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TIME DOMAIN SIMULATION OF A PIANO. PART 1: MODEL DESCRIPTION

J. CHABASSIER!, A. CHAIGNE? AND P. JoLy?

Abstract. The purpose of this study is the time domain modeling of a piano. We aim at explaining the
vibratory and acoustical behavior of the piano, by taking into account the main elements that contribute
to sound production. The soundboard is modeled as a bidimensional thick, orthotropic, heterogeneous,
frequency dependent damped plate, using Reissner Mindlin equations. The vibroacoustics equations
allow the soundboard to radiate into the surrounding air, in which we wish to compute the complete
acoustical field around the perfectly rigid rim. The soundboard is also coupled to the strings at the
bridge, where they form a slight angle from the horizontal plane. Each string is modeled by a one
dimensional damped system of equations, taking into account not only the transversal waves excited
by the hammer, but also the stiffness thanks to shear waves, as well as the longitudinal waves arising
from geometric nonlinearities. The hammer is given an initial velocity that projects it towards a choir of
strings, before being repelled. The interacting force is a nonlinear function of the hammer compression.
The final piano model is a coupled system of partial differential equations, each of them exhibiting
specific difficulties (nonlinear nature of the string system of equations, frequency dependent damping
of the soundboard, great number of unknowns required for the acoustic propagation), in addition to
couplings’ inherent difficulties.
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1. INTRODUCTION

This work is the continuation of a long term collaboration between the Unité de Mécanique, ENSTA ParisTech,
specialized in musical acoustics and the project team POems (CNRS / ENSTA /INRIA) specialized in the
development of numerical methods for wave equations. This collaboration, whose aim is to design physical
models and perform time domain simulations of musical instruments, already gave birth in the past to modeling
tools for musical instruments, the timpani [27] and the guitar [19]. By considering today the piano, we attack a
new challenge that represents a gap compared to the two above mentioned works as well as for the complexity
of the physics and the underlying models as for the size of the problem.

This work is of course related to the problem of sound synthesis, whose one aim is to generate realistic sounds
of given instruments (here, the piano). Many methods reach this goal successfully. A number of them operate in
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real-time, based on various strategies (pre-recording of some selected representative sounds; frequency, amplitude
or phase modulation; additive or subtractive synthesis; parametric models . ..), see [22]. However, most of them
have only little connections with the physics of the instrument.

Our wish is not only to reproduce the sound generated by a physical object (the piano) convincingly, but
rather to understand how this specific object can generate such a particular sound, by modeling the complete
instrument, based on the equations of the physics and using geometric and material related coefficients. Such
an approach can be referred to as “physics based sound synthesis”.

The first works in this direction rely on very simplified or reduced models. With regard to the specific case of
the piano, one can mention, for example, the very popular method of digital waveguides, through which a piano
model was proposed by [25] and reviewed by [4]. This method is particularly effective and efficient and can be
coupled with more traditional methods (as for instance finite differences in [5]). An alternative approach, based
on the so-called modal method, has been chosen for instance at IRCAM for the software Modalys [1].

Another approach is to use the standard tools of numerical analysis for PDEs (finite element, finite differences)
to solve the system of equations numerically. The advantage of such an approach is to keep a strong connection to
the physical reality, and to make very few a priori assumptions on the behavior of the solution. The intention is
to reproduce the attack transients and the extinction of the tones faithfully, thus offering a better understanding
of the complex mechanisms that take place in the vibrating structure. This approach was adopted in the past
to study separate parts of the piano: [8,10] investigated the interaction between the hammer and the strings. [7]
was interested in modeling the nonlinear behavior of the strings. [18] proposed a model to explain the coupling
between the strings and the soundboard at the bridges. [23,31] studied the vibration the hammer shank. To
our knowledge, there is only one published work [21] which focuses on both the modeling a full piano and
its numerical formulation. This model makes use of partial differential equations, and accounts for the main
involved phenomena: from the initial blow of the hammer to the propagation of sound, including the linear
vibration of strings and soundboard. For the discrete formulation of the problem, classical numerical analysis
tools are used, namely finite differences in space and time.

Our work aims at continuing this effort by providing a complete piano model (to our knowledge, it is the
most accurate model available today), and a reliable, innovative and accurate numerical method to solve it.
These two steps were naturally the two main parts of the work that has given rise to this series of two articles,
the first of which is devoted to the construction of the mathematical model. The second part will be concerned
by the discretization of this model and the validation of physical hypotheses through numerical simulations.
Although this first article is supposed to be readable independently, its interest will appear more clearly when
reading the second article. The goal of the present article is threefold:

(i) Explain the historical construction of our piano model, pointing out the links with the physics and the
limitations of this model.
(ii) Describe some fundamental mathematical properties of this model (in particular energy identities) that
provide a real confidence for its soundness from a theoretical point of view.
(iii) Propose a general and abstract framework and formulation for this model, which we find useful for at least
two reasons:
— besides the fact that it permits some conciseness in the presentation, this prepares the second part on
the discretization of the model, which will rely in an essential way on this formulation;
— we believe that future enrichments of our model will fit this general framework, which should limit the
amount of work for the improvement of our computational code.

Before giving the outline of this paper, it is first useful to describe in some detail the structure of a piano,
introducing the main elements that we shall systematically refer to, as well as the main physical mechanisms
involved in the sound production. These are illustrated by Figures 1a and 1b.

The keyboard of most pianos has 88 black and white keys, corresponding to the notes of the tempered scale.
The action of one key (see Fig. 1a) throws one hammer toward one or several strings, depending on the selected
note. The strings are made of steel, but the bass strings are wrapped with copper. Each string is attached to
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(a) Exploded view of a grand piano (b) Cross view of a grand piano, from wikipedia
FIGURE 1. Schematic view of a grand piano’s mechanism.

a wooden beam, the bridge, which transmits its vibrations to the soundboard, a thin (less than 1 cm) wooden
plate which radiates in the surrounding air inducing our perception of a sound. A cast iron frame is placed
above the soundboard in order to support the strings’ tension, and the complete system is integrated in a thick
structure with the keyboard in front. Most of the time, three pedals are at the pianist’s feet’s disposal, allowing
to act on the dampers or the hammers’ mechanism. This principle is identical for grand and upright pianos,
even though the practical implementation is different in each case. In the following, we adopt the Anglo-Saxon
notation (from A to G) to name the different notes of the piano, starting from octave 0. The first key is therefore
A0, corresponding to a fundamental frequency of 27.5 Hz, while the last one is C8, with fundamental frequency
4186 Hz.

In the following of this paper, in Section 2, we present various experimental results that will serve for
assigning some objectives to our model. We especially describe some features that seem to be (at least all
together) specific of a piano sound such as the sound precursor, the inharmonicity, and the phantom partials. In
the long Section 3, we present the model we have designed for the piano strings (a visco-elastic nonlinear stiff
string model), for which a special effort has been given. We explain in particular why the simple linear model
that we used for guitar strings in [19] could not be satisfactory. Section 4 is concerned with the model we have
chosen for the hammers and their interaction with the strings. Section 5 is devoted to the mathematical model
for the soundboard (Sect. 5.1) and more importantly for its coupling with the strings at the bridge (Sect. 5.2).
Finally, in Section 6, we construct our full piano model by putting together the models on the previous sections
and coupling them to the model for sound radiation described in Section 6.1. Let us notice that a particular
attention has been given to accounting for various damping mechanisms, which appear to be essential in sound
perception.

Nowadays, the piano is certainly the most widely played instrument, and its advanced manufacture keeps up
with its popularity. Beyond the aspects that concern fundamental research, which we have already emphasized,
we hope that this work could also be of some interest for piano makers. The challenges they face today include
the seek for volume and homogeneity from bass to treble, and even more the seek for a specific timbre (or tone
color), long sustain, and for an appropriate distribution of sound in space. In order to reduce the proportion
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of empiricism, and anticipate the impact of possible changes in the vibrational and acoustical behavior of the
instrument, many piano makers have their own research laboratory, oriented towards experimentation but also
towards numerical simulation, as for instance the case of house Schimmel. Numerical methods are now part
of the improvement and testing process of various parts of the piano (soundboard modal analysis, spectral
analysis of the strings, shape optimization of the cast iron frame ...). Some piano makers collaborate with
universities or research laboratories, in order to answer specific questions about the instrument (radiation
efficiency, characteristic damping time, or boundary conditions at the bridge as, for example, in the collaboration
between the pianos Stuart & Sons and the Australian research centre CSIRO). The approach used by piano
makers, however, suffers from one major limitation: although they are able to study in detail the behavior of
each part of the instrument, they generally do not consider the coupling between its main elements, which in
fact may significantly influence this behavior. On the contrary, a comprehensive modeling tool, as we intend
to design in this paper, accounting for all the couplings between the main parts of the instrument, yields a
better understanding of the influence of some particular settings on the whole behavior of the piano. It becomes
then possible to conduct “virtual experiments”, by systematically changing materials, geometries, or some
other design parameters, and observe the effect of these changes on the entire vibro-acoustic behavior of the
instrument, and ultimately, on the resulting sound.

In this type of modeling work of complex nature, the question of the relevance of a new model and its
superiority with respect to existing models is naturally posed. The answer is not easy and will not be completely
given in this paper: a complete answer will be provided in the second article with numerical results. We believe
that, by construction and because of the variety and intrinsic complexity of the phenomena it pretends to
handle, our model is much more complete than previous ones. Assessing the quality of this model is also a
delicate question. One of the criteria that we have chosen is that this model should be able to reproduce
experimental facts observed previously in the literature or in our own experiments, as already mentioned. In
this perspective, we have fixed five clear objectives to our model, they will be explicitly stated in Section 1,
and give, along the paper, various evidences that our model reaches these objectives. A second aspect of the
question, when a model is intended to be used for numerical computation, is that it should be adapted to
a reliable, accurate and efficient numerical discretization method. Again a proof of that will be brought in
our second paper. The next point is that the numerical results provided by the discretized model should also
suffer the comparison, at least qualitatively, with experimental results: again, the evidence of this will be given
in the second paper. Finally, from a more acoustical or musical point of view, a good model should provide
synthetic sounds that really look like piano sounds, allow to play synthetic musical pieces, etc. ... It is difficult,
if not impossible, to demonstrate this in a research paper but we encourage the reader to look at the website
modelisation.piano.free.fr in order to make its own judgment about our relative success in this direction.

2. EXPERIMENTAL OBSERVATIONS: SOUND PRECURSORS, INHARMONICITY AND PHANTOM
PARTIALS

2.1. Experimental results and objectives for our model

We begin by a presentation of some experimental facts that are taken from the literature or are the results
of measurements performed by two of the authors (J. Chabassier and A. Chaigne). These observations have
served to define some objectives for the construction of our model.

We begin by analyzing a real piano sound which is nothing but a pressure signal p(t) as a function of time
as illustrated in Figure 2a. It is typically a highly oscillating function whose amplitude slowly decays in time.
Acousticians usually perform a time frequency analysis by computing seismograms that result from windowed
Fourier transforms of p(t)

Bt f) = /0 ) 9(%’5) o~2mSt gy (2.1)
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FIGURE 2. Experimental highlight of frequency dependent damping and presence of nonlinear
phenomena in the piano. Note G3.
where (o) is a normalized, smooth enough, window function satisfying
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and T denotes the size of the window. We choose the Hanning window:

1 1 t
0(t) = 373 COSQ?T? for t € [0,T7].
The spectrogram is then defined as

s70.1) -2 o (B

121 oo

» Pllee = sup | p(t, f)].

(2.3)

In principle, T is chosen sufficiently large with respect to the periods of the oscillations of the signal and
sufficiently small with respect to its duration. The spectrograms that we present in level lines in the (¢, f) plane

(see Fig. 2b) have been computed with 7' = 200 ms. Roughly speaking, in each spectrogram:

e the curves f — Sp(t, f) show the frequency content of the signal in [t,t + T7;
e the curves t — Sp(t, f) show the time evolution of the component of the signal with frequency f.

The two spectrograms of Figure 2b correspond to the same note G3. The left one corresponds to a piano dynamic
level play, the right one to a fortissimo dynamic level play. On each spectrogram, the presence of horizontal
rays illustrates the existence of predominant frequencies and the variable decay of these rays illustrates that the

attenuation of the signal is greater for high frequencies than for smaller ones.

Objective 1. Represent attenuation phenomena which are selective in frequency.

If the two pressure signals were proportional, the two spectrograms would be identical, which is not the case.

This indicates that some nonlinear phenomena have been involved in the physical mechanisms.
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F1GURE 3. Experimental highlight of the longitudinal vibrations of the string’s contribution to
the sound pressure. From [26].

Objective 2. Integrate non linearities in order to discriminate piano and fortissimo sounds.

The next results that we wish to point out are extracted from the article [26] in JASA. The authors performed
some experiments related to the note A0 (the first A of the keyboard) of a grand piano. They were interested in

4

e the transverse displacement (more precisely the “vertical” transverse displacement, parallel to the hammer
striking direction) of a point of the string located 10 cm from the bridge;
e the sound pressure signal at a point corresponding to a microphone placed about 10 cm above the piano.

From a naive reasoning, the pressure signal is expected to begin after the string vibration. However, this is
exactly the contrary that the authors observed as illustrated on Figure 3a, which concerns the first 80 ms of
their experiment. The pressure signal begins with a “high frequency” (compared to what is observed on the
transverse displacement) signal that clearly contributes to the sound: they called it the sound precursor.

They analyzed the frequency content of this part of the signal through its spectrum (in short, the modulus
of the Fourier transform of the signal adequately truncated in time, represented in logarithmic scale): this gives
a curve with respect to the frequency f, where 2r f is the dual variable for the time, see Figure 3b for the range
of frequencies [0, 5000] Hz. One clearly sees regularly spaced peaks, enhanced by the presence of the dotted
vertical lines, set to integer multiples of 475.0 Hz. These peaks coincide with those observed on the pressure
signal when the string is excited only in its longitudinal direction, as illustrated in Figure 3c. This direction is
orthogonal to the usual transverse solicitation due to the hammer, which explains why such peaks cannot be
observed on the spectrum of the transverse displacement.

This was in some sense a “demonstration” that the longitudinal displacement has a role to play in the generation
of a piano sound.

Objective 3. Account for some mechanism of transmission of the longitudinal string’s displacements to the
soundboard.

Next, we present some results of experiments that we did on a Steinway grand piano (D model) that was put
at our disposal for some period at IRCAM*. These experiments concern the note D#1, with a fundamental

. ircam. fr/7&L=1.
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FIGURE 4. Spectra of different measured signals when striking the D#1 key, in the range [1 2] kHz.

frequency of 38.89 Hz. In Figure 4a, we observe, in the range of frequencies [1 2] kHz, the spectrum of the
transverse displacement of the string at a point located at 1.8 cm from the agraffe. Again we observe sharp
peaks, indicated by the red circles, that correspond to an increasing sequence f, of frequencies. At first glance,
these peaks seem to be equally spaced but a closer analysis indicates that the spacing between two consecutive
peaks, fni1 — fn, slightly increases with n. More precisely, these peaks seem to follow (at least in the range of
audible frequencies [0, 20] kHz) a law of the form:

fo=nfo (1+Bn?). (2.4)

This is called the inharmonicity of a piano sound (as opposed to the case where peak frequencies would be
all proportional to a fundamental frequency f, = n fo). The dimensionless parameter B, which is small with
respect to 1, is called the inharmonicity factor.

Objective 4. Reproduce the inharmonicity effects.

Finally, we observe on Figure 4b, the spectrum of the vertical® acceleration of the bridge at the attached
point of the string. We see, in addition to the peaks observed on Figure 4a, some new peak frequencies

5In the sequel, we will refer to the geometrical configuration of a grand piano, in which the soundboard is horizontal.



1248 J. CHABASSIER ET AL.

indicated by the magenta diamonds. These frequencies also appear on the spectrum of the vertical acceleration
of any other point of the soundboard, as illustrated by Figure 4c, as well as in the spectrum of the recorded
sound pressure signal, see Figure 4d. These partials were named “phantom partials” by Conklin in [16] when
he first observed them experimentally, since there was no explanation of their existence from existing models.

Objective 5. Account for the phantom partials.

3. A MATHEMATICAL MODEL FOR THE PIANO STRING

For pedagogical purpose and for the sake of completeness, we are going to construct progressively our string
model by successive modifications of the simplest possible model, namely the linearized vibrating string equation.
We shall justify our successive enrichments of this model by the objectives of Section 2. In our explanations,
we do not pretend to a complete mathematical rigor (which would probably be out of reach or would demand
lengthy and tedious technical developments) but aim at providing some intuition to the reader. When we will
speak of linear or linearized models, we shall rather systematically refer to the spectral analysis of a “generalized
harmonic oscillator”. By this expression, we mean an abstract linear evolution equation of the form

d?U

—7 tAU=0, (3.1)
where the unknown function ¢ — U(t) takes its values in some Hilbert space H and A denotes an unbounded
positive self-adjoint operator in H, with compact resolvent. The notion of mode of vibration, or eigenmode, for
equation (3.1) is linked to the research of a particular solution of the form

Ult)=U, e/t U, eH, feRT (3.2)

which leads to find the frequency f such that A = 472 f2 is an eigenvalue of A. Denoting {4 72 f2n > 0}
the spectrum of A, where f,, is an increasing sequence of real numbers that tends to +oo, the numbers f,
are, by definition, the eigenfrequencies of the harmonic oscillator. Moreover, introducing an orthonormal basis
{Wn € H,n > ()} of related eigenfunctions of A, it is well known that any “finite energy” solution of the free
evolution problem (3.1) is of the form

+oo

Uy => Y ur W, el (3.3)

n=0 =£

where the real coefficients uf satisfy appropriate summability conditions. From the above formula, it is straight-
forward to establish the coincidence between the frequencies f,, and the peaks of the spectrum of the “signal”
U(t) (or a truncated version of it, namely Up(t) = xr(t) U(t) where xr(t) € [0,1] is an appropriate cut-off
function with support [0, 7]) namely:

F e [Or(f), Tn(f) = /0 Ur(t) e=270 1. (3.4)

This will help us establish a link between a model of the form (3.1) and the experimental results of Section 2.

3.1. The vibrating string equation

The most common model for describing the transverse vibrations of a string assumes that the point of the
string moves only transversely in a vertical plane along a line which is orthogonal to the string at rest (the
reference configuration, represented by a segment [0, L]). From now on, the index s refers to “string”. As a
consequence, the only unknown of the model is us(z,t) the transverse displacement of the point of abscissa x
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(at rest) at time ¢ (see Fig. 5a). Under the usual “small displacement” (u, remains small with respect to L) and
“small deformations” (x-derivatives of us remain much smaller than 1) assumptions, the displacement field is
governed by the d’Alembert’s equation (or 1D wave equation):

pA Puy —TyPu, =0, YVaxecl0,L], t>0, (3.5)

where, assuming that the string is homogeneous and of constant cross-section, p denotes its density, A the area
of its section and T} its tension at rest. The corresponding propagation velocity is

cr =/To/pA. (3.6)

where the index 7 refers to transverse.

If (3.5) is completed by homogeneous Dirichlet boundary conditions
us(0,t) = us(L,t) =0, t>0, (3.7)

which express that the string is fixed at its two extremities, one obtains, as it is well-known, an harmonic
oscillator whose eigenfrequencies and corresponding eigenmodes w,, are given by

Ale Ale Cr 2 . nmx
= = — > =4/= - .
fn n.fo, o 5L n>1, wn(w) T Sin (3 8)

The set { fAle n > 1} forms what is called a “harmonic spectrum”, because it is made of frequencies that are

integer multiples of a fundamental frequency fg¢ which is the musical pitch of the note.

Remark 3.1. On a piano string, the Dirichlet condition at the first extremity of the string (let us say = 0) is
completely justified by experimental data. It is no longer true, of course, that the bridge extremity (x = L) does
not move since this is precisely where the string’s oscillations are transmitted to the soundboard. However, due
to the strong rigidity of the bridge, the amplitude of these oscillations remains quite small in comparison with
the ones of the string’s central point. This is why the Dirichlet boundary condition can be seen as a reasonable
approximate boundary condition for the string: in first approximation, analyzing the vibrations of the string in
terms of the Dirichlet problem’s eigenmodes provides reliable insights about the physical reality. We shall see
how the condition (3.7) must be modified when we shall treat the coupling with the soundboard (c¢f. Sect. 5.2).

3.2. Stiffness and inharmonicity: the linear stiff string equation

3.2.1. The prestressed Timoshenko’s beam model

Since the d’Alembert’s equation is unable to represent the inharmonicity of a piano sound, a more elaborate
model has to be used: the stiff string model. In this model, one does not only take into account the transverse
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displacement of the string but also the fact that each cross section of the string can rotate with respect to the
normal plane to the so-called neutral fiber of the string, as illustrated by Figure 5b. That is why one introduces
an angle s as a new unknown. One has then to take into account that a portion of string applies on the
adjacent portions not only a tension but also a torque. The equations governing the variations of (us, @), called
linear stiff string equations in the context of this paper, are given by the prestressed Timoshenko’s beam model.
These equations involve new geometric and material properties of the string, namely the inertia momentum of
the string’s cross Section I and the Young’s and shear moduli, namely F and G, of the material composing
the string. The parameter x, called “Timoshenko’s parameter”, or “shear correction factor” is a dimensionless
parameter, between 0 and 1 (see [17] for a physical approach and [6] for a mathematical discussion of its value).

pA OPus — Ty 0%us + AGrK O, ((ps — (%gus) =0, z€]0,L[, t>0, (3.9a)

pl O}ps — EI02p, + AGE (ps — 0yus) =0, z€]0,L[, t>0. (3.9b)
It is possible, via a “dimensional analysis” to interpret the Timoshenko model as a perturbation of the d’Alembert
model, considering the small dimensionless parameter:
d

ne=7 where d is the diameter of the cross section of the string, (3.10)

where the string (at rest) is assimilated to a cylinder. Of course, the use of a 1D dimensional model is justified
by the fact that 7 is small. From a dimensional analysis, we can write

A=n* A%, T=n'T" (3.11)

On the other hand, to maintain the propagation velocity ¢, of the transverse waves constant, and thus keep the

same fundamental frequency f§'¢, one must compensate, in the limit process, the decay of the area of the cross

section by decreasing the tension of the string, i.e. considering that
To =n* Ty, which implies that ¢, and f' (¢f. (3.6) and (3.8)) are independent of 7. (3.12)

From the second equation of (3.9), one can write formally
~1
By = (1 402 (A*Gr)™! [pf* 92 — BI' ag] ) 82u,

which we can substitute into the first equation to obtain

pA* DPug — Tg O2us + A*Gr {(1 +n° (A*Gr) ™' (pI* 0} — EI* 02) ) - 1} D*us =0 (3.13)

that leads to a fourth order (in space and time) partial differential equation for u after applying the operator
(pI* 0? — ET* 82) to both sides of the equation. However, the last term in (3.13) is small since formally:

{(Hn? (A*Gm)—l{pf*af_m*ai] )71_1] ~ 2 (A*Gm)_l{pl*af—EI*aﬂ (7 — 0)

an this is why (3.13) is a (second order in 7) perturbation of the d’Alembert’s equation.

In first approximation (in the sense of Rem. 3.1), equations (3.9) are naturally completed by “simply supported”
boundary conditions, namely the homogeneous Dirichlet boundary conditions (3.7) for us plus a condition of
“zero torque” at each extremity of the string, which amounts to imposing homogeneous Neumann boundary
conditions for pg:

0:05(0,t) =0, Opps(L,t) =0, ¢>0. (3.14)
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FIGURE 6. Eigenfrequencies of a stiff string.

Remark 3.2. The choice of this Neumann boundary condition is somewhat arbitrary and it is not clear that
it is more justified, from a physical point of view, than a Dirichlet condition for instance. Both conditions
have been tested numerically. We observed that, first, the boundary conditions did not influence strongly the
most significative results and, second, that the Neumann condition led to slightly better results based on the
comparison with experimental measurements. This is what led to our choice. Most likely, a deeper investigation
of the real physics would lead to a more complicated boundary condition.

It is straightforward that (3.9), (3.7), (3.14) corresponds again to a generalized harmonic oscillator whose
eigenfrequencies and corresponding eigenmodes can be determined analytically, thanks to the choice of
boundary conditions (3.7), (3.14). We shall not detail here these analytical computations which are long and
tedious but straightforward (see [13]) and shall restrict ourselves to describe the most useful results. As we
have a system of two second order equations, it is not surprising that these modes can be split into two families
of modes (the following splitting appears naturally in the analytical computations)

e the family of “flexural” modes, with frequencies {fn, n > 1} and eigenmodes {(wn, Un),n > 1};

e the family of “shear” modes, with frequencies {f;f,n > 1} and eigenmodes {(wf,w,‘?),n > 1};

that SatiSfy fn+1 >fna ;?Jrl >fr§v f7§>fna Vn>1

We represent in Figure 6a the “curves” of both families of frequencies with physical data that correspond to
the string D1 of the Steinway D, with a fundamental frequency of 38.89 Hz. A first striking fact is that shear
modes eigenfrequencies are much larger than the flexural modes eigenfrequencies and are all above 20 kHz. As
a consequence such modes can not contribute to a perceptible sound. Moreover, very high frequency sources
should be needed for exciting these modes, which is not the case of the piano’s hammer solicitations.

In Figure 6b, a closer look is given at the first 200 flexural eigenfrequencies that all belong to the interval
[0, 7500] Hz. These are represented by the blue diamonds that progressively deviate, when n increases from
the black circles corresponding to the harmonic spectrum of the d’Alembert’s equation. We observe that these
frequencies are exhibiting a behavior that is similar to the one of measured eigenfrequencies. To be more precise,
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using a Taylor expansion of their analytical expression gives:

To

2 EI
famnfo[l+Bn*], B= (1—ﬂ

= — , for small enough values of n\/B (3.15)
To L?

which correspond to the red triangles in Figure 6b. This shows that inharmonicity is indeed foreseen in this
model, with an inharmonicity factor B (as defined in Sect. 2, formula 2.4) which is typically, for real piano strings,
of the order of 10~*. From the spectral point of view, the link between the Timoshenko and D’Alembert’s model
can be understood through an asymptotic analysis with respect to the small parameter n defined by (3.10).
More precisely, one can show (modulo long and tedious computations) that, when n — 0

limy o = £, lim f7 =400 (in O (7)) (3.16)

This gives a more analytic insight about what is observed on Figures 6a and 6b.

Remark 3.3. The fact that, in Figure 6b, the “curve” of the frequencies f,,’s is above the “curve” of the

frequencies f;l‘”e’s is due to the fact that, for real piano strings Tp/FA < 1.

3.2.2. Timoshenko versus Fuler— Bernoulli: a short discussion

There exists another well-known model that accounts for inharmonicity effects: the Euler—Bernoulli model.
Contrary to the Timoshenko’s model, the (scalar) unknown is the same as for the d’Alembert’s model, namely
the transverse displacement us. As the d’Alembert’s model, the Euler—Bernoulli model can be recovered from
a perturbation analysis for small values of the parameter 7 (see (3.10)), of the Timoshenko model. If we start
from the equation (3.13) for us, instead of dropping the last term as in the previous section, one can retain the
following O(n*) formal approximation

[(1 R (A*GR) [pIr 02— B 9?] ) - 1] ~ =12 (A*Gr)™! [pf* 9% — EBI* ag] (n — 0).
Doing so, one obtains an approximate equation for u which is of second order in time:
p (A" =2 I 02) OPu, — (Tg R EI* 63) 82u, = 0. (3.17)
One can get rid of the 9207 term by making the additional approximation
A* =2 T* 02 ~ A%, (3.18)
which leads to the so-called Euler—Bernoulli model which, going back to our original notation, takes the form
pADPug — Ty O%us + ET Otug = 0. (3.19)

When one replaces the Timoshenko model by the approximate Euler—Bernoulli’s model, one replaces a fourth
order in time equation for us (3.13) by a second order in time equation (3.19). As a consequence, the very
high frequency modes associated to frequencies f2 disappear, leaving only one family of eigenmodes (as for the
d’Alembert’s equation) that are “approximations” (in 1) of the flexural modes associated to frequencies f,, of
the Timoshenko’s model. Nevertheless, contrary to d’Alembert’s model, Euler—Bernoulli’s model allows us to
take into account inharmonicity effects since the corresponding frequencies are given by

1
2.2 3
EB Ale n-m BT
= 14+ ——— 3.20
Tl (= (3.20)
which yields in particular
2EI

EB xnfo[1+B¥Pn?], BFF = T for small enough values of nv BEB (3.21)

2T, L2’
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The reader will note that the Timoshenko and Euler—Bernoulli’s model lead to different inharmonicity factors
(cf. (3.15) and (3.21)). In practice, for real piano strings, since Tp/E A is very small with respect to 1 (as already
mentioned in Rem. 3.3), these are not much different. It is also difficult to decide which model is closer to the
physical reality, even though the Timoshenko’s model seems to be richer from the physical point of view. This
question is still a subject of debate in the acoustics/mechanics community. The reason why we have preferred the
Timoshenko’s model in this work comes more from practical arguments: even though it introduces an additional
unknown, it avoids to deal with fourth order spatial differential operators, which is easier from the numerical
point of view.

3.3. Taking into account the longitudinal displacement: the geometrically exact model

8.8.1. Derivation of the geometrically exact model

Up to now, we did not mention the longitudinal displacements of the strings. Let us forget for a while the
rotations of the cross-sections of the string and the stiffness unknown ¢ to come back to a model where the
motion of the string is described only through the displacement of the neutral fiber’s points, as for the vibrating
string equation. The difference is that this displacement is allowed to have a longitudinal component, denoted
vs (see Fig. 5c). This leads to the so-called “geometrically exact model” (GEM), as derived in [24], that is
established without referring to any “small displacement” or “small deformation” assumption. Let us denote
u,(z,t) = (us(z,t),vs(z,t)) the displacement vector at point z (in the reference configuration) and time ¢, and
T(z,t) the tension of the string at the same point and same instant, which represents the action of the portion
of string [z, L] on the portion [0, z]. From the fundamental law of dynamics, these are related by

d?ug — 9, T =0. (3.22)
The relation between T and the deformation of the string comes from the fact that
e T(z,t) is tangent to the deformed string at (z,t): T is colinear to (9,u, 1 + dyv), which yields
1
T =T [(Opus)* + (1 +9,v5)%]? (8pu,1+0p05)", TER, (3.23)

e T is the sum of the initial tension Ty at rest and, by Hooke’s law (assuming a linear behavior of the material),
a term which is proportional to the infinitesimal elongation a(x,t) € R of the string at point  and time
t (meaning that a small element of string of length Az centered at point z at ¢ = 0 has a length, after
deformation, equal to (1 + a)Az + O(Az?)). This gives, thanks to elementary geometry

T=To+EAa, a= ((Jyus)?+ (14 0,v,)%)2 —1. (3.24)

Substituting the expression of T into (3.22) leads to the following 2 x 2 system of nonlinear equations:

pAO*us — 0y | EAO us — (EA—Ty) Outs - | =0,z €]0,L[, t>0, (3.25a)
I ((Dpus)? + (1 + 0yv5)2 )2

pAd*v, — 0y | BA 0,vs — (BA —Tp) (1 + 9evs) + | =0,2€]0,L[, t>0. (3.25b)
I ((Ozus)? + (1 + 0yv4)2 )2

Note that, since the material is assumed to have a linear behavior, the only nonlinearity of the model comes
from geometrical nonlinearities (due to the elongation a) which justifies the name “geometrically exact” model.

In the case of a finite string, equations (3.25) have to be completed by boundary conditions, for instance by
expressing that the string is fixed at its two extremities (which is realistic in first approximation for the piano,
see Rem. 3.1 again) which gives (3.7) for u, and

vs(0,t) = wvs(L,t) =0, ¢>0. (3.26)
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3.8.2. Mathematical structure and properties of the model

One can check that this system can be put into a second order hamiltonian form by introducing the elastic
potential energy density function H(u,v) : R? — R* defined by

H(u,v) = %EA (W2 +?) — (EA — Tp) [(u2 A0 - (1t v)]. (3.27)

Verifying that H is a positive function is left to the reader. Is is then easy to verify that the tension T of the
string is given by
T = VH(Opus, 0z0s) (3.28)

which means that (3.25) can be rewritten as:
pAdiug — 0, (VH(0zuy)) = 0. (3.29)

One can then show that (3.29) also enters the category of (locally) nonlinear hyperbolic systems. Indeed,
introducing the new unknown vector:

U = (dyu,, d,u,) € R? (3.30)
(3.29) can be rewritten as a first order system
0U + 90, F(U) =0. (3.31)
where, denoting U = (U, U,) € R? x R? the current vector of R*, the flux function F is given by
F(U) = F(Uy,Us) = — (pA) " (VH(U,), Us)". (3.32)
The Jacobian of F' has the following 2 x 2 block decomposition
0 D2H(U,)
DF(U) = — (pA)~* ; . (3.33)

from which we infer that the eigenvalues of DF(U) are the square roots of the eigenvalues of D?H (U, ), where
D?H is the Hessian of H, multiplied by (pA)~!. It follows that the local (strict) hyperbolicity of the sys-
tem (3.31), namely the fact that DF(U) is diagonalizable with real eigenvalues at least for |U| small enough,
follows from the local (strict) convexity of H (u,v). This is deduced from the Taylor expansion of H (u,v) around
the origin A

To - 2
= ? u” + 7 v,
We can visualize the region of convexity of H in the (u,v) plane (and thus the region of hyperbolicity of (3.31))
in Figure 7a where we represent the level lines of H (u,v).

In addition, it can be shown that the system is, in its region of hyperbolicity, linearly degenerate. That
is, if { & X;(U), j € {1,2}} are the (real) eigenvalues of DF(U) with corresponding eigenvectors (in R*)
{rf(U),rQi(U)}, then VA;(U) € R* is orthogonal to T;t(U), j € {1,2} (the calculations are done in [14]).
This has nice mathematical consequences, which seem to be physically relevant: in particular, the existence and
uniqueness of smooth (C? in space and time) global solutions for the Cauchy problem associated to (3.29) (or
equivalently (3.31)) provided that the initial data are smooth enough, in the C? norm (see for instance [30]).

An important consequence of the structure of (3.29) is that sufficiently smooth solutions satisfy an energy
conservation result, namely

d
dt

H(u,v) = Ha(u,v) + O((u*+v%)?), Ha(u,v) (3.34)

L L
£.(us) =0, Ss(us):%/o pA|8tus|2dw+/0 H(Oyus) da. (3.35)

This provides a fundamental stability property for the model since a priori estimates (in H'-norm) are easily
deduced from this energy conservation result.
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(a) Exact energy density H(u,v) (b) Second order expansion Hp s (u,v) (c) Truncated expansion Happ(u, v)

FIGURE 7. Level sets around the point (0,0) of the energy density H(u,v) and its approxima-
tions. The physical parameters have been chosen so that Tp/EA = 0.6, which emphasizes the
visualization of the convexity loss.

3.8.3. The linearized model

In the case of small amplitude motions, it is natural to use a linearized model obtained by replacing in (3.29)
H(u,v) by its quadratic approximation Hs(u,v) (see (3.34)). Doing so, one obtains two decoupled 1D wave
equations, the first one coincides with the vibrating string equation (3.5):

pA 0Pus — Ty 0%us = 0, with velocity ¢, = /Ty /pA (3.36a)
pA 02vy — E Ad%v, = 0, with velocity ¢, = /E/p (3.36b)

where the index ¢ stands for longitudinal. Taking realistic values for p, A, E and I for real piano strings one
observes that .
= >0, (3.37)

cr
which means that longitudinal waves propagate much faster than transverse waves: this explains the role of
the string’s longitudinal vibrations in the existence of the sound precursor. However, for our purpose, the
decoupled linear model (3.36) is not satisfactory. Indeed in the case of a transverse solicitation as the hammer’s,
a source term will appear only at the right hand side of the first equation, which means that v, will remain
identically 0 and that the longitudinal vibrations cannot be observed. This objection no longer holds for the
exact model (3.25) because of the nonlinear coupling between the two equations. Even if a source term appears
only on the first equation of (3.25), vs will not remain 0 since %—Ij(u, 0) # 0! This is the first motivation to keep
the nonlinear model.

Nevertheless, the linear model (3.36) will be useful to “analyze” (in first approximation) the behavior of the
solution of the exact model (3.25) in the case where the deformations are not too large: it gives the tangent
harmonic oscillator at the origin of the nonlinear evolution problem (3.25). In particular, the spectrum of this
harmonic oscillator is made of the union of two harmonic spectra:

c

e the transverse harmonic spectrum {f;;”e =n f(f”e,n > 1}, fa‘”e = i;
c

e the longitudinal harmonic spectrum {fﬁ =n fén> 1}, fE= ﬁ.

Note that in practice, because of the velocity contrast (3.37), f£ > 10 f¢ and the transverse spectrum is much
denser than the longitudinal spectrum. However the intersection between longitudinal spectrum and the range
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of audible frequencies, namely, [0, 20] kHz ﬂ{ fL=nfln> 1} is non empty for most piano strings (except
for the two highest octaves): for instance, for the note Df1, in this interval of frequencies, there are typically 20
“longitudinal eigenfrequencies” (versus 200 “transverse frequencies”).

3.8.4. An approximate model with polynomial nonlinearities

Still in the case of small amplitude motion, one can obtain approximate models (hopefully more accurate
than the linear model (3.36)) by replacing H (u,v) by other approximations at the origin than Ha(u,v). Let
us present below a model, which generates only polynomial nonlinearities. Because of that property, it has
been used for instance in [7] for numerical approximation, or in [9] for more analytical purposes. This model is
obtained from an “anisotropic” quartic approximation of H(u,v) in the sense that it is obtained from a Taylor
expansion which is of fourth order in « but only second order in v:

2
TO ) E 2 EA—TO (U+u2) )

H(u,v) = Happ(u,v) + O(u* + v?), Hopp(u,v) = —u® + 5

5 SRR (3.38)

This type of anisotropic approximation is justified in the case where the string is transversally solicited (see [11]).
To be more explicit let us introduce the two functions

T (u,v) = aa—i[(u,v), To(u,v) = aa—i[(u,v) (3.39)

so that T, (0yus, 0yvs) and Ty (0yus, O,vs) are respectively the transverse and longitudinal components of the
tension T of the string and consider the equations with a transverse source term, of small amplitude €, hence
for the equation in ug only:

pA RS — 0, [Ty (0pus, 0,05)] = e f(t), (3.40a)
pA 02 — 0, [Te(9pus, 9,05)] = 0, (3.40b)

It it easy to see formally that
u; = O(e), vE = 0(e?). (3.41)

In other words longitudinal vibrations have a much smaller amplitude than transverse ones. As a consequence,
from (3.38), one deduces that

H(ug,v5) = Happ(ug, v5) + O(c*). (3.42)
According to (3.38), one has
1
Tr(u,v) = Tou+ (BA — Tp) (uv + 3 w?)+ O(u* +0?) (3.43a)
1
Ty(u,v) = EAv + 5 (EA-To)u*+ O(u*+0*) (3.43b)

so that, replacing H by H,pp in (3.29), we obtain the following coupled system of equations

1
pA Otug — 0, {TO Opus + (EA — Typ) (axus Opvs + 3 (axus)?’)} =0, (3.44a)

EA-T,

pA vy — 0, {EA Dpvs + (azus)ﬂ =0, (3.44D)

In our work, we shall use the exact model but this model will be helpful for the interpretation of some of the
numerical results provided by our model.
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Remark 3.4. Proceeding as in Section 3.3.2, it is clear that the first order system corresponding to the ap-
proximate model (3.44) is still locally hyperbolic (see also Fig. 7c). However, it can be shown that it is genuinely
nonlinear. As a consequence “shocks”, namely discontinuities of dyus and J,us (which implies the presence
of kinks in the deformed shape of the string, which seems unphysical) will develop in finite time, even with
arbitrarily smooth and small data.

The energy conserved for smooth solutions of (3.44) is of course

L L
EBPP(u,) = %/O pA latus|2 dz +/0 Hpp(0zu;) do. (3.45)

The reader will note that the positivity of H,pp(u,v), and thus good stability properties of the model via energy
estimates, is only granted provided that EA > Ty, which was not needed for the exact model but is nevertheless
true for real piano strings.

3.4. Combining longitudinal vibrations and inharmonicity: the nonlinear stiff string
model

3.4.1. The model for planar motions

The model we shall propose for modeling a piano string aims (in the absence of damping phenomena — see
Sect. 3.5) at combining the inharmonicity effects obtained with the linear stiff string model of Section 3.2 with
the longitudinal /transverse vibrations coupling effects provided by the geometrically exact model of Section 3.3.
That is why we proposed a model with three scalar unknowns:

e the transverse component of the displacement (in a vertical plane): us(z,t);
e the longitudinal component of the displacement: vs(z, t);
e the angle of rotation of cross sections (in a vertical plane): @ (x,t),

that is obtained by “concatenation” of both models (3.9) and (3.25). Seen as a modification of the geometrically
exact model, this consists of the following operations:

e In the equation (3.22) for the displacement field us; = (us,vs), the tension T, given by (3.23) for the
geometrically exact model (3.25), is modified by adding the contribution due to the rotation of the cross
sections, namely (note that only the transverse component of the tension is affected)

t

N

T =T ((9pus)® + (14 0,v5)% ) ® (9pu, 1+ 9,v5)" + (AGE (05 — Oyus),0) (3.46)

where T is still given by (3.24).

e the two equations for (us,vs) are completed by the equation governing ¢, from the Timoshenko model.

Consequently, the longitudinal and transverse component of the tension T are given by
O s
((83,u3)2 +(1+ 8xvs)2)
(1 + Oyvs)
((Bpus)? 4+ (1 + 0705)?)

T, = EAOyus — (EA —To) + AGk (ps — Opus)

1
2

(3.47)

Ty = EA 9,0, — (EA —Tp)

=
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which leads to the following nonlinear system that we shall refer to as the nonlinear stiff string model:

pAd2u, — 0, [EA Opus — (EA — Tp) Outts . ]
((Opus)? + (1 + 0,v5)%)?
+ 0, (AG/{ (ps — 8Ius)) =0,z€]0,L[, t>0,
(3.48)
pA@tzvs —8I[EA 005 — (EA —Tp) (L+0svs) T ] =0,z€]0,L[, t>0,
( (Opus)? + (1 + 050s)? ) ’
pl 0705 — 0x(E10yps) + AGK (ps — Ous) —0,z€]0,L[, t>0.

This system will be completed, in first approximation, by the boundary conditions (3.7), (3.26), (3.14). Note
that the “tangent” harmonic oscillator to this system at the origin is made of the (decoupled) union of the
Timoshenko’s model (3.9) in (us, ¢s) (with boundary conditions (3.7)—(3.14)) with the 1D wave equation (3.36b)
for vs (with boundary conditions (3.26)). The spectrum of the linearized model is thus the union of three parts

{fan>1 U{fln>1}u{fS n>1} (3.49)
where we recall that
e the first part {fn, n > 1} is an inharmonic spectrum corresponding to flexural modes (Sect. 3.2);
e the second part { fhion > 1} is a harmonic spectrum corresponding to longitudinal modes (Sect. 3.3);
e the third part {fJ,n > 1} (shear modes) does not intersect the set of audible frequencies (Sect. 3.2).

We shall call the model (3.48) the stiff nonlinear string model. For conciseness of our presentation, it will be
useful to rewrite (3.48) in a more compact and abstract form. This is the object of the next subsection.

3.4.2. An abstract model for generalized non linear string equations

Let us start from an energy density function of 2NV variables:
H(p,q) : RY xRY — RT. (3.50)

We shall denote respectively V,H(p,q) € RY and V,H(p,q) € R the partial gradients of H(p,q) with
respect to p and q respectively. Moreover, splitting the set of indices {1,..., N} as:

{1,...,N}=IpUZIn, IpNIn=1, (3.51)
we introduce the orthogonal projector J from RY onto
Vp ={a=(ghicjcn [ q; =0if j € Ip}. (3.52)
The abstract string model then reads

Find q(z,t) : [0, L] x RT — RY such that

M 9?q — 9, (V,H(9:q,9)) + V,H(d,q,9) =0 x€]0,L[, t>0,
(3.53)
Jq(0,t) =Jq(L,t) =0, t > 0.

(Id - J) V,H(9.q,q)(0,t) = (Id — J) V,H(d,q,q)(L,t) = 0, t > 0,
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in which q(x,t) € RY is the vector of “generalized” string unknowns while V,H(d.q,q) is the vector of
generalized efforts from which we can define the generalized tension

T=JV,H(J,q,9) (3.54)
which coincides with the physical tension T given by (3.46) when H is given by (3.59)) while

(I =J) V,H(%:q,q)
is the “generalized” torque. The boundary conditions can be interpreted as “mixed Dirichlet-Neumann”

boundary conditions in the sense that:

e {¢j,j € Ip} are the unknowns to which a homogeneous Dirichlet condition is applied,

e The conditions 9,, H(0,q,q) = 0, j € Iy, are generalized homogeneous Neumann conditions.

Once again, an energy conservation result is associated with (3.53). More precisely, any sufficiently smooth
solution of (3.53) satisfies:

d

1 L L
T Es(q) =0, &(q) = 5/ Mo,q- 0yq dz + / H(9.q,q) dz. (3.55)
0 0

The proof is quite standard and the details are left to the reader. One takes the inner product in RY between
the first equation of (3.53) and 9;q,and integrate in space over [0, L]. Then, the following two ingredients are
used for treating the second term of the first equation of (3.53), after integration by parts,

e For the integral part, one uses the chain rule
0 (H(0xq,q)) = V,H(0,q,q) - 92,9+ V,H(0:q. q) - dq. (3.56)
e For the boundary terms at x = 0 and L, one writes
V,H(9:9,q) - 0:q = (Id = J)V,H(0:q,q) - 9rq + VpH(5:q, q) - I drq. (3.57)

Tt is an exercise to check that (3.48), (3.7), (3.14), (3.26) enters this general framework with:

pA 0 0
N=3, Ip={1,2}, q=(usvs,05), M=1]0 pA O (3.58)
0 0 pI

and the energy density function given by

1 1 1 1
H(p,q) = §T0 Ip1|” + B EA|ps|* + §EI ps|® + §AGH g3 — p1]?
' (3.59)
+H(EA-To) | Im* + (1 +p2) — P%+(1+p2)2]

For numerical purposes again, it will be useful to separate the energy density function H(p, q) as the sum of its
“quadratic part”, defined as the quadratic form which approaches H(p, q) at third order at the neighborhood of
the origin, from its “non quadratic part”, namely the rest. Looking more closely at the expression of H in (3.59),
we see that it is of the form (note in particular that the non quadratic part of H only depends on p):

H(p.q) = Ha(p.q) +U(p), U(p)=0(pl’) (Ip|—0) (3.60)
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where Hy(p, q) is given by ( - represents below the inner product in RY or R?" depending on the context)

A B P P

H2(paq) = 5 : =

(Ap-p+Cq~q+2Bq~p) (3.61)
Bt C q qa

DN | =

and (A,B, C) are real N x N matrices with (A, C) symmetric and positive. In other words Hy represents the
second order Taylor expansion of H at the origin and U is the rest (the difference with H) that we suppose to
depend only of the variable p. This decomposition allows us to see our nonlinear model as a perturbation of
the tangent linearized model around the origin.

With (3.60) and (3.61), the partial differential equation in (3.53) can be rewritten

Matzq - az (A 31(1) - az(B q) + tB amq + C q + a:v (vu(azq)) =0. (362)

In (3.62), 0, (VU(0,q)) represents the “nonlinear part” of the model while the other terms constitute the
“linear part” of the model or equivalently the “tangent” harmonic oscillator. These two parts of the model will
be treated differently when we shall deal with the time discretization of the problem.

In the particular case of the energy density (3.59)—(3.61) hold with

To+AGk 0 0 00 —-AGk 00 O
A= 0o EAO|, B=[o0o o |, c=(o0 0 |, (3.63)
0 0 FEI 00 O 00 AGk
p2
(p) = (BA-T0) |+ (14 ) = o + (4 2] | (3.64)

Note that, separately, Ha(p,q) and U(p) are not necessarily positive (for instance, this is not the case
with (3.63, 3.64)) but their sum is. Such a property is in particular satisfied if one can decompose the ma-
trix A as

t

b 1
A = Ag + A such that (g Al?“) is a positive matrix, and 3 Asq-q+U(q) >0, VqeRY. (3.65)

In the following, we shall assume that (3.65) holds. This will be important for the stability analysis of our
numerical method. In particular, (3.65) holds for (3.63, 3.64)) with:

To 0 0
As=|0EA 0 |. (3.66)
0 0 EI

3.4.3. An enriched string model authorizing non planar motions

It is possible to enrich the string’s model (3.48) while remaining in the general framework (3.53). It is
in particular possible to take into account the so-called double polarization of the string, which amounts
to authorizing non planar motions. This leads to introduce a second transverse component for the string
displacement, orthogonal to the preponderant one ug. Proceeding in the same way for the rotation of the
cross sections of the string, it is natural to introduce two additional unknowns (whose meaning is given in Fig. 8):

e ug: the second (or horizontal) component of the transverse displacement of the string;

e &,: the second (or horizontal) angle for the rotations of the cross-sections,
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CP skff)

(a) Additional unknown is. (b) Additional unknown @s.

FIGURE 8. Schematic view of the additional unknowns.

Doing so, we obtain a model (we do not write the equations in detail, these are straightforward extensions
of (3.48)) of the form (3.53) with:

N:5a ID:{152,3}5 qz(usﬂs,vs,%,@s)-

Various experimental studies show that piano strings do have horizontal movements under the “vertical” so-
licitation of the hammer and that taking into account the double polarization of the string may have some
importance from the acoustical point of view. However, we shall not consider them in the rest of this paper.
This would be relevant only if we worked with a hammer model explaining how to generate horizontal vibrations
of the string and with a bridge model explaining how these vibrations are transmitted to the soundboard. This
will not be the case of the “simplified” models that we shall consider (see Sects. 4 and 5) and this is why we
shall restrict ourselves to the “planar model” of Section 3.4.1.

3.5. The full nonlinear stiff string model with intrinsic damping

It seems essential to incorporate a frequency dependent damping in our strings’ model. Damping phenomena
are difficult to apprehend, for many reasons (lack of measurements, uneasy dissociation of their origins, misun-
derstanding of certain phenomena as dislocation...). This is why we propose as a first approach to use a very
simple model that allows to reproduce these effects without trying to model the underlying physics. We have
chosen to mimic the introduction of damping terms in d’Alembert’s equation (3.5) by simply adding viscoelastic
terms:

Oug g
o~ 2T0Vugrg.E ~

pA OPus + 2pAR, Tod*us =0, Yaecl0,L], t>0, (3.67)

where R, and 7, are empirical (constant in space and positive) damping coeflicients which are respectively
homogeneous to a time or the inverse of a time.
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By extension of (3.67), we have chosen to treat our string’s model (3.48) in a similar way by adding linear
viscoelastic damping terms to each row of the system:

pA 8t2us + 2 pA R, Oyus — 2Ty vy 020,us

O s
— 8, _EA@xus — (BEA-Ty) NCEDET IR e

pA 8t2vs + 2 pA R, Ovs — 2To v, 020,05

+ AGk Oy (gos - 8Ius) =0,

(3.68)

\/(&Cus)2 + (14 0yvs

i L+ Duvs
— 0, | EAOv, — (EA-T) + %.v )2] 0,

pl 82(,03 +2pl R, 0rps —2EL, 20,5

— 02 [E1 0y05] + AGE (s — Opus) =0,

where (Ry, Ry, R,) and (Vu,Vw,7,) are heuristic positive damping coefficients whose value is determined in
practice thanks to experimental calibration. Again, in first approximation, this system is completed by the
boundary conditions (3.7), (3.26), (3.14).

For conciseness and sake of generality (see Sect. 3.4.3), we shall put the above model in an abstract and
concise framework, using the notation of Section 3.4.2 (see (3.50), (3.53)):

M 8,52(1 + 0t (Rq - aar(-r' 8?‘1)) — 0z (va(ax(L q)) + qu(axqv Q) =0 (3'69)

where R and I' are N x N positive and symmetric matrices representing the damping terms. In the particular
case where H(0,.q, q) is of the form (3.60)—(3.61), this gives

Md?q+ 9 (Rq— 9.(I'9,q)) — 9. (A d,q) — 9.(Bq) + ‘Bd.q+ Cq+ 8, (VU(D,q)) =0 (3.70)

According to Section 3.4.2, the reader will easily check that (3.68) corresponds to the abstract form (3.70) where
N =3, q = (us, s, ¢s), the matrices M, A;B and C are given by (3.58) and (3.63), the function U is given
by (3.64), while the matrices R and I' are the diagonal matrices

pAR, 0 0 Tova O 0
R=2( 0 pAR, 0 |, r=2| 0 EAv, 0 |. (3.71)
0 0 pIR, 0 0 Elv,

The reader will easily check that the boundary conditions (3.7), (3.26), (3.14) correspond to the following
ones for the abstract model (where Zp = {1,2}, see (3.51) and (3.52))

Jq(z,t) =0, (Id—J)(Id%a+V,H(d,q,q))(z,t)=0, z=0o0rL, t>0. (3.72)

Moreover, it is important to notice that, in the presence of damping, the (generalized) tension of the string is
no longer given by (3.54) but by

T=1J (V,H(0,q,q9) + I 0%,q) . (3.73)



TIME DOMAIN SIMULATION OF A PIANO. PART 1: MODEL DESCRIPTION 1263
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FIGURE 9. Schematic description of the hammer.
which gives in particular, if (3.58) holds, H is given by (3.59), I" by (3.71) and q by (3.58), a vector (T, 17, O)t
with (instead of (3.47))
OpUg

((Pptis)? + (1 + D4v4)?)

(14 8,05 T
1 v L0 UgtUs
((0t1s)? + (1 + Op0)2) '

T, =FEAOQ,us — (EA — TO) + AGEK (ps — Ozus) + vu To 6gtusa

=

(3.74)

Ty = EA 9y, — (EA — Tp)

In this case, it is immediate to check that the energy conservation (3.55) for (3.53) is replaced by an energy
decay result (that emphasizes the roles of R and I' as damping coefficients)

L L 1 L L
%Ss<q)+/ Rq~qu+/ [9,4- 0,4 de =0, Ss(q)zi/ Mq~qu+/ H(d,q,q) dr, (3.75)
0 0 0 0

where we denote & the time derivative of any variable x.

4. A MATHEMATICAL MODEL THE STRINGS-HAMMERS INTERACTION

At first glance, a piano’s hammer (represented by H in what follows) can be described as a non deformable
piece of wood covered by a deformable piece of felt. Each hammer will interact with one or several strings:
for most notes, strings are gathered into “choirs” of one, two or three parallel strings that contribute to the
same note. In what follows we shall denote N, the number of strings. For each string, we shall use the model
with planar motion of Section 3.4.2. We will denote the ith string’s unknowns q; = (u;, vi, @), 1 < i < N; (for
simplicity of the notation, we omit the index s for the string’s unknowns) and by = € [0, L] the abscissa along
each of these strings. The strings of a same choir are slightly detuned (their tension at rest, Ty, is different,
see [32]) and this is why, thanks to (3.63, 3.64), each string has its own U; and A, in (3.60, 3.61). Describing in
detail the physics of the interaction between the hammer and the related strings (as a 3-D contact problem for
instance) would lead to a too complex model. For now, we shall restrict ourselves to a (very) simplified model.

The first part of the model is the kinematic one. In first approximation, the movement of the hammer is
assumed to be parallel to a line D, vertical and orthogonal to the plane containing the strings with which it
interacts. For simplicity:

e the movement of the wooden part of the hammer will be described by the abscissa £(t) (along D) of a fixed
point My in this wooden part (see Fig. 9a);
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e the deformation of the felt will be described by the abscissa along D, &;(¢), of the point of impact between
the hammer and the ith string of the choir (which is also assumed to move along a line parallel to D, that
we assume to be oriented in such a way that £(t) < &(t));

e the above impact point is assumed to coincide with a point of abscissa x; along the string (we suppose that
it does not depend on time: there is no slipping) so that

&) = ui(xg, ). (4.1)

If one wants to take into account that the string-hammer contact is not purely punctual but distributed
along a small portion of string around the point x; (doing so, we implicitly assume that the zone of impact
does not change in time, which is also a simplification)

L
&(t) = /0 s, ) S ( — 1) dr (4.2)

where dg () is a function with small support around the origin and satisfying / o (z) =1.

To be more precise, if £ > 0 denotes the distance between My and the top of the hammer when this one is
at rest (see Fig. 9a)

there is contact with the ith string <= & (t) — (1) < &. (4.3)

Moreover we shall define the crushing (see Fig. 9b) of the hammer at point x; by

= +
ei(t) = [~ &(t) +£(1)] (4.4)
where 27T is the positive part of x. In particular e;(¢) = 0 when there is no contact.

The second part of the model consists in describing the interacting forces between the hammer and the strings.
More precisely, we assume that the action of the hammer on the ith string is reduced to a force, applied at
the impact point z; (or more specifically distributed along a small portion of string around z;, see later). We
suppose that this force is orthogonal to the string and thus described by a scalar function F;(t). When the
relaxation phenomena are neglected (see below), the intensity of this force is assumed to be a function of the
crushing

Fi(t) = kn Pu (ei(t)) (4.5)

where kg > 0 is the nonlinear stiffness of the hammer (see [29]) and @y : R — R™T is increasing and satisfies
@ (0) =0, so that, by construction

e when there is no contact (e;(¢t) = 0), this force vanishes;
e when there is contact, the more compressed the hammer is, the more intense the force is.

The reader will remark that the discrimination between kg and @y will only make sense when we shall have
chosen an explicit expression for @y, see (4.7). For a more realistic modeling, one should take into account the
relaxation phenomenon that expresses that the force of interaction is not the same depending on the fact that
the hammer is being compressed, in which case the force is more intense, or decompressed, in which case it is
less intense. Mathematically, this can be translated into the addition to (4.5) of a term which is proportional
to the time derivative of @ (e;(t)):

Fz(t) = k‘H QSH (6Z(t)) +rg % @H(ei(t)) (46)

where 77 > 0 is the relaxation coefficient. The model (4.6) allows to account for the hysteretic behavior of
the hammer observed in experimental studies as [29] and is also responsible, as we shall see, for dissipation
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phenomena. The same studies also show that it is relevant, for small crushing values, to take a simple form for
the function @g:

Pr(y) =y* (4.7)
where the exponent p, that depends on the considered hammer, is not necessarily an integer and in practice
varies between 1.5 and 3.5 in order to fit the experimental behavior.

In conclusion, introducing the vector v* = (1,0,0)! as an element of the q space RV, so that u; = q; - v,
the evolution of the hammer-strings system will be modeled by the following set of equations

Find £(t) : RT — R and q;(t) : [0,L] x Rt — RY 1 <i < Ny such that

mu %(t) ==Y F(t), Fi(t)=kg Pu(ei(t)) +ru % Byt (e:(0)).
i€T, "

L
eilt) = [E—&(t) +e]T, 5i(t):/o (@, 1) - v° Sn(e — 1) da,

M &7 q; + 0 (qu — 0, (I 3z%)) = 0: (VpHi(0:qi, 4i) + VHi(0xqi, i) = Fi(t) du(x — x;) v°
where the last equation holds for each 1 < ¢ < Ng. The above system is completed by the boundary condi-
tions (3.72) for each q; and by the initial conditions:

d¢

£(0) = ¢, E(O) =g,

9q;
ot
which express that the string is initially at rest and that, at time ¢ = 0, the hammer strikes the strings from
below with an initial velocity vgy. In (4.8), we shall clarify that

(4.9)

qi(z,0) = (z,0) =0, z€][0,L],

e Oy is given by (4.7), mpy > 0 is the effective mass of the hammer, ky and rp its stiffness and relaxation coeffi-
cients, the functions H;(p, q) are defined as in Section 3.4.2 (through (3.59) or equivalently (3.59, 3.63, 3.64))
and the the matrices (M, R, I') as in Section 3.5, except for the apparition of the index ¢, devoted to express
the dependence with respect to the string, of the various coefficients of the string model, especially the initial
tension;

e the presence of the function dz, in the right hand side of the last equation, allows to represent the spatial
distribution of the force exerted by the hammer. For energy conservation reasons, this has to be the same
function as the one in the definition (4.2) of &;(¢). The presence of the vector v* = (1,0,0)" (as an element
of RY, the space of q unknowns) means that the direction of the force is along the line D, which implies
that the right hand side only impacts the equation for w;.

The above model is associated to an energy decay result. More precisely, the energy of the strings-hammer
system is defined by

Esnl(ai, &) = Z Es(ai) + %| §|2 + Z ki Y (ei),
' . (4.10)
ei(t) = [E-&®) +E)]", &) =/O qi(z,t) - v° og(x —a;) de

where the function ¥y is defined by

Dy (x) = / "Gu(y)dy (2 0). (4.11)
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FI1GURE 10. Schematic view of the soundboard’s unknowns and geometry.

In (4.10), in addition to the strings’ energies (the first term), one identifies the kinetic energy of the hammer
(the second term) and the energy of interaction between the strings and the hammer (the last term). It is easy
to establish the following energy identity satisfied by any (smooth enough) solution of (4.8),

d Lo o . . / 2
T Esn(ai &) = — 21:/0 Rq;-q;i— EZ:/O I'o.q; - 0.4; — zz: r Py (e;) [Ore] ™ (4.12)
Note that, since @y is increasing, (4.12) illustrates the role of the relaxation term in (4.6) as a dissipation term.

5. A MATHEMATICAL MODEL FOR THE SOUNDBOARD — STRINGS INTERACTION

5.1. The mathematical model for the soundboard

5.1.1. The Reissner— Mindlin model

The soundboard’s thickness being very small compared to the other two dimensions, we have chosen to model
this structure as a plate (the index p in what follows will refer to “plate”) on a bidimensional domain w. We shall
denote x = (x1,72) € R? the space variable on w (and z the third “vertical coordinate” according to Fig. 10).
Seen as a 3D object, w is in the plane z = 0. In the piano context, it is reasonable to consider only small
displacements and small deformations. We use a standard linearized model, the Reissner—Mindlin model [28]
which can be seen as a 2D version of the Timoshenko model (3.9) for stiff strings. The unknowns of the model
are (see also Fig. 10)

e the transverse displacement u, of the plate;
e the two deflection angles (61 p,62,,) = 6, representing the rotations of the normal fibers of the plate.

The coefficients appearing in the model are

e the thickness 6 > 0 the plate, its density p > 0;

e the elasticity coefficients: the shear and stiffness tensor G and C (2 x 2 positive definite symmetric matrices,
diagonalizable in the same basis);

e a shear correction coefficient of the model denoted % > 0.

The tensor C permits to take into account the orthotropy of the wood. The thickness will be taken as a function
of x, which allows to take into account the diaphragmatic nature of the soundboard (the fact that the thickness
of the plate varies slowly and smoothly, from 6 cm in the middle to 9 cm at the boundaries, [15]) but also the
presence of the bridge and the ribs, seen in Figure 11. The other coefficients will also be varying with x, allowing
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(a) Bridges (left) and ribs (right) on both sides of a Fazioli sound- (b) Four areas characterizing the presence of
board. bridges and ribs for the Steinway D.

FIGURE 11. Bridges and ribs on soundboards.

any possible heterogeneity of the materials. If the plate is submitted to a surfacic density f(x,t) of transverse
forces, the governing equations are the following:

() 8(x) By — cliv (8(x) (%) G(x) (Tup +6,)) = F(x.1).

n w (5.1)

X3 3 X
p(x)% afep—Div(5 (x)

12

C(x)e(6y) ) +0(x) 52(x) G(x) (Yut, +6,) = 0
where we have used the following notation

e Divo denotes the (vectorial) divergence of a 2D tensor field o:
2
(Diva)i = Z O, 045, 1=1,2;
i=1

e V0 (resp. £(6)) is the tensor corresponding to the gradient (resp. its symmetric part) of a 2D vector field 0:

(V6),, =000 i =12, =(6) = 5 (V0 +(¥6)").

ij

Of course, (5.1) has to be completed by boundary conditions. Roughly speaking, the plate w is “fixed” along its
boundary dw. However, the optimal boundary conditions are very difficult to estimate in realistic configurations.
We have considered ideal simply supported conditions, namely (n denotes the unit normal vector to dw):

up(x) =0, Vo,(x)n=0, Vxe€dw. (5.2)

Remark 5.1. By anticipation, let us make precise that, in the full piano model, the transverse force f appearing
at the right hand side of (5.1) will be the sum of two contributions f = fs + fa:

e f.: the force applied by the strings at the bridge (see Sect. 5.2);
e f,; the force (pressure jump) applied by the outside air (see Sect. 6).
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5.1.2. The soundboard model in condensed form

In order to rewrite (5.1), (5.2), it is useful to introduce the vector of plate unknowns

U, = (up,0,)" €RY, M =3, (5.3)
the diagonal matrix
p(x) §(x) 0 0
M, (x) = 0 p(x)8(x)3/12 0 (5.4)
0 0 p(x) §(x)3/12

the differential operator

Up
Ap(x,Vx)U, = A,(x, V) = 53 (x) (5.5)
0, —Div( == Cx) s(a,,)) + (%) 52(x) G(x) (Yup + 0,)
and the trace operator
Up Up
B,(n,Vx)U, = B,(n, Vx) = . (5.6)
0, Vo,n

Then, denoting v? = (1,0,0)! € RM (the space for the U, unknown), (5.1) becomes
M, (x) 07U, + Ap(x,Vx)U, = f P, x€w, t>0,
B,(n,Vx)U, =0, X € 0w, t>0.

Again, there is a natural energy identity satisfied by any regular solution of (5.1), (5.2). More precisely, if we
introduce the energy of the soundboard as

1 1 53 1 [ 8 1
&U) = [ p810wf + 5 [ o310, 4 5 [ 5Ce0) 6+ 5 [ 06 G ITu, 40,2 (53)

d ou 0
Gewn= [ 5rw (= [152). (5.9

5.1.83. Introducing intrinsic plate damping

then, one has the identity

As it was also the case for the string, there are intrinsic mechanisms, of various natures, that provoke damping
phenomena, that is to say natural attenuation in time of plate vibrations. Describing in detail the physics of
these mechanisms is a very complicated task that goes much beyond the objective of this work. This is why,
as for the string, we have chosen to use a more heuristic and phenomenological model. A full thesis [20] has
been recently devoted to the physics of soundboards and we shall use the results therein to design our damping
model. In two short sentences, the conclusions of [20] are :

(i) The soundboard damping is a linear phenomenon of modal nature.
(ii) The attenuation increases with the frequency of the modes.
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Mathematically, it is useful to reconsider the model (5.7) in the form of an harmonic oscillator (3.1) in the sense
of the beginning of Section 3 (see (3.1)):

d*U

de?

L+ A,U, =0. (5.10)
The Hilbert space H is H = H, = L?(w)™ equipped with the scalar product:
(U,,T,) /M ) U, (x) dx (5.11)

and A,U, = M, (x) "' A,(x, Vx)U, for any U, € D(A,) where the domain of A, is
D(A,) = {U, € H' ()M / Ap(x,Vx)U, € L*(w)™,B,(n, Vx)U, = 0 on dw}. (5.12)

The eigenmodes {W,, : w — RM n € N} and corresponding eigenvalues {\,, > 0,n € N} (which are ranked by
increasing values and tend to +00) of this harmonic oscillator are the solutions of the eigenvalue problem

Ap(x, V)W, =\, M, (x) W,,, X € w,
(5.13)
Bp(nv VX)Wn =0, X € Ow.

After appropriate normalization, {W,,n € N} form an orthonormal basis of the Hilbert space H. In order to
introduce some dissipation in the model, while taking account of the observations (i) and (ii), we modify (5.10)
in the following way:
d’U
de?
where f; : RT — RT is the spectral damping function which is assumed to be increasing and have a sub linear
growth at infinity:

du
=+ fa(Ayp) d—tp +A4, U, =0, (5.14)

fa(A\) < AX+ B, for some A, B > 0. (5.15)
The operator fy (Ap) is defined in the usual sense of the functional calculus for self-adjoint operator, namely:
VneN, fi(A)W, = fa(r)W,. (5.16)
Note that (5.15) ensures that fq(A,) is well defined in D(A,) and that the bilinear form

a4(U,,U,) = (fd( )U,. U, ) Z fan) (Up, Wa),, (0, W), (5.17)

is well defined in V), = H'(w)? while the positivity of f; yields the positivity of the associated quadratic form
VU, € H(w)®, a5(U,U,) >0, (5.18)

which guarantees the dissipative nature of the additional term in (5.14). Indeed, the energy identity (5.9)
becomes

dt

In practice, looking at (5.16), knowing the {fi(A\,),n € N} is sufﬁc1ent, which could be done by matching
experimental data. However, it is convenient to use an analytic formula. The following formula is proposed to
match experimental data of [20] for low and medium frequencies, and adds a degree of freedom g with respect
to [20] in order to adjust the high frequency behavior:

G 6(U,) + @, 00,) = [ £ T (5.19)

fa) =aX+BVA+7, (ad,B4,74) = 0. (5.20)
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The reader will note that, as soon as 84 # 0, f4(A,) cannot be “identified” to a differential operator and is
thus “truly” nonlocal.

Because of this property, it is not easy to rewrite (5.14) in PDE form. To do so, a solution consists in extending
the operator f(A,) to distributions on w by duality: for any U, € D'(w)?, we define f(A,)U, € D'(w)? by

VU, e DW)?, (f(4)Uy, U,) = (Uy, fa(A,)U,) (5.21)

which makes sense because D(w)® C D(A,) and is justified by the self-adjoint nature of A,. Modulo this
extension, the plate model with dissipation can be rewritten as:

M, (x) 07U, + f(A,) 01U, + Ap(x,V)U, = f P, xcCw, t>0,
(5.22)
B,(n,Vx)U, =0, X € 0w, t>0.

Remark 5.2. For numerical purpose, the dissipation will easily be introduced in the weak formulation (or
variational formulation) in space of (5.14), via the bilinear form al}. Taking into account (5.17), this will lead us
to use a spectral (or modal) approach for the space discretization of (5.14): we shall work in a space spanned
by {W,,n < N,} where N, is devoted to tend to +oo.

5.2. A model for the string-soundboard coupling at the bridge

We shall propose in this section a quite simplified model for the string-soundboard interaction via the bridge.
We think that this model is a good starting point to explain the main mechanism of the transmission of string’s
vibrations to the soundboard.

We shall make the assumptions that the motion of each string, and consequently the one of the attach point
at the bridge, remains in the vertical plane containing the string’s motion. As a consequence, it is sufficient
to give a description of the coupling in a 2D setting. In Figure 12, we give a schematic view of the important
geometric objects in this plane, denoted (P).

e The segment D, is the intersection of the soundboard w with the plane (P): D, = w N (P).

e The segment line D represents the string at rest. Note that D, and D are not parallel: there is a small angle
« between them. This particularity (which is more visible on a violin, for instance, but is also present in a
piano) allows the transmission of the longitudinal vibrations of the string to the soundboard.

e The extremity corresponding to the abscissa = 0 (agraffe) is fixed. The one corresponding to = L
(bridge) is mobile.

e At the bridge extremity (x = L), we suppose a condition of zero torque, which is written as (3.72) in the
generalized notations.

e The bridge, assimilated to the (vertical) segment Y| joins the point x, € w of the soundboard (that we shall
abusively call the “attach point”) to the mobile extremity of the string (the real attach point).

e The bridge is assumed to be perfectly rigid (undeformable) and its movement purely vertical along the
direction of X' (as pointed out with the blue arrow in Fig. 12).

In the following, we shall work with the space coordinates (1, z2, z) of R? chosen in such a way that w is parallel
to the “horizontal” plane (z1,z2), the line D, is parallel to zo axis and D is parallel to the vertical plane (z2, 2).
The above assumptions lead to the following kinematic boundary conditions which express that the movement
of the string’s mobile extremity has no horizontal component, while the vertical one coincides with the one of
the attach point x,:
u;(L,t) sina — v; (L, t) cosa =0
(5.23)
ui(L,t) cosa+ v;(L, 1) sina = up(Xq, ).

The efforts between the two systems string and bridge-soundboard are explained on Figure 13, in which the red
curve represents the deformed string at a given instant ¢. More precisely
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FIGURE 12. Schematic description of the bridge (in the plane (P)).
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FIGURE 13. The forces between the two systems.

e The ith string acts on the soundboard through the string’s tension at its extremity T'(L, t),

e The horizontal component of this tension is annihilated by a force of reaction Fi(¢) due to the bridge that
ensures that the motion of the bridge remains vertical.

e The vertical component of this tension, due to the rigidity of the bridge, is entirely transmitted to the
soundboard as a vertical force F;(t) applied at point x,.

The consequence is the apparition of a right hand side fs = f! (a point source), for the equation in wu, in the
soundboard model (see Sect. 5.1 and more precisely (5.1) and Rem. 5.1),

fix,t) = Z F;)(t) 0(x — Xq), F;)(t) =cosa T (L,t) +sinaT)(L,t) (5.24)

where we recall that 7% and 7} are the components of the string’s tension in the string’s referential, given
by (3.47). To take into account the fact the bridge is not a 1D object, we shall assume that the force f, is not
applied only at a point but distributed on a small portion of the soundboard w. For this we introduce a positive
averaging function y(x) : R?> — R* which has a small support (a neighborhood of the origin) and satisfies
[ x(x) dx = 1. This means that (5.24) is replaced by

fix,t) = F;(t) X(x — X4), F;)(t) =cosa T (L,t) +sinaT}(L,t). (5.25)
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As a consequence, in the purpose of energy conservation, the kinematic conditions (5.23) have to be modified
accordingly. More precisely, the vertical displacement of the mobile extremity of the string will be identified to
a mean value of the vertical displacement of the plate w, using the weight function x:

u;(L,t) sina — v;(L,t) cosa =0

(5.26)
u;(L,t) cosa + v;(L,t) sina = / up(x,t) x(x —x4) dx.

w

In order to rewrite (5.23) and (5.25) in a more condensed and abstract form, using the general notation of
Sections 3.4.2 and 5.1.2, it is useful to introduce the vectors in the space of g-unknowns, which are closely
related to the vectors 7 and v of the physical space, illustrated in Figure 12:

75 = (—sina,cosa, 0)' € RN, v¥ = (cosa,sina,0)’ € RN,  (note that v% = v* when o = 0) (5.27)

in such a way that

Fi(t) = (VHi(0,qi, qi) + T Opqi) - T

(5.28)
—u;(L,t) sina + v;(L,t) cosa = q;(L,t) - 75, wu;(L,t) cosa+v;(L,t) sina =q;(L,t) v

Then, the equations for the coupled strings-soundboard model can be rewritten as (we recall that v? = (1,0,0)" €
RM | see Sect. 5.1.2):

Find q;(t) : [0, L] x Rt — RY and U, : w x Rt — RM (N =3, M = 3), such that
M d7qi + O (Rai — 02(I" 02q:)) — O (Vo Hi(02qi, i) + V Hi(0eqi, qi) = Fi(t) 6 (x) v°

M, 97U, + (A,) 0iU, + Ap(V)Uy = x(x = xa) (D (VoHi(@eas, i) + T Ocis) - 75) v7
i (5.29)

q;(L,t) -T2 =0, q;(L,t) v = / X(x —x4) Up(x,t) - VP
w

Jq;(0,t) =0, (Id—J)(I'd%q+ V,H(0,9,9))(zp,t) =0, a,=0o0r L

B,(n,Vx)U, =0, ondw, t>0.

The energy associated to the above strings-soundboard model is naturally defined as

Esp(ai, U Ze ai) + &,(U,) (5.30)

where &(q;) is the energy of the ith string (see (3.55)) and &,(U,) is the energy of the soundboard (see (5.8)).
The reader will easily verify that any smooth enough solution (q;, U,) of (5.29) satisfies the energy identity
(see (5.17) for the definition of afj(-,-)):

d b
dar Esp(ai, U / Rq;-d; — Z/O I'0,d; - 0.q; — ag(ﬁtUp,&eUp). (5.31)
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T

FIGURE 14. Geometric configuration of the piano.

Remark 5.3. We are conscious that our bridge model is probably oversimplified compared to reality and
would deserve to be improved in a future work. For instance, instead of treating the bridge as a part of the
soundboard, it would be more realistic to treat it as a (quite rigid) beam sticked to the soundboard and to
authorize movements of the bridge which are more complex than the simple vertical translation that we shall
authorize here. This would transmit the horizontal transverse vibrations of the string to the soundboard, if the
enriched string model of Section 3.4.3 were used.

6. PIANO MODEL

By “putting together” the hammer-strings model (4.8) of Section 4 and the strings-sounbard model (5.29)
of Section 5.2, one could immediately write a complete model for a piano in the vacuum. The only missing
phenomenon to transform this system into a model for a musical instrument is the sound radiation in the
surrounding air. This is described by the variations of a pressure field in the air, subject to the standard 3D
acoustic wave equation. The pressure field is coupled to the soundboard vibrations through fluid-structure
interaction: this is what one calls the structural acoustic equations.

6.1. Structural acoustic and sound radiation

In what follows, we shall use the same 3D space coordinates (x, z), x = (z1,22) as in Section 5.1 and denote
(e1, ea,€) the corresponding orthonormal basis. All our notations are illustrated in Figure 14. The piano, apart
for the strings, will be represented as the 3D object {2y Nw where

e w is, as in Section 5.1, the 2D domain in the plane z = 0 that represents the soundboard;
e 0 (where {27 is a bounded open set of R?) represents the rim of the piano, which will be considered as an
obstacle to the sound propagation.

The 3D domain occupied by the air is the exterior domain

9:R3\(9_fw) (6.1)
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We shall distinguish the two sides of the soundboard by introducing
wh=0NTNw, w =02 Nw,, where NF =02nN{£2>0} (6.2)
In particular, a function ¢ defined in §2 (in H'(£2)) will have two distinct traces on w, namely ¢|,+ and |,
We choose to write the acoustic equations as a first order system and thus introduce the following acoustic
unknowns:
e the pressure field p(x,2,t) 1 2 x RY — R;

e the acoustic velocity field — V(x,z,t): 2 x Rt — R3.

The governing equations are

paaa—‘t/—kVp:O (x,2) € 2, t>0,

(6.3)
[/
Maa—l—dlvV:O (x,2) € 2, t>0,

palca > 0 the corresponding (constant) Lamé’s coefficient

with ¢, the constant propagating velocity of sound in the air, V = (9,,,0s,,0.)t and div V = 8, V] + 0,, V2 +
0, V.. Of course equations (6.3) have to be completed by a set of equations describing the interaction of the
pressure field (the fluid) with the structure (the soundboard and the furniture part of the piano). The first
part of the fluid-structure coupling is given by the kinematic conditions which can be interpreted as boundary
conditions for (6.3) on

where p, > 0 is the (constant) density of the air, u, =

082 = 02 Uwtuw™.

We shall assume that the rim of the piano, {2y, does not vibrate, which means that we use rigid boundary
conditions on 025 (ny denoting the unit normal vector to 0£2;):

V.nyg=0 ondf2. (6.4)
On w, we express the continuity of the normal velocity of the fluid and the transverse velocity of the plate:
Veedpr =V el =0, (=0,U, -v’) on dw. (6.5)

The second part of the coupling is provided by the description of the efforts applied by the air on the soundboard
due to the jump of pressure between the two sides wtand w™ which constitutes a surfacic force density f,
appearing at the right hand side of the plate equation (see (5.1) and Rem. 5.1), namely

fa = [p]w :p‘uﬂr _p|w+- (66)

6.2. The full piano model in PDE form

We build our “complete” piano model by concatenating the content of Sections 3.4.2 (or more pre-
cisely 3.5), 4, 5.1, 5.2 and 6.1 and more particularly the sub models (4.8), (5.29) and (6.3), (6.4), (6.5). Doing
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so, we consider a note alone and restrict ourselves to the only the strings that are hit by the hammer. This leads

to the following problem:
Find ¢:RY — R, q;: [0,L] x RT — RY, U, :w x RT — RM|
p: N2 xR — Rand V: 2 xR" — R3 such that

Hammer's equations

mu %(t) =— ;Fi(t), Fi(t) = ky Dy (eit)) +rn % By (e(t)),

L
ei(t)=[€— &) + f(t)]Jr’ &i(t) = /0 q; - vi(x,t) 0 (z — x;) da.

Strings equations

M07q; + O (Rai — 8,(I 8,q5)) — 0z (Vo Hi(02q5, i) + VoH;(0:qi, qs) = Fi(t) 0 (x) v°.

Strings’ boundary conditions — strings/soundboard coupling equations

q.(L,t) -7 =0, qi(L,t)-I/Z:/X(x—xa)Up(x,t)~1/p

w

Jqi(0,t) =0, (Id—J)(I0%qi+ VpyHi(0:q5,q;) ) (2e,t) =0, x.=0or L.

Soundboard' s equations

M, at2Up + f(Ap) 0:Up + Ap(x, Vi) Up = x(x — xq) V” Z (qui(aqu‘a q;) + Faﬁtqi) To T+ [p]w v

Soundboard's boundary conditions

B,(n,Vx)U, =0, ondw, t>0.

Sound propagation
2%

Pa ot
Ip

Ha BN

+ Vp =0,
+divV =0,
Acoustic boundary conditions — soundboard/air coupling conditions

Ve =V es]or =0 U, VP, Vieny =0 on 082.
In the above system, let us recall that N = 3, M = 3 and that

(6.7a)

(6.7b)

(6.7¢)

P (6.7d)

(6.7¢)

(6.7)

(6.7g)

e Equation (6.7a), that holds for all ¢ > 0, governs the movement and the deformation of the hammer. For
the meaning of the unknown £(t), the various coefficients, we refer the reader to Section 4. The function @y
is given by (4.7). The hammer-strings coupling appears through e; and &; and z; represents the hammer’s

impact point on the string.

e Equation (6.7b), that holds for « € [0, L] and ¢ > 0, governs the movement of the ith string. The meaning of
the unknown q; is explained in Section 3.4.2 (see (3.58)). The function H;(p, q) is given, up to the additional
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index 4, by (3.59) (see also (3.60)). The matrices M, R and I' are given by (3.58) and (3.71) and the function
& is described in Section 4. The hammer-strings coupling appears through F;.

e Equations (6.7c) are the boundary conditions for the string (we refer to (3.52) for the definition of J). In
particular, the first line represents the kinematic conditions at the point x = L. The second condition is the
kinematic counterpart for the coupling with the soundboard through the right hand side. The function x
and the attach point x, are defined in Section 5.2. The vectors 75, and v$, € RV are defined by (5.27)) and
vP € RM has been introduced in Section 5.1.2.

e Equation (6.7d), that holds for x € w and ¢ > 0, governs the movements of the soundboard. For the meaning
of the plate unknown U, is given in Section 5.1.2. The matrix M, and the operator A, (V) are given by (5.4)
and (5.5) respectively while the operator f(.A,) is defined in Section 5.1.3. The coupling soundboard-strings
appears through the first term in the right side, the coupling soundboard-air through the second one.

e Equation (6.7¢), that holds for x € w and ¢t > 0, corresponds to the boundary condition for the soundboard.
The operator B, (Vx) is given by (5.6) and n is the unit normal vector to dw.

e Equations (6.7f), that holds for (x,z) € 2 and t > 0, governs the variations of the pressure and acoustic
velocity fields in the air (see Sect. 6.1).

e Equations (6.7g) are the interaction equations between the air and the structures, namely with the
soundboard and with the rigid part of the piano.

Of course, equations (6.7) have to be completed by initial conditions which simply state that the piano (and
the surrounding air) is at rest at ¢ = 0, the instant where the hammer hits the strings with initial velocity vy.

_ d
€0)=-& SO =uvn,
qi(z,0) = a;i" (2,0) =0, zel0,L), 65
U,(x,0) = 8;;1; (x,0)=0, x€uw,
p(x,2,0) =0, V(x,2,0) =0, (x,2) € 2.

We have not studied the mathematical analysis (existence, uniqueness of the solution) of (6.7), (6.8) which is
probably a hard task and was not our main purpose in this work. However, this system possesses a fundamental
stability property through energy estimates. In fact, it is not difficult to establish that any smooth enough
solution of (6.7), (6.8) satisfies the energy identity (see (5.17) for the definition of a}j(-,-)):

d E o L . .
3 Eot(6,00, Up,p, V) = —Z/O Rd; - d; — Z/O I'd,d; - 9.4
— a(0:U,, 0U,) = > 1 By (ei) [Brei]”. (6.9)

In (6.9), the total energy of the system is given by (we recall that ¥y is a primitive of @y, see (4.11))

Erot (&, i, Up,p, V) = %!éf Y kg T (e) + > Eslai) + E(Uy) + Ealp, V), (6.10)

where &,(q;) is the energy of the ith string (see (3.55)), £,(U,) is the energy of the soundboard (see (5.8)) while
the acoustic energy E,(p, V') is given by:

5a(p,V)=/Q(%a\V\2+%p2) (6.11)
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7. CONCLUSIONS AND PROSPECTS

The piano model (6.7) gathers most of the current knowledge concerning the main acoustic and vibratory
phenomena occurring in the instrument, but also their reciprocal coupling. When designing this time domain
model, a particular effort has been made to keep a strong connection with the fundamental laws of physics,
but also geometric and physical parameters. This model couples together the hammer, the nonlinear strings,
the soundboard with ribs and bridges, and the radiation of acoustic waves in the free space. However, it is the
result of compromises or schematizations of a reality far more complex and subject to specific imperatives that

we

(1]
2]

(10]

had sometimes to simplify. Especially,

Taking the non planar motion of the strings into account would only be relevant if we were able to write a
hammer model which explains how his motion is generated, and a bridge model which explains how both
polarizations are transmitted to the soundboard. So far, we are lacking experimental data to perform such
models, but it seems an interesting extension of our work which should improve the realism of the model.
The ribs and bridges are considered as heterogeneities of the soundboard’s plate model, in terms of material,
wood orthotropy direction, but also thickness. However, it is a crude approximation of the reality since
the theoretical assumptions of the model are not met in this case (especially, ribs and bridges are not
symmetrically arranged on both sides of the soundboard, and the thickness is not varying smoothly). We
believe that writing a new plate model that would overcome these assumptions would be a great improvement.
The hammer is given an initial velocity, which means that we totally neglect the hammer’s mechanism
and more specifically the flexibility of the hammer’s shank. Authors have suggested [2] that the pianistic
touch lied precisely in this feature, which could seem insignificant at first sight. Therefore, we believe that
discriminating different kinds of attacks could be possible if this flexible shank was part of our model and
this is the object of a recent article [12].

Experimental results in [3] show the presence of a sound precursor even before the longitudinal precursor
that we mentioned in this article. The authors incriminate the very fast transmission of the key shock waves
through the keybed and even the whole piano’s cabinet, which radiate in the air, creating the so called
“touch precursor”. This seems to contribute to the percussive attack of piano sounds.

It may be trivial to point out that most pianists play several notes at the same time. So far, the model we
presented only accounts for the excitation of one note, and assumes that the piano is at rest at the very
beginning. Considering several notes at the same time would be an easy improvement of the model, but
would lead to much more heavy computations, which is why we have not presented this feature yet. In the
same idea of achieving a better realism, it would then be interesting to model the actions of the pedals and
of the dampers.
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