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PARAMETER ESTIMATION IN NON-LINEAR MIXED EFFECTS MODELS
WITH SAEM ALGORITHM: EXTENSION FROM ODE TO PDE
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Abstract. Parameter estimation in non linear mixed effects models requires a large number of evalu-
ations of the model to study. For ordinary differential equations, the overall computation time remains
reasonable. However when the model itself is complex (for instance when it is a set of partial differen-
tial equations) it may be time consuming to evaluate it for a single set of parameters. The procedures
of population parametrization (for instance using SAEM algorithms) are then very long and in some
cases impossible to do within a reasonable time. We propose here a very simple methodology which
may accelerate population parametrization of complex models, including partial differential equations
models. We illustrate our method on the classical KPP equation.
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1. Introduction

The context of this paper is the following: we assume that we have a series of individuals forming a population
and that we study the evolution of a given characteristic in time, of each individual (e.g. the size, the weight, a
drug concentration, etc.). We further assume that we have a model (an ordinary differential equation (ODE),
a system of ODE, a partial differential equation (PDE), or any other mathematical model) which depends on
parameters and allows, providing the good parameters associated to an individual, to compute a curve which
fit the time evolution of such individual. In this paper, the time evolving quantity to be fitted is assumed to be
scalar. The considered problem is thus, given the discrete time evolution of each individual of the population,
to recover the parameters of the model verifying the best fit (in a sense to be defined). It is a well-known kind
of problem which enters in the so called “inverse problem” category.

To do so we can distinguish two general kinds of strategies. The first one is to consider each individual
separately and to apply any inverse problem methodology to compute the “best” parameters of one individ-
ual (without using the information known on the other individuals). There is an abundant literature for this
“individual” inverse problem and we refer to the following books for an overview [1, 9, 20]. Let us mention in
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particular the so called “adjoint state” method which belongs to this category and has a long history [7, 16].
Such approaches are generally efficient but if the population has a lot of individuals, the computational time to
obtain the parameters for all individuals can be really long.

The second strategy is to use so called “population” approaches which turn the parameters estimation in
a “statistical” inverse problem where all the population data are used together to estimate, first, the average
population parameters and, second, the inter individual variability (in other words, the deviation from the
mean) to recover the parameters of each individual. For an introduction to statistical and computational inverse
problems, we refer to the book [10].

This paper is mainly concerned with population approach to make the parameters estimation. More precisely,
we concentrate on the use of the SAEM-MCMC algorithm [3,12] which has proved to be very efficient to estimate
population parameters of complex mixed effects models defined by ODE [15,19] or SDE [4,5]. Still, this algorithm
was never extended to the use with PDEs and this is the goal of present article.

The essential reason for which PDEs were not used in SAEM algorithm is it involves many calls to the PDE
solver, and thus this leads to prohibitive computational times in practice. To alleviate this problem, we propose
to couple the SAEM algorithm with an interpolation of pre-computed solutions of the PDE model.

Of note, this PDE pre-computation strategy can also be used in the context of “individual” approaches
since they also involve a lot of calls to the PDE solver. In the context of population data, the combination of
traditional SAEM algorithm and pre-computed databases leads to a new computational method.

We note that the ideas developed in this paper are close to the methodologies of model order reduction
(MOR) for which there exist a huge literature. For an overview of the various methods, we refer to the book [7]
and the special issue [3], as well as references therein. Of course, the sole idea of pre-computing solutions of a
complex problem, storing them and using them in conjunction with interpolation to obtain fast approximations
of solution is an old and simple idea. There must have a lot of unpublished works using this idea but, to our
knowledge, it is almost essentially found in the electronic engineering literature (see e.g. [2,8,22]). In this paper,
we describe this interpolation approach both taking into account the qualitative behavior of the function to be
stored as well as implementation choices in a multiprocessing context.

This general framework coupling SAEM and PDEs is then illustrated with the KPP equation, a classical model
used for reaction-diffusion processes and for associated propagation phenomena (traveling waves). Applications
we have in mind are the following. We suppose that we have two or three dimensional images from a time varying
phenomena. We do not want to tackle the whole complexity of the images. Instead, we want to work with scalar
data extracted from these images. For instance, we can think about the volume of a tumour extracted from
a MRI image. However, we do not want to reduce to a model based on an ordinary differential equation, but
instead we want to work with an underlying partial differential equation model, in order to keep trace of spatial
effects (geometries of the solution and of the domain). Therefore the output of our model will be spatially
averaged quantities of solutions of partial differential equations posed in bounded domains.

For the tumour example above, the PDE can be the KPP equation (with tumoral concentration as the
unknown), and the tumour volume is the space integral of the tumoral concentration. This parameter dependent
output is therefore a time sequence of scalars. One of the advantages is that the small size of the output avoids to
deal with delicate storage problems. Our strategy is to speed up the computation of the evaluation of the scalar
time series associated to the solution of the full PDE. This is where the pre-computation philosophy mentioned
above comes into play. We couple a SAEM algorithm with evaluation of the model through interpolation on a
pre-computed mesh of the parameters domain.

This appears to be already very efficient for our tumour application. Namely we try to identify initial po-
sition, reaction coefficient and diffusion coefficient of a KPP reaction-diffusion equation, using temporal series
of measures of the integral of the solution of KPP equation. This is another interesting result of present paper
since it brings new insights on identifiability questions for this PDE which are unveiled thanks to population
approach.

This paper is organised as follows. In Section 2, we present in more details so called “mixed effects models” in
the context of population approach for parameters estimation. We recall essential ideas of the SAEM algorithm
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and we present how we couple it with a pre-compuputation strategy to allow its use with PDEs. We then apply
this new algorithm to the KPP equation and present the results in Section 3. Finally, we draw some further
remarks and perspectives of improvements for this SAEM-PDE approach in Section 4, before concluding the
article.

2. SAEM coupled with pre-computation, for expansive models

2.1. Principle of population approaches

Let us first recall the principles underlying population approaches and mixed effects models (we refer to [14]
for a more detailed description). The main idea is the following: instead of trying to fit each individual set of
data, namely to find individual parameters, we look for the distributions of the individual parameters at the
population level. More precisely, let us consider a model

y = f(t, Z)

where y is the observable, t the time, and Z the individual parameters. The model f may be algebraic, a set of
ordinary differential equations or of partial differential equations.

Of course neither the models nor the measures of y are exact, and random errors should be added. Let us
assume for simplicity that they are stochastically independent and follow a normal distribution law, with mean
0 and standard deviation εσ.

Let us consider N individuals and for each individual, measures of y at times tij (1 ≤ i ≤ N , 1 ≤ j ≤ Ni, Ni

being the numbers of measures for the individual #i). We get measures yij such that

yij = f(tij , Zi) + εij , (2.1)

where
εij ∼ N (

0, ε2σ
)
.

Model (2.1) will lead to so called “mixed effects model” since we will take into account so called “fixed” effects
(mean population parameters) and “random” effects (to describe the variability between individuals of the
population).

Let us consider a fixed individual 1 ≤ i ≤ N . The probability of observing (yij)1≤j≤Ni knowing its individual
set of parameters Zi is

p
(
(yij)|Zi

)
=

1
(εσ

√
2π)Ni

Ni∏
j=1

e
− 1

2
(yij−f(tij ,Zi))

2

ε2
σ .

If we look at this expression as a function of Zi (the observations (yij) being given), we get the likelihood of Zi

(for a given i)

L(Zi) = p
(
(yij)|Zi

)
.

The best fit Zb
i

Zb
i = argmax L(Zi)

is then solution of the classical nonlinear regression problem

Zb
i = argmax

Ni∏
j=1

e−(yij−f(tij ,Zi))
2
.

However in many cases, few data per individual are available, and the non linear regression problem can not be
solved. In these cases, it is interesting to gather all the data and to follow a global population approach.
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The principle is to assume that the individual characteristics follow a (say) normal distribution, and to look
for the average and standard deviation of each characteristic. Of course non normal laws can be treated in the
same way. More precisely we assume that

Zi ∼ N (θm, θ
2
σ)

where θm is the mean of the individual parameters θi in the population, and θ2σ their variance. Let

θpop = (θm, θσ)

be the set of all population characteristics.
In a population approach, we try to identify θm and θσ using the data of all the individuals. The ratio number

of data/number of unknown parameters in then far better.
Let us now detail the population approach. The probability that the individual i has characteristics Zi is

p
(
Zi|θpop

)
=

1
θσ

√
2π

e
− 1

2
(Zi−θm)2

θ2
σ ,

hence the probability for the individual i to have characteristics Zi and data (yij) is

p
(
(yij)j , Zi|θpop

)
=

1
θσ

√
2π

e
− 1

2
(Zi−θm)2

θ2
σ

1
(εσ

√
2π)Ni

Ni∏
j=1

e
− 1

2
(yij−f(tij ,Zi))

2

ε2
σ .

At the population level, the probability to observe individuals with characteristics (Zi)1≤i≤N and data (yij)ij

is then

p̃
(
(yij)ij , (Zi)i|θpop

)
=

1
(θσ

√
2π)N

N∏
i=1

⎡
⎣e

− 1
2

(Zi−θm)2

θ2
σ

1
(εσ

√
2π)Ni

Ni∏
j=1

e
− 1

2
(yij−f(tij ,Zi))

2

ε2
σ

⎤
⎦ .

But (Zi)i are not observed (“hidden variables”), therefore the probability of observing ((yij)ij) knowing θpop is

g
(
(yij)ij |θpop

)
=

∫
p̃
(
(yij)ij , (Zi)i|θpop

)
dZ1 . . . dZn.

The log likelihood of θpop is then

l(θpop) = log g
(
(yij)ij |θpop

)
.

The usual approach leads to the search of θpop,N which is an estimator of θpop and maximizes l:

θpop,N = argmaxθl(θ). (2.2)

2.2. SAEM algorithm

To solve (2.2) is a difficult problem, since it combines two complications: we have to optimize a nonlinear
function, and this function is a multidimensional integral. The idea of SAEM algorithm (Stochastic Approxima-
tion Expectation Maximization algorithm) is to introduce a nearby problem which splits these two difficulties.
In this paragraph we follow the approach of [3].

Namely instead of trying to maximize l we focus on

Q(θ|θ′) =
∫

log p̃
(
(yij)ij , (Zi)i|θ

)
p
(
(Zi)i|(yij)ij , θ

′
)
dZ1 . . . dZN (2.3)

where,

p
(
(Zi)i|(yij)ij , θ

)
=
p̃
(
(yij)ij , (Zi)i|θ

)
g((yij)ij |θ) ,
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g being the normalization function

g((yij)ij |θ) =
∫
p̃
(
(yij)ij , (Zi)i|θ

)
dZ1 . . .dZN .

EM algorithm consists in building the following sequence

θk+1 = argmaxθ Q(θ|θk). (2.4)

As we will see below, this problem is much easier to solver numerically.
It remains to compute Q(θ|θk). For this we use a stochastic approximation (SA) of the integral, namely a

Monte Carlo Markov Chain (MCMC) approach in order to get a sequence (Zkl)l of points, with distribution law
p((Zi)i|(yij)ij , θk). This is easily done since the computation of p̃((yij)ij , (Zi)i|θk) is explicit. Note that (Zkl)l

is a population and is composed of N individuals Zkl
i . We then approximate Q(θ|θk) by (we note θ = (θm, θσ))

Q̃(θ|θk) = − N

2
log(πθσ) −

∑
1≤i≤N Ni

2
log(πεσ)

−
∑

l

∑
1≤i≤N

(Zkl
i − θm)2

2θ2σ
−

∑
l

∑
1≤i≤N

∑
1≤j≤Ni

(
yij − f

(
tij , Z

kl
i

))2

2ε2σ
·

Note that the optimization step (2.4) is explicit: θk+1 is explicit using the expression of Q̃, which is quadratic
in θ.

Moreover, Theorem 1 of [3] shows that SAEM algorithm converges in the following sense

lim
k→+∞

d(θk,L) = 0

where
L = {θ|∂θl(θ) = 0}

is the set of critical points of l.
SAEM appears to be very efficient and is widely used in applied and industrial problems, in particular in

pharmacokinetics-pharmacodynamics (PKPD) problems (see [5, 15, 19] or [4], for a few examples). However it
is not possible to design fully parallel versions of SAEM, and SAEM is very long if the evaluation of the model
f is time consuming. The aim of this article is to couple SAEM with a parallel pre-computation step.

2.3. Pre-computation revisited

To speed up the evaluation of the model f , a classic and easy approach is to use already computed values
of the model, stored in a grid or a mesh (see e.g. [2, 8, 22]). Then, using interpolation methods, which are very
fast, approximate values of the model can be inferred quickly, without new time consuming evaluations. If the
approximation is good enough, then an evaluation of the model through interpolation may be sufficient. And
only when needed, i.e. when the approximation is poor, one can then improve it by adding more pre-computed
values (and pay the price of time costly evaluations).

In this paper, we describe this interpolation approach both taking into account the qualitative behavior of
the function to be stored as well as implementation choices in a multiprocessing context, issues not presented in
the references mentioned just above. The pre-computation can be done on arbitrary meshes, or on structured
meshes of the bounded parameters space. Interpolation is easier to do on structured meshes, hence in this paper
we illustrate this approach using a cubic structured mesh. However similar ideas may be applied to different
structured or even non structured meshes, up to technical complications in the interpolation routines.
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If we go on with this idea of interpolation of already computed values of the model, two strategies appear:

• once for all pre-computation: the model is computed on a mesh before parameter identification procekdure.
Assuming that the parameters lie in a domain Ω, we compute the model for some points Pi ∈ Ω. During
the parameter identification procedure, we simply approximate the complex model by interpolation with the
values at points Pi, which is very fast. The identification procedure can be done very quickly.
The mesh can be a priori fixed (uniform mesh), or adaptively created. It is more precise and computationally
more efficient to refine the mesh where the model has large changes, hence it is better to refine the mesh non
uniformly, during the pre-computation. Mesh refinement will be done according to some criterion or score,
which must be carefully chosen. This will be described in the following of this section.

• interactive refinement: during the identification procedure, we interpolate the model at (evolving) estimated
set of parameters. If the interpolation quality is too bad, we need to compute the precise value of the model
at this set of parameters (which is time consuming but more precise) and we can add it to the pre-computed
values of the model, leading to a better data-base for the interpolation. A natural idea is then to run
population algorithm for a while, then switch to pre-computation refinement in the areas which are explored
by the population algorithm, and iterate. We will go back to this approach in Section 4.

The main issue is then to construct a grid in an efficient way:

• Interpolation should be easy on the mesh. Here we choose a mesh composed of cubes (tree of cubes) to
ensure construction simplicity and high interpolation speed.

• Mesh should be refined in areas where the function changes rapidly (speed of variation may be measured in
various ways, see below).

2.3.1. Pre-computation algorithm

Let us describe the algorithm in dimension N . We consider J fixed probabilities 0 < qj < 1 with
∑J

j=1 qj = 1
and J positive functions ψj(x) (required precisions, as a simple example, take ψj(x) = 1 for every x). We start
with a cube (or more precisely hyper-rectangle)

Cinit =
N∏

i=1

[xmin,i, xmax,i]

to prescribe the area of search.
The algorithm is iterative. At step n, we have 1 + 2Nn cubes Ci with 1 ≤ i ≤ 1 + 2Nn, organized in a tree.

To each cube we attach J different weights ωj
i (where 1 ≤ j ≤ J , see below for examples of weights), and the

2N values on its 2N summits.
First we choose j between 1 and J with probability qj . Then we choose, amongst the leaves of the tree, the

smallest index i such that
ωj

i

supx∈Ci
ψj(x)

is maximum. We then split the cube Ci in 2N small cubes of equal sizes, which become 2N new leaves of our
tree, the original Ci becoming a node. To each new cube we attach J weights ωj

i (see below).
Then we iterate the procedure at convenience. We stop the algorithm when a criterion is satisfied or after

a fixed number of iterations. We then have a decomposition of the initial cube in a finite number of cubes,
organized in a tree (each node having exactly 2N leaves), with the values of f on each summit.

The crucial point is of course the choice of the weights ωj
i , which may be linked to the volume of the hypercube,

to the variation of the function to study on this cube, or to other more refined criteria.
If we want to evaluate f at some point x, we first look for the cube Ci in which x lies, and then approximate

f by the interpolation finter of the values on the summits of the cube Ci. Note that this procedure is very
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fast, since, by construction, the cubes form a tree, each node having 2N nodes. The identification of the cube
in which x lies is simply a walk on this tree. At each node we simply have to compare the coordinates of x
with the centre of the “node” cube, which immediately gives in which “son” x lies. The interpolation procedure
(approximation of f(x) knowing the values of f on the summits of the cube) is also classical and rapid (linear
in the dimension N).

Note that it is possible to include more information than simply the values of f , like its gradient or higher
order derivatives which sometimes are simply computed using derived models. Interpolation of f in small cubes
may then be done by higher order elements.

2.3.2. Parallelisation of the pre-computation algorithm

The above algorithm may be parallelized in various ways. The best approach is to parallelize the computation
of summits. We construct iteratively two ordered lists: a list of evaluations to do, and a list of cubes. The list
of cubes is initially void, and the list of evaluations to do is 3N (the summits of the first cube, and the summits
of the first splitting of this cube, in this order).

The list of cubes is ordered according to the weights, as described in the previous section.
When all the summits of a sub-cube are computed, it is added to the list of cubes.
When the list of evaluations to do is void, we split the first cube of the list of cubes, which creates at most

3N – 2N new evaluations to do (some of the new points may be already computed).
When a processor has completed an evaluation, it begins to compute the first point of the list of evaluations

to do.
This algorithm insures an optimal use of the processors (no double computations, correct load balancing

between processors).
This algorithm is very versatile. One of the processor (the “master”) handles summit list and cube list,

updates them and regulates the work of the other (Nproc − 1) “slave” processors. The number of involved
processors may be as large as wanted. The time spent in communications will be negligible with respect to the
computation time (in the case of complex models like PDEs).

2.3.3. Weights

Let us now detail some examples of weights ωj
i . The simplest weight is the volume of the cube Ci. The

algorithm then behaves like a classical dichotomy and builds a regular mesh.
Let fk with 1 ≤ k ≤ 2N denotes the 2N values of f at the summits of Ci. Let

fm =
1

2N

2N∑
k=1

fk

be their average. Then we may define ωi as

ω1
i =

1
2N

2N∑
k=1

|fk − fm|.

With this weight the mesh will be refined near areas of variations of f .

An other possibility is to define
ω∞

i = sup
1≤k≤2N

|fk − fm|.

The mesh will also be refined near areas of variations of f , but in a slightly different way.
This last weight may be multiplied by the volume of the cube in order to avoid excessive refinement near

discontinuities, which leads to
ωBV

i = vol(Ci) sup
1≤k≤2N

|fk − fm|
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Figure 1. Example in one space dimension.

Another way to construct weights is for instance to evaluate how well f is approximated by affine functions,
namely

ωlin
i (Ci) = inf

g∈L
sup
xi

|fi − g(xi)|

where xi are the summits of Ci and where L is the set of affine functions.
Let us now discuss the choice of the ψi functions used for the required precisions. In some applications it is

important to evaluate accurately f in some areas of Cinit, whereas crude approximations are sufficient in other
areas of Cinit. Let us give an example. Let φ(x) be some positive function (weight), with

∫
φ(x)dx = 1. To

evaluate
∫

Cinit
φ(x)f(x)dx with a precision δ it is sufficient to evaluate f(x) with a precision δ/|Cinit|φ(x). In

this case, we define

ψ1(x) =
1

φ(x)

and consider ωvol
i = vol(Ci).

2.3.4. Numerical illustrations

In this section we take J = 1 and ψ1(x) = 1 for every x. Let us begin by a simple one dimensional function

f(x) =
1

1 + 1000x2
·

With the weight ω∞
i , the mesh (see Fig. 1) is refined near x = 0 and is almost uniform in the “f” direction,

which is exactly what we want.
In two dimensional space, let us take for instance the following function,

f(x, y) = tanh(20(x+ 0.3)) tanh(10(y − 0.3))

which has large variations near x = −0.3 and y = 0.3. The corresponding mesh (see Fig. 2) is refined near these
two axes with weight ω∞

i .
Figure 3 shows the mesh refinement with f = 1(x−0.3)2+(y+0.3)2<0.3 (weight ωBV

i ).

2.3.5. Errors

In practice the evaluation of the function f is not exact. It involves numerical schemes, which are often very
time consuming, as soon as partial differential equations are involved. The function f is therefore approximated,
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Figure 2. Product of tangents.
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Figure 3. Characteristic function of a disk.

up to a numerical error δnum. In our method we approximate f by interpolations of approximate values of f .
The global error δ of our method is therefore the sum of two terms

δ = δnum + δinterp.

Let us discuss here these two error terms.

• The evaluation of the model is not exact, but depends on numerical approximations. For a partial differential
equation, let h be the typical size of the mesh. Then the time step k will usually be linked to h by k ∼ C0h

α

for some constants C0 and α. Typically, α = 1, 2. The error of the numerical method is then

δnum = C1h
β

for some constant β. The number of cells in the mesh is of order h−d where d = 1, 2, 3 is the physical
dimension. The number of time steps is of order h−α, hence the computational cost of an evaluation is

τnum = C2h
−d−α
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The constant C2 depends on the parameters of the model, often in a severe way, particularly in the case of
sharp front propagation (if one thinks about a PDE model for travelling waves). As α ≥ 1, this means that
τnum changes rapidly with h. For simple methods, β = 1. In this case, to double the precision we need to
multiply the computation time by 2d+α ≥ 2d+1, namely 8 if d = 2 or 16 if d = 3.
If the numerical method is more accurate, the situation is better. However even if β = 2, to double the
precision requires to multiply computation time by 4 if d = 3.

• Interpolation error δinterp. This error is the maximum difference between f and the interpolation of its exact
values at the grid points.

If we want to get an interpolation with a given global error δ, what is the best decomposition of δ into δinterp

and δnum?
If we want to interpolate f with a precision δinterp, we will need O(1/δinterp) points in each variable (for

instance if f is smooth and Lipschitz continuous). This requires O(δ−N
interp) evaluations of f . Each evaluation

must be done with a precision δnum leading to a total computation time of order

τinterp = δ−N
interpδ

−(d+α)/β
num .

Let us define δ by δnum = ηδ. Then

τinterp = δ−N−(d+α)/β(1 − η)−Nη−(d+α)/β.

This time is minimal provided

Nη =
d+ α

β
(1 − η)

which gives

δnum =
d+ α

d+ α+ βN
δ

as an optimal choice.

2.3.6. Generic functions

Let Cinit be the unit cube to fix the ideas. If f is a “generic C1 function”, then to get a precision δ we need
to refine the mesh until the size of the sub-cubes is less than δ/‖∇f‖L∞, which leads to approximately

N(δ) =
(‖∇f‖L∞

δ

)N

sub-cubes. If Tm is the average computation time for one single evaluation of f , the global computation time
over Nproc processors is

T (δ) =
Tm

Nproc

(‖∇f‖L∞

δ

)N

·

To fix the ideas, if Tm = 1 min, and ‖∇f‖L∞/δ = 16 (fourth refinement), we get the following computation
times

Nproc = 1 Nproc = 8 Nproc = 128 Nproc = 1024 Nproc = 10 000
N = 1 16 mn 2 mn 8 s 1 s −
N = 2 4h30 32 mn 2 mn 15 s 2 s
N = 3 3 days 8.5 h 32 mn 4 mn 25 s
N = 4 1.5 month 5.6 d 8.5 h 1 h 6 mn
N = 5 − 3 m 5.6 d 17 h 1.7 h
N = 6 − − 3 m 11 d 1.1 d
N = 7 − − − 6 m 18 d
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For the fifth refinement (‖∇f‖L∞/δ = 32), we get

Nproc = 1 Nproc = 8 Nproc = 128 Nproc = 1024 Nproc = 10 000
N = 1 32 mn 4 mn 16 s 2 s −
N = 2 17 h 2 h 8 mn 1 mn 6 s
N = 3 22 d 3 d 4h30 32 mn 3.3 min
N = 4 − 3 m 5.6 d 17 h 1.7 h
N = 5 − − 6 m 22 d 2.3 d

As we see, under these conditions, N = 4 or N = 5 or N = 6 is the practical limitation of our method, even
on supercomputers. It is therefore crucial to improve our strategy in order to refine the grid only in area of
interests or to use special properties of f to reduce computational cost. We review a few possible strategies in
Section 4.

2.4. The direct coupling between pre-computation and SAEM

This is the easiest and natural way. First, one runs the pre-computation step, in order to get a mesh with a
given interpolation precision. Its output is an approximation of the model fapp through grid interpolation. The
SAEM step is then done with the approximate model fapp.

Let us consider a population with N individuals and parameters θpop. If we apply SAEM algorithm on
this sample, we get an estimator θpop,N of the population parameters. Moreover, when N → +∞, we expect
θpop,N → θpop (see [17] for a result in this direction; see also [18]).

If we apply our algorithm, we get population parameters θ�
pop,N which optimize the likelihood for the ap-

proximate model fapp. As the approximation error goes to 0 (i.e. fapp → f), we expect that θ�
pop,N converges to

θpop,N [13]. Therefore the difference between θ�
pop,N and θpop comes from the combination of an interpolation

error and the fact that the sample is finite. The convergence of this modified SAEM algorithm would deserve
further theoretical studies, which are out of scope of this paper.

Let us conclude this first Section with a few remarks on the SAEM-PDE algorithm. The pre-computation
step is long but can be parallelized very efficiently. Note that the pre-computations can be reused to deal with
another set of data. This is particularly useful if a new individual is added in the study, or if new data are added.
With such coupling that allows a feasible computation of parameters estimation via mixed effects models with
PDEs, it opens interesting applications with real data. As a matter of fact, for one individual, we often only
have a few data in time. For these sparse data, an individual inverse problem approach will potentially give
poor results or no result at all. On the contrary, SAEM allows to take into account all the population data to
make the estimation. This gives more opportunity to increase the accuracy of estimated parameters for each
individual of the population.

3. Application: parametrization of a KPP model with monolix

We want to illustrate the previous methodology in the context of the estimation of the parameters associated
to the so called KPP equation: it is a reaction-diffusion model described by a PDE which was mathematically
studied in the pioneering work of Kolmogoroff, Petrovsky and Piscounoff [11]. Such kind of equation is also
sometimes referred to as the Fisher equation, introduced in the context of the theory of evolution [6]. Actually,
due to its nature, such a model can be used in numerous fields to better understand propagation phenomena
(flame propagation, species invasion, etc) thanks to the existence of particular solutions called “travelling waves”.

In this section, we generate a virtual population of solutions of the KPP equation, assuming log-normal
distributions on its parameters, and adding noise. We then try to recover the distributions of the parameters by
a SAEM approach (using Monolix software [21]). For this we first precompute solutions of the KPP equation on
a regular or non regular mesh, and then run SAEM algorithm using interpolations of the precomputed values of
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KPP equation (instead of the genuine KPP). We discuss the effect of noise and the precision of the parameters
estimates.

3.1. Presentation of the problem

We consider the following classical version of the KPP (or reaction-diffusion) equation:

∂tu−∇.(D∇u) = Ru(1 − u), (3.1)

where u(x) is the unknown concentration (assumed to be initially a compact support function, for instance),
D the diffusion coefficient and R the reaction rate. These equations are posed in a domain Δ with Neumann
boundary conditions. Note that the geometry of the domain Δ can be rather complex (e.g. when u is the density
of tumor cells in the brain). Initially the support of u is very small and located at some point x0 ∈ Δ. Therefore
we may assume that

u(T0, x) = α1|x−x0|≤ε, (3.2)

for some time T0 (in the past). It is well-known that for (3.1) and (3.2), there exists a propagation front
(separating zones where u ≡ 1 and zones where u � 1). The size of the invaded zone (= the zone where u is
close to 1) is defined as

S(t) =
∫

Δ

u(t, x)dx

or by
S(t) = vol (u ≥ σ) ,

where σ > 0 is some detection threshold.
We assume that we have data from a population of individuals at various times t1, . . . , tNt . For an individual,

let S1, . . . , SNt be these data. If we want to compare aforementioned KPP model with data, we have to look for
solutions of (3.1) with initial data (3.2) such that S(ti) is close to Si for 1 ≤ i ≤ Nt.

As a first approximation, α and ε may be fixed to given values (e.g. α ≤ 1, ε� 1)3. It remains to find x0, D
and R such that

θ(x0, D,R) =
∑

1≤i≤Nt

|S(ti) − Si|2

is minimum. It is very long to minimize θ since each evaluation of θ requires the resolution of a complete partial
differential equation in a complex domain.

If now we have a collection of individuals Pj (1 ≤ j ≤ M), with Nj data for the individual #j (sizes Si,j at
times ti,j), we are interested in a population approach to parametrize the model. Namely, we are concerned in
the distribution of the model parameters in the population which maximize the likelihood of the observations
and want to look for the mean and standard deviation of each parameter in the population, e.g.

D ∼ N (
D̄,D2

σ

)
(normal distribution with mean D̄ and variance D2

σ) and similarly for R and x0. Other probabilities may be
considered (uniform law, log normal law, . . .).

The maximization of the likelihood of the observations (through SAEM algorithm) leads to a large number
of evaluations of the model, with a huge computational cost. We will therefore test our method on this problem.

Remark. An example of such problem is given by clinical data of patients with brain tumors called gliomas.
The density of tumor cells is given by u and the size of the tumor is given by Si,j which is measured with MRI.
But the spectrum of application of the method is as wide as the one of the fields described by KPP equation.

3Note that to have the existence of a travelling wave associated to the invasion front, the maximum of u(T0) should be sufficiently
close to 1. If this is not the case, diffusion will be dominant for small times and then, for longer times, there will be a global growth
associated to reaction and no travelling wave.
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Figure 4. An example of a uniform mesh of the space of parameters (fifth uniform splitting).
The two parameters are w = D/R and x0.

3.2. Technical details

The following method may be applied to any domain Δ. For sake of simplicity, we present the results in the
one dimensional case but the same approach can be done with 2D or 3D images.

Note that the equation is left unchanged if we multiply D and R by some constant and divide time by the
same constant. This reduces by one the number of parameters. The independent parameters of the model are:
D/R and x0. Note that in three dimensional space we would have two more parameters to fully describe the
initial position of the invaded zone, namely (x0, y0, z0) [with a small abuse of notation here, since y0 and z0 are
spatial coordinates and not observations, for instance].

We first give a priori bounds on these various parameters: 0 ≤ x0 ≤ 1. For R and D, we assume, following
classical values of the literature in the context of glioma modelling, 7.2×10−3 ≤ R ≤ 4.0×10−2 and 2.5×10−7 ≤
D ≤ 13.9×10−7. This leads to 6.2×10−6 ≤ D/R ≤ 1.9×10−4. For rescaled time, we will consider 0 ≤ t ≤ 8000.
We note that for all KPP simulations, the initial solution has a support with ε = 0.03 and α = 1.

Note that D/R is related to the “width” of the progressive waves, and the computation cost increases
drastically as D/R decreases. Typically, one evaluation lasts between a few seconds and a few minutes on a
single processor, using standard PDE solvers, depending on the value of D/R.

As described in previous sections, if the weight is the volume, the precomputation grid is uniform. It takes
40mn7s for the fifth uniform splitting (45 cubes, see Fig. 4) on two cores (one master and one worker) of a quad-
core AMD Opteron (2.7 GHz) and 40 h 31 mn 10 s for the eighth splitting (48 cubes). Of course, explained
previously, this could be parallelized, with a complete efficiency: 2 mn 54 s on 16 cores (one master and 15
workers) for the fifth uniform, and 3 h 3 mn 18 s for the eighth splitting, that means 14 times less than with
only one worker. We implemented such parallelized algorithms in Python.

For the uniform grid, the parallelization is trivial as all the computations are independent. For the non-
uniform grid, we define, for each iteration of the refinement, all the summits to be computed, and do all the
computation in parallel. The determination of these summits has to be done in a sequential way. The cost of
the KPP computation is long enough to keep a good efficiency of the parallelization.

Approximate evaluation of the model through interpolation is very fast (far below 1 s). As a consequence, a
Monolix run lasts typically 10 min with our current implementation; it depends also on the number of estimated
parameters. This is more than for a simple ordinary differential equation, but is still a reasonable time compared
to a classical inverse problem approach. We detail a few specific examples in the next section.
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Figure 5. An example of an inhomogeneous mesh of the space of parameters (with 500 points).
The two parameters are w = D/R and x0. We can see that the finer zones have a smaller size
than the size the homogeneous mesh of Figure 4 (which contains 1089 points): the mesh is here
more refined in zones where the model has strong variations and coarsened in zones where the
variations are small.

3.3. Results of the parameters estimation

Within the KPP framework, we can separate the nature of the parameters between those related to reac-
tion/diffusion (R and D) and those related to the space (x0). We will present here several tests of parameters
estimation. To do so, we consider a population of 100 individuals characterized by (D,R, x0). Random param-
eters are generated with a lognormal distribution. The individuals are generated by solving (3.1) and (3.2)
with the associated set (D,R, x0). From these solutions (eventually perturbed by a given noise), we extract 101
values in time to obtain individual time series {ti,j , Si,j}, i = 1 . . . 101, j = 1 . . . 100. These series will be given
to Monolix as data to perform the parameters estimation of this population.

We begin by using an homogeneous precomputed grid with 1089 points (fifth splitting, (2n + 1)2 points with
n = 5, see Fig. 4), solutions of KPP (Tests 1 to 3, below): we investigate the ability of the Monolix software to
estimate the parameters for three populations characterized by their levels of noise with respect to the exact
KPP solution : first population has zero noise (i.e. it is an “exact” solution of KPP), second has a 5% noise and
third has a 10% noise.

Then, to illustrate the interest of having an inhomogeneous precomputed grid, we performed parameters
estimation (Test 4, below) with a 500 points grid (see Fig. 5) built with the “BV” weight (see Sect. 2.3.3).

3.3.1. Test 1: x0 fixed

We fix x0 = 0.63. And we tune Monolix to perform an estimation of R and D. We refer the reader to the
Monolix documentation [21] for a full description of what is achieved by this software and of the outputs which
can be obtained.

We begin by describing the results and some outputs in the case of a population whose discrete data come
from the resolution of the full KPP equation (i.e. a population without noise). To fix the ideas, Figure 6 shows
the data and the curves fitted thanks to the model and the obtained parameters by the Monolix run, for
12 individuals (note that the same quality is obtained for the 100 individuals; for sake of brevity, we thus limit
the presentation to 12 of them).

More precisely, we can compare the results of the mean parameters of the population obtained by Monolix
(see Tab. 1, column “E1”) and the mean “theoretical” parameters used to build the population (see Tab. 1,
column “Theor.”). This allows to quantify the ability of Monolix to estimate the parameters. We can see that
the results are fairly good and are associated to a good convergence of the SAEM algorithm (see Fig. 7). In
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Figure 6. Test 1: 12 individuals of the population (in blue) and the corresponding estimated
curves (in green) computed by Monolix using the KPP model.

Table 1. Test 1: results (from Monolix) and errors for the mean parameters of the population.
Column E1 refers to a population without noise (see text). Column E2 (resp. E3) refers to a
population with a 5% (resp. 10%) noise.

Theor. E1 E2 E3
error error error

R 0.0238 0.0238 0% 0.024 0.8% 0.0247 3.8%
D 8.20e−7 7.93e−7 −3.3% 7.85e−7 −4.3% 7.58e−7 −7.6%
ωR 0.189 0.186 −1.6% 0.189 0% 0.227 20%
ωD 0.189 0.187 −1.1% 0.197 4.2% 0.21 11%

addition the results of Table 1 can be illustrated by the Monolix output of observed vs. predicted data, both
for the population and individual data (see Fig. 8, left and right respectively).

Let us note that the convergence graphs of the SAEM (Fig. 7) and the comparison of population and fitted
data (Fig. 6) are of the same quality for all the following tests (SAEM algorithm will always be converged). By
the way, in the following, we will not show these kind of graphs and we will only give the meaningful information,
that is the “Table of results and errors” as well as the “observed vs. predicted” graphs.

Then, we performed the same run but with a population of individuals who are perturbed with a random
noise of amplitude 5% (i.e. since the data are of order 1, the noise is of order 0.05). The results of the Monolix
run are given in Table 1 (Column E2) for the estimated parameters of the whole population. Naturally, the
effect of noise can be seen in these results where we note a slightly decreasing accuracy of the estimation. But
the results are still quite good. These facts are confirmed on Figure 9 where the noise induces a slight dispersion
of the points cloud.

Finally, we performed the same run but with a population of individuals who are perturbed with a random
noise of amplitude 10% (i.e. since the data are of order 1, the noise is of order 0.1). The results of the Monolix run
are given in Table 1 (Column E3) for the estimated parameters of the whole population. Again, this additional
noise leads to a poorer estimation of the parameter but the accuracy is still reasonable, taking into account the
significant amount of noise. The observed vs. predicted data are shown on Figure 10.
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Figure 7. Test 1: Graphs showing the convergence of the SAEM algorithm in Monolix. Case
with no noise.

Figure 8. Test 1: monolix output of observed vs. predicted data both for the population and
individual data. Case with no noise.

3.3.2. Test 2: R and D fixed

We fix R = 10−2 and D = 10−6. We tune Monolix to perform an estimation of x0. And we proceed as for
the Test 1, on 3 populations with respect to the noise on the data (none, 5% and 10%).

Results are summarized in Table 2. Again, with no noise, parameter estimation is very good. Adding some
noise induces a poorer estimation of the parameters but the accuracy is still very good. We note that for the
two levels of noise, results are the same in terms of mean population parameters, but the individual parameters
are not the same. Dispersion associated to the noise can be seen by comparing Figures 11, 12 and 13.

3.3.3. Test 3: estimation of x0, R and D

Here, all the parameters of the population are random and we tune Monolix to perform an estimation of x0,
R and D. Again, we proceed as for the Test 1, on 3 populations with respect to the noise on the data (none,
5% and 10%).
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Figure 9. Test 1: monolix output of observed vs. predicted data both for the population and
individual data. Case with 5% noise.
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Figure 10. Test 1: monolix output of observed vs. predicted data both for the population and
individual data. Case with 10% noise.

Table 2. Test 2: results (from Monolix) and errors for the mean parameters of the population.
Column E1 refers to a population without noise (see text). Column E2 (resp. E3) refers to a
population with a 5% (resp. 10%) noise.

Theor. E1 E2 E3
error error error

x0 0.410 0.412 0.5% 0.418 2% 0.418 2%
ωx0 0.287 0.282 −1.7% 0.296 3.1% 0.296 3.1%
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Figure 11. Test 2: monolix output of observed vs. predicted data both for the population and
individual data. Case with no noise.
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Figure 12. Test 2: monolix output of observed vs. predicted data both for the population and
individual data. Case with 5% noise.

This test with 3 parameters to estimate is rather challenging. We see in Table 3 that the results are a bit less
accurate than those in Tests 1 and 2, but they are still of good quality. Adding some noise again deteriorate the
accuracy but the results are reasonable for practical applications.

Dispersion associated to the noise can be seen by comparing Figures 14, 15 and 16.

3.3.4. Test 4: estimation of x0, R and D with inhomogeneous grid

Here, as in Test 3, all the parameters of the population are random and we tune Monolix to perform an
estimation of x0, R and D. The difference is that we use an heterogeneous mesh for the interpolation on the
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Figure 13. Test 2: monolix output of observed vs. predicted data both for the population and
individual data. Case with 10% noise.

Table 3. Test 3: results (from Monolix) and errors for the mean parameters of the population.
Column E1 refers to a population without noise (see text). Column E2 (resp. E3) refers to a
population with a 5% (resp. 10%) noise.

Theor. E1 E2 E3
error error error

R 0.0245 0.0237 –3.3% 0.0234 –4.5% 0.0231 –5.7%
D 8.64e−7 8.67e−7 0.3% 8.79e−7 1.7% 9.62e−7 11%
x0 0.415 0.399 –3.9% 0.393 –5.3% 0.37 –11%
ωR 0.201 0.196 –2.5% 0.263 31% 0.253 26%
ωD 0.205 0.188 –8.3% 0.247 20% 0.395 93%
ωx0 0.254 0.244 –3.9% 0.241 –5% 0.616 143%

parameter space. It is important to notice that the non-uniform grid contains half of the points of the uniform
grid.

We see in Table 4 that the results are as good as in Test 3. The grid with only 500 points gives the same
accuracy on the evaluation of the solution of the KPP model. This is a good achievement since we have the
same precision with a smaller computational cost.

Dispersion associated to the noise is also shown on Figures 17, 18 and 19.

3.4. Computational cost comparison

The main interest of this methodology is to tackle problem of parameters identification in complex PDE
systems. The gain in terms of computational cost can be easily evaluated and illustrates the feasibility of the
method for a large range of problems. The computational cost of the whole algorithm (i.e. generation of the mesh
+ SAEM computation) can be divided in two distinct parts: an offline time corresponding to the computation of
the mesh (which can be done once for all) and an online time corresponding to the estimation of the parameters
for a given population.

Table 5 illustrates these different times and shows the gain induced by the method. In particular, the exact
case refers to the SAEM algorithm solving the full PDE everytime it is required.
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Figure 14. Test 3: monolix output of observed vs. predicted data both for the population and
individual data. Case with no noise.
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Figure 15. Test 3: monolix output of observed vs. predicted data both for the population and
individual data. Case with 5% noise.

Table 4. Test 4: results (from Monolix) and errors for the mean parameters of the population.
Column E1 refers to a population without noise (see text). Column E2 (resp. E3) refers to a
population with a 5% (resp. 10%) noise.

Theor. E1 E2 E3
error error error

R 0.0245 0.0245 0% 0.0241 –1.6% 0.0239 –2.4%
D 8.64e−7 8.31e−7 –3.8% 8.47e−7 –1.9% 8.66e−7 0.2%
x0 0.415 0.414 –0.2% 0.406 –2.1% 0.436 5%
ωR 0.201 0.197 –1.9% 0.238 18.4% 0.257 27.8%
ωD 0.205 0.191 –6.8% 0.238 16% 0.299 45.8%
ωx0 0.254 0.262 3.1% 0.247 –2.7% 0.290 14.1%
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Figure 16. Test 3: monolix output of observed vs. predicted data both for the population and
individual data. Case with 10% noise.
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Figure 17. Test 4: monolix output of observed vs. predicted data both for the population and
individual data. Case with no noise.

The considered case is the one explained in paragraphs 3.3.3 (and 3.3.3): estimation of x0, R and D for a
population of 100 individuals.

3.5. Statistical issues

All previous tests were done with only one population and all the errors are computed with this unique
population. Of course from the statistical viewpoint, for each test (Tests 1–4), we should have repeated the
same study for many randomly generated populations. In this section, we adress this issue.

It is important to note that when we choose randomly the population of 100 individuals for Tests (1–4), we
repeated the random generation of parameters to obtain a distribution which follows as much as possible a log-
normal distribution (recall that this law is assumed by the SAEM algorithm when it looks for the parameters).
This is due to the fact that when there is only 100 individuals, a random generation of parameters can lead
to a distribution which is not really close to a log-normal one, as illustrated in Figure 20. The fact that the
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Figure 18. Test 4: monolix output of observed vs. predicted data both for the population and
individual data. Case with 5% noise.
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Figure 19. Test 4: monolix output of observed vs. predicted data both for the population and
individual data. Case with 10% noise.

distribution is closer to a log-normal one improves the results of the SAEM algorithm, as we will see in the
following.

Here, we perform two studies, each of them with repeated simulations to obtain averaged errors which are
more statistically sound.

• The first study has exactly the same characteristics as in Test 3 (Sect. 3.3.3), except that instead of using one
population, we use repeated simulations with 120 populations. The presented errors are thus averaged with
these 120 realizations. For this study, since the populations are generated automatically, we have various
types of generated distributions: some are close to a log-normal one, some are not (as in Fig. 20).

• The second study is like the first one except that, instead of taking 100 individuals in a population, we build
a population with 1000 individuals. The goal is here to ensure that distributions of the parameters are all
much more close to a log-normal distribution than in the first study. Of note, since with 1000 individuals
per population, the CPU time for simulations is longer, we made 92 realizations instead of 120.

Let us describe in more details these two studies.
The first approach consists in generating 120 populations of 100 individuals in order to evaluate the behavior

of the methodology from a better statistical viewpoint. The parameters for each of these populations are drawn
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Table 5. Offline and online computational cost for the different approaches.The number of
calls of the solver in SAEM is about 106 for this case. Note that this is sequential CPU time.
The mesh generation can be easily parallelized on many cores with an excellent scalability.

“Exact” case Interpolation with Interpolation with

homogeneous mesh heterogeneous mesh

Offline No offline computation Mesh with n levels of Mesh with n points.

refinement (l.o.r),(2n + 1)2 Example with 500.

points. For 5 l.o.r, 1089

points

Unit average CPU cost – 2.12 s 2.12 s

Offline total CPU cost – 38 mn28 s 17 mn40 s

Online SAEM, 106 KPP SAEM, 106 interpolations SAEM, 106 interpolations

evaluations

Unit average CPU cost 2 s 4.5 × 10−4 s 5.1 × 10−4 s

Online total Cost ∼23 days 3 h 7 mn30 s 8 mn30 s

Total cost ∼23 days 3 h 45 mn58 s 26 mn10 s

Figure 20. Distributions for parameter x0 which can be obtained with a population with
100 individuals. (Left) a “good” one (Right) a “bad” one.

Table 6. Test for 120 populations of 100 individuals: results (from Monolix) and errors for the
mean parameters of the population. Column E1 refers to a population without noise. Column
E2 (resp. E3) refers to a population with a 5% (resp. 10%) noise.

E1 E2 E3
error error error

R 58.6% 46.1% 47.5%
D 26.5% 22.5% 23.5%
x0 20.9% 19.2% 17.0%

from a random log-normal distribution. None of these parameters are fixed as in Section 3.3.3. We perform the
same run with populations perturbed with a random noise of amplitude 5% and 10%. The previously described
interpolation method on a homogeneous grid is used to evaluate population and individual parameters with the
Monolix software.

The averaged errors of the mean parameters of the population are computed for each population and we
indicate in Table 6 the mean of those errors.
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Figure 21. Distributions for parameter x0 for a 1000 individual population.

Table 7. Test for 92 populations of 1000 individuals: results (from Monolix) and errors for the
mean parameters of the population. Column E1 refers to a population without noise. Column
E2 (resp. E3) refers to a population with a 5% (resp. 10%) noise.

E1 E2 E3
error error error

R 10.0% 9.44% 8.96 %
D 12.0% 11.1% 10.7%
x0 6.03% 5.52% 4.44%

We see that the quality of the results is not as good as in Test 3. This is due to the quality of the distribution
of the generated parameters. As a matter of fact, when looking closely to each population, we see that with
“good” log-normal distribution of the parameters (in the sense given above), estimation performed by Monolix
has a quality which is of the same order as in Test 3. Whereas for a population with a “bad” distribution of
generated parameters, the estimation is of a poorer quality.

To go further into this analysis, we performed the second study. We designed another numerical experiment
with 92 virtual populations of 1000 individuals (instead of 100), in order to obtain a better drawn log-normal
distribution for the parameters, as confirmed by Figure 21. Let us note that all of 92 populations have distri-
butions of parameters which are close to log-normal one. The conditions of the study are exactly the same as
for the first study. Table 7 summarized the averaged errors of the mean parameters of population.

We now see that the results are of significantly improved quality, compared to the first study. Furthermore
they are very close to the quality obtained in Test 3.

Before closing this section, it is worth noting that parameters of the KPP model, as treated in present
framework are fully identifiable. As a matter of fact, we consider the problem of the full invasion of a spatial
domain Δ: in terms of the evolution of the volume of the invaded zone (i.e. the observed data), the typical
curve is growing from 0 to 1 and then saturates at 1 (when no noise is added to the solution of KPP). This
type of curve allows to identify all the parameters: x0 is recovered by looking at the time of transition between
the linear growth regimes. The slope of the growth regimes gives the speed of the travelling wave, while the
duration of the transition between these regimes gives the width of the front: as a consequence one can recover
R and D since the speed (resp. the width) is proportional to

√
RD (resp.

√
D/R).

To conclude, provided that the parameters to be estimated follow closely a log-normal distribution, the
previous studies tend to show that the coupled SAEM-Precomputation algorithm leads to a rather good level
of accuracy to estimate the parameters via a population approach.
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4. Perspectives

In this section, we sketch some perspectives of improvement for the coupled algorithm. We begin by some
remarks on the design of the pre-computed grid. We then present another version of the coupling between
pre-computation and SAEM. These points are under developement and will be presented in a forthcoming
work.

4.1. Remarks on the pre-computed grid

We saw in previous sections that the size of the grid quickly increases, in association with the canonical
curse of dimensionality. It is thus useful to use as much as possible any information that can be obtained on
the function f to be pre-computed, to decrease the size of the grid. In the following, we give some sources of
improvements in this direction.

4.1.1. Functions with sharp transitions

If f has large constant areas, with sharp transitions between them, the situation is in fact better. For instance
if f = 1D where D ⊂ Cinit, then with ω1

i or ω∞
i the mesh will be highly non homogeneous and will focus on ∂D.

Let N ′ be the dimension of ∂D. To localize D with a precision δ we will need

C
|∂D|
δ

N ′

sub-cubes. The interesting dimension is now N ′ and not N . For this type of functions we gain N−N ′ dimensions
in terms of computational time.

4.1.2. Monotonic functions

If f is monotonic with respect to all of its variables, then it is sufficient to compute its values on two summits
to control the value of f in the whole sub-cube (the “upper right” and the “lower left” summits). For such
functions, less evaluations are required for the last refinement. Namely when we split a cube for the last time,
we do not need to compute all the summits of the 2N sub-cubes. This is equivalent to the gain of one dimension.

4.1.3. Parameter sensitivity

In general some parameters will have more influence than others. Let

Si = ‖∂if‖L∞ .

Let us assume, up to a change of labels, that S1 ≥ S2 ≥ . . . ≥ SN . If we want to get a precision of order δ it is
useless to take into account some of the parameters in a first approach. More precisely, if SM + SM+1 + . . . +
SN < δ then we may fix the values of the variables M , . . . , N with a resulting error less than δ. The dimension
of the model then reduces to M .

4.1.4. Summary

The simplest strategy can be very expensive, and limits the number of parameters to N = 4 or N = 5.
However, monotonicity or parameter sensitivity analysis efficiently reduce the computational cost. Dimensions
of order 8 to 10 may be reachable.

To go above these dimensions, another approach can be investigated: iterative refinements of the grid via the
knowledge of the parameters to be explored, as described in the following section.
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4.2. Iterations between pre-computation and SAEM

The main drawback of the direct coupling presented in Section 2.4 is that the pre-computation step will mesh
the whole parameters domain, whereas SAEM algorithm will concentrate on particular areas of the individual
parameters. Most of the pre-computations will therefore be useless, and it is more efficient to concentrate the pre-
computation where SAEM requires them. In this paragraph, we sketch a possible interaction of pre-computation
and SAEM.

First, we choose some initial precision δinitial and run the pre-computation step with this initial precision.
We get a first model approximation f1, such that |f − f1| is of order δinitial. We then run SAEM algorithm,
which converges to some approximation θ1 of the population parameters θpop. SAEM algorithm also gives the
conditional probabilities for each individual parameter. Hopefully, the individual parameters only explore a
reduced part of the complete parameters space. The idea is to improve the accuracy of the model evaluation in
this particular area.

For this we choose δ2 < δinitial and run again the pre-computation step with this precision in the desired area.
This gives a second model approximation f2, which is better than f1 in the area of interest.

We then run SAEM again, using f2 and starting from θ1. This converges to new population parameters θ2,
and new individual conditional probabilities.

We can then iterate this process. Doing this, we decrease the model interpolation error. This algorithm
deserves further studies and implementation to explore its convergence properties.

5. Conclusion

In this paper a new method combining SAEM algorithm and a pre-computation step has been presented.
In the context of parameters estimation, this new algorithm is helpful to reduce the overall computation time
when the model is very long to compute. This is the case when the model is based on a huge number of ordinary
differential equations, on partial differential equations, or on multi-physics systems of PDEs.

The algorithm was applied for the estimation of parameters in the framework of a population approach with
mixed effects model. The SAEM algorithm from Monolix was coupled with a pre-computed grid for the classical
KPP model. To our best knowledge, this is the first demonstration of parameters estimation of PDE thanks to
a SAEM algorithm. It was shown that, provided that parameters distribution to be estimated is of the same
structure as the one assumed by the SAEM algorithm (say log-normal), the quality of estimated parameters is
good. Even if simple and most effective (in its current version) for a number of parameters below five or six,
this method now allows to use SAEM population approach for parameters estimation with PDEs. The range of
possible practical applications entering in this category still remains significant.

Perspectives of improvements of the method, to be able to reach higher numbers of parameters to be estimated,
can be done in several directions. On the one hand, there are the improvements on the grid, independantly of
the SAEM algorithm: all the tools developed in the field of sensitivity analysis may be used to optimise the
design of the grid, as well as tools like kriging. On the other hand, the interactive coupling between grid design
and SAEM seems to be also an attractive route to be explored.
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[12] E. Kuhn and M. Lavielle, Maximum likelihood estimation in nonlinear mixed effects models. Comput. Statis. Data Anal. 49
(2005) 1020–1038.

[13] M. Lavielle, Private Communication (2012).

[14] M. Lavielle and K. Bleakley, Population Approach & Mixed Effects Models – Models, Tasks, Tools & Methods. Avalaible at
http://popix.lixoft.net/ INRIA (2013).
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