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ROBUST OPERATOR ESTIMATES AND THE APPLICATION
TO SUBSTRUCTURING METHODS FOR FIRST-ORDER SYSTEMS

Christian Wieners
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Abstract. We discuss a family of discontinuous Petrov–Galerkin (DPG) schemes for quite general
partial differential operators. The starting point of our analysis is the DPG method introduced by
[Demkowicz et al., SIAM J. Numer. Anal. 49 (2011) 1788–1809; Zitelli et al., J. Comput. Phys. 230
(2011) 2406–2432]. This discretization results in a sparse positive definite linear algebraic system which
can be obtained from a saddle point problem by an element-wise Schur complement reduction applied
to the test space. Here, we show that the abstract framework of saddle point problems and domain
decomposition techniques provide stability and a priori estimates. To obtain efficient numerical al-
gorithms, we use a second Schur complement reduction applied to the trial space. This restricts the
degrees of freedom to the skeleton. We construct a preconditioner for the skeleton problem, and the
efficiency of the discretization and the solution method is demonstrated by numerical examples.
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1. Introduction

Petrov–Galerkin schemes for the numerical solution of partial differential equations are among the most
flexible and powerful discretization techniques. In particular, these methods allow for different test and ansatz
spaces in the variational problem formulation. This additional flexibility possibly increases the robustness and
stability in case of parameter dependent systems. Uniform stability can be granted for a large class of partial
differential equations including, e.g., the nearly incompressible linear elasticity case. However, the choice of
suitable finite dimensional test and trial spaces is far from trivial in the conforming setting since uniform inf-
sup conditions have to be satisfied. Recently introduced discontinuous Petrov–Galerkin schemes [15,16,18,34] are
of special interest and provide attractive alternatives to standard conforming schemes, see, also e.g., [9, 13, 17].

Here we focus on this newly introduced abstract family of discretizations and provide robust a priori estimates
and define iterative solvers. More precisely, we show that a broad class of linear partial differential equations can
be efficiently approximated by methods which allow for a local reduction to positive definite Schur complement
problems. Schur complement reductions are extensively investigated for finite element methods of least-squares
type [4, 5] and, recently, for least-square problems on element level resulting in discontinuous Petrov–Galerkin
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methods [15,16]. In combination with the reduction to the interface [10,25,27] efficient iterative solvers can be
designed. Note that there is also a close link to the FOSLS scheme [1, 2, 11, 22], to the Trefftz method (see [21]
for an overview), and to a least-squares approach in negative norms for first-order systems [7].

The starting point is a linear first-order partial differential system. This is obtained either directly from
balance equations and constitutive laws, e.g., in the case of Darcy’s law, or alternatively we rewrite a second
order equation as first order system by introducing auxiliary unknowns. To discretize this system, we use
element-wise domain decomposition techniques involving traces, fluxes and suitable lifting operators. Once the
traces on the element boundaries are known, the interior values can be reconstructed approximately by solving
local low dimensional problems.

Before we consider the abstract setting, we sketch the ideas for a simple model problem in Section 2. The
abstract setting for the DPG method fits perfectly well into the standard saddle point framework. In order to
obtain optimal a priori bounds and to explain the concept of Petrov–Galerkin discretizations with optimal test
spaces and the connection to Schur complements, we briefly review saddle point problems in Section 3. Then
in Section 4, we verify the stability for several examples including elasticity, the Stokes system, the Helmholtz
problem, and Maxwell’s equation. In Section 5, it is shown that the stability of the skeleton reduction only
depends on the stability constant of the first-order system. The discretization of the skeleton reduction is
analyzed in Section 6 within the abstract framework. Finally in Section 7, we conclude with some numerical
examples demonstrating the robustness of the method.

2. A scalar model problem

We consider the second order elliptic partial differential equation

−Δp+ b · ∇p+ ap = f in Ω, p = 0 on ∂Ω (2.1)

with f ∈ L2(Ω). The domain Ω ⊂ Rd, d = 2, 3, is assumed to be bounded and Lipschitz. Here b ∈ H1(Ω,Rd)
is the solution of an incompressible flow problem with ∇ · b = 0, and a ∈ L2(Ω) is a non-negative function.
The regularity assumptions on a and b will guarantee that our weak formulation is well-defined. To define a
first-order system, we introduce a flux variable σ = bp−∇p and rewrite (2.1) as ap+∇·σ = f . Then the model
equation reads as: find (σsol, psol) ∈ U = H(div, Ω) × H1

0(Ω) such L(σsol, psol) = (0, f), with

L(σ, p) = (σ − bp+ ∇p, ap+ ∇ · σ). (2.2)

2.1. Local substructuring

Following the ideas of non-overlapping domain decomposition techniques, the discretization scheme is based
on a disjoint partitioning Ω̄ =

⋃
τ∈T τ̄ into open subdomains τ ⊂ Ω. Let ΓT =

⋃
τ∈T ∂τ be the skeleton of this

decomposition. Then Schur complement techniques allow to eliminate the inner subdomain degrees of freedom
and to reduce the system to trace values at the skeleton.

On each subdomain τ , we define the local spaces Vτ = H(div, τ)×H1(τ), on the boundaries ∂τ the local trace
spaces V̂τ = H−1/2(∂τ)×H1/2(∂τ), and the local trace operators γτ : Vτ −→ V̂τ with γτ (σ, p) = (σ|∂τ ·nτ , p|∂τ ),
where nτ is the outer normal vector on ∂τ . We define the adjoint trace operator γad

τ (η, q) = (q|∂τ , η|∂τ ·nτ ) and
the adjoint differential operator

Lad(η, q) = (η −∇q, aq − b · η −∇ · η). (2.3)

Then integration by parts yields for all test functions (η, q) ∈ Vτ(
L(σ, p), (η, q)

)
τ

=
(
σ − bp+ ∇p, η

)
τ

+
(
ap+ ∇ · σ, q

)
τ

=
(
σ, η −∇q

)
τ

+
(
p, aq − b · η −∇ · η)τ +

〈
σ|∂τ · nτ , q|∂τ

〉
+
〈
η|∂τ · nτ , p|∂τ

〉
=
(
(σ, p), Lad(η, q)

)
τ

+
〈
γτ (σ, p), γad

τ (η, q)
〉
,
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where 〈·, ·〉 denotes a vectorial duality pairing of H−1/2(∂τ) and H1/2(∂τ). Combining the local traces defines
for (σ, p) ∈ H(div, Ω) × H1(Ω) the skeleton values

γΓ (σ, p) =
(
γτ (σ, p)

)
τ∈T ∈ V̂ =

∏
τ∈T

V̂τ .

This gives for the solution (σsol, psol) ∈ U of the system L(σsol, psol) = (0, f) and its trace γΓ (σsol, psol) ∈ V̂ the
variational equality((

σsol, psol), Lad(η, q
))

τ
+
〈
γτ

(
σsol, psol

)
, γad

τ (η, q)
〉

= (f, q)τ , (η, q) ∈ Vτ . (2.4)

Restricting the test space V =
∏

τ∈T Vτ to the kernel of the adjoint operator

N (Lad) =
{
(η, q) ∈ V : Lad(η, q) = 0

}
,

we observe that the skeleton values γΓ (σsol, psol) satisfy∑
τ

〈
γτ (σsol, psol), γad

τ (η, q)
〉

= (f, q)Ω, (η, q) ∈ N
(
Lad
)
. (2.5)

Knowing γΓ (σsol, psol), we can recover (σsol, psol) by solving independently for each τ ∈ T a local problem. Now
the main idea is to define suitable discrete approximation spaces for γΓ (U) and N (Lad) such that the discrete
version of (2.5) is well-defined. We point out that the spaces γΓ (U) and N (Lad) have a completely different
structure. The kernel N (Lad) is purely subdomain-wise defined. Thus N (Lad) can be written as a product space
on the subdomains, whereas each (σ, p) ∈ U with a non-trivial trace γΓ (σ, p) has at least two subdomains as
support. Thus a discretization of γΓ (U) and N (Lad) will naturally lead to a Petrov–Galerkin scheme.

2.2. A Petrov–Galerkin discretization

We approximate the trace of the solution ûsol = γΓ (σsol, psol) of (2.5) in a given discrete space Ûh ⊂ γΓ (U).
A natural choice of Ûh is to take the trace of the fluxes of mixed finite elements, such as, e.g., Raviart–Thomas
or BDM elements, see, e.g., [8], for the first component, and for the second component the traces of standard
conforming finite elements. The Petrov–Galerkin solution ûsol

h = (ûsol
τ,h) ∈ Ûh of (2.5) is defined by∑

τ

〈
ûsol

τ,h, γ
ad
τ vh

〉
=
(
(0, f), vh

)
Ω
, vh ∈ Nh. (2.6)

To obtain a well-defined system, the choice of Nh is crucial. Is the dimension of Nh too small compared to the
dimension of Ûh, (2.6) has no unique solution. Is the dimension too large, then there is possibly no solution. To
guarantee a unique solution of (2.6), the construction of Nh is done in two steps. Firstly, we choose finite element
spaces Hτ,h ⊂ L2(τ,Rd×R) and Vτ,h ⊂ Vτ such that the dimension of the discrete kernel N (Lad

h ) =
∏

τ Nτ (Lad
h )

with

Nτ (Lad
h ) =

{
vτ,h ∈ Vτ,h : (Ladvh,τ , uh,τ )τ = 0 for uh,τ ∈ Hτ,h

}
is larger or equal than the dimension of Ûh. Secondly, we select a positive definite, continuous and symmetric
bilinear form aτ (·, ·) on Vτ,h × Vτ,h and define for ûh ∈ Ûh the solution Nτ (ûh) ∈ Nτ (Lad

h ) by

aτ (Nτ (ûh), v) =
〈
ûτ,h, γ

ad
τ v

〉
, v ∈ Nτ (Lad

h ). (2.7)

We point out that Nτ (ûh) is, by construction, well-defined. It can also be obtained by the solution of the
following local saddle point problem: find (Nτ (ûh),Mτ (ûh)) ∈ Vτ,h ×Hτ,h such that

aτ (Nτ (ûh), v) +
(
Mτ (ûh), Ladv

)
τ

=
〈
ûτ,h, γ

ad
τ v

〉
, v ∈ Vτ,h,(

LadNτ (ûh), w
)
τ

= 0, w ∈ Hτ,h.
(2.8)
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If the pairing (Vτ,h, Hτ,h) satisfy a suitable inf-sup condition, a unique solution exists of (2.8). Otherwise the
first solution component is unique but not the second one. Associated with Nτ is the global operator Nh which
maps Ûh into N (Lad

h ) by Nh(ûh)|τ = Nτ (ûh). Now we set Nh = Nh(Uh). Obviously, this choice guarantees the
existence of a solution of (2.6). Uniqueness is obtained if dim Nh = dim Uh or equivalently if the operator Nh

is injective. By construction, we find dim Nh ≤ dim Uh and if dim Nh = dim Uh, then (2.6) is equivalent to the
symmetric positive definite variational problem: find ûsol

h ∈ Ûh such that∑
τ

aτ

(
Nh

(
ûsol

h

)
, Nh(ûh)

)
=
(
(0, f), Nh(ûh)

)
Ω
, ûh ∈ Ûh. (2.9)

The variational problem (2.9) is not very well suited for a direct numerical realization since it requires the
knowledge of the action of the operator Nh on each element of Ûh. Alternatively, combining (2.7) and (2.8),
we can obtain the solution of (2.5) by the solving the saddle point formulation: find (vsol

h , usol
h , ûsol

h ) ∈
∏

τVτ,h ×∏
τ Hτ,h × Ûh such that

a(vsol
h , v) +

(
usol

h , Ladv
)

Ω
−
〈
ûsol

h , γad
Γ v

〉
= 0, v ∈

∏
τ Vτ,h,

(Ladvsol
h , w)Ω = 0, w ∈

∏
τ Hτ,h,〈

û, γad
Γ vsol

h

〉
=
(
(0, f), Nh(û)

)
Ω
, û ∈ Ûh,

(2.10)

where a(v, w) =
∑

τ aτ (v|τ , w|τ ), v, w ∈
∏

τ Vτ,h, and
〈
·, γad

Γ ·
〉

and (Lad·, ·)Ω have to be understood in the
broken subdomain-wise sense. By construction, (2.10) has a solution for all possible choices of Vτ,h, Hτ,h and
Ûh. However uniqueness is not granted. Under the assumption dim Nh = dim Uh, uniqueness of ûh is given.

3. Saddle point estimates in operator dependent norms

It is shown in ([30], Thm. 3) for the Stokes problem and in [9] for Friedrichs’ systems that an a priori estimate
for the variational problem (2.4) can be derived from a single stability constant, and in ([20], Thm. 2.1) it is
proved that the upper bound for the error of the discrete DPG method relies only on a local inf-sup constant.
Optimal estimates for Petrov–Galerkin discretizations using Kato’s identity on idempotent operators are derived
in [33], and optimal estimates for saddle point problems are recently presented in [26]. These estimates depend
on the considered norms, and thus smaller constants can be obtained by selecting proper norms. It is obvious
that in the well-posed elliptic case with a symmetric bilinear form, the ellipticity and continuity constants are
one if the norm is defined as energy norm. Here, we show that the concept of energy norms can be extended to
the saddle point setting.

Let X and Y be Hilbert spaces, and let A ∈ L(X,X ′) be a positive and self-adjoint operator, so that
‖x‖A =

√
〈Ax, x〉 is a norm in X . Moreover, let B ∈ L(Y,X ′) be an injective operator and assume that the

Schur complement S = B′A−1B defines a norm in Y by

‖y‖S =
√
〈Sy, y〉 = sup

x∈X

|〈By, x〉|
‖x‖A

, y ∈ Y. (3.1)

It is easy to see that if B is continuous and the system is inf-sup stable, then the Schur complement norm is
equivalent to the Hilbert space norm in Y . We now study in W = X × Y the saddle point operator

K :=
(
A B
B′ 0

)
=
(

idX 0
B′A−1 idY

)(
A 0
0 −S

)(
idX A−1B
0 idY

)
.

This block decomposition motivates us to define the self-adjoint and positive definite operator

K̃ :=
(

idX 0
B′A−1 idY

)(
A 0
0 S

)(
idX A−1B
0 idY

)
=
(
A B
B′ 2S

)
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and the norm ‖(x, y)‖2
K̃

= 〈K̃(x, y), (x, y)〉 in W . Observing the identity K ′K̃−1K = K̃, we obtain

‖K(x, y)‖2
K̃−1 = 〈K(x, y), K̃−1K(x, y)〉 = 〈K̃(x, y), (x, y)〉 = ‖(x, y)‖2

K̃

for all (x, y) ∈ W , i.e., ‖K‖L(W,W ′) = ‖K−1‖L(W ′,W ) = 1 with respect to the operator dependent norm in W .
Let Xh ⊂ X and Yh ⊂ Y be a family of finite dimensional subspaces, and let Ah ∈ L(Xh, X

′
h) and

Bh ∈ L(Yh, X
′
h) be the Galerkin approximations of A and B, respectively. The corresponding discrete Schur

complement is given by Sh = B′
hA

−1
h Bh. We assume uniform inf-sup stability of the discrete saddle point

problem, i.e., there exists a 1 ≥ β0 > 0 independent of h such that

sup
xh∈Xh

|〈Bhyh, xh〉|
‖xh‖A

≥ β0 sup
x∈X

|〈Byh, x〉|
‖x‖A

, yh ∈ Yh.

This implies that the discrete operator Kh(xh, yh) = (Ahxh+Bhyh, B
′
hxh) is invertible, and we have the spectral

bounds

β2
0 〈Syh, yh〉 ≤ 〈Shyh, yh〉 ≤ 〈Syh, yh〉, yh ∈ Yh. (3.2)

The following lemma shows that K−1
h inherits its continuity constant from the inf-sup constant.

Lemma 3.1. ‖K−1
h ‖L(W ′,W ) ≤ 2β−2

0 − 1.

Proof. Define K̃h(xh, yh) = (Ahxh +Bhyh, B
′
hxh +2Shyh) in Wh = Xh×Yh. As above, we find ‖Kh‖L(Wh,W ′

h) =
‖K−1

h ‖L(W ′
h,Wh) = 1 with respect to the discrete norm ‖(xh, yh)‖2

K̃h
= 〈K̃h(xh, yh), (xh, yh)〉 in Wh. Next, we

consider the natural embedding Eh ∈ L(Wh,W ) with Eh(xh, yh) = (xh, yh). From (3.2) and

‖(xh, yh)‖2
K̃

= ‖xh +A−1Byh‖2
A + 〈Syh, yh〉 = ‖xh +A−1

h Bhyh‖2
A + 〈(2S − Sh)yh, yh〉

≤ ‖xh +A−1
h Bhyh‖2

A + (2β−2
0 − 1)〈Shyh, yh〉 ≤ (2β−2

0 − 1)‖(xh, yh)‖2
K̃h

we obtain the bound ‖Eh‖L(Wh,W ) ≤
√

2β−2
0 − 1, and the assertion follows from

‖K−1
h ‖L(W ′,W ) ≤ ‖Eh‖L(Wh,W )‖K−1

h ‖L(W ′
h,Wh)‖E′

h‖L(W ′,W ′
h) = ‖Eh‖2

L(Wh,W ) ≤ 2β−2
0 − 1. �

For given (xsol, ysol) ∈ W , let (xsol
h , ysol

h ) ∈ Wh be the Galerkin approximation, i.e., (xsol
h , ysol

h ) ∈ Wh is the
unique solution of

〈Kh(xsol
h , ysol

h ), (xh, yh)〉 = 〈K(xsol, ysol), (xh, yh)〉, (xh, yh) ∈Wh.

Then we obtain the following upper bound for the discretization error in terms of the best approximation error.

Theorem 3.2. ‖
(
xsol, ysol

)
− (xsol

h , ysol
h )‖K̃ ≤

(
2β−2

0 − 1
)

inf
wh∈Wh

‖
(
xsol, ysol

)
− wh‖K̃ .

Proof. We use the observation in [33] on the Hilbert space norm of idempotents. The Galerkin property yields
(K−1

h K)(K−1
h K) = K−1

h KhK
−1
h K = K−1

h K, so that K−1
h K is non-trivial and idempotent. Then, Kato’s iden-

tity, see, e.g., [31], reads ‖ idW −K−1
h K‖L(W,W ) = ‖K−1

h K‖L(W,W ). In terms of Lemma 3.1, the Galerkin
orthogonality for all (xh, yh) ∈Wh gives∥∥(xsol, ysol) −

(
xsol

h , ysol
h

)∥∥
K̃

=
∥∥(idW −K−1

h K)
(
xsol, ysol

)∥∥
K̃

=
∥∥(idW −K−1

h K)
(
(xsol, ysol) − (xh, yh)

)∥∥
K̃

≤ ‖K‖L(W,W ′)‖K−1
h ‖L(W ′,W )‖(xsol, ysol) − (xh, yh)‖K̃

≤ (2β−2
0 − 1) ‖(xsol, ysol) − (xh, yh)‖K̃ . �
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As we have already seen for the model problem, a well-posed Petrov–Galerkin formulation can be related to a
saddle point formulation. Here we state the reverse. The saddle point approach also provides a Petrov–Galerkin
discretization. Therefore, we consider a right-hand side f ∈ B(Y ) ⊂ X ′, and let ysol = S−1B′A−1f ∈ Y be the
unique solution of the equation Bysol = f . Then, we observe that the approximation ysol

h = S−1
h B′

hA
−1
h f is the

unique Petrov–Galerkin solution of the variational problem: find ysol
h ∈ Yh such that

〈Bhy
sol
h , xh〉 = 〈f, xh〉, xh ∈ Xred

h := A−1
h Bh(Yh) ⊂ Xh.

The operator S−1
h B′

hA
−1
h B is idempotent, and we have

‖B‖L(Y,X′) = ‖A−1
h ‖L(X′,Xh) = 1, ‖B′

h‖L(Xh,Y ′) = ‖S−1
h ‖L(Y ′,Y ) ≤ β−1

0 .

Following the lines of the proof of Theorem 3.2 (see also [33], Thm. 2.1), we obtain

‖ysol − ysol
h ‖S ≤ β−1

0 inf
yh∈Yh

‖ysol − yh‖S , (3.3)

provided that we can show that ‖S−1
h B′

h‖L(Xh,Y ) ≤ β−1
0 . To do so, we start with the straightforward estimate

‖S−1
h B′

hxh‖2
Sh

= 〈xh, BhS
−1
h B′

hxh〉 ≤ ‖xh‖A〈A−1
h BhS

−1
h B′

hxh, BhS
−1
h B′

hxh〉
1
2

= ‖xh‖A〈xh, BhS
−1
h B′

hA
−1
h BhS

−1
h B′

hxh〉
1
2 = ‖xh‖A〈xh, BhS

−1
h B′

hxh〉
1
2 = ‖xh‖A‖S−1

h B′
hxh‖Sh

.

Using now the upper spectral bound for S, we find ‖S−1
h B′

hxh‖S ≤ β−1
0 ‖S−1

h B′
hxh‖Sh

≤ β−1
0 ‖xh‖A.

Remark 3.3. Additionally, the identity

sup
xh∈Xred

h

|〈Bhyh, xh〉|2
‖xh‖2

A

= sup
ỹh∈Yh

|〈Bhyh, A
−1
h Bhỹh〉|2

‖A−1
h Bhỹh‖2

A

= sup
ỹh∈Yh

〈Shyh, ỹh〉2
〈Shỹh, ỹh〉

= ‖yh‖2
Sh

implies inf
yh∈Yh

sup
xh∈Xred

h

|〈yh,B′
hxh〉|

‖xh‖A‖yh‖S
≥ β0 for the reduced space Xred

h ⊂ Xh (see also [20], Thm. 2.1).

Before we focus on stability estimates in the next section, we relate the Schur complement norm (3.1) with
an inf-sup constant. We assume that γ > 0 exists such that

sup
y∈Y

|〈By, x〉|
‖y‖Y

≥ γ ‖x‖X , x ∈ X.

Then, since B is injective, we obtain by duality ‖y‖S = sup
x∈X

|〈By,x〉|
‖x‖A

≥ γ ‖y‖Y for y ∈ Y (cf. [6], Lem. 4.4.2).

4. Stability estimates for first-order systems

For representative first-order differential operators L we specify the stability constant CL <∞.

4.1. An abstract framework

Let H be a Hilbert space with norm ‖ · ‖H , and let U ⊂ H be a dense subspace. We assume that L : U −→ H
is a closed linear operator, i.e., the graph of the operator

{
(u, Lu) : u ∈ U

}
is closed in H ×H , the domain U

is a Hilbert space in the graph norm ‖u‖U =
√
‖u‖2

H + ‖Lu‖2
H, and the operator L has closed range. Moreover

we assume that L is injective and surjective, and that its inverse is bounded.
In our examples, this setting is obtained as follows: for a dense subset D(L) ⊂ H , we verify the existence of

a stability constant CL <∞ satisfying

‖u‖H ≤ CL‖Lu‖H, u ∈ D(L). (4.1)

We then define U as the closure of D(L) with respect to the graph norm ‖u‖2
U = ‖u‖2

H + ‖Lu‖2
H and L can be

extended to U . The stability estimate (4.1) holds also for u ∈ U , and the range L(U) ⊂ H is closed. Thus the
choice H = L(U) guarantees that we are in the above abstract setting.
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4.2. Examples of second order partial differential equations and first order systems

We recall that d = 2, 3 is the spatial dimension and that Ω ⊂ R
d is a bounded Lipschitz domain. Let

∂Ω = ∂ΩD ∪ ∂ΩN be a decomposition of the boundary into Dirichlet and Neumann part, and let n be the
outer unit normal on ∂Ω. For simplicity, we consider, without loss of generality, only homogeneous boundary
conditions. The standard L2-norm on Ω is denoted by ‖ · ‖Ω. In our first examples, we start with a second order
partial differential equation and transform it to a first-order system. In all cases, the Hilbert space H is a subset
of L2(Ω,RM ).

A scalar elliptic model problem. We reconsider the model problem (2.1) with Dirichlet boundary ∂ΩD = ∂Ω
and D(L) = H(div, Ω) × H1

0(Ω). Let CP > 0 be the Poincaré constant with ‖p‖Ω ≤ CP ‖∇p‖Ω for p ∈ H1
0(Ω).

Furthermore, the continuous Sobolev embedding H1(Ω) ⊂ L4(Ω) yields that there exists a Cb > 0 such that

‖bp‖Ω ≤ ‖p‖L4(Ω)‖b‖L4(Ω) ≤ Cb‖∇p‖Ω, p ∈ H1
0(Ω). (4.2)

The first-order operator L is given in (2.2).

Lemma 4.1. The stability constants of the scalar elliptic model problem can be defined as

CL =
√

2 + (4 + C2
P + 4C2

b ) (1 + C2
P).

Proof. To verify (4.1), we firstly provide an upper bound of ‖∇p‖Ω in terms of ‖L(σ, p)‖Ω. Due to the
homogeneous Dirichlet boundary condition and the assumption ∇ · b = 0 on b, we have (p, b · ∇p)Ω =
−(p, b · ∇p)Ω + (p2, b · n)∂Ω = −(p, b · ∇p)Ω , which gives

(
p, b · ∇p

)
Ω

= 0. Then, we get

‖∇p‖2
Ω ≤ ‖∇p‖2

Ω + (ap, p)Ω = ‖∇p‖2
Ω −

(
p, b · ∇p

)
Ω

+ (ap, p)Ω

=
(
σ − bp+ ∇p,∇p

)
Ω

+
(
∇ · σ, p

)
Ω

+ (ap, p)Ω =
(
L(σ, p), (∇p, p)

)
Ω

≤ ‖L(σ, p)‖Ω‖(∇p, p)‖Ω ≤
√

1 + C2
P ‖L(σ, p)‖Ω‖∇p‖Ω.

Secondly, we bound ‖σ‖Ω in terms of ‖L(σ, p)‖Ω and ‖∇p‖Ω by

‖σ‖2
Ω = (σ − bp+ ∇p, σ)Ω + (bp−∇p, σ)Ω ≤

(
‖L(σ, p)‖Ω + ‖bp−∇p‖Ω

)
‖σ‖Ω

which yields ‖σ‖Ω ≤ ‖L(σ, p)‖Ω + ‖bp−∇p‖Ω. This gives the estimate

‖σ‖2
Ω + ‖p‖2

Ω ≤ 2‖L(σ, p)‖2
Ω + 2‖bp−∇p‖2

Ω + ‖p‖2
Ω = 2‖L(σ, p)‖2

Ω + 4‖bp‖2 + 4‖∇p‖2
Ω + ‖p‖2

Ω

≤ 2‖L(σ, p)‖2
Ω + (4C2

b + 4 + C2
P)‖∇p‖2

Ω ≤
(
2 + (4C2

b + 4 + C2
P)(1 + C2

P)
)
‖L(σ, p)‖2

Ω. �

We note that the stability constant does not depend on the norm of a but depends on b. Stable estimates for
dominating convection are considered in [12, 18] with suitable weighted norms in order to compensate strong
boundary layers. Stability for the pure transport problem is discussed in Theorem 2.4 from [13].

The Helmholtz problem. As second example, we consider the Helmholtz equation

−Δp− ω2p = iωg in Ω, ∇p · n+ iωp = 0 on ∂Ω, (4.3)

where ω > 0 is a given positive wave number. Introducing σ = −1/(iω)∇p, we obtain L(σ, p) = (0, g) with

L(σ, p) = (iωσ + ∇p, iωp+ ∇ · σ) (4.4)

defined on D(L) = {(σ, p) ∈ H(div, Ω) × H1(Ω) : σ · n− p = 0 on ∂Ω} ⊂ H with H = L2(Ω,Cd × C).
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Lemma 4.2. Assume that a constant α > 0 exists such that x · n(x) ≥ α for a.a. x ∈ ∂Ω. Then, the stability
constant for the Helmholtz problem can be defined as

CL = 3R+
R2

α
+
d− 1
ω2

,

where d is the space dimension and |x| < R for x ∈ ∂Ω.

We note that such a constant α exists, e.g., for star-shaped domains with the origin placed in Ω.

Proof. Following the ideas in [28] Proposition 8.1.4, [16, 19], Section 4.3, the stability estimate can be shown
in three steps. Firstly, we provide upper bounds for ‖p‖∂Ω and ‖σ‖Ω. Secondly we consider smooth curl-free
vector fields σ and bound ‖p‖Ω. Finally a Helmholtz decomposition is applied.

Using the boundary conditions for (σ, p) ∈ D(L), we get‖p‖2
∂Ω = (σ · n, p)∂Ω = (∇p, σ)Ω + (p,∇ · σ)Ω. The

definition of L(σ, p) now yields

‖p‖2
∂Ω = Re

(
iω ‖(σ, p)‖2

Ω +
(
∇p, σ

)
Ω

+
(
∇ · σ, p

)
Ω

)
(4.5a)

= Re
(
(iωσ + ∇p, σ)Ω +

(
iωp+ ∇ · σ, p

)
Ω

)
= Re

(
L(σ, p), (σ, p)

)
Ω
≤ ‖L(σ, p)‖Ω‖(σ, p)‖Ω

‖σ‖2
Ω = ‖p‖2

Ω +
1
ω2

Re (L(σ, p), (iωσ,−iωp))Ω ≤ ‖p‖2
Ω +

1
ω2

‖L(σ, p)‖Ω‖(σ, p)‖Ω. (4.5b)

In the second step, we restrict ourselves to (σ, p) ∈ D(L) such that σ is smooth enough and ∇ × σ = 0. A
crucial role within this step plays the following equalities which can be easily established by a straightforward
computation

∇ · (|σ|2x) = σ · ∇(σ · x) + σ · ∇(σ · x) + (d− 2)|σ|2, (4.6a)
∇ · (|p|2x) = p∇p · x+ ∇p · x p+ d |p|2. (4.6b)

In terms of (4.6), we can now express boundary terms by volume terms and find by integration by parts(
|σ|2, x · n

)
∂Ω

= 2Re
(
σ,∇(x · σ)

)
Ω

+ (d− 2)(σ, σ)Ω , (4.7a)(
|p|2, x · n

)
∂Ω

= 2Re
(
p, x · ∇p

)
Ω

+ d (p, p)Ω. (4.7b)

A reformulation of Re
(
L(σ, p), (xp, x · σ)

)
Ω

in terms of (4.7) and the use of the boundary condition give

2Re
(
L(σ, p), (xp, x · σ)

)
Ω

= 2Re
(
∇ · σ, x · σ

)
Ω

+ 2Re
(
p, x · ∇p

)
Ω

= 2Re
(
n · σ, x · σ

)
∂Ω

− 2Re
(
σ,∇(x · σ)

)
Ω

+ 2Re
(
p, x · ∇p

)
Ω

= 2Re
(
p, x · σ

)
∂Ω

−
(
|σ|2, x · n

)
∂Ω

+ (d− 2)(σ, σ)Ω +
(
|p|2, x · n

)
∂Ω

− d (p, p)Ω

or equivalently

d‖p‖2
Ω +

(
|σ|2, x · n

)
∂Ω

=
(
|p|2, x · n

)
∂Ω

+ 2Re
(
p, x · σ

)
∂Ω

+ (d− 2)(σ, σ)Ω − 2Re
(
L(σ, p), (xp, x · σ)

)
Ω
.

Using the assumptions on Ω there exits R <∞ with |x| < R for x ∈ ∂Ω and thus α ≤ x · n ≤ R for almost all
x ∈ ∂Ω. This observation guarantees that we can provide an upper bound for ‖p‖2

Ω by using Young’s inequality

d‖p‖2
Ω + α ‖σ‖2

∂Ω ≤ R ‖p‖2
∂Ω + 2R ‖p‖∂Ω‖σ‖∂Ω + (d− 2)‖σ‖2

Ω + 2R ‖L(σ, p)‖Ω‖(σ, p)‖Ω ,

d‖p‖2
Ω ≤

(
R+

R2

α

)
‖p‖2

∂Ω + 2R ‖L(σ, p)‖Ω‖(σ, p)‖Ω + (d− 2)‖σ‖2
Ω .
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Now the upper bounds (4.5a) and (4.5b) can be used, and we get

d‖p‖2
Ω ≤

(
R+

R2

α
+ 2R+

d− 2
ω2

)
‖L(σ, p)‖Ω‖(σ, p)‖Ω + (d− 2)‖p‖2

Ω,

‖p‖2
Ω ≤ 1

2

(
3R+

R2

α
+
d− 2
ω2

)
‖L(σ, p)‖Ω‖(σ, p)‖Ω.

Combining the results of the first two steps, we obtain for all (σ, p) ∈ D(L) with σ = ∇ψ the stability bound

‖(σ, p)‖Ω ≤
(

3R+
R2

α
+
d− 1
ω2

)
‖L(σ, p)‖Ω = CL‖L(σ, p)‖Ω. (4.8)

A density argument yields that the above estimate hold also for all (σ, p) ∈ D(L) with ∇× σ = 0.
Finally in the third step, we have to show that the above stability estimate holds true for all (σ, p) ∈ D(L).

To do so, we use a Helmholtz decomposition. Introducing

H0 =
{
σ ∈ L2(Ω,Cd) : (σ,∇× v)Ω = 0 for all v ∈ H0(curl, Ω)

}
,

(σ, p) ∈ D(L) has a unique orthogonal decomposition into (σ0, p) + (σ1, 0) with σ0 ∈ H0 and (σ1,∇q)Ω = 0 for
all q ∈ H1(Ω). Then the definition of L trivially gives L(σ1, 0) = (iωσ1, 0). Moreover the operator L preserves
the orthogonality between (σ0, p) and (σ1, 0). These observations guarantee now in terms of (4.8)

‖(σ, p)‖2
Ω = ‖(σ0, p)‖2

Ω + ‖(σ1, 0)‖2
Ω ≤ C2

L‖L(σ0, p)‖2
Ω +

1
ω2

‖L(σ1, p)‖2
Ω

≤ C2
L

(
‖L(σ0, p)‖2

Ω + ‖L(σ1, p)‖2
Ω

)
= C2

L‖L(σ, p)‖2
Ω. �

Remark 4.3. We note that the stability constant CL is uniformly bounded for large wave numbers.

Linear elasticity. We consider the linear elasticity system

− div(Cε(u)) = f in Ω, u = 0 on ∂ΩD and Cε(u)n = 0 on ∂ΩN, (4.9)

where C is the positive definite elasticity tensor in R
d×d
sym , ε(u) = sym(Du) is the linearized strain tensor,

f ∈ L2(Ω,Rd) is a prescribed volume load, and u is the displacement. We assume that ∂ΩD has a positive
measure in d−1. Introducing the stress σ = Cε(u), we can rewrite (4.9) as a first-order system L(σ, u) = (0,−f)
with

L(σ, u) = (σ − Cε(u), div(σ)) (4.10)

and domain D(L) ⊂ H = L2(Ω,Rd×d
sym × Rd) given by

D(L) =
{
(σ, u) ∈ H(div, Ω)d × H1(Ω)d : σ� = σ, σn = 0 on ∂ΩN and u = 0 on ∂ΩD

}
.

On H we use the norm ‖(σ, u)‖2
H = (C−1σ, σ)Ω + ‖u‖2

Ω and recall that the stability constant has to be specified
with respect to this norm.

Lemma 4.4. The stability constant of the elasticity problem can be defined as

CL =
√

1 + 2C2
K|C−1|(1 + C2

K|C−1|).
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Proof. Firstly we provide a bound for ‖u‖Ω by ‖L(σ, u)‖H . By assumption the Dirichlet boundary part is non-
trivial, and thus no rigid body motion is in D(L) and Korn’s inequality shows, i.e., for all u ∈ H1(Ω)d with
u = 0 on ∂ΩD there exists a constant CK > 0 only depending on Ω and ∂ΩD such that

‖u‖2
Ω ≤ C2

K‖ε(u)‖2
Ω ≤ C2

K|C−1|
(
Cε(u), ε(u)

)
Ω
.

Korn’s inequality show that to bound ‖u‖2
Ω, we have to bound

(
Cε(u), ε(u)

)
Ω

. For (σ, u) ∈ D(L) we have, due
to the boundary conditions,(

Cε(u), ε(u)
)
Ω

=−
(
σ − Cε(u), ε(u)

)
Ω

+
(
σ, ε(u)

)
Ω

= −
(
σ − Cε(u), ε(u)

)
Ω
−
(
div(σ), u

)
Ω

≤ ‖L(σ, u)‖H‖(Cε(u), u)‖H ≤ ‖L(σ, u)‖H(1 + C2
K|C−1|) 1

2
(
Cε(u), ε(u)

) 1
2
Ω

and thus ‖u‖2
Ω ≤ C2

K|C−1|(1 + C2
K|C−1|)‖L(σ, u)‖2

H .
Secondly we bound (C−1σ, σ)Ω by ‖L(σ, u)‖H and ‖u‖Ω. Integration by parts and the homogeneous boundary

conditions guarantee

(C−1σ, σ)Ω = (σ − Cε(u), C−1σ)Ω + (ε(u), σ)Ω = (σ − Cε(u), C−1σ)Ω − (div(σ), u)Ω

≤ ‖L(σ, u)‖H‖(σ, u)‖H ≤ 1
2
‖L(σ, u)‖H +

1
2
(C−1σ, σ)Ω +

1
2
‖u‖2

Ω.

Combining these two bounds, we obtain the assertion by

‖(σ, u)‖2
H ≤ ‖L(σ, u)‖2

H + 2‖u‖2
Ω ≤

(
1 + 2C2

K|C−1|(1 + C2
K|C−1|)

)
‖L(σ, u)‖2

H . �

Remark 4.5. Since |C−1| is bounded in the incompressible limit, the estimate is robust for nearly incompressible
materials.

The Stokes system. We consider the stationary linear Stokes system which can be regarded as the incompressible
limit of the elasticity system

−Δu+ ∇p = f,
div(u) = 0 in Ω, u = 0 on ∂Ω. (4.11)

Introducing σ by σ = ε(u) − pI, we can rewrite (4.11) as a first-order system L(σ, u, p) = (0,−f, 0) with

L(σ, u, p) =
(
σ + pI − ε(u), div(σ), div(u)

)
(4.12)

defined on D(L) =
{
(σ, u, p) ∈ H(div, Ω)d × H1(Ω)d × L2(Ω) : σ� = σ, u = 0 on ∂Ω,

∫
Ω
p dx = 0

}
.

Lemma 4.6. The stability constant of the Stokes problem can be defined as

CL =

√√√√C2
1

(
C2

K +
√

3/c2p
)

+

(
1 +

(√
3d
cp

+ 1

)
C1

)2

with C1 =
√

1 + d+ C2
K and the inf-sup constant cp.

Proof. We proceed in three steps and consider the terms ‖ε(u)‖Ω, ‖p‖Ω and ‖σ‖Ω separately. For (σ, u, p) ∈ D(L)
Korn’s inequality can be applied and thus, we get

‖ε(u)‖2
Ω =

(
ε(u) − σ − pI, ε(u)

)
Ω

+
(
σ, ε(u)

)
Ω

+
(
pI, ε(u)

)
Ω

=
(
ε(u) − σ − pI, ε(u)

)
Ω
−
(
div(σ), u

)
Ω

+
(
p, div(u)

)
Ω

≤ ‖L(σ, u, p)‖Ω‖(ε(u), u, div(u))‖Ω ≤
√

1 + C2
K + d ‖L(σ, u, p)‖Ω‖ε(u)‖Ω.
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To bound ‖p‖Ω, we use an inf-sup estimate, which yields

cp‖p‖Ω ≤ sup
(0,v,0)∈D(L)

(
p, div(v)

)
Ω

‖ε(v)‖Ω
≤ sup

(0,v,0)∈D(L)

(
pI + σ, ε(v)

)
Ω

+
(
div(σ), v

)
Ω

‖ε(v)‖Ω

≤ ‖pI + σ − ε(u)‖Ω + ‖ε(u)‖Ω + CK‖ div(σ)‖Ω ≤ C1

√
3 ‖L(σ, u, p)‖Ω.

Finally in terms of the two previous upper estimates, we can bound

(σ, σ)Ω = (σ − pI − ε(u), σ)Ω + (pI, σ)Ω + (ε(u), σ)Ω

≤
(
‖L(σ, u, p)‖Ω +

√
d‖p‖Ω + ‖ε(u)‖Ω

)
‖σ‖Ω ≤

(
1 +

(√
3d
cp

+ 1

)
C1

)
‖L(σ, u, p)‖Ω‖σ‖Ω

which yields C2
L = C2

1 (C2
K +

√
3/c2p) + (1 + (

√
3d

cp
+ 1)C1)2. �

Maxwell’s equations. For linear materials, electro-magnetic waves are determined by the first-order system for
the magnetic H and the electric E field

L(H, E) = (∂tH + μ−1∇× E , ∂tE − ε−1∇×H)

Here the permeability μ and the permittivity ε are positive constants. The boundary is disjointly decomposed
in ∂ΩE and ∂ΩH. In Ω, we define

D(L) =
{
(H, E ∈ L2((0, T ),H(curl, Ω)2) ∩ H1((0, T ),L2(Ω)6) : div(μH) = div(εE) = 0 in Ω × (0, T ),

H(0) = E(0) = 0, in Ω, H× n = 0 on ∂ΩH × (0, T ), E × n = 0 on ∂ΩE × (0, T )
}
.

By H we denote the closure of D(L) in L2((0, T ) ×Ω,R3 × R
3) associated with the inner product

(
(H, E), (H̃, Ẽ)

)
H

=
∫ T

0

((
μH(t), H̃(t)

)
Ω

+
(
εE(t), Ẽ(t)

)
Ω

)
dt.

Lemma 4.7. The stability constants of Maxwell’s equations can be defined as

CL = 2T.

Proof. Due to the boundary conditions in D(L), we have (∇× E(s),H(s))Ω − (∇×H(s), E(s))Ω = 0. Then, a
straightforward use of the definition of the norm and of the initial condition shows for (H, E) ∈ D(L)

‖(H, E)‖2
H =

∫ T

0

∫ t

0

∂t

((
μH(s),H(s)

)
Ω

+
(
εE(s), E(s)

)
Ω

)
ds dt

= 2
∫ T

0

∫ t

0

((
μ∂tH(s),H(s)

)
Ω

+
(
ε∂tE(s), E(s)

)
Ω

)
ds dt

= 2
∫ T

0

∫ t

0

((
L(H, E)(s), (μH, εE)

)
Ω
−
(
∇× E(s),H(s)

)
Ω

+
(
∇×H(s), E(s)

)
Ω

)
ds dt

= 2
∫ T

0

∫ t

0

((
L(H, E)(s), (μH, εE)

)
Ω

ds dt ≤ 2T ‖L(H, E)‖H‖(H, E)‖H . �

The monochromatic Maxwell problem. Now we consider special monochromatic solutions of Maxwell’s equation
of the form (H, E)(x, t) = exp(iωt)(h(x), e(x)) for given frequency ω; this results in

L(h, e) =
(
iωh+ μ−1∇× e, iωe− ε−1∇× h

)
.
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In analogy to the Helmholtz case, we show stability on

D(L) =
{
(h, e) ∈ H(curl, Ω)2 : (μh,∇ψ)Ω = (εe,∇ψ)Ω = 0 for all ψ ∈ C∞

0 (Ω),
〈n× h, φ〉 = 〈n× e, n× φ〉 for all φ ∈ C∞(∂Ω)3

}
.

Smooth functions with ∇·(εe) = ∇·(μh) = 0 in Ω and Robin-type boundary condition n×h−(n×e)×n= 0 on
∂Ω are dense in D(L). We set H as the closure of D(L) in L2(Ω,C3 ×C3) with ‖(h, e)‖2

H = (h, μh)Ω + (e, εe)Ω.
Following the Helmholtz case, we consider domains with x ·n(x) ≥ α > 0 for a.a. x ∈ ∂Ω and |x| ≤ R for x ∈ Ω.

Lemma 4.8. The stability constants of the monochromatic Maxwell equation can be defined as

CL = 2
√
εμR+

(μ+ ε)R2

α
·

Proof. For the proof, we use the techniques in ([23] Thm. 3.3, [29] Thm. 5.4.5). We start with an upper bound
for ‖n× e‖∂Ω. For all smooth functions in (h, e) ∈ D(L), we find(

L(h, e), (h, e)
)
H

=
(
iωμh+ ∇× e, h

)
Ω

+
(
iωεe−∇× h, e

)
Ω

= iω ‖(h, e)‖2
H +

(
∇× e, h

)
Ω
−
(
∇× h, e

)
Ω
.

Integration by parts then yields in terms of the boundary condition for the real part

Re
(
L(h, e), (h, e)

)
H

= Re
((

∇× e, h
)
Ω
−
(
∇× h, e

)
Ω

)
= −Re

(
n× h, e

)
∂Ω

= −‖n× e‖2
∂Ω.

This gives ‖n× e‖2
∂Ω ≤ ‖L(h, e)‖H‖(h, e)‖H .

The rest of the proof is based on the two following identities which can be obtained by a straightforward
computation

(x× h̄) · (∇× h) + (x× h) · (∇× h̄) + h · h̄ = ∇ · ((h · h̄)x) −∇ · ((x · h)h̄) (4.13a)
+ (∇ · h̄)(x · h) −∇ · ((x · h̄)h) + (∇ · h)(x · h),

(x× h) · (n× h̄) = x · n|h|2 − (x · h)(n · h̄) (4.13b)

see, e.g., Lemma 5.3.1 from [29], for (4.13b). Using ∇ · h = 0, we get in terms of the Gauss theorem

2Re
(
∇× h, x× h

)
Ω

+
(
h, h

)
Ω

=
(
n · x, |h|2

)
∂Ω

− 2Re
(
n · h, x · h

)
∂Ω

= 2Re
(
n× h, x× h

)
∂Ω

−
(
n · x, |h|2

)
∂Ω
.

Finally by means of h · (x× ē) = (h× x) · ē = −(x× h) · ē, we can establish the following equality

2Re
(
L(h, e), (x× εe,−x× μh)

)
H

= 2Re
((

iωμh, x× εe
)
Ω

+
(
∇× e, x× εe

)
Ω
−
(
iωεe, x× μh

)
Ω

+
(
∇× h, x× μh

)
Ω

)
= 2μRe

(
∇× h, x× h

)
Ω

+ 2εRe
(
∇× e, x× e

)
Ω

= 2μRe
(
n× h, x× h

)
∂Ω

− μ
(
n · x, |h|2

)
∂Ω

−
(
h, μh

)
Ω

+ 2εRe
(
n× e, x× e

)
∂Ω

− ε
(
n · x, |e|2

)
∂Ω

−
(
e, εe

)
Ω
.

Now we can use the definition of the boundary conditions and get(
h, μh

)
Ω

+
(
e, εe

)
Ω

+ μ
(
n · x, |h|2

)
∂Ω

+ ε
(
n · x, |e|2

)
∂Ω

= −2Re
(
L(h, e), (x× εe,−x× μh)

)
H

+ 2μRe
(
n× e, n× (x× h)

)
∂Ω

+ 2εRe
(
n× e, x× e

)
∂Ω
.

Applying Young’s inequality results in the estimate

‖(h, e)‖2
H + αμ‖h‖2

∂Ω + αε‖e‖2
∂Ω

≤ 2‖L(h, e)‖H‖(x× εe,−x× μh)‖H + 2μ‖n× e‖∂Ω‖n× (x× h)‖∂Ω + 2ε‖n× e‖∂Ω‖x× e‖∂Ω

≤ 2
√
εμR‖L(h, e)‖H‖(h, e)‖H + 2μR‖n× e‖∂Ω‖h‖∂Ω + 2εR‖n× e‖∂Ω‖e‖∂Ω

≤ 2
√
εμR‖L(h, e)‖H‖(h, e)‖H +

μR2

α
‖n× e‖2

∂Ω + αμ ‖h‖2
∂Ω +

εR2

α
‖n× e‖2

∂Ω + α ε‖e‖2
∂Ω.
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Observing that the L2(∂Ω)-terms cancel, we obtain by means of the upper bound for ‖n× e‖2
∂Ω

‖(h, e)‖2
H ≤ 2

√
εμR ‖L(h, e)‖H‖(h, e)‖H +

(μ+ ε)R2

α
‖L(h, e)‖H‖(h, e)‖H .

This is shown for all sufficiently smooth functions satisfying (4.13) and tangential trace in L2; a density argument
now yields the stability constant CL in D(L). �
Remark 4.9. We note that CL does not depend on the wave number.

5. The continuous substructuring method

In this section, we provide a Schur complement formulation of the problem. It gives rise to a symmetric
positive definite formulation and is thus of special interest for efficient numerical solvers. To do so, we start
with the introduction of a suitable partitioning and trace spaces, formulate the weak problem and apply a local
static condensation.

We assume that we are in the abstract setting of Subsection 4.1. Then, for all f ∈ H a unique solution
usol ∈ U of Lusol = f exists such that ‖usol‖U ≤

√
C2

L + 1‖f‖H. We recall, that we use the graph norm
‖u‖2

U = ‖u‖2
H + ‖Lu‖2

H for u ∈ U . Moreover, let Uad =
{
v ∈ H : f ∈ H exists such that (v, Lu)H = (f, u)H for

all u ∈ U
}

be the adjoint space, and the Hilbert adjoint Lad is given by (v, Lu)H = (Ladv, u)H for v ∈ Uad.

Partitioning and product space. For a given disjoint partitioning Ω \ ΓT =
⋃

τ∈T τ , we define the local spaces
Hτ =

{
u|τ : u ∈ H

}
⊂ L2(τ)M for all τ ∈ T , and we assume that the restrictions L|τ and Lad|τ of L and its

adjoint Lad, respectively, are defined in the extended space Vτ ⊃
{
u|τ : u ∈ U + Uad

}
. We assume that Vτ is a

Hilbert space with the graph norm ‖v‖2
Vτ

= ‖v‖2
Hτ

+ ‖Ladv‖2
Hτ

of the adjoint operator. We will use Vτ as test
space. In general, Vτ will not include boundary conditions. Associated with the local spaces is the product space
V =

∏
τ Vτ equipped with the norm ‖v‖2

V =
∑

τ ‖vτ‖2
Vτ

.

Traces and trace norms. On τ , we assume that trace spaces V̂τ and surjective trace mappings γτ : Vτ −→ V̂τ

exist such that V̂τ is identified with the quotient spaces Vτ/N (γτ ), and we use the corresponding trace norm

‖v̂τ‖V̂τ
= inf

γτ vτ =v̂τ

‖vτ‖Vτ .

Associated with the trace mapping γτ is the adjoint trace γad
τ : Vτ −→ V̂ ′

τ defined by

(Lvτ , ṽτ )Hτ
=
(
vτ , L

adṽτ

)
Hτ

+
〈
γτvτ , γ

ad
τ ṽτ

〉
, vτ , ṽτ ∈ Vτ .

The embedding U ⊂ V allows to define Û = γΓ (U), where γΓ : V −→
∏

τ V̂τ is the product trace mapping.
We observe for the kernel of γΓ that N (γΓ ) ⊂ U . The trace space Û will be identified with the quotient space
Û = U/N (γΓ ) associated with the norm

‖û‖Û = inf
γΓ u=û

‖u‖U .

For u ∈ U and û = γΓu we set ûτ = γτu. Then, we have for v̂τ ∈ Vτ and û = (ûτ ) ∈ Û the estimates
‖γτvτ‖V̂τ

≤ ‖vτ‖Vτ and∣∣∣∑
τ
〈ûτ , γ

ad
τ vτ 〉

∣∣∣ = inf
γΓ u=û

∣∣∣∑
τ
〈γτu, γ

ad
τ vτ 〉

∣∣∣ = inf
γΓ u=û

∣∣∣∑
τ

(
Lu, vτ

)
Hτ

−
(
u, Ladvτ

)
Hτ

∣∣∣
≤ inf

γΓ u=û

∑
τ

(
‖Lu‖Hτ‖vτ‖Hτ + ‖u‖Hτ‖Ladvτ‖Hτ

)
≤ inf

γΓ u=û

(∑
τ
‖Lu‖2

Hτ
+ ‖u‖2

Hτ

) 1
2
(∑

τ
‖vτ‖2

Hτ
+ ‖Ladvτ‖2

Hτ

) 1
2

≤ inf
γΓ u=û

‖u‖U‖v‖V = ‖û‖Û‖v‖V . (5.1)
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A weak formulation. For given f ∈ H , we set Fτ ∈ V ′
τ and F ∈ V ′ by 〈Fτ , v〉 = (f, v)Hτ and 〈F, v〉 = (f, v)H ,

respectively. In a next step, we define the local bilinear forms Bτ ∈ L(Hτ , V
′
τ ) and B̂τ ∈ L(Û , V ′

τ ) by

〈Bτu, v〉 =
(
u, Ladv

)
Hτ
, 〈B̂τ û, v〉 =

〈
ûτ , γ

ad
τ v
〉
,

and observe that
(
Lu, v

)
Hτ

= 〈Bτu, v〉 + 〈B̂τγτu, v〉. For the global operator B ∈ L(H × Û , V ′) given by

〈B(u, û), v〉 =
∑

τ 〈Bτuτ + B̂τ û, vτ 〉, we find that the solution usol ∈ U of Lusol = f and its trace ûsol = γΓu
sol

satisfy

B
(
usol, ûsol

)
= F. (5.2)

This observation motivates our interest to focus on the properties of B(·, ·). The following lemma shows that
(5.2) has a unique solution and thus is equivalent to our original problem.

Lemma 5.1. The operator B ∈ L(H × Û , V ′) is bounded by∣∣〈B(u, û), v〉
∣∣ ≤ CB ‖(u, û)‖H×Û‖v‖V , (u, û) ∈ H × Û

with CB =
√

2, and for given f ∈ H a unique solution of (5.2) exists.

Proof. Using (5.1) we obtain for (u, û) ∈ H × Û∣∣∣∑
τ
〈Bτuτ , vτ 〉

∣∣∣ ≤∑
τ
‖uτ‖Hτ ‖Ladvτ‖Hτ ≤ ‖u‖H‖v‖V ,∣∣∣∑

τ
〈B̂τ û, vτ 〉

∣∣∣ =
∣∣∣∑

τ
〈û, γad

τ vτ 〉
∣∣∣ ≤ ‖û‖Û‖v‖V ,

and thus
∣∣〈B(u, û), v〉

∣∣ ≤ (‖u‖H + ‖û‖Û

)
‖v‖V ≤

√
2‖(u, û)‖H×Û‖v‖V .

The solution usol ∈ U of Lusol = f is unique, and we have B(usol, γΓu
sol) = F by construction. Thus, it is

sufficient to show that B is injective. Let (u, û) ∈ U × Û be a solution of the homogeneous problem B(u, û) = 0.
In the first step, we test with v ∈ N (γΓ ) ⊂ U which yields

0 = 〈B(u, û), v〉 = (u, Ladv)H = (Lu, v)H .

Since N (γΓ ) is dense in H , this implies Lu = 0 and since L is injective, we obtain u = 0. Then, we have
0 = 〈B(0, û), v〉 =

∑
τ 〈B̂τ û, vτ 〉 for all v ∈ V , with implies û = 0, since B̂τ is injective. This shows that B is

injective on U × Û , and since U is dense in H and B is continuous, B is also injective on H × Û . �

The Schur complement. For the solution of the equation B(usol, ûsol) = F we now construct a Schur complement
problem. To do so, we introduce self-adjoint and positive operators Aτ ∈ L(Vτ , V

′
τ ) and A ∈ L(V, V ′) by

〈Aτvτ , ṽτ 〉 =
(
vτ , ṽτ

)
Hτ

+
(
Ladvτ , L

adṽτ

)
Hτ
, 〈Av, ṽ〉 =

∑
τ
〈Aτvτ , ṽτ 〉,

and the Schur complement S = B′A−1B ∈ L(H × Û ,H ′ × Û ′). This gives

S(usol, ûsol) = B′A−1F.

We now show that this problem is well-posed using the abstract theory of Section 3 with Y = H × Û .

Lemma 5.2. We have for all (u, û) ∈ H × Û

cS ‖(u, û)‖2
H×Û

≤ 〈S(u, û), (u, û)〉 ≤ CS ‖(u, û)‖2
H×Û

with cS = (4C2
L + 2)−1 and CS = 2.
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Proof. We start with the proof of the upper bound. We have 〈Av, v〉 = ‖v‖2
V , 〈F,A−1F 〉 = ‖F‖2

V ′ , and

〈S(u, û), (u, û)〉 = 〈B(u, û), A−1B(u, û)〉 = ‖B(u, û)‖2
V ′ = sup

v∈V

∣∣〈B(u, û), v〉
∣∣2

‖v‖2
V

· (5.3)

Thus, Lemma 5.1 yields the upper bound CS = C2
B = 2.

To show the lower bound, we use that for all v ∈ V ⊂ H a function uv ∈ U with Luv = v exists. Using the
definition of the norm in U and Û , we get

‖(uv, γΓuv)‖2
H×Û

= ‖uv‖2
H + ‖γΓuv‖2

Û
≤ ‖uv‖2

H + ‖uv‖2
U = 2‖uv‖2

H + ‖Luv‖2
H

≤ (2C2
L + 1) ‖Luv‖2

H = (2C2
L + 1) ‖v‖2

H .

This observation and 〈B(uv, γΓuv), v〉 = (Luv, v)H = ‖v‖2
H yield

sup
(u,û)∈H×Û

|〈B(u, û), v〉|
‖(u, û)‖H×Û

≥ 〈B(uv, γΓuv), v〉
‖(uv, γΓuv)‖H×Û

≥ 1√
2C2

L + 1
‖v‖H .

Moreover testing with (u, û) = (Ladv, 0), a second lower bound is obtained

sup
(u,û)∈H×Û

|〈B(u, û), v〉|
‖(u, û)‖H×Û

≥ 〈B(Ladv, 0), v〉
‖Ladv‖H

= ‖Ladv‖H .

Combining these two estimates gives

sup
(u,û)∈H×Û

|〈B(u, û), v〉|
‖(u, û)‖H×Û

≥ max

{
‖v‖H√
2C2

L + 1
, ‖Ladv‖H

}
≥
√
‖v‖2

H + ‖Ladv‖2
H√

2
√

2C2
L + 1

=
1√

4C2
L + 2

‖v‖V .

Recalling that B is injective, the lower bound is now obtained by duality, see, e.g., [6], Lemma 4.4.2. �

The skeleton reduction. Finally we eliminate usol and obtain a positive definite system for the trace ûsol. We
point out that usol can be recovered locally from ûsol. This is an attractive feature for the discrete setting.

Inserting û = 0 gives for the local Schur complement Sτ = B′
τA

−1
τ Bτ the estimate cS ‖uτ‖2

Hτ
≤ 〈Sτuτ , uτ 〉.

Thus, we can construct the local projection Pτ = idVτ −A−1
τ BτS

−1
τ B′

τ on N (B′
τ ) with PτA

−1
τ Bτ = 0. Moreover,

we have AτPτ = P ′
τAτ , i.e., Pτ is an orthogonal projection in Vτ .

We use the projection to eliminate the local solutions usol
τ ∈ Hτ and thus for the reduction to the skeleton

values Û . We obtain from Bτu
sol + B̂τ û

sol = Fτ the local equation PτA
−1
τ B̂τ û

sol = PτA
−1
τ Fτ . Setting on the

skeleton Ŝ =
∑

τ B̂
′
τPτA

−1
τ B̂τ and F̂ =

∑
τ B̂

′
τPτA

−1
τ Fτ , the global equation for usol can be rewritten as

Ŝûsol = F̂ . (5.4)

Lemma 5.3. We have cS ‖û‖2
Û
≤ 〈Ŝû, û〉 ≤ ‖û‖2

Û
for û ∈ Û .

Proof. For given û ∈ Û and the special choice uτ = −S−1
τ B′

τA
−1
τ B̂τ û, we have

Bτuτ + B̂τ û = (−BτS
−1
τ B′

τA
−1
τ + idV ′

τ
)B̂τ û = P ′

τ B̂τ û.

Using PτA
−1
τ P ′

τ = PτA
−1
τ , we obtain for u = (uτ )

〈S(u, û), (u, û)〉 =
∑

τ
〈Bτuτ + B̂τ û, A

−1
τ (Bτuτ + B̂τ û)〉 =

∑
τ
〈P ′

τ B̂τ û, A
−1
τ P ′

τ B̂τ û〉 = 〈Ŝû, û〉.
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Then, the lower bound cS ‖û‖2
Û

≤ cS ‖(u, û)‖2
H×Û

≤ 〈Ŝû, û〉 follows from Lemma 5.2, and the upper bound
follows from (5.1) by

〈Ŝû, û〉 =
∑

τ
〈B̂τ û, PτA

−1
τ B̂τ û〉 ≤

∑
τ
‖B̂τ û‖V ′

τ
‖PτA

−1
τ B̂τ û‖Vτ

≤
∑

τ
‖B̂τ û‖2

V ′
τ
≤
∑

τ
inf

‖vτ‖Vτ =1
〈ûτ , γ

ad
τ vτ 〉2 ≤ ‖û‖2

Û
. �

This shows that Ŝ is positive and the equation (5.4) has a unique solution ûsol. Then, the local solutions
usol

τ = S−1
τ B′

τA
−1
τ (Fτ − B̂τ û

sol) are determined by the skeleton solution and the right-hand side.

6. The discrete substructuring method

In this section, we firstly proceed exactly as in the continuous setting and then comment on inf-sup stability
and preconditioning. Since the Schur complement equation for the continuous problem corresponds to a saddle
point problem, we need a uniform inf-sup stable discretization. Let Hτ,h ⊂ Hτ be local finite element spaces,
and let Ûh ⊂ Û be the trace space of a conforming finite element space. Then, we assume that discrete spaces
Vτ,h ⊂ Vτ and β0 ∈ (0, 1) exists satisfying for all (uτ,h, ûh) ∈ Hτ,h × Ûh and τ ∈ T

sup
vτ,h∈Vτ,h

|〈Bτuτ,h + B̂τ ûh, vτ,h〉|
‖vτ,h‖Vτ

≥ β0 sup
vτ∈Vτ

|〈Bτuτ,h + B̂τ ûh, vτ 〉|
‖vτ‖Vτ

·

Let Bτ,h, B̂τ,h, Aτ,h, and Fτ,h be the Galerkin approximations of Bτ , B̂τ , Aτ , and Fτ , i.e., for uτ,h ∈ Hτ,h,
ûτ,h ∈ Ûh, and vτ,h, ṽτ,h ∈ Vτ,h we have

〈Bτ,huτ,h, vτ,h〉 = 〈Bτuτ,h, vτ,h〉, 〈B̂τ,hûτ,h, vτ,h〉 = 〈B̂τ ûτ,h, vτ,h〉,
〈Aτ,hvτ,h, ṽτ,h〉 = 〈Aτvτ,h, ṽτ,h〉, 〈Fτ,h, vτ,h〉 = 〈Fτ , vτ,h〉.

As in the continuous setting, we define the spaces Hh =
∏

τ Hτ,h and Vh =
∏

τ Vτ,h. The Galerkin approxima-
tions of B, A, and F are denoted by Bh ∈ L(Hh × Ûh, Vh), Ah ∈ L(Vh, V

′
h), and Fh ∈ V ′

h. Since Ah is symmetric
and positive, the discrete approximation Sh = B′

hA
−1
h Bh ∈ L(Hh × Ûh, H

′
h × Û ′

h) of S is well-defined.
A direct approximation of the equation B(usol, ûsol) = F requires that the discrete solution spaceHh×Ûh and

the test space have the same dimension. This can be achieved by selecting the test space A−1
h Bh(Hh× Ûh) ⊂ Vh,

or equivalently, by the solution of the discrete Schur complement problem given by Sh(usol
h , ûsol

h ) = B′
hA

−1
h Fh.

We now show that the local inf-sup stability guarantees that Sh is uniformly positive in Yh = Hh × Ûh, so
that a unique solution of the Schur complement problem exists.

Lemma 6.1. We have for all (uh, ûh) ∈ Hh × Ûh

cSβ
2
0 ‖(uh, ûh)‖2

H×Û
≤ 〈Sh(uh, ûh), (uh, ûh)〉 ≤ CS ‖(uh, ûh)‖2

H×Û
.

Proof. The upper bound follows from the continuity of the operator B. More precisely, we get

sup
vh∈Vh

|〈Bh(uh, ûh), vh〉|
‖vh‖V

≤ sup
v∈V

|〈B(uh, ûh), v〉|
‖v‖V

≤ CB ‖(u, û)‖H×Û .

By construction of Vτ,h, we have for all (uh, ûh) ∈ Hh × Ûh

〈Sh(uh, ûh), (uh, ûh)〉 = sup
vh∈Vh

|〈Bh(uh, ûh), vh〉|2
‖vh‖2

V

=
∑

τ
sup

vτ,h∈Vτ,h

|〈Bτ,huτ,h + B̂τ,hûh, vτ,h〉|2
‖vτ,h‖2

Vτ

≥ β2
0

∑
τ

sup
vτ∈Vτ

|〈Bτuτ,h +Bτ ûh, vτ 〉|2
‖vτ‖2

Vτ

= β2
0 〈S(uh, ûh), (uh, ûh)〉,

so that the lower bound is obtained from Lemma 5.2. �
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Lemma 6.1 allows us to formulate an a priori bound for (usol, ûsol) − (usol
h , ûsol

h ).

Theorem 6.2. We have the a priori bound

‖
(
usol, ûsol

)
−
(
usol

h , ûsol
h

)
‖H×Û ≤

√
CS

β0
√
cS

inf
(uh,ûh)∈Hh×Ûh

‖
(
usol, ûsol

)
− (uh, ûh)‖H×Û .

Proof. Combining (3.3) with Lemmas 5.2 and6.1, see also Theorem2.1 from [20], gives the a priori bound. �

Remark 6.3. We note that Theorem 6.2 can be regarded as an extension of Céa’s lemma to the more general
setting of first order systems. More precisely, the stability and the inf-sup constants of first order systems play
the same role as the continuity and coercivity constants for Céa’s lemma, respectively. For parameter dependent
problems, the ratio

√
CS/(

√
cSβ0) = 2

√
C2

L + 1/β0 has to be uniformly bounded to obtain robust estimates
with respect to the parameter space.

The skeleton reduction. For the elimination of the inner degrees of freedom, we proceed as in the continuous
case. From Lemma 6.1 we obtain for the discrete local Schur complement Sτ,h = B′

τ,hA
−1
τ,hBτ,h the estimate

cSβ
2
0 ‖uτ,h‖2

Hτ
≤ 〈Sτ,huτ,h, uτ,h〉. Thus, the local operators Sτ,h can be inverted, and we can define the local

projections Pτ,h = idVτ,h
−A−1

τ,hBτ,hS
−1
τ,hB

′
τ,h on N (B′

τ,h) and

Ŝh =
∑

τ
B̂′

τ,hPτ,hA
−1
τ,hB̂τ,h, F̂h =

∑
τ
B̂′

τ,hPτ,hA
−1
τ,hFτ,h.

Analogously to Lemma 5.3, we obtain spectral bounds

cSβ
2
0 ‖ûh‖2

Û
≤ 〈Ŝhûh, ûh〉 ≤ ‖ûh‖2

Û
, ûh ∈ Ûh. (6.1)

This shows that Ŝh is positive, and ûsol
h ∈ Ûh is the unique solution of

Ŝhû
sol
h = F̂h. (6.2)

Then, local computations give usol
τ,h = S−1

τ,hB
′
τ,hA

−1
τ,h(Fτ,h − B̂τ,hû

sol
h ) for all τ .

Inf-sup stability. So far we have been assuming the existence of a uniform discrete inf-sup constant. Here, we
derive a simple criterion and show that inf-sup stability can be achieved if Vh is large enough.

We start with the explicit evaluation of the supremum. For given (uτ,h, ûh) ∈ Hτ,h × Ûh, we define locally
Fτ = Bτuτ,h + B̂τ ûh ∈ V ′

τ and Fτ,h = Bτ,huτ,h + B̂τ,hûh ∈ V ′
τ,h, and we observe

‖A−1
τ,hFτ,h‖Vτ =

√
〈Aτ,hA

−1
τ,hFτ,h, A

−1
τ,hFτ,h〉 =

√
〈Fτ,h, A

−1
τ,hFτ,h〉

= sup
vτ,h∈Vτ,h

|〈Bτ,huτ,h + B̂τ,hûh, vτ,h〉|
‖vτ,h‖Vτ

= sup
vτ,h∈Vτ,h

|〈Bτuτ,h + B̂τ ûh, vτ,h〉|
‖vτ,h‖Vτ

≤ sup
vτ∈Vτ

|〈Bτuτ,h +Bτ ûh, vτ 〉|
‖vτ‖Vτ

=
√
〈Fτ , A

−1
τ Fτ 〉 = ‖A−1

τ Fτ‖Vτ .

Thus, uniform inf-sup stability is obtained if we can show ‖A−1
τ,hFτ,h‖Vτ ≥ β0‖A−1

τ Fτ‖Vτ for some β0 ∈ (0, 1)
independent of the mesh size. For a more detailed discussion, we define the spaces Wτ = A−1

τ (BτHτ,h + B̂τ Ûh)
and Wτ,h = A−1

τ,h(Bτ,hHτ,h + B̂τ,hÛh). Note that dim(Wτ ) ≤ dim(Hτ,h) + dim(Ûh) in our applications. An
obvious requirement for inf-sup stability is dim(Wτ,h) = dim(Wτ ). Since we have dim(Wτ,h) ≤ dim(Vτ,h), this
implies that Vτ,h has to be large enough.

Now we discuss two cases. In the first case, we assume that Wτ can be determined explicitly. Then, we can
compute β0,τ > 0 for every τ by a simple eigenvalue analysis in Rdim(Wτ ). For an affine family of subdomains τ
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this reduces to an eigenvalue analysis on a reference element. In this case, a suitable Fortin mapping can
explicitly be constructed, see [20] for the Poisson problem and for linear elasticity.

For the more general case, we assume that Vτ,h,p ⊂ Vτ , p ∈ P , is a dense family of discrete subspaces, so that
the orthogonal projections Pτ,h,p ∈ L(Wτ , Vτ,h,p) satisfy limp∈P ‖Pτ,h,p− idWτ ‖L(Wτ ,Vτ ) = 0. Recalling that Wτ

is finite dimensional, for each β0 ∈ (0, 1) there exists a p ∈ P such that

inf
vτ,h,p∈Vτ,h,p

‖vτ,h,p − wτ‖Vτ ≤ (1 − β0)‖wτ‖Vτ , wτ ∈Wτ .

For given (uτ,h, ûh) ∈ Hτ,h × Ûh, we define wτ = A−1
τ (Bτuτ,h + B̂τ ûh) ∈ Wτ and the approximation wτ,h,p =

A−1
τ,h,p(Bτ,h,puτ,h + B̂τ,h,pûh) ∈Wτ,h,p. Then we observe

‖wτ,h,p − wτ‖Vτ = inf
vτ,h,p∈Vτ,h,p

‖vτ,h,p − wτ‖Vτ .

This yields

sup
vτ,h,p∈Vτ,h,p

|〈Bτuτ,h + B̂τ ûh, vτ,h,p〉|
‖vτ,h,p‖V

= ‖wτ,h,p‖Vτ ≥ ‖wτ‖Vτ − ‖wτ,h,p − wτ‖Vτ

≥ β0 ‖wτ‖Vτ = β0 sup
v∈V

|〈Bτuτ,h +Bτ ûh, v〉|
‖v‖V

·

In some applications it may be required to choose p ∈ P depending of τ adaptively which can be achieved by a
local variant of the greedy algorithm in [14].

Preconditioning. Although the discrete problem (6.2) is a well-defined symmetric positive definite system, the
condition number depends on the mesh size. Thus, for an efficient solver a good preconditioner is required.
To our knowledge, up to now for discontinuous Petrov−Galerkin methods only a one-level additive Schwarz
preconditioner is discussed, see [3].

Here, we show that an efficient preconditioner for Ŝh can be constructed from an efficient preconditioner in
Vh ∩ U . For this purpose, assume that a subspace Uh ⊂ U ∩ Vh with trace space γΓ (Uh) = Ûh, a self-adjoint
positive operator AU

h ∈ L(Uh, U
′
h), and a self-adjoint preconditioner Gh ∈ L(U ′

h, Uh) exists.
Let γΓ,h ∈ L(Uh, Ûh) be the Galerkin approximation of γΓ |Uh

and define the corresponding skeleton precon-
ditioner Ĝh = γΓ,hGhγ

′
Γ,h ∈ L(Û ′

h, Ûh) for Ŝh. The following theorem shows that the skeleton preconditioner
inherits its properties from the self-adjoint preconditioner, the inf-sup constant and suitable norm equivalences.

Theorem 6.4. Assume that 0 < cA ≤ CA and 0 < cG ≤ CG exists such that

cA 〈AU
h uh, uh〉 ≤ ‖γΓuh‖2

Û
≤ CA 〈AU

h uh, uh〉, (6.3)

cG 〈AU
h uh, uh〉 ≤ 〈AU

h uh, GhA
U
h uh〉 ≤ CG 〈AU

h uh, uh〉 (6.4)

holds for uh ∈ Uh. Then, with cĜ = cGcAcSβ
2
0 and CĜ = CGCA, we have

cĜ 〈Ŝhûh, ûh〉 ≤ 〈Ŝhûh, ĜhŜhûh〉 ≤ CĜ 〈Ŝhûh, ûh〉, ûh ∈ Ûh .

Proof. We proceed in two steps. Firstly, we bound 〈Ŝhûh, ĜhŜhûh〉 in terms of (6.4). Secondly, we show the
spectral equivalence of Ŝh and ŜhγΓ,hA

−1
h γ′Γ,hŜh. We have for ûh ∈ Ûh

〈Ŝhûh, ĜhŜhûh〉 = 〈AU
h (AU

h )−1γ′Γ,hŜhûh, GhA
U
h (AU

h )−1γ′Γ,hŜhûh〉

and thus, using (6.4),

cG 〈γ′Γ,hŜhûh, (AU
h )−1γ′Γ,hŜhûh〉 ≤ 〈Ŝhûh, ĜhŜhûh〉 ≤ CG 〈γ′Γ,hŜhûh, (AU

h )−1γ′Γ,hŜhûh〉.
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Introducing ÂU
h =

(
γΓ,h(AU

h )−1γ′Γ,h

)−1 ∈ L(Û , Û ′), this equivalence reads as

cG 〈Ŝhûh, (ÂU
h )−1Ŝhûh〉 ≤ 〈Ŝhûh, ĜhŜhûh〉 ≤ CG 〈Ŝhûh, (ÂU

h )−1Ŝhûh〉. (6.5)

Thus it remains to show that Ŝh(ÂU
h )−1Ŝh is spectrally equivalent to Ŝh.

For given ûh ∈ Ûh define uh = (AU
h )−1γ′Γ,hÂ

U
h ûh so that γΓ,huh = ûh and 〈AU

h uh, uh〉 = 〈ÂU
h ûh, ûh〉. Inserting

these equalities in (6.3) yields

cA 〈ÂU
h ûh, ûh〉 ≤ ‖ûh‖2

Û
≤ CA 〈ÂU

h ûh, ûh〉, ûh ∈ Ûh. (6.6)

Together with the spectral bound (6.1), we obtain

cAcSβ
2
0 〈ÂU

h ûh, ûh〉 ≤ 〈Ŝhûh, ûh〉 ≤ CA 〈ÂU
h ûh, ûh〉, ûh ∈ Ûh

or equivalently

cAcSβ
2
0 〈F̂h, Ŝ

−1
h F̂h〉 ≤ 〈F̂h,

(
ÂU

h

)−1
F̂h〉 ≤ CA 〈F̂h, Ŝ

−1
h F̂h〉, F̂h ∈ Û ′

h.

The choice F̂h = Ŝhûh now gives

cAcSβ
2
0 〈Ŝhûh, ûh〉 ≤ 〈Ŝhûh,

(
ÂU

h

)−1
Ŝhûh〉 ≤ CA 〈Ŝhûh, ûh〉

and in combination with (6.5) the assertion is verified. �

We shortly comment on a suitable construction of Uh satisfying (6.3). Let P̂Γ ∈ L(U,N (γΓ )) be the orthogonal
projection to N (γΓ ). Then, we have

‖γΓuh‖Û = inf
v∈N (γΓ )

‖uh − v‖U = ‖uh − P̂Γuh‖U .

This shows that choosing Uh =
(
idUh

−P̂Γ,h

)
(U ∩Vh) with the orthogonal projection P̂Γ,h ∈ L(U ∩Vh,N (γΓ,h))

gives (6.3) with cA ∈ (0, 1) close to 1 and CA = 1, if Vh is fine enough and if the operator AU
h is given by

〈AU
h uh, ũh〉 = (uh, ũh)H + (Luh, Lũh)H .

Error control. The condition Ûh ⊂ γΓ (Vh) allows for a local reconstruction of the discrete skeleton solution
ûsol

h ∈ Ûh in U by determining vsol
h ∈ Vh such that γΓ v

sol
h = ûsol

h . Then, we have vsol
h ∈ U ∩ Vh and the error

bound

‖ûsol − ûsol
h ‖Û ≤ ‖usol − vsol

h ‖U ≤
√

1 + C2
L ‖L(usol − vsol

h )‖H =
√

1 + C2
L ‖f − Lvsol

h ‖H . (6.7)

In the special case Ûh = γΓ (Vh) and N (γΓ ) = {0} the reconstruction is unique. Then, the error bound is
minimal for the result of the standard least squares method in Uh = U ∩ Vh, i.e., by computing a minimizer of
R(vh) = 1

2‖f − Lvh‖2
H .

Better results can be expected if N (γΓ ) �= {0}, where the lifting vsol
τ,h with γΓ v

sol
h = ûsol

h is not unique, i.e.,

vsol
τ,h ∈ A−1

τ,hγ
′
τ,h

(
γτ,hA

−1
τ,hγ

′
τ,h

)−1
ûsol

h + N (γτ ).

Uniqueness can be achieved by the additional condition (Lvsol
τ,h − f, vh)Hτ = 0 for vh ∈ N (γτ ).
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Figure 1. Isolines of p for a diffusion problem with homogeneous Dirichlet boundary values
on the top boundary (x2 = 1), Neumann boundary values σ · n = 1 on the bottom boundary
(x2 = 0), and homogeneous Neumann boundary values else (left), and isolines of |σ| for nearly
incompressible linear elasticity with homogeneous Dirichlet boundary values on the bottom
boundary (x2 = 0), a pressure load for x2 = 1, and homogeneous Neumann boundary values
else (right).

7. Numerical examples

As a proof of concept, we consider two simple examples. In both cases we test the convergence of the
discretization by computing the error bound (6.7), and we test the convergence of the skeleton preconditioner Ĝh.

The first example is a diffusion problem −Δp = 0 in Ω ⊂ (0, 1)2 with impenetrable obstacles in the domain,
see Figure 1 for the geometry and boundary conditions. Let Uh = RT0,∂ΩN(Th)×S1,∂ΩD(Th) be the lowest order
finite element space, Ûh = γΓ (Uh) its trace space, HK = P0(K)2 × P0(K), and VK = P1(K)2 × P1(K). For
preconditioning, we choose

〈AU
h

(
(σh, ph), (σ̃h, p̃h)

)
= (σh, σ̃h)Ω + (∇ · σh,∇ · σ̃h)Ω + (ph, p̃h)Ω + (∇ph,∇p̃h)Ω, (σh, ph), (σ̃h, p̃h) ∈ Uh.

In the first component, Gh is a H(div, Ω) multigrid preconditioner with hybrid smoothing [24], and in the
second component we use a parallel damped block Jacobi smoothing and local Gauß–Seidel smoothing on each
processor [32]. As stopping criteria for the parallel Krylov iteration with V(2,2)-multigrid preconditioning, we
use a residual reduction by the factor 10−12. The results in the upper part of Table 1 show asymptotically the
expected convergence rate O(h

2
3 ) for the lowest order approximation and mesh independent convergence for the

multigrid preconditioner.
In our second example, we test the robustness of the discrete scheme for nearly incompressible 2D linear

elasticity − div Cε(u) = 0 with constant pressure load σn = −p0n on ∂ΩN ⊂ ∂Ω, see Figure 1. Here, we use
HK = P0(K)2×2

sym × P0(K)2 and VK = P1(K)2×2
sym × P1(K)2, and a V(4,4)-multigrid cycle is applied. The results

in the lower part of Table 1 show robustness of the approximation and for the multigrid preconditioner in the
incompressible limit.

The transfer to more challenging problems requires the proper choice of AU
h in Uh = Vh ∩ U , an efficient

preconditioner Gh, and for the error control a suitable reconstruction operator.



ROBUST OPERATOR ESTIMATES AND SUBSTRUCTURING METHODS FOR FIRST-ORDER SYSTEMS 1493

Table 1. Numerical results for the diffusion problem and for linear elasticity. The recon-
struction in (6.7) is determined by the evaluation of ûsol at the nodal points of Uh, and
the error is estimated by ρh = ‖(σ + ∇p,∇ · σ − f)‖Ω for the diffusion problem and by
ρh = ‖(C−1σ − Du, div σ + f)‖Ω for elasticity.

number of triangles 1 912 7 648 30 592 122 368 489 472 1 957 888 7 831 552

diffusion dim(Ûh) 4 072 15 808 62 224 246 832 983 152 3 924 208 15 679 984

ρh 0.24044 0.15507 0.09852 0.06227 0.03928 0.02475 0.01560

log2
ρ2h
ρh

0.633 0.654 0.662 0.665 0.666 0.666

multigrid steps 19 20 20 21 21 21

elasticity dim(Ûh) 8 144 31 616 124 448 493 664 1 966 304 7 848 416

ν = 0.49 ρh 0.010224 0.006978 0.004593 0.003028 0.002010 0.0013434

log2
ρ2h
ρh

0.551 0.60333 0.601 0.591 0.582

multigrid steps 32 32 33 34 36

ν = 0.499 ρh 0.010170 0.006941 0.004569 0.003014 0.002002 0.001338

log2
ρ2h
ρh

0.550 0.603 0.600 0.590 0.580

multigrid steps 32 33 33 34 36

ν = 0.4999 ρh 0.010164 0.006938 0.004567 0.003012 0.002001 0.001338

log2
ρ2h
ρh

0.550 0.603 0.600 0.590 0.580

multigrid steps 33 33 33 34 36

Concluding remarks. Robust operator estimates and, as a consequence, a priori estimates in operator depending
norms are essential for the design of robust discretization methods and robust numerical solvers. Here we have
shown that for representative problem classes suitable stability estimates can be provided leading to convergence
estimates of discontinuous Petrov−Galerkin methods. The efficiency of the preconditioning is demonstrated for
diffusion and elasticity. Further numerical results for the Poisson problem [15], for the transport equation [13],
for convection diffusion problems [12, 18], for the Helmholtz problem [16], and for the Stokes problem [30]
underline the flexibility and efficiency of discontinuous Petrov–Galerkin methods. Nevertheless, to exploit the
full potential of a Petrov–Galerkin approach, further research is required to identify the optimal balance of local
approximations and skeleton discretizations.
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