃u,ki ∣∣∣ which does not

converge to zero as N increases but tends to a (positive) constant if the optimal control has active sets. We
may thus expect the bound (3.43) to perform considerably worse than the bound (3.37); we will confirm this
behavior when discussing numerical results in Section 4.

3.3. Computational procedure

For the evaluation of the control and cost functional error bounds described in Section 3.1 and 3.2 the following
quantities need to be computed: the dual norms of the state and adjoint equation residuals

∥∥ry,k(·;µ)
∥∥
Y ′ and∥∥rp,k(·;µ)

∥∥
Y ′ , respectively; the constant CD; the dual norms of the linear functionals ‖bi‖Y ′ , 1 ≤ i ≤ m; and the

coercivity lower bound αLB(µ). Since all of these quantities can be evaluated using the standard offline-online
decomposition [11], we only summarize the computational cost in the online stage. Given a new parameter
µ ∈ D and associated optimal solution (y∗N , p

∗
N , u

∗
N ), evaluation of ∆u,∗

N (µ) and ∆J,∗
N (µ) requires (to leading

order) O(K((Qa +Qyd)N +m)2) operations, and is thus independent of N .
Finally, we make two remarks concerning the non-rigorous bounds introduced in [6, 7]: first, we note that

the online computational cost to evaluate the rigorous error bounds introduced here is equivalent to the online
cost to evaluate the non-rigorous bounds; and second, we note that in the unconstrained case the effectivity of
the error bound for the cost functional, i.e., the ratio of the bound to the error, will always be smaller for the
non-rigorous bounds compared to the rigorous bounds presented here. The reason is as follows: the optimality
error bounds defined in [6, 7] do not account for the error in the optimal control, i.e., the contribution of the
control error bound is neglected. The optimality error bounds defined in (3.34) and (3.36) will thus be smaller,
resulting in an overall smaller error bound for the cost functional. However, in the constrained case no such a
priori statement concerning the effectivities is possible.

3.4. Greedy algorithm

We propose two alternatives for generating the reduced basis space YN . The optimal sampling approach
discussed in Section 3.4.1 is more expensive during the offline stage – it requires the solution of the truth
optimal control problem (P) at selected parameter values – but is more efficient online due to a smaller reduced
basis dimension N for a given desired error tolerance. The impulse sampling proposed in Section 3.4.2, on the
other hand, is more efficient during the offline stage – we generate a reduced basis space for the impulse response
and do not solve the truth optimal control problem – but results in a higher reduced basis dimension N and thus
higher online cost. The two alternatives thus present a trade-off between offline and online efficiency. However,
we can in fact combine both ideas following the idea presented in [8]; we briefly comment on this option at the
end of this section.

3.4.1. Optimal sampling

The optimal sampling approach is a straightforward extension of the POD/Greedy sampling procedure in-
troduced in [13]. The method is briefly summarized in Algorithm 1. Here, Ξtrain ⊂ D is a finite but suitably
large parameter train sample; µ1 ∈ Ξtrain is the initial parameter value; and εtol,min > 0 is a prescribed desired
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Algorithm 1. Optimal POD/Greedy Sampling Procedure.

1: Choose Ξtrain ⊂ D, µ1 ∈ Ξtrain (arbitrary), and εtol,min > 0

2: Set N ← 1, ζ1 = PODY ({y∗,k(µ1) : k ∈ K}), Y1 ← span{ζ1}
3: Set N ← 2, ζ2 = PODY ({ep,kproj,N−1(µ1) : k ∈ K}), Y2 ← Y1 ⊕ span{ζ2}
4: µ∗ ← arg max

µ∈Ξtrain

∆N (µ)

5: while ∆N (µ∗) > εtol,min do

6: N ← N + 1, ζN = PODY ({ey,kproj,N−1(µ∗) : k ∈ K}), YN ← YN−1 ⊕ span{ζN}
7: N ← N + 1, ζN = PODY ({ep,kproj,N−1(µ∗) : k ∈ K}), YN ← YN−1 ⊕ span{ζN}
8: µ∗ ← arg max

µ∈Ξtrain

∆N (µ)

9: end while

10: Nmax ← N

error tolerance. Furthermore, for a given time history vk ∈ Y, k ∈ K, the operator PODY ({vk : k ∈ K}) returns
the largest POD mode with respect to the (·, ·)Y inner product (and normalized with respect to the Y -norm),
and vkproj,N (µ) denotes the Y -orthogonal projection of vk(µ) onto the reduced basis space YN . We apply the
POD in steps 6 and 7 of Algorithm 1 to the time history of the optimal state and adjoint projection errors,
i.e., {ey,kproj,N (µ) = y∗,k(µ)− y∗,kproj,N (µ) : k ∈ K} and {ep,kproj,N (µ) = p∗,k(µ)− p∗,kproj,N (µ) : k ∈ K}, and not to the

optimal solutions {y∗,k(µ) : k ∈ K} and {p∗,k(µ) : k ∈ K} themselves.
Note that we expand the reduced basis space with the largest POD mode of the state and the adjoint

equation, i.e., we use “integrated” spaces as discussed previously. Also, we may use different metrics ∆N (µ),
i.e., the control or cost functional error bound, during the greedy parameter search. This choice could for
example be based on (i) the metric of primary interest, i.e., the error in the control or cost; (ii) the rigor of
the bound; and/or (iii) the sharpness of the two bounds. Assuming that the error in the cost is of primary
interest, we propose to use the (relative) cost functional error bound, ∆J,∗

N (µ)/J∗N (µ), in the sampling procedure
in the unconstrained case, and to use the (relative) control error bound, ∆u,∗

N (µ)/ ‖u∗N (µ)‖U , in the control
constrained case. The reason is that in the presence of control constraints the cost functional error estimator is
not a provable upper bound for the error in the cost functional as discussed in Section 3.2.2. This choice is also
used in Section 4 for the numerical results.

3.4.2. Impulse sampling

Algorithm 1 requires the solution of N/2 truth optimal control problems (P). Although this operation is
performed during the offline stage, the cost can be considerable. We therefore propose an alternative sampling
procedure which is purely based on the impulse response of the state and adjoint equations. To this end,
we follow the procedure described in [11] to generate an integrated reduced basis space. More precisely, we
apply the standard POD/Greedy sampling procedure but alternate between the following equations after each
POD/Greedy step:

(1) the state equation (2.15a) with an impulse consecutively applied at each input;
(2) the adjoint equation (2.15c) with τ (yqd, ϕ)L2(D) on the right-hand side (sequentially for each 1 ≤ q ≤ Qyd);
(3) the adjoint equation (2.15c) with τ (ŷkm, ϕ)L2(D) on the right-hand side, where ŷkm is the step response for

the mth input (note that we again apply these different right-hand sides consecutively).

Note that we sample on the standard energy-norm error bound and consecutively expand the basis until the
desired error tolerance is reached. We are aware that the linear time-invariance (LTI) property – which justifies
the impulse approach – does not hold for the adjoint equation (2.15c). However, we still expect the reduced
basis to well-approximate the adjoint solution by applying the step response ŷkm on the right-hand side of the
adjoint in the POD/Greedy procedure. Furthermore, we can always confirm the fidelity of the optimal control
solution online thanks to our a posteriori error bounds. We will present numerical results in Section 4.

The appealing feature of the impulse sampling is that we can provide an a posteriori error bound for the
optimal control problem without ever solving the truth optimal control problem. The disadvantage is that we
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Figure 2. Domain Ω for the model problem.

end up with a higher-dimensional basis than with the optimal sampling approach. This is due to the fact that
the impulse basis can well-approximate all possible control inputs, whereas the basis using the optimal sampling
is tailored towards – and can thus only well-approximate – the optimal control.

Finally, we note that we can combine both sampling procedures following the approach presented in [8]. The
idea is as follows: We first generate a reduced basis space YN using the impulse sampling. Then, given YN ,
we run the optimal sampling in Algorithm 1 but instead of solving the truth optimal control problem (P) to
generate the snapshots we solve the reduced optimal control problem (PN) with the given YN . The second step
allows us to condense the basis YN and obtain an optimal “derived” basis YM of smaller dimension M ≤ N .
This approach combines the advantages of both sampling procedures: a small reduced basis dimension without
having to solve the truth optimal control problem.

4. Numerical results

We consider a linear-quadratic optimal control problem governed by unsteady heat conduction in a two-
dimensional domain [30]. The spatial domain, a typical point of which is x = (x1, x2)T , is given by Ω =
(0, 7)×(0, 3) and is subdivided into the five subdomainsΩ1 = (1, 2)×(0, 1),Ω2 = (3, 4)×(0, 1),Ω3 = (5, 6)×(0, 1),
Ω4 = (1, 6)×(2.5, 3), and Ω5 = Ω\{Ω1∪Ω2∪Ω3∪Ω4}. A sketch of the domain is shown in Figure 2. We impose
zero Dirichlet conditions on the left and right boundaries and zero Neumann conditions on the bottom and top
boundaries. The amount of heat supply in the heater domains Ω1, Ω2, and Ω3 is regulated by the first, second,
and third component of the (time-dependent) control {uk = (uk1 , u

k
2 , u

k
3)T }k∈K ∈ U ≡ (R3)K , respectively. The

(reference) conductivity in the subdomain Ω1∪Ω2∪Ω3 is set to unity. We consider the normalized conductivity
κ in the subdomains Ω5 and Ω4 as our first and second parameter µ1, µ2 ∈ [0.5, 5], respectively.

The underlying partial differential equation is the heat (diffusion) equation and we shall directly consider the
truth approximation of the problem. The temperature yk(µ) ∈ Y thus satisfies the governing equation in (P),
where Y ⊂ Y e ≡ {v ∈ H1(Ω) : v|ΓD

= 0} is a linear finite element truth approximation subspace of dimension
N = 9097 over a triangulation of Ω. We shall consider the time interval [0, T ] = [0, 6] and a time step τ = 0.06;
we thus have K = 100. The initial condition is set to zero. The bilinear and linear forms are given by a(w, v;µ) =
µ1

∫
Ω5
∇w∇v dx+µ2

∫
Ω4
∇w∇v dx+

∫
Ω1∪Ω2∪Ω3

∇w∇v dx and bi(v) =
∫
Ωi
v dx for i = 1, 2, 3, respectively. The

bilinear form a(·, ·;µ) admits the affine representation (2.3) withΘ1
a(µ) = µ1, Θ

2
a(µ) = µ2, Θ

3
a(µ) = 1 andQa = 3.

We also define the inner product (w, v)Y = µref
1

∫
Ω5
∇w∇v dx + µref

2

∫
Ω4
∇w∇v dx +

∫
Ω1∪Ω2∪Ω3

∇w∇v dx for

(µref
1 , µref

2 )T = (
√

2.5,
√

2.5)T ; we may hence choose αLB(µ) = min(µ1/µ
ref
1 , µ2/µ

ref
2 , 1) in (3.9).

We consider the quadratic cost functional J(y, u;µ) = 1
2

∑K
k=1

∥∥yk − ykd(µ)
∥∥2
L2(D)

+ λ
2 ‖u− ud‖

2
U , correspond-

ing to (2.14) with fixed regularization parameters σ1 = 1, σ2 = 0. We further choose ud ≡ 0 and D = Ω4;
the parametrized desired state yd(µ) ∈ Y K is given as the discretization of yd,e(x, t;µ) = sin(µ3πt)

2
5 (x1 −

3.5)χD(x)+0.5χD(x), where χD(x) is the characteristic function on D. Thus the desired state admits the affine
representation (2.6) with Θ1

yd(t;µ) = sin(µ3πt), Θ
2
yd(t;µ) = 0.5 and y1d,e = 2

5 (x1 − 3.5)χD(x), y2d,e = χD(x).

In the presence of control constraints we choose uka,1 = uka,2 = uka,3 = 0 and ukb,1 = ukb,2 = ukb,3 = 0.5, k ∈ K.
Finally, we assume that the regularization parameter λ is allowed to vary in the range from 0.1 to 1. The full
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Figure 3. Optimal control u∗(µ) for different representative parameter values.

parametrization of our problem is thus given by µ = (µ1, µ2, µ3, µ4 = λ) ∈ D ≡ [0.5, 5]×[0.5, 5]×[0.5, 1]×[0.1, 1];
we have P = 4 parameters.

We first present representative results for the solution of the truth optimal control problem (P). In Figure 3 we
plot the optimal control u∗(t) for two different parameter combinations for the unconstrained and constrained
case on the top and bottom, respectively. We note that the parameters clearly influence the solution of the
optimal control problem and that the lower and upper bound on the control become active depending on the
parameter.

We construct the reduced basis space YN according to both sampling procedures described in Section 3.4. To
this end, we employ the train sample Ξtrain ⊂ D consisting of ntrain = 720 parameter points over D and choose
µ1 = (0.5, 0.5, 0.5, 0.1) as the initial parameter value. We also introduce a parameter test sample Ξtest of size
ntest = 40 with a log-random distribution in µ1, µ2, λ and a uniform-random distribution in µ3. We first employ
the optimal sampling described in Section 3.4.1 and present results for the unconstrained and constrained case
in Sections 4.1 and 4.2, respectively. In the unconstrained case we sample on ∆N (µ) = ∆J,∗

N (µ)/J∗N (µ); in the
constrained case on ∆u,∗

N (µ)/ ‖uN‖U . In Section 4.3 we present results for the impulse sampling described in
Section 3.4.2.

Throughout this section, we present maximum relative errors and bounds as well as average effectivities. We
normalize the state (resp. adjoint) predictability error and bound by

∣∣∣∣∣∣yK(u∗N )
∣∣∣∣∣∣y
µ

(resp.
∣∣∣∣∣∣p1(y(u∗N ))

∣∣∣∣∣∣p
µ
), the

state (resp. adjoint) optimality error and bound by
∣∣∣∣∣∣y∗,K∣∣∣∣∣∣y

µ
(resp.

∣∣∣∣∣∣p∗,1∣∣∣∣∣∣p
µ
), the control error and bound

by ‖u∗‖U , and the cost functional error and bound by J∗. The effectivities are given by the ratios of the error
bound to the actual error. The maxima and average values are taken over Ξtest. More precisely, we define the
maximum relative state predictability error and bound as

εyN,max,rel ≡ max
µ∈Ξtest

∣∣∣∣∣∣ẽy,K(µ)
∣∣∣∣∣∣y
µ

|||yK (u∗N (µ))|||yµ
, ∆̃y

N,max,rel ≡ max
µ∈Ξtest

∆̃y,K
N (µ)

|||yK (u∗N (µ))|||yµ
(4.1)

and the average effectivity, η̄yN , as the average over Ξtest of ∆̃y,K
N (µ)/

∣∣∣∣∣∣ẽy,K(µ)
∣∣∣∣∣∣y
µ
. The remaining quantities

are defined analogously and the detailed definitions thus omitted for the sake of brevity; see [23] for details.
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Table 1. Unconstrained case with optimal sampling: state predictability, adjoint predictability,
and control errors, error bounds, and effectivities as a function of N .

State Adjoint Control

N εyN,max,rel ∆̃y
N,max,rel η̄yN εpN,max,rel ∆̃p

N,max,rel η̄pN εu,∗N,max,rel ∆u,∗
N,max,rel η̄u,∗N

8 1.40E−1 2.13E−1 1.41E+0 1.48E−1 6.79E−1 2.77E+0 2.02E−1 5.15E+0 2.22E+1

16 3.83E−2 6.23E−2 1.37E+0 3.72E−2 1.57E−1 2.64E+0 1.33E−2 1.17E+0 5.17E+1

32 1.46E−2 2.37E−2 1.27E+0 7.75E−3 2.66E−2 3.52E+0 2.87E−3 2.06E−1 5.79E+1

48 4.20E−3 6.41E−3 1.28E+0 2.32E−3 7.58E−3 3.53E+0 4.74E−4 5.72E−2 1.27E+2

64 7.04E−4 1.08E−3 1.31E+0 1.11E−3 2.66E−3 2.73E+0 8.91E−5 2.10E−2 5.78E+2

80 3.00E−4 4.96E−4 1.34E+0 2.95E−4 7.97E−4 3.06E+0 1.15E−5 5.62E−3 2.20E+3

96 1.02E−4 1.34E−4 1.34E+0 1.38E−4 2.95E−4 2.68E+0 7.18E−6 2.74E−3 3.94E+3

Table 2. Unconstrained case with optimal sampling: state optimality, adjoint optimality, and
cost functional errors, error bounds, and effectivities as a function of N .

State Adjoint Cost functional

N εy,∗N,max,rel ∆y,∗
N,max,rel η̄y,∗N εp,∗N,max,rel ∆p,∗

N,max,rel η̄p,∗N εJ,∗N,max,rel ∆J,∗
N,max,rel η̄J,∗N

8 2.05E−1 2.11E+1 4.84E+1 1.48E−1 9.20E+1 9.44E+1 3.80E−3 5.23E+0 6.97E+2

16 4.23E−2 4.87E+0 5.02E+1 3.72E−2 2.12E+1 9.05E+1 2.34E−4 2.75E−1 2.13E+3

32 1.53E−2 8.17E−1 3.89E+1 7.75E−3 3.56E+0 1.27E+2 1.43E−5 8.19E−3 2.80E+3

48 4.24E−3 2.36E−1 4.03E+1 2.32E−3 1.03E+0 1.30E+2 6.18E−7 4.81E−4 1.55E+3

64 7.05E−4 8.27E−2 5.74E+1 1.11E−3 3.60E−1 9.74E+1 7.97E−8 6.12E−5 2.98E+3

80 3.00E−4 2.39E−2 4.88E+1 2.95E−4 1.04E−1 1.17E+2 1.11E−8 4.90E−6 1.76E+3

96 1.02E−4 9.18E−3 6.13E+1 1.38E−4 3.99E−2 1.05E+2 6.47E−10 7.20E−7 2.12E+3

4.1. Optimal sampling without control constraints

In Table 1 we present, as a function of N , the maximum relative predictability errors εyN,max,rel and εpN,max,rel,

the maximum relative error bounds ∆̃y
N,max,rel and ∆̃p

N,max,rel, and the average effectivities η̄yN and η̄pN for the

state and adjoint equation, respectively. We also present the maximum relative control error εu,∗N,max,rel, error

bound ∆u,∗
N,max,rel, and average effectivity η̄u,∗N . We observe that the state and adjoint predictability errors and

bounds are decreasing rapidly with increasing dimension of the reduced basis space and that the error bounds
are very sharp for all values of N . The slightly larger effectivities of the adjoint error bound are due to the error
contribution of the state predictability error bound in (3.15). We also observe that the error in the optimal
control exhibits a superlinear convergence with respect to the state and adjoint predictability errors. Since the
control error bound (3.16) is proportional to the adjoint predictability error bound it cannot quite capture the
error decay. The mean effectivities thus deteriorate slightly as N increases, but are still acceptable for all values
of N .

We next turn to the optimality errors and the cost functional. In Table 2 we present, as a function of N , the
maximum relative optimality errors εy,∗N,max,rel and εp,∗N,max,rel, the maximum relative error bounds ∆y,∗

N,max,rel and

∆p,∗
N,max,rel, and the average effectivities η̄y,∗N and η̄p,∗N for the state and adjoint variable, respectively. We also

present the maximum relative cost functional error εJ,∗N,max,rel, the maximum relative error bound ∆J,∗
N,max,rel, and

the average effectivities η̄J,∗N . Again, we observe a rapid decay of both the state and adjoint optimality errors
with increasing N . However, the effectivities of the optimality error bounds are larger than the predictability
ones because of the contribution of the control error bound in (3.34) and subsequently in (3.36). We note that
– as opposed to the control – the error in the cost functional and the error bound converge superlinearly with
respect to the predictability and optimality errors and the effectivities thus do not deteriorate with increasing
N . Unfortunately, the effectivities are O(103) for all values of N , i.e., we consistently overestimate the error
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Table 3. Constrained case with optimal sampling: state predictability, adjoint predictability,
and control errors, error bounds, and effectivities as a function of N .

State Adjoint Control

N εyN,max,rel ∆̃y
N,max,rel η̄yN εpN,max,rel ∆̃p

N,max,rel η̄pN εu,∗N,max,rel ∆u,∗
N,max,rel η̄u,∗N

8 1.98E−1 2.90E−1 1.32E+0 1.36E−1 6.19E−1 3.03E+0 1.38E−1 1.12E+1 7.75E+1

16 9.25E−2 1.15E−1 1.29E+0 4.19E−2 2.45E−1 3.91E+0 9.82E−3 4.27E+0 2.89E+2

32 1.25E−2 1.82E−2 1.33E+0 6.16E−3 2.29E−2 3.68E+0 2.99E−4 4.02E−1 1.47E+3

48 5.39E−3 6.26E−3 1.29E+0 2.15E−3 9.37E−3 4.24E+0 5.65E−5 1.36E−1 3.90E+3

64 1.16E−3 1.63E−3 1.32E+0 6.52E−4 1.74E−3 3.25E+0 6.78E−6 2.80E−2 1.02E+4

80 4.33E−4 6.20E−4 1.33E+0 2.41E−4 8.50E−4 3.18E+0 9.50E−7 9.89E−3 3.59E+4

96 1.63E−4 2.03E−4 1.36E+0 1.01E−4 3.06E−4 3.11E+0 1.17E−7 3.89E−3 7.95E+4

Table 4. Constrained case with optimal sampling: state optimality, adjoint optimality, and
cost functional errors, error bounds, and effectivities as a function of N .

State Adjoint Cost functional

N εy,∗N,max,rel ∆y,∗
N,max,rel η̄y,∗N εp,∗N,max,rel ∆p,∗

N,max,rel η̄p,∗N εJ,∗N,max,rel ∆J,∗
N,max,rel η̄J,∗N

8 1.96E−1 4.25E+1 7.85E+1 1.36E−1 1.38E+2 1.77E+2 5.51E−3 6.76E+0 4.62E+3

16 9.30E−2 1.80E+1 7.48E+1 4.19E−2 5.84E+1 2.60E+2 3.36E−4 1.10E+0 3.01E+3

32 1.25E−2 1.62E+0 6.95E+1 6.16E−3 5.25E+0 2.14E+2 7.44E−6 2.50E−2 5.52E+3

48 5.39E−3 5.73E−1 6.21E+1 2.15E−3 1.86E+0 2.45E+2 1.19E−6 5.02E−3 5.64E+4

64 1.16E−3 8.88E−2 6.78E+1 6.52E−4 2.70E−1 1.69E+2 5.51E−8 1.06E−3 2.72E+4

80 4.33E−4 4.03E−2 6.89E+1 2.41E−4 1.31E−1 1.70E+2 7.14E−9 3.31E−4 8.79E+4

96 1.63E−4 1.42E−2 6.96E+1 1.01E−4 4.61E−2 1.55E+2 8.42E−10 8.78E−5 8.22E+4

in the cost functional because of the propagation/contribution of the control error bound. However, given the
superlinear convergence, the additional online computational cost due to the overestimation is still acceptable.

We finally consider the online computational cost for solving the reduced basis optimal control problem
compared to the truth optimal control problem. For N = 32 – corresponding to a relative error bound for the
cost functional of approximately 1% – we obtain an average (over Ξtest) speed-up of approximately 85 for the
solution of the optimal control problem; furthermore, we obtain an average speed-up of approximately 65 for the
solution of the optimal control problem and evaluation of the error bound for the control and cost functional.
Note that the online evaluation of the error bound is approximately 3 times faster than the online solution of
the reduced basis optimal control problem.

4.2. Optimal sampling with control constraints

We next turn to the problem involving constraints on the control. We again present analogous results as in
the previous section. The predictability and control errors, bounds, and effectivities are shown in Table 3, the
optimality and cost functional errors, bounds, and effectivities are presented in Table 4.

We observe that the results for the state and adjoint predictability and optimality errors, bounds, and hence
effectivities very much resemble the unconstrained case. The same holds true for the error bound of the optimal
control, i.e., we obtain a certain desired accuracy for the same value of N in the constrained and unconstrained
case. However, the error in the optimal control converges even faster than in the unconstrained case and the
effectivities thus deteriorate faster. We also observe that the convergence of the cost functional error bound is
close to linear with respect to the state and adjoint optimality errors and thus much slower than before. The
reason – as discussed in Section 3.2.2 – is the additional term in the cost functional error bound (3.43). As a
result, the effectivities deteriorate considerably. The computational times closely resemble the unconstrained
case: for N = 32 we obtain an average speed-up of approximately 80 for solving the optimal control problem
and of 70 for solving the optimal control problem and evaluating the control and cost functional error bounds.
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Table 5. Maximal size of the interval ∆I for the first, second, and third control component.

N 8 16 32 64 96 128 160

max∆I,1 41 52 35 16 5 2 1
max∆I,2 74 73 12 2 1 1 0
max∆I,3 52 50 37 25 10 6 4

Table 6. Unconstrained case with impulse sampling: state predictability, adjoint predictability,
and control errors, error bounds, and effectivities as a function of N .

State Adjoint Control

N εyN,max,rel ∆̃y
N,max,rel η̄yN εpN,max,rel ∆̃p

N,max,rel η̄pN εu,∗N,max,rel ∆u,∗
N,max,rel η̄u,∗N

8 7.72E−1 1.27E+0 1.39E+0 2.86E−1 4.79E+0 6.31E+0 2.25E−1 3.60E+1 6.30E+1

16 3.24E−1 4.56E−1 1.31E+0 1.17E−1 1.16E+0 5.87E+0 4.77E−2 9.28E+0 1.85E+2

32 4.73E−2 6.27E−2 1.25E+0 8.99E−3 2.26E−1 5.42E+0 8.07E−4 1.65E+0 6.45E+2

64 4.38E−3 6.05E−3 1.34E+0 1.95E−3 1.58E−2 4.39E+0 1.64E−5 1.56E−1 4.98E+3

96 9.73E−4 1.34E−3 1.31E+0 2.40E−4 5.39E−3 6.27E+0 7.47E−7 3.93E−2 3.08E+4

128 2.46E−4 3.36E−4 1.29E+0 4.04E−5 1.14E−3 9.35E+0 3.68E−8 8.32E−3 1.76E+5

Table 7. Unconstrained case with impulse sampling: state optimality, adjoint optimality, and
cost functional errors, error bounds, and effectivities as a function of N .

State Adjoint Cost Functional

N εy,∗N,max,rel ∆y,∗
N,max,rel η̄y,∗N εp,∗N,max,rel ∆p,∗

N,max,rel η̄p,∗N εJ,∗N,max,rel ∆J,∗
N,max,rel η̄J,∗N

8 7.71E−1 1.53E+2 3.72E+1 2.86E−1 6.66E+2 2.61E+2 4.13E−2 1.98E+2 2.80E+3

16 3.23E−1 3.62E+1 3.62E+1 1.17E−1 1.58E+2 2.49E+2 1.02E−2 1.57E+1 4.10E+3

32 4.73E−2 7.02E+0 3.29E+1 8.99E−3 3.05E+1 2.32E+2 1.08E−4 4.02E−1 2.18E+3

64 4.38E−3 4.89E−1 3.96E+1 1.95E−3 1.75E+0 1.75E+2 4.52E−7 4.38E−3 9.21E+3

96 9.73E−4 1.68E−1 3.48E+1 2.40E−4 7.29E−1 2.71E+2 2.72E−8 2.28E−4 2.98E+3

128 2.46E−4 3.54E−2 3.38E+1 4.04E−5 1.54E−1 3.80E+2 3.25E−10 1.11E−5 3.63E+4

Finally, we recall our discussion concerning the control error bound at the end of Section 3.1.2. We pointed
out that one reason for overestimating the error bound (3.4) are the additional contributions from time steps
where we cannot guarantee the sign of ξ; these intervals were marked with ∆I in Figure 1. In Table 5 we present,
as a function of N , the maximum number of time steps contained in ∆I for the first (∆I,1), second (∆I,2), and
third (∆I,3) control component. Here, the maximum is taken over Ξtest. We note that max∆I,i, i = 1, 2, 3 –
and hence the corresponding contributions to the error bound (3.32) – tend to zero very fast.

4.3. Impulse sampling without control constraints

Finally, we consider the impulse sampling approach discussed in Section 3.4.2. We focus on the unconstrained
case and again present analogous results as in the previous two sections. The predictability and control errors,
bounds, and effectivities are shown in Table 6, the optimality and cost functional errors, bounds, and effectivities
are presented in Table 7.

We immediately note that the effectivities of the state and adjoint predictability and optimality error bounds
are very similar to the ones in Section 4.1. However, the rate of convergence of the error and bound itself is
much smaller. To achieve a certain desired accuracy we require almost twice as many basis functions with the
impulse sampling compared to the optimal sampling. In contrast, the convergence of the error in the optimal
control is similar to before. Again, since the control error bound is proportional to the adjoint predictability
error bound, this means an even larger increase in the effectivities of the control error bound. The results for
the cost functional are also very similar to the ones in Section 4.1. The convergence of the error and bound is
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slower – we need to choose N almost twice as large as before to obtain a certain desired accuracy – but the
effectivities are the same as the ones we obtained using the optimal sampling approach. Following our discussion
in Section 3.4.2, however, we expect that one can recover the “optimal” convergence by generating a derived
reduced basis following the ideas in [8].

5. Conclusions

The solution of optimal control problems governed by (parametrized) parabolic partial differential equations is
a challenging and often time-consuming task. The surrogate model approach, where the original high-dimensional
PDE approximation is replaced by a reduced order model, allows to decrease the computational burden: the
(online) solution of the reduced order optimal control problem is significantly faster than the solution of the
high-dimensional problem and at the same time provides a very good accuracy with small errors (compared to
the high-dimensional problem). However, an efficient and rigorous error control for the surrogate model approach
was lacking so far.

In this paper, we considered parametrized optimal control problems with and without control constraints.
We developed rigorous a posteriori error bounds for the optimal control and the associated cost functional
which can be efficiently evaluated using a standard offline-online decomposition. To generate the reduced basis
spaces we proposed two greedy algorithms. Finally, we presented numerical results for a model problem that
corroborate the theory. In summary, our approach enables the certified and real-time solution of parametrized
optimal control problems and can be gainfully employed, e.g., in model predictive control.

Appendix A. Proofs

A.1. Proof of Lemma 3.4

Proof. We immediately derive from (2.15c), (2.15d) and (3.6), (3.7) that ẽp,k = pk(y(u∗N )) − p∗,kN (y∗N (u∗N ))
satisfies

m
(
ϕ, ẽp,k − ẽp,k+1

)
+τa

(
ϕ, ẽp,k;µ

)
= τrp,k (ϕ;µ)+τσ1

(
y∗,kN − ỹk, ϕ

)
L2(D)

, ∀ϕ ∈ Y, K−1 ≥ k ≥ 1, (A.1)

with final condition

m
(
ϕ, ẽp,K

)
+ τa

(
ϕ, ẽp,K ;µ

)
= τrp,K (ϕ;µ) + τσ1

(
y∗,KN − ỹK , ϕ

)
L2(D)

+ σ2

(
y∗,KN − ỹK , ϕ

)
L2(D)

, ∀ϕ ∈ Y.

(A.2)
We now choose ϕ = ẽp,k in (A.1) and ϕ = ẽp,K in (A.2) to obtain

m
(
ẽp,k, ẽp,k

)
+ τa

(
ẽp,k, ẽp,k;µ

)
= m

(
ẽp,k, ẽp,k+1

)
+ τrp,k

(
ẽp,k;µ

)
+ τσ1

(
y∗,kN − ỹk, ẽp,k

)
L2(D)

, K−1 ≥ k ≥ 1,

(A.3)
and

m
(
ẽp,K , ẽp,K

)
+ τa

(
ẽp,K , ẽp,K ;µ

)
= τrp,K

(
ẽp,K ;µ

)
+ τσ1

(
y∗,KN − ỹK , ẽp,K

)
L2(D)

+ σ2

(
y∗,KN − ỹK , ẽp,K

)
L2(D)

, ∀ϕ ∈ Y. (A.4)

We first consider (A.3) and note that we can bound the first and third term on the right-hand side using
Cauchy–Schwarz and Young’s inequality by

2m
(
ẽp,k, ẽp,k+1

)
≤ m

(
ẽp,k, ẽp,k

)
+m

(
ẽp,k+1, ẽp,k+1

)
, (A.5)

and

2τσ1

(
y∗,kN − ỹk, ẽp,k

)
L2(D)

≤ 2τσ1C
2
D

∥∥∥y∗,kN − ỹk
∥∥∥
Y

∥∥ẽp,k∥∥
Y
≤ C4

D

2τσ2
1

αLB(µ)

∥∥∥y∗,kN − ỹk
∥∥∥2
Y

+
ταLB(µ)

2

∥∥ẽp,k∥∥2
Y
,

(A.6)
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where we also used the definition of CD. Furthermore, using the definition of the dual norm and Young’s
inequality the second term on the right-hand side of (A.3) can be bounded by

2τrp,k
(
ẽp,k;µ

)
≤ 2τ

∥∥rp,k (·;µ)
∥∥
Y ′

∥∥ẽp,k∥∥
Y
≤ 2τ

αLB (µ)

∥∥rp,k (·;µ)
∥∥2
Y ′ +

ταLB (µ)

2

∥∥ẽp,k∥∥2
Y
. (A.7)

It thus follows from (A.3), (A.5), (A.6), (A.7), and invoking (2.12) and (3.9) that

m
(
ẽp,k, ẽp,k

)
−m

(
ẽp,k+1, ẽp,k+1

)
+τa

(
ẽp,k, ẽp,k;µ

)
≤ 2τ

αLB (µ)

∥∥rp,k (·;µ)
∥∥2
Y ′ +C

4
D

2τσ2
1

αLB (µ)

∥∥∥y∗,kN − ỹk
∥∥∥2
Y
. (A.8)

We next consider the final condition (A.4) where we bound the last term on the right-hand side using Cauchy–
Schwarz and Young’s inequality by

2σ2

(
y∗,KN − ỹK , ẽp,K

)
L2(D)

≤ 2σ2

∥∥∥y∗,KN − ỹK
∥∥∥
L2(D)

∥∥ẽp,K∥∥
L2(D)

≤ σ2
2

∥∥∥y∗,KN − ỹK
∥∥∥2
L2(D)

+
∥∥ẽp,K∥∥2

L2(D)
. (A.9)

It thus follows from (A.4), (A.6) and (A.7) for k = K, (A.9), and invoking (2.12) and (3.9) that

m
(
ẽp,K , ẽp,K

)
+ τa

(
ẽp,K , ẽp,K ;µ

)
≤ 2τ

αLB (µ)

∥∥rp,K (·;µ)
∥∥2
Y ′

+ C4
D

2τσ2
1

αLB (µ)

∥∥∥y∗,KN − ỹK
∥∥∥2
Y

+ σ2
2

∥∥∥y∗,KN − ỹK
∥∥∥2
L2(D)

, (A.10)

where we also used the fact that ‖·‖L2(D) ≤ ‖ · ‖L2(Ω) = m (·, ·). We now perform the sum from k′ = k to K − 1

of (A.8) and add (A.10), leading to

m
(
ẽp,k, ẽp,k

)
+ τ

K∑
k′=k

a
(
ẽp,k, ẽp,k;µ

)
≤ 2τ

αLB (µ)

K∑
k′=k

∥∥∥rp,k′ (·;µ)
∥∥∥2
Y ′

+ C4
D

2τσ2
1

αLB (µ)

K∑
k′=k

∥∥∥y∗,k′N − ỹk
′
∥∥∥2
Y

+ σ2
2

∥∥∥y∗,KN − ỹK
∥∥∥2
L2(D)

. (A.11)

Finally, we note that we can bound the sum of the error ẽy,k = y∗,kN − ỹk by

τ

K∑
k′=k

∥∥∥ẽy,k′∥∥∥2
Y
≤ τ

αLB (µ)

K∑
k′=k

a
(
ẽy,k

′
, ẽy,k

′
;µ
)
≤ 1

αLB (µ)

(
m
(
ẽy,K , ẽy,K

)
+ τ

K∑
k′=1

a
(
ẽy,k

′
, ẽy,k

′
;µ
))

≤ 1

αLB (µ)

(
∆̃y,K
N (µ)

)2
(A.12)

and from the L2-norm bound [13] that∥∥∥y∗,KN − ỹK
∥∥∥2
L2(D)

≤ 1

2

(
∆̃y,K
N (µ)

)2
. (A.13)

The desired result then follows from (A.11), (A.12), and (A.13). �

A.2. Proof of Lemma 3.8

Proof. Since the proof follows along the same lines as the proof of Lemma 3.4 we only sketch the main steps.
We immediately derive from (2.15a) and (3.5) that ey,∗,k = y∗,k(u∗)− y∗,kN (u∗N ) satisfies

m
(
ey,∗,k − ey,∗,k−1, φ

)
+ τa

(
ey,∗,k, φ;µ

)
= τry,k (φ;µ) + τ

m∑
i=1

bi (φ)
(
u∗,ki − u

∗,k
N,i

)
, ∀φ ∈ Y, 1 ≤ k ≤ K,

(A.14)
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with initial condition ey,∗,0 = 0 since y∗,0 = y∗,0N = 0 by assumption. We now choose φ = ey,∗,k, again apply
Cauchy–Schwarz, Young’s inequality, and the definition of the dual norm – analogous to (A.5) and (A.7) – and
invoke (2.12) and (3.9) to obtain

m
(
ey,∗,k, ey,∗,k

)
−m

(
ey,∗,k−1, ey,∗,k−1

)
+ τa

(
ey,∗,k, ey,∗,k;µ

)
≤ 2τ

αLB (µ)

∥∥ry,k (·;µ)
∥∥2
Y ′ +

2τ

αLB (µ)

(
m∑
i=1

‖bi‖Y ′

(
u∗,ki − u

∗,k
N,i

))2

(A.15)

The desired result follows by performing the sum from k′ = 1 to k, recalling that ey,∗,0 = 0, and invoking
Proposition 3.5 resp. 3.7. �
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(2012).

[27] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer (1971).
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