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A MIXED FORMULATION OF A SHARP INTERFACE MODEL
OF STOKES FLOW WITH MOVING CONTACT LINES ∗

Shawn W. Walker
1

Abstract. Two-phase fluid flows on substrates (i.e. wetting phenomena) are important in many
industrial processes, such as micro-fluidics and coating flows. These flows include additional physical
effects that occur near moving (three-phase) contact lines. We present a new 2-D variational (saddle-
point) formulation of a Stokesian fluid with surface tension that interacts with a rigid substrate. The
model is derived by an Onsager type principle using shape differential calculus (at the sharp-interface,
front-tracking level) and allows for moving contact lines and contact angle hysteresis and pinning
through a variational inequality. Moreover, the formulation can be extended to include non-linear
contact line motion models. We prove the well-posedness of the time semi-discrete system and fully
discrete method using appropriate choices of finite element spaces. A formal energy law is derived
for the semi-discrete and fully discrete formulations and preliminary error estimates are also given.
Simulation results are presented for a droplet in multiple configurations to illustrate the method.
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1. Introduction

1.1. Applications

In industry, droplet impacting processes play an important role, such as in painting, pesticide application,
and the cooling of hot surfaces [22,24,39]. Moreover, the “coating” of solids by films [29,37,58,60,73] is needed
in painting/lamination applications, or in the creation of polymer films and metal sheets. All of these examples
exhibit a three-phase contact line where the two fluids meet a solid (see Fig. 1). The motion of the contact line
can affect the global fluid behavior and introduces a fundamental difficulty in the modeling of these systems.
For instance in [15], they performed experimental investigations of the displacement of two immiscible fluids
inside a cylindrical capillary. They found that the flow kinematics depends on the direction of displacement
and the types of Newtonian fluids. Moreover, the presence or absence of a residual film can also affect the bulk
dynamic behavior.
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(a) Peeling tape. (b) Moving fluid interface. (c) Interfacial flow.

contact line liquid

solid

gas
zoom-in
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Figure 1. Illustration of contact lines and interfacial flows. (a) The contact line (point in 2-D)
moves as the tape is pulled away from the substrate. (b) A liquid droplet surrounded by gas
that is moving to the left. (c) Close-up of the two-phase interfaces and three-phase zone.

Thus, a fundamental understanding of the dynamic wetting of fluids on surfaces is essential to process con-
trol/design (and optimization) in the related industrial applications (e.g. capillary flows in micro-fluidics, etch-
ing, electro-chemical treatment of surfaces, etc.). It is not practical to use molecular dynamics simulations for
many industrial scale macroscopic fluid problems, so it is necessary to have tractable (continuum) contact line
models that incorporate insights from atomistic or molecular dynamic studies. The current paper addresses this
issue.

1.2. Contact line “Paradox”

There are many types of contact lines that appear in different physical situations (see Fig. 1). The most
familiar concerns the peeling of adhesive tape (Fig. 1a) [16, 21, 68]. Here the contact line (a point in 2-D)
separates the tape into two disjoint regions: the part that is still attached to the substrate (where no-slip
applies) and the other which is free to deform as a thin flexible body. Typically, one models the free part of the
tape as elastic and captures the motion of the contact point with an inequality constraint [16, 68]. The main
thing to note is the contact point is not a material point. So its velocity is not a material velocity. Furthermore,
the velocity of the contact line is not necessarily related to the velocity of the material tape. Lastly, it may seem
that the velocity of the tape is discontinuous at the contact point. In reality, there is a small (curved) transition
region at the contact point from flat to making an angle; ergo, no discontinuity.

The situation is more complicated in the case of two immiscible fluids on a solid substrate. When the fluids
are displaced, there arises the classic contact line paradox described in the seminal paper by [41] and addressed
by others [9, 10, 28, 54, 55, 61]. In [41], they assumed the wedge-shaped geometry depicted in Figure 1b. By
applying free surface boundary conditions on the liquid-gas interface and no-slip conditions on the liquid-solid
interface, they obtained a solution to the Navier-Stokes equations that has a logarithmic singularity in the rate
of viscous dissipation in a small neighborhood of the moving contact line; clearly, a nonphysical result. The
reason is because assuming a wedge-shape geometry and no-slip gives a discontinuity in the velocity boundary
condition at the wedge-tip (i.e. the contact line). The singularity is then evident by a standard Sobolev trace
theorem that says the H1 norm of the (bulk) velocity is unbounded, which implies an infinite rate of viscous
dissipation.

There are two ways to remove this singular behavior at the macroscopic level. One is to regularize the
shape of the corner region so that the liquid-gas layer smoothly blends into the liquid-solid layer, i.e. a contact
angle of 180◦. This requires the specification of an effective length scale to smooth the corner. However, this
would create a domain shape with a cusp in the other pure fluid phase. This can be problematic (from a PDE
point-of-view) for cases where the dynamics of the other fluid is also important. Another way is to modify the
model, or introduce a regularization, such that the velocity boundary condition (near the contact line) has no
discontinuity. This can be achieved by introducing slip (locally) at the contact line.

1.3. Summary

In Section 2, we derive our phenomenological model of a Stokesian fluid coupled to contact line effects via
Onsager’s variational principle [50, 51]. Next, we introduce a time-discretization in Section 3 and prove the
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Table 1. General notation and symbols.

Symbol Name Units

u Vector Fluid Velocity m s−1

xcl Contact Line (Point) Location m
θcl Contact Angle (Through Fluid) radians
p Pressure N m−2

σ Newtonian Stress Tensor N m−2

f Gravitational Accel. Vector m s−2

κ Total Curvature of Γg m−1

γ Surface Tension N m−1

λ Contact Line (Point) Pinning Stress N m−1

ν, τ Unit Normal, Tangent Vectors of Γg –
Ω Fluid Domain –
Γg Liquid-Gas Interface –
Γs Liquid-Solid Interface –

Γs,g Solid-Gas Interface –
∇Γ Surface Gradient Operator m−1

ΔΓ Laplace-Beltrami Operator m−2

well-posedness of the semi-discrete system, followed by proving the stability of a fully discrete approximation
scheme in Section 4; see [25,46,56,57,62,67] for other numerical schemes for fluids with contact lines. We then
give preliminary error estimates in Section 5 making reasonable regularity assumptions. We conclude in Section 6
with numerical simulations of droplet motion with contact line pinning effects in multiple configurations and
discuss future extensions of the formulation.

2. Phenomenological model of fluids with moving contact lines

We develop a computational framework that is both cheap and allows for including simple, and more compli-
cated, models of fluids with contact line dynamics including pinning. The framework is variational via Onsager,
and for the purposes of exposition we present the model (in 2-D) for the case of a liquid, gas, and rigid solid
phase. See [27, 34, 42, 48, 54, 55] for other examples using Onsager’s principle to derive a model of fluid motion
coupled to other physics. A model of electrowetting with “flat” 2-D droplets, with ad hoc modeling of contact
line effects, can be found in [70, 72].

2.1. Notation

Let Ω be the domain of the liquid bulk, Γg be the liquid-gas interface, and Γs be the liquid-solid interface
(see Figs. 2 and 3), i.e. ∂Ω = Γg∪Γs, Γg∩Γs = ∅. Table 1 describes the notation we use for the physical domain
and the physical variables (e.g. velocity and pressure).

The physical coefficient symbols that appear in the model, as well as their values, are given in Table 2.

2.2. Droplet pinned to a wall in equilibrium with gravity

We start with an equilibrium example in order to introduce the shape derivative tools we use to derive the
dynamic model with moving contact lines (see Sect. 2.3). Consider the 2-D droplet configuration shown in
Figure 2 which is assumed to be in equilibrium. The relevant (free) energy for this problem is

J = γs

∫
Γs

1 + γg

∫
Γg

1 + γs,g

∫
Γs,g

1 − ρf ·
∫

Ω

(x − x0), (2.1)

where γi are the surface tension coefficients, ρ is the fluid density, and f is the gravitational acceleration constant
vector. Throughout this paper, we usually omit the dx notation when writing integrals.
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Table 2. Physical parameters and values. The solid surface tensions are chosen to give an
equilibrium contact angle of 90◦.

Symbol Name Value Units

γwater Surface Tension of Water/Air 0.07199 N m−1

γg Surface Tension (liq-gas interface) γwater N m−1

γs Surface Tension (liq-sol interface) c N m−1

γs,g Surface Tension (sol-gas interface) γs N m−1

μ Dynamic Viscosity 0.89E-3 Kg m−1 s−1

ρ Liquid Density 996.93 Kg m−3

L Length Scale 0.005 m

U0 Velocity Scale 0.02 m s−1

t0 = L/U0 Time Scale 0.25 seconds (s)

p0 = γwater/L Pressure Scale 14.398 N m−2

Λ0 = γwater/L Curvature Scale 14.398 N m−2

F0 Body Force Scale 9.81 m s−2

βs Slip Coef. (liq-sol) 1.0E3 N s m−3

βcl Viscous Damping Coef. (contact line) 5.0 N s m−2

Cpin Pinning Coef. (contact line) 0.01 N m−1

ΩΓs

Γg

xL
cl

xR
cl

f

ex

ey

Γs,g

Figure 2. Fluid droplet pinned to a rigid wall in equilibrium with gravity f (2-D example).
The boundary ∂Ω is positively oriented. The fluid velocity in Ω vanishes, thus the fluid stress
is zero on the solid wall Γs. Hence, the weight of the droplet is supported by a net (pinning)
force at the contact points, xL

cl, xR
cl. Clearly, this pinning force is a “Dirac delta” distribution

on ∂Ω ≡ Γg ∪ Γs in the continuum model.
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Ω

Γs

Γg

xcl

θcl

τ

ex

Γs,g

Figure 3. Domain notation with contact line xcl moving to the right. Ω is a liquid domain on
top of a solid substrate surrounded by gas. The liquid-solid and liquid-gas boundaries are Γs,
Γg. The contact line is moving with speed Ẋ(xcl) and the contact angle through the liquid is
θcl. The unit tangent vector of Γg is τ . The (non-wet) solid-gas layer is Γs,g.

To facilitate deriving the equilibrium equations for the shape of the droplet, we introduce the following
Lagrangian

L = J − p0

(∫
Ω

1 − Cp

)
+ λL

(
x · ex

∣∣∣
xL

cl

− CL

)
+ λR

(
x · ex

∣∣∣
xR

cl

− CR

)
(2.2)

which includes the volume constraint |Ω| = Cp and pinning constraints at the contact points via Lagrange
multipliers p0, λL, λR.

Let V : R2 → R2 be a smooth perturbation of space that vanishes at a large distance from Ω. We will perturb
the domain Ω with V. Furthermore, we restrict V such that V · ey = 0 on the rigid wall, i.e. the droplet is
constrained to remain on the wall and we are not deforming the wall. Note: V · ex on the solid is still free
because the contact point constraints are enforced by Lagrange multipliers λL, λR.

Next, compute the derivative of L with respect to domain shape via shape differential calculus [23, 40, 64]:

δL(V) = γs

∫
Γs

∇Γ ·V + γg

∫
Γg

∇Γ ·V + γs,g

∫
Γs,g

∇Γ ·V − ρf ·
∫

∂Ω

(x − x0)(V · ν)

− p0

∫
∂Ω

V · ν + λL

(
V · ex

∣∣∣
xL

cl

)
+ λR

(
V · ex

∣∣∣
xR

cl

)
, (2.3)

where the choice of V respects the corners (contact points) of Ω. The unit normal vector ν is taken to point
outside of Ω. Since the interfaces are 1-D, we have that ∇Γ = τ∂s where ∂s is the derivative with respect to
arc-length, and τ is the unit tangent vector of ∂Ω with positive orientation. So after integration by parts, (2.3)
reduces to

δL(V) = γs

[
V · ex

∣∣∣
∂Γs

]
+ γg

[
V · τ

∣∣∣
∂Γg

]
+ γs,g

[
V · ex

∣∣∣
xL

cl

− V · ex

∣∣∣
xR

cl

]
+ γs

∫
Γs

κjν ·V + γg

∫
Γg

κjν ·V + γs,g

∫
Γs,g

κjν · V − ρf ·
∫

Γg

(x − x0)(V · ν)

− p0

∫
Γg

V · ν + λL

(
V · ex

∣∣∣
xL

cl

)
+ λR

(
V · ex

∣∣∣
xR

cl

)
, (2.4)

where κj is the curvature of Γj (j = g, s, (s, g)), and κjν = −∂sτ |Γj . Note: we shall reserve κν = −∇Γ · ∇Γ X
to refer to the signed total curvature vector of Γg. Accounting for the geometry of Γg and the restriction on V,
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we arrive at

δL(V) = (γs − γs,g)V · ex

∣∣∣
∂Γs

+ γg(τ · ex)V · ex

∣∣∣
∂Γg

+ λL

(
V · ex

∣∣∣
xL

cl

)
+ λR

(
V · ex

∣∣∣
xR

cl

)
+
∫

Γg

(γgκ − ρf · (x − x0) − p0)V · ν. (2.5)

At equilibrium, we must have δL(V) = 0 for all admissible V. Let V = φν, where φ : Γg → R is a smooth,
compact function on Γg, and plug into (2.5)

δL(V) =
∫

Γg

(γgκ − ρf · (x − x0) − p0) φ = 0 ⇒ γgκ − ρf · (x − x0) − p0 = 0, on Γg, (2.6)

which is the equation that determines the shape of Γg.
Next, noting that ∂Γg = ∂Γs = {xL

cl,x
R
cl}, |∂Γg = −|∂Γs , and cos θcl = −τ · ex at the contact points, (2.5)

reduces to

δL(V) = [γg cos θcl + (γs − γs,g)]V · ex

∣∣∣
∂Γs

+ λL

(
V · ex

∣∣∣
xL

cl

)
+ λR

(
V · ex

∣∣∣
xR

cl

)
,

=
[
γg cos θR

cl + (γs − γs,g) + λR

]
V · ex

∣∣∣
xR

cl

−
[
γg cos θL

cl + (γs − γs,g) − λL

]
V · ex

∣∣∣
xL

cl

. (2.7)

Therefore, at equilibrium, suitable choices of the perturbation V yield

γg cos θL
cl + (γs − γs,g) − λL = 0, at xL

cl,

γg cos θR
cl + (γs − γs,g) + λR = 0, at xR

cl. (2.8)

Remark 2.1. If λL = λR = 0, then (2.8) is the standard Young’s equation for the equilibrium contact angle [53].
The multipliers λL, λR can be interpreted as the net force required to hold the droplet in equilibrium against
the gravitational force. From Figure 2, we see that λL, λR > 0, i.e. θL

cl (θR
cl) should be smaller (larger) than

the equilibrium values without gravity. In Section 2.3, we will derive a coupled Stokes-contact line model that
accounts for pinning through Lagrange multipliers λL, λR.

2.3. Dynamic model derivation via onsager’s principle

We now derive a dynamic (time-dependent) model of a Stokesian droplet with moving contact lines (see
Sect. 2.3.7). We use the framework of Onsager’s Variational Principle, which says how free energy is dissipated.

2.3.1. Review

Onsager’s Variational Principle is concerned with physical processes that are not far from equilibrium. It is
a method of deriving constitutive laws that we now describe.

Consider a closed mechanical system with free energy A(a), where a is a vector representing the configuration
(state) variables and is time-dependent. The driving “force” for the evolution of a is the conservative force −∇aA.
If the free energy is a minimum, the system is in a state of stable equilibrium [33], i.e. ȧ = 0, −∇aA(a0) = 0,
and ∇2

aA(a0) is positive definite at the critical point a0. Thus, if the system is not in equilibrium at time t0,
i.e. ȧ(t0) 	= 0, then −∇aA(a(t0)) 	= 0.

The modeling problem is, of course, to determine the connection between ȧ and −∇aA(a). In the language
of continuum mechanics this means to find a constitutive relation between the rates and the conservative forces.
Onsager’s Principle formalizes this in the following statement:

• The rate of change of the free energy must be balanced by a dissipation functional with respect to pertur-
bation of the rates of change (e.g. ȧ).
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Table 3. Non-dimensional Parameters. All surface tensions are normalized by γwater.

Symbol Name Value
γ̄g = γg/γwater Surface Tension (liq-gas interface) 1.0
γ̄s = γs/γwater Surface Tension (liq-sol interface) c̄

γ̄s,g = γs,g/γwater Surface Tension (sol-gas interface) γ̄s

Re = ρU0L/μ Reynolds Number 1.120146E2
Ca = μU0/γwater Capillary Number 2.47257E-4

St = ρF0L
2/(μU0) Stokes Number 1.373579E5

β̄s = βsU0L/γwater Solid Slip Coef. 1.389082

β̄cl = βclU0/γwater Contact Line Viscous Coef. 1.389082

Cpin = Cpin/γwater Contact Line Pinning Coef. 0.1389082

Let Φ = Φ(ȧ, ȧ) be a dissipation functional. Then Onsager’s principle states that

δȧ

[
Φ + Ȧ

]
= δȧ [Φ(ȧ, ȧ) + (ȧ · ∇a)A(a)] = 0, for all δȧ, where a is fixed. (2.9)

Thus, the modeling problem is reduced to determining the specific dissipation functional. Fundamental ther-
modynamic considerations demand that Φ be a positive definite (semi-definite), symmetric function of its two
arguments [50,51]. Since the processes are inherently assumed to be near equilibrium, typically Φ is assumed to
be quadratic. Within these restrictions, Φ can be anything, e.g. it may have variable coefficients. Several other
authors have developed variational principles involving dissipation in other contexts such as viscous flow and
polymer solutions [27, 34, 42, 48, 54, 55]. Ultimately, Onsager’s Principle is an assumption we use to derive the
model for our physical system.

Remark 2.2. “Dissipation” is a rough approximation of the aggregate effect of many molecules and atoms
interacting, e.g. energy is “dissipated” amongst many atoms through pairwise interactions, collisions, etc. The
dissipation functional Φ is a convenient idealization that allows one to ignore the details of molecular interactions,
i.e. another way of developing constitutive laws. It is nothing more than that.

2.3.2. Configuration variables

The liquid domain Ω (i.e. droplet shape) is of fundamental importance in this problem. In particular, we
have the droplet interface ∂Ω = Γg ∪ Γs, and the x-axis partitions as (−∞,∞) = Γs ∪ Γs,g. We also have the
contact points {xL

cl,x
R
cl} = Γg ∩ Γs.

We can, equivalently, represent the interface shape by an explicit parametrization X(t, ·) : ∂Ω(t) → R2, i.e. the
identity map X(t, ∂Ω(t)) = ∂Ω(t) that is assumed to be positively oriented. In other words, the definition of Ω
depends on its boundary. Note that Ω has corners at the contact line which are related to the parametrization
in the obvious way xL

cl(t) = X(t,xL
cl), xR

cl(t) = X(t,xR
cl).

The fundamental configuration variable (i.e. a) of the system is the position of all liquid particles (i.e. Ω),
which we label by the coordinates x. The rates of change of x are given by the liquid velocity u in Ω and the
rate of change of position of the interface Ẋ. Note that Ẋ and u are not independent and are connected through
appropriate constraints (Sect. 2.3.4).

All variables are taken to be dimensionless and Table 3 lists the non-dimensional parameters in the model.
We include the Reynolds number Re (even though we only obtain the Stokes equations) so we can add back
fluid inertial effects at a later time (Sect. 6.1.1).

2.3.3. Functionals

The free energy functional of the droplet system is Ã = μU0L
2A, where A is dimensionless and is defined as

A = −St
∫

Ω

f · (x − x0) +
1

Ca

(∫
Γs

γ̄s +
∫

Γg

1 +
∫

Γs,g

γ̄s,g

)
, (2.10)
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where x0 is a reference point and the surface tension coefficients are variable. A is the potential energy of the
system and is the dimensionless version of (2.1). We assume the surface tension coefficients γ̄s, γ̄s,g are functions
of x = x ·ex but independent of time (i.e. ∂tγ̄s = ∂tγ̄s,g = 0). This models a solid surface with a known chemical
pattern. Note that γ̄g = 1 in non-dimensional units.

Remark 2.3. Often an additional term is included in the free energy functional in diffuse interface models,
i.e. the double-well potential. This is done to stabilize the interface between the two immiscible fluids so that
they do not mix. This is not required here because we represent the interface explicitly by the function X. In
other words, the two phases cannot mix because the parametrization explicitly enforces the separation of the
two phases.

The corresponding dissipation functional is Φ̃ = γwaterU0LΦ, where Φ is dimensionless and is

Φ =
∫

Γs

β̄s

2
(u · τ )2 +

(
β̄cl

2

(
Ẋ · ex

)2
) ∣∣∣

xL
cl

+
(

β̄cl

2

(
Ẋ · ex

)2
) ∣∣∣

xR
cl

+ Ca
∫

Ω

1
4
D(u) : D(u), (2.11)

where we used the fact that evaluation at the contact line is viewed as an integral along the contact line, so it
has units of length. Note: the surrounding gas dynamics are ignored, and the solid substrate is assumed perfectly
rigid. The first term will eventually yield a slip boundary condition with parameter β̄s. The contact line terms
model energy dissipation due to the velocity of the contact line, where β̄cl is the contact line viscous friction
coefficient. The last term is the total rate of viscous dissipation in the bulk Ω.

2.3.4. Constraints

We make the following reasonable assumptions on the system. The solid wall does not move and the fluid
does not penetrate into the solid. Moreover, no cavitation is possible (i.e. pockets of air between the solid and
fluid) and Γg adheres to the fluid domain Ω. In mathematical terms, we have

(Ẋ − u) · ν = 0, on Γg, Ẋ · ν = 0, u · ν = 0, on Γs. (2.12)

Remark 2.4. The tangential component of Ẋ does not affect the shape of Ω. It is only a re-parametrization
of the boundary. Furthermore, the constraints on Ẋ respect the corners of Ω (i.e. the contact points). This is
crucial for allowing computation of shape derivatives [23, 64].

The remaining physical constraints are divergence free velocity

∇ · u = 0, in Ω, (2.13)

and an additional pinning force at the contact line that satisfies a complementarity condition

|λ| ≤ Cpin,
(
λ − Cpin

) (
λ + Cpin

) (
Ẋ · ex

) ∣∣∣
xcl

= 0. (2.14)

This is a basic model of static Coulombic friction, i.e. it models pinning and release of the contact line, which
can be written more succinctly as

λ = Cpin sgn
(
Ẋ · ex

∣∣∣
xcl

)
. (2.15)
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2.3.5. Lagrangian

In order to perform the minimization in (2.9) with constraints, we formulate a Lagrangian L̃ = γwaterU0LL,
where L is dimensionless. For given Ω, define L by

L(Ω,u, Ẋ) = Φ + Ca Ȧ −
∫

Ω

p (∇ · u− 0) −
∫

Γg

Λg(Ẋ − u) · ν

+ λL

(
Ẋ · ex

∣∣∣
xL

cl

− 0
)

+ λR

(
Ẋ · ex

∣∣∣
xR

cl

− 0
)

, (2.16)

which is a function of the rates u, Ẋ and can be varied independently. No restrictions are placed on the
multipliers p, Λg and are allowed to take on whatever values necessary to enforce their associated constraints.
But the pinning values must satisfy |λL|, |λR| ≤ Cpin, thus their associated constraints are only enforced when
|λL|, |λR| < Cpin.

Remark 2.5 (interpretation of the multipliers). We will see later that p is the fluid pressure, Λg is the curvature
of Γg, and λL, λR are static, “Coulombic” friction forces present at the contact line. But our formulation of the
constraints does not depend on the fine physical details. For instance, the true pressure is caused by the fluid ma-
terial having an extremely small amount of compressibility yet we only model the end result (incompressibility)
by imposing it as a constraint. How it became incompressible is not important.

Similarly, contact line pinning is a directly observed effect in fluid droplets interacting with solid substrates,
but the physical reasons are rather complicated and not completely understood; cf. the case of modeling dry
friction with Coulombic friction. Our static friction model is ultimately a phenomenological rule for describ-
ing the approximate outcome of an extremely complicated physical interaction. The main advantage of the
approximation is its simplicity and flexibility.

The constraints Ẋ · ν = u · ν = 0 on Γs are enforced explicitly (i.e. just plug them in) because the solid surface
is flat. The same can be done for a curved solid, or one can introduce multipliers to enforce these constraints.

2.3.6. Rate of change of the free energy

We first compute the rate of change of the free energy. For simplicity, assume f is a constant vector, and
recall that ∂tγ̄s = ∂tγ̄s,g = 0. Using shape differential calculus [23, 40, 64], the dimensional rate of change is
dÃ/dt = (μU0L

2/t0)Ȧ, where Ȧ is dimensionless, is given by

Ȧ = −St
∫

∂Ω

f · (x − x0)(V · ν) +
1

Ca

{∫
Γs

(V · ∇)γ̄s +
∫

Γs

γ̄s∇ΓX : ∇ΓV

+
∫

Γg

∇Γ X : ∇Γ V +
∫

Γs,g

(V · ∇)γ̄s,g +
∫

Γs,g

γ̄s,g∇ΓX : ∇ΓV

}
,

where ∇Γ = τ∂s and V ≡ Ẋ is the velocity of deformation of the domain Ω (recall Sect. 2.2). Note that
Ẋ · ν = u · ν on ∂Ω. Thus, we can rewrite the body force term as∫

∂Ω

f · (x − x0)(u · ν) =
∫

Ω

(∇ · u)[f · (x − x0)] +
∫

Ω

[(u · ∇)f ] · (x − x0) +
∫

Ω

[(u · ∇)x] · f =
∫

Ω

f · u,

because ∇ · u = 0. Combining, we have that Ȧ is a functional depending explicitly on u, Ẋ:

Ȧ
(
u, Ẋ

)
= −St

∫
Ω

f · u +
1

Ca

{∫
Γs

(
Ẋ · ∇

)
γ̄s +

∫
Γs

γ̄s∂sX · ∂sẊ

+
∫

Γg

∂sX · ∂sẊ +
∫

Γs,g

(
Ẋ · ∇

)
γ̄s,g +

∫
Γs,g

γ̄s,g∂sX · ∂sẊ

}
. (2.17)
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2.3.7. Sensitivity of the Lagrangian (weak formulation)

The weak formulation of the governing equations for the dynamic droplet model, with moving contact lines,
derives from setting the first variation of (2.16) to zero (with respect to the rates). More precisely, define the
following perturbations. Let v be a perturbation of u such that v · ey = 0 on Γs and v is smooth. Next, let
Y be a perturbation of Ẋ such that Y · ey = 0 on Γs ∪ Γs,g and Y is smooth. Similarly, let q, μ be smooth
perturbations of p, Λg respectively. Then the (formal) weak formulation is: for each t ∈ [0, T ], find (u, Ẋ) and
(p, Λg, λL, λR) such that for all admissible perturbations the following is satisfied:

δuL
(
Ω,u, Ẋ;v

)
= Ca

∫
Ω

1
2
D(u) : D(v) −

∫
Ω

p∇ · v +
∫

Γs

β̄s (u · τ ) (v · τ )

+
∫

Γg

Λgv · ν − StCa
∫

Ω

f · v = 0, for all v,

δẊL
(
Ω,u, Ẋ;Y

)
= β̄cl

(
Ẋ · ex

)
Y · ex

∣∣∣
xL

cl

+ β̄cl

(
Ẋ · ex

)
Y · ex

∣∣∣
xR

cl

+ λLY · ex

∣∣∣
xL

cl

+ λRY · ex

∣∣∣
xR

cl

+
∫

Γs

(Y · τ ) ∂sγ̄s +
∫

Γs

γ̄s∂sX · ∂sY +
∫

Γs,g

(Y · τ ) ∂sγ̄s,g +
∫

Γs,g

γ̄s,g∂sX · ∂sY

−
∫

Γg

ΛgY · ν +
∫

Γg

∂sX · ∂sY = 0, for all Y,

δpL
(
Ω,u, Ẋ; q

)
= −

∫
Ω

q∇ · u = 0, for all q,

δΛgL
(
Ω,u, Ẋ; μ

)
= −

∫
Γg

μ
(
Ẋ − u

)
· ν = 0, for all μ, (2.18)

where Ω(t) and X(t) is held fixed. The pinning multipliers are determined by (2.15) which can be written as a
variational inequality: find λL, λR in [−Cpin, Cpin] such that

(ξ − λL)
(
Ẋ · ex

) ∣∣∣
xL

cl

≤ 0, (ξ − λR)
(
Ẋ · ex

) ∣∣∣
xR

cl

≤ 0, for all ξ in
[
−Cpin, Cpin

]
⊂ R. (2.19)

2.3.8. Recover strong form equations

Clearly, we recover the constraints in Section 2.3.4. Next, consider δẊL(Ω,u, Ẋ;Y) = 0 for all Y such that
Y · ey = 0 on Γs ∪ Γs,g. Then integration by parts on the interfaces gives

0 = β̄cl

(
Ẋ · ex

)
Y · ex

∣∣∣
xL

cl

+ β̄cl

(
Ẋ · ex

)
Y · ex

∣∣∣
xR

cl

+ λLY · ex

∣∣∣
xL

cl

+ λRY · ex

∣∣∣
xR

cl

+ γ̄sex ·Y
∣∣∣
∂Γs

+ τ · Y
∣∣∣
∂Γg

+ γ̄s,gex · Y
∣∣∣
∂Γs,g

−
∫

Γg

ΛgY · ν −
∫

Γs

γ̄s∂sτ ·Y −
∫

Γg

∂sτ · Y −
∫

Γs,g

γ̄s,g∂sτ ·Y. (2.20)

Since κjν = −∂sτ on Γj , we have

0 = β̄cl

(
Ẋ · ex

)
Y · ex

∣∣∣
xL

cl

+ β̄cl

(
Ẋ · ex

)
Y · ex

∣∣∣
xR

cl

+ λLY · ex

∣∣∣
xL

cl

+ λRY · ex

∣∣∣
xR

cl

+ γ̄sex ·Y
∣∣∣
∂Γs

+ τ · Y
∣∣∣
∂Γg

+ γ̄s,gex · Y
∣∣∣
∂Γs,g

−
∫

Γg

ΛgY · ν +
∫

Γg

κν ·Y. (2.21)

Suppose Y = φν, where φ is smooth and has compact support on Γg. Then

0 =
∫

Γg

(κ − Λg)φ, ∀φ, ⇒ Λg = κ. (2.22)
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Next, note the interface boundary relations

−
∣∣∣
∂Γg

=
∣∣∣
∂Γs

=
∣∣∣
xR

cl

−
∣∣∣
xL

cl

,
∣∣∣
∂Γs,g

=
∣∣∣
xL

cl

−
∣∣∣
xR

cl

.

Choosing a smooth test function such that Y = ex at xL
cl and Y = 0 at xR

cl, and vice versa, we get

0 = β̄cl(Ẋ · ex) + λL − γ̄s + τ · ex + γ̄s,g, at xL
cl,

0 = β̄cl(Ẋ · ex) + λR + γ̄s − τ · ex − γ̄s,g, at xR
cl.

where λL, λR is determined by (2.19). Because −τ · ex = cos θcl, we obtain a modified Young’s relation at the
contact line

cos θcl + γ̄s − γ̄s,g = S(β̄cl(Ẋ · ex) + λ), on {xL
cl,x

R
cl}, (2.23)

where

S =

{
1, at xL

cl,

−1, at xR
cl.

λ =

{
λL, at xL

cl,

λR, at xR
cl.

Remark 2.6 (Modeling of Contact Line Motion). Note that the contact angle is dependent on the bulk hydro-
dynamics via Ẋ(xcl) · ex in (2.23), because Ẋ is coupled to the fluid velocity through (2.12). Equation (2.23)
is a modification of the standard static force balance (i.e. when right-hand-side is zero) that includes non-
equilibrium, dissipative effects. Note that when the droplet moves in the positive ex direction, λ is positive at
both contact points which decreases (increases) the contact angle at xL

cl (xR
cl), so is consistent with experience.

Now, consider δuL(Ω,u, Ẋ;v) = 0 for all v such that v · ey = 0 on Γs ∪ Γs,g. Then integration by parts on Ω
gives

0 = −
∫

Ω

[∇ · σ] · v +
∫

∂Ω

v · σν +
∫

Γs

β̄s(u · τ )(v · τ ) +
∫

Γg

Λgv · ν − StCa
∫

Ω

f · v,

where σ := −pI + CaD(u) and D(u) := ∇u + (∇u)T . Choosing v to be a smooth test function with compact
support in Ω leads to the Stokes momentum equation:

−∇ · σ = StCa f , on Ω. (2.24)

So we are left with
0 =

∫
Γs

v · σν +
∫

Γg

v · σν +
∫

Γs

β̄s(u · τ )(v · τ ) +
∫

Γg

Λgv · ν,

and recall that τ = ex on Γs. Choose an arbitrary test function v = φex, with compact φ on Γs, to get

0 =
∫

Γs

φ[τ · σν + β̄s(u · τ )], ∀φ, ⇒ τ · σν = −β̄su · τ , on Γs, (2.25)

which models slip at the solid surface. Hence, we avoid the classic singularity associated with contact line motion.
Lastly, choosing v to be smooth but arbitrary on Γg, we obtain

0 =
∫

Γg

[σν + Λgν] · v, ∀v, ⇒ σν = −Λgν = −κν = ∇Γ · [∇Γ X], on Γg. (2.26)

This formulation has no smoothed Dirac deltas that couple the contact line motion to the interior fluid velocity
in an ad-hoc manner. It is also straightforward to include non-linear contact line models by modifying the
dissipation functional.
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Remark 2.7. The fluid velocity does not directly appear at the contact line. This seems to be a point of
confusion in the fluids community. To better explain, first consider a rigid cylinder rolling on a flat surface with
no-slip conditions applied at the surface contact point. In a fixed frame of reference, the contact point is clearly
moving. However, the velocity of the cylinder at the contact point vanishes (because of no-slip). Now consider
a fluid droplet moving along a surface with approximate no-slip (i.e. large value of β̄s); the droplet will have a
rolling motion as verified by experiments [60]. The same argument shows that the fluid velocity evaluated at the
contact point does not correlate with the velocity of the contact point. Despite this, methods are proposed that
directly link the fluid velocity to the contact line motion by imposing a “contact line mass balance” relation [4],
([25], Sect. 2.1).

Moreover, imposing a condition involving the bulk fluid velocity at the contact line is mathematically unclear.
It is well known that one cannot impose a boundary condition at a point in 2-D (or on a surface of co-
dimension 2) [2]. In particular, the regularity of the fluid velocity evaluated at a point is not well-defined by
standard functional analysis [1, 31].

2.4. Formal energy law

The existence (and uniqueness) of a solution to the system of equations (2.18) and (2.19) is not trivial;
see [17] for the case of a non-linear shell interacting with a Navier-Stokes fluid. Moreover, regularity of the
solution is completely open. We do not address the well-posedness of the fully continuous formulation in this
paper. However, it is possible to obtain a formal energy law for the system.

Proposition 2.8. Assume f(t) in L2
loc(R

2) and the initial liquid-gas interface Γg(0) is W 2,∞, with parametriza-
tion X0, and Γs(0) is flat with positive measure. Suppose there exists a solution of the system (2.18) and (2.19)
for a.e. t in [0, T ] for some T > 0 such that Γg(t) is W 2,∞, is parameterized by X(t) with X · ey = 0 on ∂Γg(t)
and X(0) = X0, and Γs(t) is flat with positive measure. Moreover, assume u(t) is in H1(Ω(t)), with u · ey = 0
on Γs(t), Ẋ(t) in H1(Γg(t)), p(t) in L2(Ω(t)), Λg(t) in L2(Γg(t)), λL(t), λR(t) in R for a.e. t in [0, T ]. Then,∫ t

0

‖D(u)‖2
L2(Ω)dt +

∫ t

0

‖β̄su · τ‖2
L2(Γs)

dt +
∫ t

0

(
Ẋ · ex

)2 ∣∣∣
xcl

dt + |Γg(t)| ≤

C

{
|Γg(0)| +

∫ t

0

‖f‖2
L2(Ω)dt +

∫ t

0

(γ̄s − γ̄s,g)
2
∣∣∣
xcl

dt

}
, (2.27)

for all t in [0, T ], where the constant C only depends on the domain and the non-dimensional parameters in the
problem. We use the notation Z

∣∣∣
xcl

:= ZL

∣∣∣
xL

cl

+ ZR

∣∣∣
xR

cl

(with Z being any quantity at xcl).

Proof. use integration by parts to rewrite the second equation of (2.18) (compare to (2.21)):

β̄cl

(
Ẋ · ex

)
Y · ex

∣∣∣
xL

cl

+ β̄cl

(
Ẋ · ex

)
Y · ex

∣∣∣
xR

cl

+ λLY · ex

∣∣∣
xL

cl

+ λRY · ex

∣∣∣
xR

cl

−
∫

Γg

ΛgY · ν +
∫

Γg

∂sX · ∂sY = (γ̄s − γ̄s,g)Y · ex

∣∣∣
xL

cl

− (γ̄s − γ̄s,g)Y · ex

∣∣∣
xR

cl

, (2.28)

for all Y in H1(Γg(t)) such that Y · ey = 0 at ∂Γg(t). In (2.18), choose v = u and q = p. Next, choose Y = Ẋ
in (2.28), and use the following relation [23, 40, 64]:

d
dt

|Γg(t)| =
d
dt

∫
Γg(t)

1 =
∫

Γg(t)

∂sX · ∂sẊ.
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Adding the equations together, and choosing μ = Λg, we obtain

Ca
2
‖D(u)‖2

L2(Ω) + ‖β̄su · τ‖2
L2(Γs)

+
d
dt

|Γg(t)| + β̄cl(Ẋ · ex)2
∣∣∣
xcl

+ λẊ · ex

∣∣∣
xcl

= StCa
∫

Ω

f · u + (γ̄s − γ̄s,g)Ẋ · ex

∣∣∣xL
cl
− (γ̄s − γ̄s,g)Ẋ · ex

∣∣∣
xR

cl

, (2.29)

where xcl denotes both contact points. Choosing ξ = 0 in (2.19) yields λẊ ·ex

∣∣∣
xcl

≥ 0. Finally, applying Young’s

inequality “with ε”, using a modified Korn’s inequality similar to (3.25), and integrating in time gives the
assertion. �

3. Well-posedness

We investigate a time semi-discrete version of the model derived in Section 2.3.7. Specifically, we prove the
well-posedness of a single time-step of the semi-discrete weak formulation (see Sect. 3.5), the main results being
the normal vector extension (Lem. 3.2) and the inf-sup condition (Thm. 3.12). In addition, we derive a formal
energy law (Prop. 3.14) that is analogous to the fully continuous case (Prop. 2.8). A related analysis, concerning
Hele-Shaw flow without contact line effects, can be found in [32].

3.1. Domain assumptions

We make some basic assumptions on the domain Ω throughout this section, namely ∂Ω = Γg∪Γs is piecewise
smooth with corners at the contact points xcl, Γs is flat with positive measure (i.e. the droplet has a non-trivial
attachment with the solid surface), and Γg is W 2,∞. The smoothness assumption is reasonable given that surface
tension is present.

3.2. Smoothing the normal vector

To enable the analysis, we state and prove a result on a “smoothed” version of the unit normal vector ν
of ∂Ω (recall that ν is discontinuous at the contact points ∂Γg) and extend it into Ω. we need a basic result on
extending a function near a corner.

Proposition 3.1 (Corner extension). Consider the wedge geometry in Figure 4, where Γg and Γs are straight
lines. Let f be a W 1,∞ function defined on Γg ∪ Γs such that

f is constant on (Γg ∪ Γs) ∩ B(p, a0), for some a0 > 0,

where p = Γg ∩ Γs and B(x0, r) denotes the open ball of radius r centered at x0. Then there exists an extension
fE, defined on Ω, such that fE is W 1,∞ and fE |Γg∪Γs

= f .

Proof. Take the corner point to be the origin in a polar coordinate system (r, θ). Let fs = f |Γs and fg = f |Γg .
Thus, fs and fg are functions of r only and fs(0) = fg(0), f ′

s(0) = f ′
g(0) = 0. Define the extension by

fE(r, θ) =
(

θ

θcl

)
fg(r) +

(
1 − θ

θcl

)
fs(r).

The gradient in polar coordinates is ∇ = ( ∂
∂r , 1

r
∂
∂θ ). It is straightforward, to show that ∇fE is continuous. �
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Ω

Γs

Γg

p

θcl

ex

Figure 4. Smooth extension near a corner. A function f is defined on Γg∪Γs which is extended
to all of Ω.

Lemma 3.2. Let Ω ⊂ R2 be a bounded domain whose boundary partitions as ∂Ω = Γg ∪ Γs with unit outer
normal vector ν. Assume the boundary ∂Ω is W 2,∞, except at the contact line ∂Γg ≡ ∂Γs ≡ {xL

cl,x
R
cl} (i.e. two

points) where the tangent vector is discontinuous (see Figs. 2 and 3). Furthermore, assume that

α0 ≤ ν · (−ex) ≤ 1, at xL
cl, α0 ≤ ν · ex ≤ 1, at xR

cl, where 0 < α0 < 1,

for some fixed constant α0. This means that the contact angle cos θcl = ν ·ey is bounded away from 0 and 180 de-
grees at both points (i.e. strictly convex, non-degenerate corners). Then there exists a W 1,∞ vector function ν̃
on ∂Ω such that

ν̃ · ν = 1, on Γg, ν̃ · ey = 0, on Γs, ν̃|∂Γg =
ex

ex · ν

∣∣∣
∂Γg

, ‖ν̃‖W 1,∞(∂Ω) ≤ C, (3.1)

where C > 0 is a constant that depends on the curvature of Γg, the length of Γs, and α−1
0 (note: ν̃ is not a unit

vector). Furthermore, there is a smooth extension ν̃E of ν̃ over Ω such that

ν̃E |∂Ω = ν̃, ‖ν̃E‖W 1,∞(Ω) ≤ C. (3.2)

Proof. We start with the left contact point xL
cl. Let WL = Γg ∩ B(xL

cl, aL), where aL > 0 is such that the unit
normal vector of Γg satisfies (by a Taylor expansion)

ν = ν|xL
cl

+ O
(α0

10

)
, on WL.

It is straightforward to show that the length of WL is bounded by α0
10 min

(
1

maxΓg |κ| , |Γg|
)
, where κ is the

curvature of Γg. Similarly, we have WR = Γg ∩ B(xR
cl, aR), where aR > 0 is such that ν = ν|xR

cl
+ O(α0/10),

on WR and |WR| = α0
10 min

(
1

maxΓg |κ| , |Γg|
)
. Note that aL, aR are chosen to guarantee that WL ∩ WR = ∅ and

Γg \ (WL ∪ WR) has positive measure.
Next, let ν̂ : Γg → R2 be a W 1,∞ function defined by a three-piece partition of unity. Let χL : Γg → R be a

non-negative C1 function such that

χL =

⎧⎪⎨⎪⎩
1, on WL ∩ B(xL

cl, aL/2),

smooth, on WL,

0, outside WL.

Define χR similarly with respect to WR and set χC = 1−(χL+χR) (i.e. the middle piece); ergo, χL+χR+χC = 1.
Then, ν̂ is given by

ν̂ = −exχL + exχR + νχC .
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Finally, define ν̃ : ∂Ω → R2 by

ν̃ =
ν̂

ν̂ · ν , on Γg,

and extend it on Γs using a similar partition of unity argument, i.e. ν̃ is constant near the contact points.
Clearly, ν̃ · ν = 1 on Γg and ν̃ · ey = 0 on Γs because ν̃ ∝ ex on Γs. Also, we have that ν̂ · ν ≥ α0/2 uniformly
on Γg. Therefore, we get (3.1).

Finally, define ν̃E to be an extension of ν̃ to Ω. At the contact points xL
cl and xR

cl, the extension is done by
using Proposition 3.1; note that ν̃ is W 1,∞ and constant near the contact points. Away from the corner points,
one can simply extend the function constant in the normal direction, followed by a mollification in the interior
to take care of any “shocks” in the extension. �

3.3. Time-discretization

For simplicity, we set the constants to unity, except the time-step δt. To obtain the time-discrete version
of (2.18) and (2.19) we apply the following finite difference in time for the interface position:

Ẋn+1(x) =
Xn+1(x) − Xn(x)

δt
, for all x ∈ Γ n

g , where Xn ≡ idΓ n
g

(identity map). (3.3)

All domains are assumed to be at the current known time-step, i.e. Ω ≡ Ωn = Ω(tn), etc., but all solution
variables are considered at the next time-step (i.e. implicit):

u ≡ un+1, W ≡ Xn+1, idΓg ≡ Xn, p ≡ pn+1, Λg ≡ Λn+1
g , λL ≡ λn+1

L , λR ≡ λn+1
R .

We replace Xn+1 by W to emphasize that it is a solution variable in the formulation. Note that Xn+1 param-
eterizes the domain Γ n+1

g at the next time step. So inserting (3.3) into (2.18) and (2.19), using the integration
by parts result (2.28) and ignoring the physical constants, we obtain the time semi-discrete weak formulation:

1
2

∫
Ω

D(u) : D(v) −
∫

Ω

p∇ · v +
∫

Γs

(u · τ )(v · τ ) +
∫

Γg

Λgv · ν =
∫

Ω

f · v, for all admissible v,

1
δt

(W · ex)Y · ex

∣∣∣
xL

cl

+
1
δt

(W · ex)Y · ex

∣∣∣
xR

cl

+ λLY · ex

∣∣∣
xL

cl

+ λRY · ex

∣∣∣
xR

cl

−
∫

Γg

ΛgY · ν +
∫

Γg

∂sW · ∂sY =
1
δt

(idΓg · ex)Y · ex

∣∣∣
xL

cl

+
1
δt

(idΓg · ex)Y · ex

∣∣∣
xR

cl

+ (γs − γs,g)Y · ex

∣∣∣
xL

cl

− (γs − γs,g)Y · ex

∣∣∣
xR

cl

, for all admissible Y,

−
∫

Ω

q∇ · u = 0, for all admissible q,∫
Γg

μ(u · ν) − 1
δt

∫
Γg

μ(W · ν) = − 1
δt

∫
Γg

μ(idΓg · ν), for all admissible μ,

1
δt

(ξ − λJ )(W · ex)
∣∣∣
xJ

cl

≤ 1
δt

(ξ − λJ)(idΓg · ex)
∣∣∣
xJ

cl

, for all ξ in [−1, 1] ⊂ R, for J = L, R. (3.4)

Section 3.4 describes the proper function space setting for (3.4), followed by the abstract mixed formulation in
Section 3.5. Most of our analysis in the following sections is limited to a single time-step, but we do obtain a
formal energy law in Proposition 3.14 which implies that the time-dependent formulation is stable.

3.4. Function spaces

All spaces are written with respect to the current domain, Ωn ≡ Ω, etc. The velocity space is

V =
{
v ∈ H1(Ω) : v · ey = 0, on Γs

}
, (3.5)
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with norm denoted ‖ · ‖H1(Ω), and the pressure space is

Q = L2(Ω), (3.6)

with norm denoted ‖ · ‖L2(Ω). The space for the position W ≡ Xn+1 is

Y =
{
Y ∈ H1(Γg) : Y · ey = 0, at ∂Γg

}
, (3.7)

with norm denoted ‖ · ‖H1(Γg); this space was chosen because of the H1 inner product
∫

Γg
∂sX · ∂sY appearing

in (2.18) (see also (2.28)). The space for the pinning variables λL, λR is R, but confined to a convex set
K := [−1, 1] ⊂ R.

Next, we have v in H1/2(Γg) for all v in V. Note that v ·ey is in H
1/2
00 (Γg) and v ·ex is in H1/2(Γg) (provided

the contact angle is bounded away from 0 and 180 degrees). Since the unit vector ν is W 1,∞ on Γg, the product
v · ν is also in H1/2(Γg) [1, 8, 44]. Thus, by the fourth equation in (3.4), we have that Λg is in

M = (H1/2(Γg))∗. (3.8)

The next proposition provides a convenient way to define the M norm and helps facilitate proving the “inf-sup”
condition.

Proposition 3.3. For any φ in H1/2(Γg), there exists a v in V such that φ = v · ν on Γg, where ν is the unit
outer pointing normal vector on ∂Ω. Therefore, the range of the normal trace operator on Γg over all v in V is
equal to H1/2(Γg).

Proof. For any φ in H1/2(Γg), there is a φ̃ in H1(Ω) such that φ = φ̃|Γg . Using Lemma 3.2, define v := φ̃ν̃E .
Since ν̃E is in W 1,∞(Ω), we have that v is in H1(Ω) by standard estimates and Sobolev embedding. In fact, v
is in V because v · ey = 0 on Γs. Moreover, v ·ν|Γg = (φ̃|Γg )(ν̃E ·ν|Γg) = φ. Hence, H1/2(Γg) is contained in the
range of the normal trace operator, on Γg, on V (and vice versa). So we get equality of the spaces. �

The integral
∫

Γg
μv · ν only makes sense when the functions are suitably regular. Thus, we replace it by the

duality pair 〈μ,v · ν〉M for all μ in M and v in V, such that

〈μ,v · ν〉M =
∫

Γg

μv · ν, if μ is in L2(Γg). (3.9)

By Proposition 3.3, the M norm can be written as

‖μ‖M = sup
v∈V

〈μ,v · ν〉M
‖v‖H1(Ω)

, (3.10)

which yields the following as an immediate consequence.

Proposition 3.4. Given any μ in M, there exists a v in V such that

〈μ,v · ν〉M = ‖μ‖M, ‖v‖H1(Ω) = 1. (3.11)

3.5. Semi-discrete weak formulation

3.5.1. Bilinear forms

Define the primal form

a((u,W), (v,Y)) =
∫

Ω

D(u) : ∇v +
∫

Γs

(u · τ )(v · τ ) +
1
δt

∫
Γg

∂sW · ∂sY

+
1

δt2
(W · ex)(Y · ex)

∣∣∣
xL

cl

+
1

δt2
(W · ex)(Y · ex)

∣∣∣
xR

cl

, (3.12)
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next the constraint form

b((v,Y), (q, μ, ξL, ξR)) = −
∫

Ω

q∇ · v + 〈μ,v · ν〉M − 1
δt
〈μ,Y · ν〉M

+
1
δt

ξL(Y · ex)|xL
cl

+
1
δt

ξR(Y · ex)|xR
cl
, (3.13)

and the linear forms

F ((v,Y)) =
∫

Ω

f · v +
1
δt

(γs − γs,g) (Y · ex)
∣∣∣
xL

cl

− 1
δt

(γs − γs,g) (Y · ex)
∣∣∣
xR

cl

+
1

δt2
(
idΓg · ex

)
(Y · ex)

∣∣∣
xL

cl

+
1

δt2
(
idΓg · ex

)
(Y · ex)

∣∣∣
xR

cl

,

G((q, μ, ξL, ξR)) = − 1
δt
〈μ, idΓg · ν〉M +

1
δt

ξL

(
idΓg · ex

)
|xL

cl
+

1
δt

ξR

(
idΓg · ex

)
|xR

cl
, (3.14)

where idΓg is the identity map on Γg. The extra factors of 1
δt occur by multiplying the second equation in (3.4)

by 1
δt . This is done to ensure symmetry of the saddle-point system (3.20).

3.5.2. Mixed formulation

Define the primal and multiplier spaces

Z = V × Y, T = Q × M ×K ×K, (3.15)

along with the primal norm
‖(v,Y)‖2

Z = ‖v‖2
H1(Ω) + ‖Y‖2

H1(Γg), (3.16)

and multiplier norm: |||(q, μ, ξL, ξR)|||2T = ‖q‖2
L2(Ω) +‖μ‖2

M + |ξL|2 + |ξR|2. Let H−1(Γg) := (H1
0 (Γg))∗ with norm

given by

‖η‖H−1(Γg) = sup
y∈H1

0 (Γg)

〈η, y〉∗
‖y‖H1(Γg)

, (3.17)

where 〈·, ·〉∗ denotes the duality pairing between H−1(Γg) and H1
0 (Γg). For the analysis, we will use an alternative

norm for the multipliers, namely

‖(q, μ, ξL, ξR)‖2
T = ‖q̃‖2

L2(Ω) + ‖μ − q0‖2
M + ‖μ‖2

H−1(Γg) + |ξL|2 + |ξR|2, (3.18)

where q0 = 1
|Ω|

∫
Ω q and q̃ = q− q0. Of course, both multiplier space norms are equivalent, meaning there exists

a constant C > 0 (depending only on Ω) such that

1
C
|||(q, μ, ξL, ξR)|||T ≤ ‖(q, μ, ξL, ξR)‖T ≤ C|||(q, μ, ξL, ξR)|||T. (3.19)

Therefore, at each time-step, the mixed formulation is: find (u,W) in Z and (p, Λg, λL, λR) in T such that

a((u,W), (v,Y)) + b((v,Y), (p, Λg , λL, λR)) = F ((v,Y)),

b((u,W), (q, μ, ξL − λL, ξR − λR)) ≤ G((q, μ, ξL − λL, ξR − λR)), (3.20)

for all (v,Y) in Z and (q, μ, ξL, ξR) in T. The system (3.20) is the abstract form of (3.4).

Remark 3.5 (Time-dependent simulation). The full dynamic method is as follows. Given an initial domain Ωn,
compute the solution of (3.20). Update the domain boundary with Xn+1 := Wn+1; this defines a new domain
Ωn+1 at the next time step. This procedure repeats as long as needed.
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3.6. Semi-discrete analysis

3.6.1. Continuity

Lemma 3.6 (Continuity). Let Ω be an open bounded set in Rd with Lipschitz boundary ∂Ω = Γg ∪ Γs, such
that Γg, Γs are W 2,∞. Then there are positive constants Ca, Cb, CF , CG that depend on Ω and δt−1 such that

a((u,W), (v,Y)) ≤ Ca‖(u,W)‖Z‖(v,Y)‖Z, (3.21)

b((u,W), (q, μ, ξL, ξR)) ≤ Cb‖(u,W)‖Z‖(q, μ, ξL, ξR)‖T, (3.22)

F ((v,Y)) ≤ CF ‖(v,Y)‖Z,

G((q, μ, ξL, ξR)) ≤ CG‖(q, μ, ξL, ξR)‖T, (3.23)

for all (u,W), (v,Y) in Z and (q, μ, ξL, ξR) in T.

Proof. The bound (3.21) follows by Cauchy–Schwarz and standard trace estimates. Likewise for (3.22), one
applies Cauchy–Schwarz and uses (3.19). The same goes for (3.23). �

3.6.2. Coercivity

We first state some standard results.

Lemma 3.7 (Korn’s Inequality). Let Ω be an open bounded set in Rd with Lipschitz boundary. Then there
exists a number A0 = A0(Ω) > 0 such that∫

Ω

D(v) : D(v) + ‖v‖2
L2(Ω) ≥ A0‖v‖2

H1(Ω), for all v in H1(Ω). (3.24)

Proof. See [19, 26]. �

A standard argument leads to the following inequality (useful for our problem).

Lemma 3.8 (Modified Korn’s Inequality). Let Ω be an open bounded set in R2 with Lipschitz boundary ∂Ω =
Γg ∪ Γs, such that Γg, Γs are W 2,∞. Suppose Γs has positive measure (length). Then∫

Γs

(v · τ )2 +
∫

Ω

D(v) : D(v) ≥ A1‖v‖2
H1(Ω), for all v in V, (3.25)

where A1 = A1(Ω, Γs) > 0 and τ is the unit tangent vector of Γs.

Lemma 3.9 (Poincaré-Type Inequality). Let Γg ⊂ R2 be a W 2,∞ curve with boundary ∂Γg = {xL
cl,x

R
cl}. Then

there exists a number A2 = A2(Γg) > 0 such that

‖∂sY‖2
L2(Γg) + (Y · ex)2|xL

cl
+ (Y · ex)2|xR

cl
≥ A2‖Y‖2

L2(Γg), for all Y in Y. (3.26)

Proof. Start with the L2(Γg) norm and integrate by parts:

‖Y‖2
L2(Γg) =

∫
Γg

Y · Y =
∫

Γg

∂s

(
s − |Γg|

2

)
Y ·Y

= −
∫

Γg

(
s − |Γg|

2

)
2(∂sY) · Y +

|Γg|
2

(Y · ex)2|xL
cl
− |Γg|

2
(Y · ex)2|xR

cl
(3.27)
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because Y · ey = 0 on ∂Γg; note that s = 0 at xR
cl and s = |Γg| at xL

cl. Bounding (3.27) and applying Cauchy–
Schwarz gives

‖Y‖2
L2(Γg) ≤ |Γg|‖∂sY‖L2(Γg)‖Y‖L2(Γg) +

|Γg|
2

(Y · ex)2|xL
cl

+
|Γg|
2

(Y · ex)2|xR
cl

≤ |Γg|2
2

‖∂sY‖2
L2(Γg) +

1
2
‖Y‖2

L2(Γg) +
|Γg|
2

(Y · ex)2|xL
cl

+
|Γg|
2

(Y · ex)2|xR
cl
.

This leads to
‖Y‖2

L2(Γg) ≤ |Γg|
(
|Γg| ‖∂sY‖2

L2(Γg) + (Y · ex)2|xL
cl

+ (Y · ex)2|xR
cl

)
,

which proves the assertion. �

Putting everything together gives the following coercivity result.

Theorem 3.10. Assume the hypothesis of Lemmas 3.8 and 3.9. For all v in V and all Y in Y, we have

a((v,Y), (v,Y)) ≥ A3

(
‖v‖2

H1(Ω) + ‖Y‖2
H1(Γg)

)
= A3‖(v,Y)‖2

Z, (3.28)

for some positive constant A3 that depends on Ω and δt−1 (for δt ≤ 1).

Proof. Starting with (3.12), we get by Lemmas 3.8 and 3.9

a((v,Y), (v,Y)) =
1
2
‖D(v)‖2

L2(Ω) + ‖v · τ‖2
L2(Γs)

+
1
δt
‖∂sY‖2

L2(Γg) +
1

δt2

[
(Y · ex)2

∣∣∣
xL

cl

+ (Y · ex)2
∣∣∣
xR

cl

]
≥ 1

2

{
A1‖v‖2

H1(Ω) +
min(1, A2)

δt
‖Y‖2

H1(Γg)

}
, (3.29)

which gives the assertion. �

3.6.3. Inf-Sup

The next lemma constructs “matching” functions on ∂Ω for use in the duality pairing 〈·, ·〉M.

Lemma 3.11. Let μ be in M and ξL, ξR in R. Then we have the following results.

1. There exists a Y0 in Y such that

Y0 = 0, on ∂Γg, 〈μ,Y0 · ν〉M = ‖μ‖H−1(Γg), ‖Y0‖H1(Γg) ≤ C0, (3.30)

where C0 depends on ν̃ in Lemma 3.2 and the geometry of Γg.
2. There exists a Y1 in Y such that

Y1|xL
cl

= −sgn(ξL)
ex

ex · ν , Y1|xR
cl

= sgn(ξR)
ex

ex · ν , 〈μ,Y1 · ν〉M = 0,

|ξL|
α0

≥ ξL(Y1 · ex)|xL
cl
≥ |ξL|,

|ξR|
α0

≥ ξR(Y1 · ex)|xR
cl
≥ |ξR|, ‖Y1‖H1(Γg) ≤ C1, (3.31)

where α0 is taken from Lemma 3.2, and C1 depends on ν̃ and α−1
0 .

Proof. By (3.17), there is a y0 in H1
0 (Γg) such that

〈μ, y0〉∗ = ‖μ‖H−1(Γg), ‖y0‖H1(Γg) = 1.

Now define Y0 = y0ν̃|Γg , where ν̃ is taken from Lemma 3.2. Since 〈μ, y0〉∗ = 〈μ, y0〉M (because μ is in M ⊂
H−1(Γg)), and using (3.1), we obtain (3.30).
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Next, take z in H1(Γg) such that z = −sgn(ξL) at xL
cl, z = sgn(ξR) at xR

cl, and z is linear on Γg. Define

w in H1
0 (Γg) such that w =

{
−y0 〈μ, z〉M/‖μ‖H−1(Γg), μ 	= 0,

0, μ = 0.
(3.32)

Then, if μ 	= 0, we have

〈μ, w〉M = 〈μ, w〉∗ = −〈μ, z〉M
〈μ, y0〉∗

‖μ‖H−1(Γg)
= −〈μ, z〉M, ⇒ 〈μ, w + z〉M = 0. (3.33)

Now define Y1 = (w + z)ν̃|Γg . It is straightforward to verify (3.31). �

And we have the celebrated “inf-sup” condition

Theorem 3.12. For all q in Q, μ in M, ξL in R, ξR in R, we have

sup
v∈V, Y∈Y

b((v,Y), (q, μ, ξL, ξR))
‖(v,Y)‖Z

≥ B0‖(q, μ, ξL, ξR)‖T, (3.34)

for some positive constant B0 that depends on Ω, α−1
0 , and δt−1.

Proof.
Step 1: Fix q in Q, μ in M, and ξL, ξR in R. Let q0 = 1

|Ω|
∫

Ω
q and q̃ = q − q0. Noting that

−
∫

Ω

q∇ · v + 〈μ,v · ν〉M = −
∫

Ω

q̃∇ · v + 〈μ − q0,v · ν〉M, for all v in V,

and recalling (3.13), we have

b((v,Y), (q, μ, ξL, ξR)) = −
∫

Ω

q̃∇ · v + 〈μ − q0,v · ν〉M − 1
δt
〈μ,Y · ν〉M

+
1
δt

ξL(Y · ex)|xL
cl

+
1
δt

ξR(Y · ex)|xR
cl
. (3.35)

By Proposition 3.4, we have v0 in V such that

〈μ − q0,v0 · ν〉M = ‖μ − q0‖M, ‖v0‖H1(Ω) = 1.

Step 2: Let v in V satisfy the following divergence equation [35, 66]

∇ · v = − q̃

‖q̃‖L2(Ω)
+ ζ, in Ω, where ζ =

1
|Ω|

∫
Γ

v0 · ν,

v = v0, on ∂Ω. (3.36)

Moreover, note the following inequality:

|ζ| ≤ |Γ |1/2

|Ω| ‖v0‖0,Γ ≤ c0
|Γ |1/2

|Ω| ·

Therefore, we have that v satisfies the bound

‖v‖H1(Ω) ≤ ‖ (q̃/‖q̃‖L2(Ω)) + ζ‖L2(Ω) + ‖v0‖H1/2(∂Ω) ≤ c1. (3.37)
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Step 3: Next, apply Lemma 3.11 to construct Y = −Y0 + Y1 in Y (which depends on μ, ξL, ξR). Insert v
and Y into (3.35):

b((v,Y), (q, μ, ξL, ξR)) =
‖q̃‖2

L2(Ω)

‖q̃‖L2(Ω)
− ζ

∫
Ω

q̃ + ‖μ − q0‖M +
1
δt
‖μ‖H−1(Γg) +

1
δt
|ξL| +

1
δt
|ξR|

≥ c2

δt
‖(q, μ, ξL, ξR)‖T, (3.38)

where we used (3.18). By (3.37) and Lemma 3.11, we have the bound

‖(v,Y)‖Z ≤ c3, (3.39)

where c3 depends on Ω and α−1
0 . Finally, we form the ratio in (3.34), use (3.39), take the supremum, and noting

that q, μ, ξL, and ξR are arbitrary, we get the assertion. �

3.6.4. Well-posedness

Theorem 3.13. There exists a unique solution of the mixed formulation (3.20).

Proof. This follows from the theory in [13,14] ([63], Thm. 2.3), the continuity of the forms, and Theorems 3.10
and 3.12. �

3.7. Semi-discrete energy law

Similar to Proposition 2.8, there is an energy law for the semi-discrete formulation. Recall Ωn ≡ Ω(tn), etc.

Proposition 3.14. Assume fn+1 is in L2
loc(R

2) (for n ≥ 0) and the initial liquid-gas interface Γg(0) is W 2,∞,
with parametrization X0, and Γs(0) is flat with positive measure. For all 0 ≤ n ≤ N − 1, suppose δt = tn+1 − tn
is uniform and the solution of (3.20) satisfies un+1 in H1(Ωn), with un+1 · ey = 0 on Γ n

s , Xn+1 in W 2,∞(Γ n
g )

with Xn+1 · ey = 0 on ∂Γ n
g , pn+1 in L2(Ωn), Λn+1

g in L2(Γ n
g ), λn+1

L , λn+1
R in R, where Γ n

g is in W 2,∞ and is
parameterized by Xn and Γ n

s is flat with positive measure. Then,

δt

N−1∑
i=0

[∥∥ui+1
∥∥2

H1(Ωi)
+
(
Vi+1 · ex

)2 ∣∣∣
xcl

]
+
∣∣Γ N

g

∣∣ ≤ C

{∣∣Γ 0
g

∣∣+ δt

N−1∑
i=0

[∥∥f i+1
∥∥2

L2(Ωi)
+
(
γi+1
s − γi+1

s,g

)2 ∣∣∣
xcl

]}
,

(3.40)

where Vi+1 = (Xi+1 − idΓ i
g
)/δt and the constant C only depends on the domain. Recall the notation Z

∣∣∣
xcl

:=

ZL

∣∣∣
xL

cl

+ ZR

∣∣∣
xR

cl

(with Z being any quantity at xcl).

Proof. Proceeding as in Proposition 2.8, for a fixed time index n choose v = un+1 and q = pn+1 in (3.20) to
get

1
2

∥∥D
(
un+1

)∥∥2

L2(Ωn)
+
∥∥un+1 · τn

∥∥2

L2(Γ n
s )

+
∫

Γ n
g

Λn+1
g

(
un+1 · νn

)
=
∫

Ωn

fn+1 · un+1. (3.41)

Next, define the discrete interface velocity Vn+1 =
Xn+1−idΓn

g
δt and choose Y = δtVn+1 to obtain∫

Γ n
g

∂sXn+1 · ∂sVn+1 −
∫

Γ n
g

Λn+1
g

(
Vn+1 · νn

)
+
(
Vn+1 · ex

)2 ∣∣∣
xcl

+ λ
(
Vn+1 · ex

) ∣∣∣
xcl

=

(
γn+1
s − γn+1

s,g

) (
Vn+1 · ex

) ∣∣∣
xL

cl

−
(
γn+1
s − γn+1

s,g

) (
Vn+1 · ex

) ∣∣∣
xR

cl

. (3.42)
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Setting ξ = 0 in (3.20) implies λ(Vn+1 · ex)
∣∣∣
xcl

≥ 0. Thus, adding (3.41) and (3.42) and choosing μ = Λn+1
g

yields

1
2
‖D

(
un+1

)
‖2

L2(Ωn) + ‖un+1 · τn‖2
L2(Γ n

s ) +
∫

Γ n
g

∂sXn+1 · ∂sVn+1 +
(
Vn+1 · ex

)2 ∣∣∣
xcl

≤∫
Ωn

fn+1 · un+1 +
(
γn+1
s − γn+1

s,g

) (
Vn+1 · ex

) ∣∣∣
xL

cl

− (γn+1
s − γn+1

s,g )
(
Vn+1 · ex

) ∣∣∣
xR

cl

. (3.43)

Next, we use a result from [5] which states that

δt

∫
Γ n

g

∂sXn+1 · ∂sVn+1 =
∫

Γ n
g

∂sXn+1 · ∂s

(
Xn+1 − idΓ n

g

)
≥ |Xn+1(Γ n

g )| − |Γ n
g | = |Γ n+1

g | − |Γ n
g |,

where Γ n+1
g := Xn+1(Γ n

g ). Using Young’s inequality “with ε” and (3.25), we get

c1

∥∥un+1
∥∥2

H1(Ωn)
+

∣∣Γ n+1
g

∣∣− ∣∣Γ n
g

∣∣
δt

+ c2

(
Vn+1 · ex

)2 ∣∣∣
xcl

≤ c3

∥∥fn+1
∥∥2

L2(Ωn)
+ c4

(
γn+1
s − γn+1

s,g

)2 ∣∣∣
xcl

, (3.44)

where the constants only depend on the domain Ωn. Indeed, the constants do not depend on δt. Multiplying
through by δt and summing gives the assertion. �

4. Fully discrete formulation

We extend the results of Section 3 to the fully discrete setting (i.e. space is now discretized), the main results
being Theorem 4.5, Lemmas 4.9 and 4.10, and the discrete energy law (Prop. 4.11).

4.1. Triangulation

The fully discrete scheme consists of applying a spatial discretization to the semi-discrete formulation (see
Sect. 3.3). As usual, we approximate the domain Ω by a triangulated domain Ωh. The triangulation is denoted
by Th, where h is the longest edge of all the triangles. We assume Th is conforming, shape regular [12], and
satisfies

Ωh = ∪T∈Th
T.

The boundary of the triangulation is denoted ∂Ωh = Γg,h ∪ Γs,h and the edges of all triangles that lie on Γg,h

are assumed to be quadratic curves (i.e. second order geometric approximation). Furthermore, we denote the
set of curved edges of Γg,h as Eh, where

Γg,h = ∪E∈Eh
E,

and Γg,h ∩ Γs,h = {xL
cl,x

R
cl} consists of two vertices of the triangulation Th, which represent the left and right

contact points.

4.2. Finite element spaces

We introduce the finite element spaces used to approximate V, Y, Q, and M. Let Pk be the space of poly-
nomials of degree ≤k on the standard reference triangle T̂ or standard reference edge Ê. Let ΨT : T̂ → T be
the iso-parametric P2 mapping from the reference triangle to a triangle in Th, and let ΨE : Ê → E be similarly
defined for edges E in Eh. Then the finite element spaces are defined as

Vk :=
{
v ∈ C

(
Ωh

)
: v ◦ ΨT ∈ Pk

(
T̂
)

, for all T ∈ Th

}
, (4.1)
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i.e. the space of continuous vector basis functions, whose components are piecewise polynomials of degree ≤k
on the reference triangle T̂ . Similarly,

Yk :=
{
Y ∈ C

(
Γg,h

)
: Y ◦ ΨE ∈ Pk

(
Ê
)

, for all E ∈ Eh

}
. (4.2)

Next, we have the scalar valued spaces

Qk : =
{

q ∈ C
(
Ωh

)
: q ◦ ΨT ∈ Pk

(
T̂
)

, for all T ∈ Th

}
, (4.3)

M0 :=
{

μ ∈ L2(Γg,h) : μ ◦ ΨE ∈ P0(Ê), for all E ∈ Eh

}
,

Mk :=
{

μ ∈ C(Γg,h) : μ ◦ ΨE ∈ Pk(Ê), for all E ∈ Eh

}
, k ≥ 1. (4.4)

Note that Vk ⊂ H1(Ωh), Yk ⊂ H1(Γg,h), Qk ⊂ L2(Ωh), M0, Mk ⊂ (H1/2(Γg,h))∗, for all k ≥ 1.
Let Vh, Yh, Qh, and Mh be conforming approximations of V, Y, Q, and M, defined by:

Vh := {v ∈ V2 : v · ey = 0, on Γs} ,

Yh := {v ∈ Y2 : Y · ey = 0, at ∂Γg,h} ,

Qh := Q1,

Mh := M0 or M1. (4.5)

These finite element spaces are equipped with the standard Sobolev norms. Of course, the convex set is simply
Kh ≡ K = [−1, 1] ⊂ R.

Remark 4.1. The space Yh matches the P2 iso-parametric mapping. Thus, updating the discrete domain over
consecutive time-steps is straightforward (see Rem. 3.5).

4.3. Mixed formulation

The analogous discrete bilinear and linear forms to (3.12)–(3.14) are as follows:

ah((uh,Wh), (vh,Yh)) =
∫

Ωh

D(uh) : ∇vh +
∫

Γs

(uh · τ )(vh · τ ) +
1
δt

∫
Γg,h

∂sWh · ∂sYh

+
1

δt2
(Wh · ex)(Yh · ex)

∣∣∣
xL

cl

+
1

δt2
(Wh · ex)(Yh · ex)

∣∣∣
xR

cl

, (4.6)

bh((vh,Yh), (qh, μh, ξL, ξR)) = −
∫

Ωh

qh∇ · vh +
∫

Γg,h

μh(vh · νh) − 1
δt

∫
Γg,h

μh(Yh · νh)

+
1
δt

ξL(Yh · ex)|xL
cl

+
1
δt

ξR(Yh · ex)|xR
cl
, (4.7)

Fh((vh,Yh)) =
∫

Ωh

f · vh +
1
δt

(γs − γs,g) (Yh · ex)
∣∣∣
xL

cl

− 1
δt

(γs − γs,g) (Yh · ex)
∣∣∣
xR

cl

+
1

δt2
(idΓg,h · ex)(Yh · ex)

∣∣∣
xL

cl

+
1

δt2
(idΓg,h · ex)(Yh · ex)

∣∣∣
xR

cl

, (4.8)

Gh((qh, μh, ξL, ξR)) = − 1
δt

∫
Γg,h

μh(idΓg,h · νh) +
1
δt

ξL(idΓg,h · ex)|xL
cl

+
1
δt

ξR(idΓg,h · ex)|xR
cl
,

for all vh in Vh, Yh in Yh, qh in Qh, μh in Mh, and ξL, ξR in R. Note that Γs,h ≡ Γs because it is flat, so then
the discrete tangent vector satisfies τh ≡ τ = ex on Γs.

The discrete version of the product space (3.15) is

Zh = Vh × Yh, Th = Qh × Mh ×K ×K, (4.9)
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and the discrete version of the norms (3.16)–(3.18) are defined in the obvious way. Thus, at each time-step, the
mixed formulation is: find (uh,Wh) in Zh and (ph, Λg,h, λL,h, λR,h) in Th such that

ah((uh,Wh), (vh,Yh)) + bh((vh,Yh), (ph, Λg,h,λL,h, λR,h)) = Fh((vh,Yh)),
bh((uh,Wh), (qh, μh, ξL − λL,h, ξR − λR,h)) ≤ Gh((qh, μh, ξL − λL,h, ξR − λR,h)), (4.10)

for all (vh,Yh) in Zh and (qh, μh, ξL, ξR) in Th. The solution of (4.10) is iterated for the full time-varying
simulation (see Rem. 3.5). In particular, we update the domain boundary with Xn+1

h := Wn+1
h , then use a

smooth domain deformation to update the interior vertices of the mesh (see [32] for a similar approach).

4.4. Variational crime

Using a polygonal, or even piecewise quadratic, approximation of the domain boundary ∂Ωh introduces an
additional geometric error. This has been considered in [7, 12, 43, 69] and is now a classical issue. Thus, when
comparing the solutions of the semi-discrete and fully discrete problems, there are two terms to consider. The
first is the energy error due to the usual finite dimensional space approximation. The other term is related to
the domain approximation (i.e. a variational crime).

At the initial time step, it is reasonable to assume that the quadratic nodes (vertices) of the approximating
curve Γ 0

g,h interpolate the true (initial) curve Γ 0
g . Of course, the semi-discrete and fully discrete evolution schemes

will give different results for the interfaces Γ n
g and Γ n

g,h (for n > 0), respectively, because of the accumulated
spatial discretization error. Understanding this requires a full time-dependent analysis, which we do not give
here. Hence, we assume Γg is approximated by Γg,h, at all time-steps, in the following sense:

sup
x∈Γg

inf
y∈Γg,h

|x − y| ≤ chk+1,

‖ν ◦ Φ− νh‖L∞(Γg,h) ≤ chk, (4.11)

where Γg is assumed to be W k+1,∞ (for k = 1 or 2), ν is the unit normal on Γg, νh is the unit normal on Γg,h,
and Φ: Γg,h → Γg is a suitable map from Γg,h to Γg (see [6, 43, 69] for how this can be constructed). Note that
since Γs is flat, we have Γs ≡ Γs,h. We emphasize that iso-parametric elements are needed to get improved L2

error estimates for velocity and position because the normal vector appears in the weak formulation.
Therefore, since the variational crime argument is classical, we avoid discussing the technicalities associated

with approximating the domain. In particular, we shall assume the semi-discrete and fully discrete problems
are defined over the same domain. Hence, we take Ωh ≡ Ω, Γg,h ≡ Γg, Γs,h ≡ Γs, and

Vh ⊂ V, Yh ⊂ Y, Qh ⊂ Q, Mh ⊂ M. (4.12)

Remark 4.2. We make one exception to the above simplification and maintain an important technicality. The
normal vector of the discrete domain νh is discontinuous, which impacts the duality pairing 〈μ,v · νh〉M. This
directly affects the proof of the discrete inf-sup condition, namely Lemmas 4.9 and 4.10. For the error estimates
in Section 5, we do not make explicit note of the normal vector approximation.

Alternatively, one could change the discrete formulation so that νh is continuous, i.e. replace the true discrete
normal of Γg,h with a continuous approximation [30]. We do not pursue this here.

4.5. Stable formulation

Because the finite element spaces are conforming (4.12), we automatically obtain the following results from
Lemma 3.6 and Theorem 3.10.
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Lemma 4.3 (Continuity). Let Ωh be a bounded polyhedral domain in Rd with possibly curved boundary facets.
Then there are positive constants Ca, Cb, CF , and CG that depend on Ωh and δt−1 such that

ah((uh,Wh), (vh,Yh)) ≤ Ca‖(uh,Wh)‖Z‖(vh,Yh)‖Z, (4.13)

bh((uh,Wh), (qh, μh, ξL, ξR)) ≤ Cb‖(uh,Wh)‖Z‖(qh, μh, ξL, ξR)‖T, (4.14)

Fh((vh,Yh)) ≤ CF ‖(vh,Yh)‖Z,

Gh((qh, μh, ξL, ξR)) ≤ CG‖(qh, μh, ξL, ξR)‖T, (4.15)

for all (uh,Wh), (vh,Yh) in Zh and (qh, μh, ξL, ξR) in Th.

Theorem 4.4. Assume the hypothesis of Lemmas 3.7 and 3.9. For all vh in Vh and all Yh in Yh, we have

ah((vh,Yh), (vh,Yh)) ≥ C
(
‖vh‖2

H1(Ωh) + ‖Yh‖2
H1(Γg,h)

)
= C‖(vh,Yh)‖2

Z, (4.16)

for some positive constant C that depends on Ωh and δt−1 (for δt ≤ 1).

To ensure the stability of the fully discrete solution, we again need the “inf-sup” condition.

Theorem 4.5. For all qh in Qh, μh in Mh, ξL in R, ξR in R, and for h sufficiently small, we have

sup
vh∈Vh, Yh∈Yh

bh((vh,Yh), (qh, μh, ξL, ξR))
‖(vh,Yh)‖Z

≥ β‖(qh, μh, ξL, ξR)‖T, (4.17)

for some positive constant β that depends on Ωh, α−1
0 , and δt−1.

Before proving Theorem 4.5, we prove some intermediate results.

Proposition 4.6 (Piecewise Constant Mh). Let Ω be piecewise smooth, such that Γg is W 2,∞ and Γs is flat.
Let Ωh be a piecewise quadratic approximation of Ω. Given μh in M0, there is a vh in Vh such that∫

Γg,h

μh(vh · νh) ≥ Ch1/2‖μh‖L2(Γg,h), ‖vh‖H1(Ωh) = 1, (4.18)

for some independent constant C > 0 depending only on Ω, and for h sufficiently small.

Proof. Take μh in M0, i.e. μh is constant on each edge segment of Γg,h. Let E be a quadratic edge segment
of Γg,h, and denote the midpoint by xE . Let bE be a quadratic “bubble” function on E, i.e. bE is in Vh such
that all its nodal values vanish except at xE where bE(xE) = 1. Let vh in Vh, and define it on Γg,h by

vh|E = μh

(
νh

∣∣∣
xE

)
bE , for all E ⊂ Γg,h,

and set vh = 0 on Γs,h. This gives the following bound

‖vh‖2
L2(Γg,h) =

∫
Γg,h

|vh|2 =
∑

E⊂Γg,h

μ2
h

∫
E

b2
E ≤ c1

∑
E⊂Γg,h

μ2
h|E| = c1‖μh‖2

L2(Γg,h). (4.19)

Next, let ṽ be the harmonic extension of vh to all of Ωh. With a slight abuse of notation, let vh = Πhṽ,
where Πh is the Scott–Zhang interpolant [59], onto Vh, that preserves boundary values on ∂Ωh. Then, by (4.19)
and a trace and inverse estimate, we have

‖vh‖H1(Ωh) ≤ c2‖vh‖H1/2(∂Ωh) = c2‖vh‖H1/2(Γg,h) ≤ c3h
−1/2‖vh‖L2(Γg,h)

≤ c4h
−1/2‖μh‖L2(Γg,h). (4.20)
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Therefore, since νh(xE) · νh

∣∣
E
≥ 1

2 for h sufficiently small, we arrive at∫
Γg,h

μh(vh · νh)

‖vh‖H1(Ωh)
=

∑
E⊂Γg,h

μ2
h

∫
E(νh(xE) · νh)bE

‖vh‖H1(Ωh)
≥ Ch1/2‖μh‖L2(Γg,h), (4.21)

which gives the assertion. �

Proposition 4.7 (Continuous Piecewise Linear Mh). Assume the hypothesis of Proposition 4.6. Given μh

in M1, there is a vh in Vh such that∫
Γg,h

μh(vh · νh) ≥ Ch1/2‖μh‖L2(Γg,h), ‖vh‖H1(Ωh) = 1, (4.22)

for some independent constant C > 0 depending only on Ω, and for h sufficiently small.

Proof. Recall the smoothed, extended vector field ν̃E from Lemma 3.2. Since Ωh approximates Ω in the sense
of (4.11), we can define νs to be the standard piecewise linear interpolant of ν̃E over Ωh (using a diffeomorphism
Φ: Ωh → Ω if necessary). Then we have, for h sufficiently small,

νs ∈ V1, νs · νh ≥ a1 > 0, on Γg,h, νs · νh = 0, on Γs,h,

‖νs‖W 1,∞(∂Ωh) ≤ a2, ‖νs‖W 1,∞(Ωh) ≤ a3, (4.23)

for some constants a1, a2, a3 independent of h, where νh is the outward unit normal vector of the piecewise
quadratic curve ∂Ωh. Take μh in M1 and extend its definition to all of ∂Ωh in a smooth way so that

‖μh‖H1/2(∂Ωh) ≤ c0‖μh‖H1/2(Γg,h).

Next, similar to Proposition 4.6, we extend μh to Ωh such that ‖μh‖H1(Ωh) ≤ c1‖μh‖H1/2(Γg,h), where μh is
in Q1. Thus, by an inverse estimate, μh satisfies ‖μh‖H1(Ωh) ≤ c2h

−1/2‖μh‖L2(Γg,h).
Define vh in Vh by vh := μhνs. By the properties (4.23) of νs, we have that

‖vh‖H1(Ωh) ≤ c3‖μh‖H1(Ωh) ≤ c4h
−1/2‖μh‖L2(Γg,h).

Therefore, we obtain ∫
Γg,h

μh(vh · νh)

‖vh‖H1(Ωh)
≥ a1

c4
h1/2

∫
Γg,h

μ2
h

‖μh‖L2(Γg,h)
= c5h

1/2‖μh‖L2(Γg,h),

which gives the assertion. �

Proposition 4.8 (Matching function in Yh). Assume the hypothesis of Proposition 4.6. Given μh in Mh, where
Mh = M0 or Mh = M1, there is a Yh in Yh ∩ H1

0 (Γg,h) such that∫
Γg,h

μh(Yh · νh) ≥ Ch‖μh‖L2(Γg,h), ‖Yh‖H1(Γg,h) = 1, (4.24)

for some independent constant C > 0 depending only on Γg.

Proof. First note that the finite element space Yh is just the restriction of Vh to Γg,h. Thus, it is a straightforward
modification of the proofs in Propositions 4.6 and 4.7 to construct Yh. In particular, the zero boundary values
for Yh do not pose a problem. �

We now prove an intermediate inf-sup result.
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Lemma 4.9 (Inf-Sup For Boundary Multiplier). Assume the hypothesis of Proposition 4.6. Then there is a
constant β2 > 0, depending on Ω, such that, for h sufficiently small,

sup
vh∈Vh

∫
Γg,h

μh(vh · νh)

‖vh‖H1(Ωh)
≥ β2‖μh‖M, for all μh in Mh, (4.25)

where Mh = M0 or Mh = M1.

Proof. Let μh in Mh. If Mh = M0, then let uh be given by Proposition 4.6. Else, if Mh = M1, then let uh be
given by Proposition 4.7. Therefore,∫

Γg,h

μh(uh · νh) ≥ Ch1/2‖μh‖L2(Γg,h), ‖uh‖H1(Ωh) = 1, (4.26)

Hence, we must account for the h1/2 weighting.
Let ν be the W 1,∞ normal vector on Γg and assume we have a W 1,∞ diffeomorphism Φ : Γg,h → Γg such

that ‖ν ◦ Φ − νh‖L∞(Γg,h) ≤ c0h. As was done in Propositions 3.3 and 3.4, one can show there exists a v̂ in
H1(Ωh), with v̂ · ey = 0 on Γs,h, such that∫

Γg,h

μh(v̂ · (ν ◦ Φ)) = ‖μh‖M, ‖v̂‖H1(Ωh) = 1. (4.27)

Let v̂h := Πhv̂ ∈ Vh be the Scott–Zhang interpolant onto Vh; thus

‖v̂h‖H1(Ωh) ≤ c1, ‖v̂h − v̂‖L2(Γg,h) ≤ c2h
1/2‖v̂‖H1/2(Γg,h) = c3h

1/2.

Plugging into the discrete boundary integral form, we get∫
Γg,h

μh(v̂h · νh) =
∫

Γg,h

μh(v̂ · (ν ◦ Φ)) +
∫

Γg,h

μh(v̂h − v̂) · (ν ◦ Φ)

+
∫

Γg,h

μh(v̂h · (νh − ν ◦ Φ))

≥ ‖μh‖M − ‖μh‖L2(Γg,h)‖v̂h − v̂‖L2(Γg,h)

− ‖μh‖L2(Γg,h)‖v̂h‖L2(Γg,h)‖νh − ν ◦ Φ‖L∞(Γg,h)

≥ ‖μh‖M − c3h
1/2‖μh‖L2(Γg,h) − c4h‖μh‖L2(Γg,h)

≥ ‖μh‖M − c5h
1/2‖μh‖L2(Γg,h), (4.28)

where we used (4.27), the Cauchy–Schwarz inequality, and previous bounds. Note, we must restrict h < 1 to
guarantee (4.28).

Now combine the discrete vector fields: zh = c5
C uh + v̂h. Then, ‖zh‖H1(Ωh) ≤ c5

C + c1 and∫
Γg,h

μh(zh · νh) =
c5

C

∫
Γg,h

μh(uh · νh) +
∫

Γg,h

μh(v̂h · νh)

≥ c5h
1/2‖μh‖L2(Γg,h) + ‖μh‖M − c5h

1/2‖μh‖L2(Γg,h) = ‖μh‖M.

Therefore, we obtain the inf-sup condition:

sup
zh∈Vh

∫
Γg,h

μh(zh · νh)

‖zh‖H1(Ωh)
≥ β2‖μh‖M, where β2 =

1
c5
C + c1

· �
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We need one more lemma to enable the proof of the full discrete inf-sup condition.

Lemma 4.10. Assume the hypothesis of Proposition 4.6. Let μh be in Mh, where Mh = M0 or Mh = M1, and
ξL, ξR in R. Then there is a constant ζ0 > 0 (depending only on Γg), such that we have the following results.

1. There exists a Yh,0 in Yh such that

Yh,0 = 0, on ∂Γg,h, −
∫

Γg,h

μh (Yh,0 · νh) ≥ ‖μh‖H−1(Γg,h) + ζ0h‖μh‖L2(Γg,h),

‖Yh,0‖H1(Γg,h) ≤ C0, (4.29)

where C0 depends on ν̃ in Lemma 3.2 and the geometry of Γg.
2. There exists a Yh,1 in Yh such that

Yh,1|xL
cl

= −sgn(ξL)
ex

ex · νh
, Yh,1|xR

cl
= sgn(ξR)

ex

ex · νh
,

|ξL|
α0

≥ ξL(Yh,1 · ex)|xL
cl
≥ |ξL|,

|ξR|
α0

≥ ξR(Yh,1 · ex)|xR
cl
≥ |ξR|,∣∣∣∣∣

∫
Γg,h

μh(Yh,1 · νh)

∣∣∣∣∣ ≤ ζ0h‖μh‖L2(Γg,h), ‖Yh,1‖H1(Γg,h) ≤ C1, (4.30)

where α0 is taken from Lemma 3.2, and C1 depends on ν̃ and α−1
0 .

Proof. First note that, similar to the proof of Lemma 3.11, one can show there is a Y0 in H1(Γg,h) such that

Y0 = 0, on ∂Γg,h, −
∫

Γg,h

μh(Y0 · (ν ◦ Φ)) = ‖μh‖H−1(Γg,h), ‖Y0‖H1(Γg,h) ≤ c0, (4.31)

where ν and Φ are defined as in the proof of Lemma 4.9. Let Ŷh,0 in Yh be the piecewise quadratic interpolant
of Y0 over Γg,h. Then, by a similar argument as was shown in (4.28), we get

−
∫

Γg,h

μh

(
Ŷh,0 · νh

)
≥ ‖μh‖H−1(Γg,h) − c1h‖μh‖L2(Γg,h),

∥∥∥Ŷh,0

∥∥∥
H1(Γg,h)

≤ c2. (4.32)

Now use Proposition 4.8 to obtain a Ỹh,0 that satisfies

−
∫

Γg,h

μh

(
Ỹh,0 · νh

)
≥ c3h‖μh‖L2(Γg,h),

∥∥∥Ỹh,0

∥∥∥
H1(Γg,h)

= 1,

and define Yh,0 = Ŷh,0 + ( c1+ζ0
c3

)Ỹh,0, where ζ0 > 0 is yet to be specified. Then it is clear that Yh,0

satisfies (4.29).
Next, interpolate the (modified) function Y1 over Γg,h from Lemma 3.11, i.e. let Ŷh,1 in Yh be the piecewise

quadratic interpolant of Y1 and proceed as before. The constant ζ0 comes out of that. �

Proof of Theorem 4.5. Let qh ∈ Qh, μh ∈ Mh, and ξL, ξR ∈ R be arbitrary. Starting as we did in Theorem 3.12,
we have

bh((vh,Yh), (qh, μh, ξL, ξR)) = −
∫

Ωh

q̃h∇ · vh +
∫

Γg,h

(μh − qh,0)vh · νh − 1
δt

∫
Γg,h

μh(Yh · νh)

+
1
δt

ξL(Yh · ex)|xL
cl

+
1
δt

ξR(Yh · ex)|xR
cl
, (4.33)
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where qh = q̃h + qh,0 and qh,0 = 1
|Ωh|

∫
Ωh

qh. By Lemma 4.9, there exists a ûh in Vh such that∫
Γg,h

(μh − qh,0)ûh · νh ≥ β2‖μh − qh,0‖M, ‖ûh‖H1(Ωh) = 1. (4.34)

Next, consider the discrete Stokes problem, which has a unique solution (u∗
h, p∗h) ∈ Vh,0 × Qh,0 [11, 13],∫

Ωh

∇u∗
h : ∇vh −

∫
Ωh

p∗h∇ · vh = 0,

−
∫

Ωh

ρh∇ · u∗
h =

∫
Ωh

ρh

(
q̃h

‖q̃h‖L2(Ωh)
+ ∇ · ûh

)
, (4.35)

for all vh ∈ Vh,0 and ρh ∈ Qh,0, where Vh,0 = Vh ∩ H1
0 (Ωh).

By (4.35), we have

|u∗
h|2H1(Ωh) =

∫
Ωh

p∗h∇ · u∗
h = −

(∫
Ωh

p∗hq̃h

‖q̃h‖L2(Ωh)
+
∫

Ωh

p∗h∇ · ûh

)
≤ ‖p∗h‖L2(Ωh) + ‖p∗h‖L2(Ωh)‖∇ · ûh‖L2(Ωh) ≤ 2‖p∗h‖L2(Ωh), (4.36)

using (4.34) and the fact that ‖∇ · ûh‖L2(Ωh) ≤ ‖ûh‖H1(Ωh) = 1. We also have, by using the inf-sup condition
for the discrete Stokes problem [13], the following bound:

β̃‖p∗h‖L2(Ωh) ≤ sup
vh∈Vh,0

∫
Ωh

p∗h∇ · vh

‖vh‖H1(Ωh)
= sup

vh∈Vh,0

∫
Ωh

∇u∗
h : ∇vh

‖vh‖H1(Ωh)
= ‖u∗

h‖H1(Ωh). (4.37)

Hence, ‖p∗h‖L2(Ωh) ≤ 1
β̃
‖u∗

h‖H1(Ωh). Combining with (4.36), we have ‖u∗
h‖H1(Ωh) ≤ 2c1

β̃
=: c2, because u∗

h has
zero boundary data.

Next, let uh := ûh + u∗
h. By the previous steps, we know that ‖uh‖H1(Ωh) ≤ 1 + c2, and using (4.35), we get

the following inequality:

−
∫

Ωh

q̃h∇ · uh +
∫

Γg,h

(μh − qh,0)uh · νh = −
∫

Ωh

q̃h(∇ · ûh + ∇ · u∗
h) +

∫
Γg,h

(μh − qh,0)ûh · νh

≥ ‖q̃h‖L2(Ωh) + β2‖μh − qh,0‖M, (4.38)

which addresses part of the inf-sup condition.
Now apply Lemma 4.10 to construct Wh = Yh,0 +Yh,1 in Yh (which depends on μh, ξL, ξR). Insert uh and

Wh into (4.33):

bh ((uh,Wh), (qh, μh, ξL, ξR)) ≥ ‖q̃h‖L2(Ωh) + β2‖μh − qh,0‖M − 1
δt

∫
Γg,h

μh (Wh · νh)

+
1
δt

ξL(Wh · ex)|xL
cl

+
1
δt

ξR(Wh · ex)|xR
cl
, (4.39)

≥ ‖q̃h‖L2(Ωh)+β2‖μh − qh,0‖M +
1
δt

(
‖μh‖H−1(Γg,h) + |ξL| + |ξR|

)
(4.40)

≥ c3

δt
‖(qh, μh,ξL, ξR)‖T, (4.41)

where we used (3.18). By the bound on uh and Lemma 4.10, we have the bound

‖(uh,Wh)‖Z ≤ c4, (4.42)

where c4 depends on Ω and α−1
0 . Finally, we form the ratio in (4.17), use (4.42), take the supremum, and noting

that qh, μh, ξL, and ξR are arbitrary, the assertion follows with β := c3
δt·c4

. �
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4.6. Fully discrete energy law

The fully discrete formulation possesses an energy law.

Proposition 4.11. Assume the hypothesis of Proposition 3.14. For all 0 ≤ n ≤ N − 1, suppose δt = tn+1 − tn
is uniform and the solution of (4.10) satisfies: Γ n

g,h is W 1,∞ and is parameterized by Xn
h, and Γ n

s is flat with
positive measure. Then,

δt

N−1∑
i=0

[∥∥ui+1
h

∥∥2

H1(Ωi
h)+

(
Vi+1

h · ex

)2 ∣∣∣
xcl

]
+
∣∣Γ N

g,h

∣∣ ≤ C

{∣∣Γ 0
g,h

∣∣+δt

N−1∑
i=0

[∥∥f i+1
∥∥2

L2(Ωi
h)+

(
γi+1
s − γi+1

s,g

)2 ∣∣∣
xcl

]}
,

(4.43)

where Vi+1
h = (Xi+1

h − idΓ i
g,h

)/δt and the constant C only depends on the domain.

Proof. Since the finite element spaces are conforming, the proof is the same as for Proposition 3.14. �

5. Error estimates

We derive preliminary error estimates for the fully discrete formulation (4.10) at a single time step. Through-
out this section, we shall invoke the variational crime argument, and ignore the subscript h in the bilinear and
linear forms of the fully discrete problem (4.10), i.e. ah(·, ·) ≡ a(·, ·), etc. In particular, we will not deal explicitly
with the normal vector approximation (recall Rem. 4.2) in order to avoid additional technicalities.

5.1. Error equations

Lemma 5.1 is a special case of Lemma 2.7 in [63]; we omit the proof. Also, Lemma 5.2 is a modification of
Lemma 2.9 in [63].

Lemma 5.1. Let (u,W, p, Λg, λL, λR) solve the time semi-discrete problem (3.20) and
(uh,Wh, ph, Λg,h, λL,h, λR,h) solve the fully discrete problem (4.10). Then, for all (v,Y) in Z, (vh,Yh)
in Zh, (q, μ, ξL, ξR) in T, and (qh, μh, ξL,h, ξR,h) in Th, the following inequality holds:

a((vh − uh,Yh − Wh),(vh − uh,Yh − Wh)) ≤ B1((qh, μh, ξL,h, ξR,h)) + B2((q, μ, ξL, ξR))
+ a((vh − u,Yh − W), (vh − uh,Yh − Wh))
+ b((vh − u,Yh − W), (ph − p, Λg,h − Λg, λL,h − λL, λR,h − λR))

+ b((uh − u,Wh − W), (p − qh, Λg − μh, λL − ξL,h, λR − ξR,h)), (5.1)

where

B1((qh, μh, ξL,h, ξR,h)) = b((u,W), (p − qh, Λg − μh, λL − ξL,h, λR − ξR,h))

− G((p − qh, Λg − μh, λL − ξL,h, λR − ξR,h)),
B2((q, μ, ξL, ξR)) = b((u,W), (ph − q, Λg,h − μ, λL,h − ξL, λR,h − ξR))

− G((ph − q, Λg,h − μ, λL,h − ξL, λR,h − ξR)).

Lemma 5.2. Assume the hypothesis of Lemma 5.1. Let Γg be of class W 2,∞ and assume h is sufficiently small
to ensure the inf-sup condition in Theorem 4.5. Then the following inequalities hold:

‖(p − ph, Λg − Λg,h, λL − λL,h, λR − λR,h)‖T ≤ C1

(
‖ (qh − p, μh − Λg, ξL,h − λL, ξR,h − λR) ‖T

+ ‖ (u− uh,W − Wh) ‖Z

)
, (5.2)

‖(u− uh,W − Wh)‖2
Z ≤ C2

(
B1((qh, μh, ξL,h, ξR,h)) + B2((q, μ, ξL, ξR))

+ ‖(p − qh, Λg − μh, λL − ξL,h, λR − ξR,h)‖2
T + ‖(u− vh,W − Yh)‖2

Z

)
, (5.3)
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for all (vh,Yh) in Zh, (qh, μh, ξL,h, ξR,h) in Th, and all h sufficiently small. Note that C1 and C2 depend
on δt−1.

Proof. Using the exact and discrete solutions from (3.20) and (4.10), we get

b((vh,Yh),(qh − ph, μh − Λg,h, ξL,h − λL,h, ξR,h − λR,h))

= b((vh,Yh), (qh, μh, ξL,h, ξR,h)) − b((vh,Yh), (ph, Λg,h, λL,h, λR,h))
+ F ((vh,Yh)) − a((u,W), (vh,Yh)) − b((vh,Yh), (p, Λg, λL, λR))

= b((vh,Yh), (qh − p, μh − Λg, ξL,h − λL, ξR,h − λR))
+ a((uh − u,Wh − W), (vh,Yh)), (5.4)

for all (qh, μh, ξL,h, ξR,h) in Th. So combining the discrete inf-sup condition provided by Theorem 4.5 with (5.4)
gives

‖(qh − ph, μh − Λg,h, ξL,h − λL,h,ξR,h − λR,h)‖T ≤ c1

(
‖(u − uh,W − Wh)‖Z

+ ‖(qh − p, μh − Λg, ξL,h − λL, ξR,h − λR)‖T

)
(5.5)

Starting with the left-hand-side of (5.2) and using a triangle inequality gives the rest of (5.2).
As for (5.3), we start with Lemma 5.1. Using the coercivity of a(·, ·) (recall (3.28)), Cauchy–Schwarz, and a

triangle inequality, we have

‖(vh − uh,Yh − Wh)‖2
Z ≤ c2

{
B1((qh, μh, ξL,h, ξR,h)) + B2((q, μ, ξL, ξR))

+ ‖(vh − u,Yh − W)‖2
Z + ‖(vh − u,Yh − W)‖Z‖(u− uh,W − Wh)‖Z

+ ‖(vh − u,Yh − W)‖Z‖(ph − p, Λg,h − Λg, λL,h − λL, λR,h − λR)‖T

+ ‖(uh − u,Wh − W)‖Z‖(p − qh, Λg − μh, λL − ξL,h, λR − ξR,h)‖T

}
. (5.6)

Employing ‖(u−uh,W−Wh)‖2
Z ≤ 2‖(u−vh,W−Yh)‖2

Z + 2‖(vh −uh,Yh −Wh)‖2
Z and a weighted Young’s

inequality, we get the following inequality by combining with (5.6) and (5.2)

‖(u− uh,W − Wh)‖2
Z ≤ c3

{
‖(u− vh,W − Yh)‖2

Z + B1((qh, μh, ξL,h, ξR,h)) + B2((q, μ, ξL, ξR))

+ ‖(p − qh, Λg − μh, λL − ξL,h, λR − ξR,h)‖2
T

}
,

which yields the estimate. �

5.2. Error estimate

The forgoing results yield the following theorem.

Theorem 5.3 (Main error estimates). Assume the hypothesis of Lemma 5.2. Then we have the following error
estimates for all h sufficiently small:

‖(p − ph, Λg − Λg,h, λL − λL,h,λR − λR,h)‖T ≤ C1

{
‖(u− uh,W − Wh)‖Z

+ inf
q̃h∈Qh,0

‖q̃h − p̃‖L2(Ωh) + inf
μh∈Mh

‖μh − Λg‖M

}
, (5.7)

where ˜denotes mean value zero and Qh,0 ⊂ Qh is the space of discrete pressures with mean value zero,

‖(u− uh,W − Wh)‖2
Z ≤ C2

{
inf

vh∈Vh

‖u− vh‖2
H1(Ωh) + inf

Yh∈Yh

‖W − Yh‖2
H1(Γg,h)

+ inf
q̃h∈Qh,0

‖q̃h − p̃‖2
L2(Ωh) + inf

μh∈Mh

‖μh − Λg‖2
M

}
. (5.8)
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Proof. In Lemmas 5.1 and 5.2, we are free to choose the discrete test functions. Therefore, let ξL,h = λL and
ξR,h = λR, since they are just numbers and the convex set is the same in the semi-discrete and fully discrete
cases. Moreover, set qh such that qh,0 :=

∫
Ωh

qh =
∫

Ωh
p =: p0. Then, we have

‖(qh − p, μh − Λg, ξL,h − λL, ξR,h − λR)‖2
T = ‖q̃h − p̃‖2

L2(Ωh) + ‖μh − Λg‖2
M + ‖μh − Λg‖2

H−1(Γg,h)

≤ d0{‖q̃h − p̃‖2
L2(Ωh) + ‖μh − Λg‖2

M},

where q̃h = qh − qh,0 and p̃ = p − p0. This yields (5.7).
Starting from (5.3), we find that B2 vanishes by choosing the continuous test functions appropriately. Next,

after making use of (3.20), we find that B1 also vanishes, and so obtain (5.8). �

The actual regularity of the solution (u,W, p, Λg) of (3.20) is open. However, because ∂Ω has corners with a
change in boundary condition (Γg to Γs), the regularity of the Stokes equations is reduced from the standard
Dirichlet case [38, 52]. According to [52], the best regularity we can hope for the velocity and pressure is

u in H1+s(Ω), p in Hs(Ω), for
1
2
≤ s ≤ 1, (5.9)

where s = 1
2 when θcl = 180◦ − ε and s = 1 when θcl = 90◦ − ε (for ε > 0 small), with a continuous range in

between. As θcl decreases from 90◦, the regularity further improves.
Because of the surface tension effect, the interface should be smooth; recall that, formally, Λg is the curvature

κ; see (2.22). Hence, it seems reasonable to assume the regularity of W and Λg to be

W in H2+s(Γg), Λg in Hs(Γg), for
1
2
≤ s ≤ 1. (5.10)

Therefore, using standard interpolation theory, for instance see [69], we obtain the following corollaries.

Corollary 5.4. Assume the hypothesis of Theorem 5.3 and assume the regularity in (5.9) and (5.10). Then we
have

‖(p − ph, Λg − Λg,h, λL − λL,h,λR − λR,h)‖T ≤ C1

{
‖(u− uh,W − Wh)‖Z

+ hs‖p̃‖Hs(Ωh) + hs‖Λg‖Hs(Γg,h)

}
, for

1
2
≤ s ≤ 1, (5.11)

‖(u − uh,W − Wh)‖Z ≤ C2

{
hs‖u‖H1+s(Ωh) + h1+s‖W‖H2+s(Γg,h)

+hs‖p̃‖Hs(Ωh) + hs‖Λg‖Hs(Γg,h)

}
, for

1
2
≤ s ≤ 1. (5.12)

Note that C1, C2 depend on δt−1, α−1
0 , Ω, and Γg.

Proof. By [20], there exists Clément interpolation operators πVh
, πYh

, πQh
, πMh

that satisfy:

‖u− πVh
u‖H1(T ) ≤ c1h

l−1‖u‖Hl(T ), 1 ≤ l ≤ 1 + s,

‖W − πYh
W‖H1(E) ≤ c2h

l−1‖u‖Hl(E), 1 ≤ l ≤ 2 + s,

‖p − πQh
p‖L2(T ) ≤ c3h

l‖u‖Hl(T ), 0 ≤ l ≤ s,

‖Λg − πMh
Λg‖L2(E) ≤ c4h

l‖Λg‖Hl(E), 0 ≤ l ≤ s,

where T is in Th and E is in Eh. Note that Mh = M0 or Mh = M1 and ‖ · ‖M ≤ C̃‖ · ‖L2(Γg,h). Thus, we
obtain (5.11) and (5.12). �
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Using iso-parametric elements allows us to reduce the consistency error due to the presence of the normal vector
in the formulation [69]. Therefore, we obtain improved error estimates in L2 norms for the primal variables by
a classical duality argument in [3, 47] when using curved quadratic triangles.

Corollary 5.5. Assume the hypothesis of Theorem 5.3 and assume the regularity in (5.9) and (5.10). Further-
more, assume that Γg is W 3,∞. Then we have

‖u− uh‖L2(Ωh) + ‖W − Wh‖L2(Γg,h) ≤ C3h
1+s, for

1
2
≤ s ≤ 1. (5.13)

Note that C3 depends on δt−1, α−1
0 , Ω, Γg, and the exact solution of (3.20).

Proof. It is essentially the same argument as in [69]. �

6. Numerical results

6.1. Setup

6.1.1. Navier-stokes

In order to make the simulations more realistic, we change the Stokes momentum equation (2.24) to

ReCa[∂tu + (u · ∇)u] −∇ · σ = StCa f , on Ω. (6.1)

The time-discretization follows a standard ALE (Arbitrary-Lagrangian-Eulerian) [65] backward Euler method:

ReCa
[
un+1 − un

δt
+ ((un − cn) · ∇)un+1

]
−∇ · σn+1 = StCa fn+1, (6.2)

where cn is the mesh velocity at the previous time-step. An analysis of a full ALE method with generalized
Navier boundary condition and surface tension, in the context of a geometric conservation law, is given in [36].
Indeed, it would be interesting to combine our analysis with that of [36].

6.1.2. Solving the discrete system

Solving the system (4.10) with inequality constraint is not difficult since the inequality is only active at two
points. In fact, the following projection relation follows from (2.19):

λh = PK
(
λh + �

(
Wh − Xold

h

)
· ex

)
, on xL

cl and xR
cl, (6.3)

where PK is the projection onto K, λh ≡ (λL,h, λR,h), Wh is the discrete interface position solution, and � is
any positive constant. All simulations were computed by using (6.3) to obtain the discrete solution at each time
step; in addition, we used Mh = M1.

6.2. Rolling droplet

Figure 5 shows a simulation of a droplet rolling along a surface; parameters are given in Tables 2 and 3. The
non-dimensional body force has the form

f(t) = min
(

t

0.3
, 1
)

StCa ex.

Figure 6 shows the dynamics of the contact angles θcl and contact points xcl. The oscillations of the contact
angles and contact point velocities are due to the presence of inertia in the fluid (i.e. non-zero Reynolds number).
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Time = 0.0 Time = 0.1 Time = 0.2

Time = 0.4 Time = 1.0 Time = 2.0

Figure 5. Simulation of a rolling droplet driven by a body force in the ex direction. Plot
window is [0, 2.0]× [0, 0.8] in non-dimensional units. Streamlines are plotted with respect to a
frame of reference that moves with the droplet. The rolling motion in the last frame is in the
clockwise direction. Times listed are in non-dimensional units.
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Figure 6. Dynamic contact angles and contact points for rolling droplet in Figure 5. The
contact points have zero velocity near the beginning because of the pinning constraint. Time
and velocity axes are in non-dimensional units.

Time = 0.54 Time = 1.50 Time = 2.55

Time = 3.51 Time = 4.50 Time = 5.52

Figure 7. Simulation of a wiggling droplet driven by a sinusoidal body force in the ex direction.
The triangulation of Ωh is shown. Plot window is [−0.5, 1.5]× [0, 0.8] in non-dimensional units,
and times listed are in non-dimensional units.

6.3. Wiggling droplet

Figure 7 shows a simulation of a droplet rocking back and forth on a surface. The parameters used are given in
Tables 2 and 3, except Cpin is set very high to ensure the contact points are always pinned. The non-dimensional
body force has the form

f(t) = sin(πt) St Ca ex.
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Figure 8. Dynamic contact angles for wiggling droplet in Figure 7. Note that the contact
points are pinned throughout the simulation. Time axis is in non-dimensional units.

Time = 0.0 Time = 0.1 Time = 0.2

Time = 0.4 Time = 1.0 Time = 9.2

Figure 9. Simulation of a spreading droplet under gravity (wetting regime). The triangulation
of Ωh is shown. Plot window is [−0.5, 1.5]× [0, 0.8] in non-dimensional units, and times listed
are in non-dimensional units.

Figure 8 shows the dynamics of the contact angles θcl. After an initial transient, the contact angles settle into
a sinusoidal motion. Both contact angles go through equal deflections.

6.4. Droplet spreading

Figure 9 shows a simulation of a droplet spreading onto a surface. The parameters used are given in Tables 2
and 3, except γs,g is changed to a value such that the equilibrium contact angle is 45◦ and the non-dimensional
body force is f = −StCa ey. Figure 10 shows the dynamics of the contact angles θcl and contact points xcl.
Again, the oscillations of the contact angles and contact point velocities are due to the presence of inertia in
the fluid. The droplet eventually reaches a stationary configuration with a contact angle of 55.375◦, which is
different from the equilibrium value because of the contact line pinning effect.

Figure 11 shows the correlation between contact angle and contact point velocity. The relationship appears
to be roughly linear. A nonlinear relationship could be obtained by replacing the linear viscous contact line
motion law (i.e. βcl) by something more nonlinear.
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Figure 10. Dynamic contact angles and contact points for spreading droplet in Figure 9. The
contact point velocities go to zero as the droplet approaches the equilibrium pinned configura-
tion. Time and velocity axes are in non-dimensional units.
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Figure 11. Approximately “linear” relationship between contact angle and contact point ve-
locity for simulation in Figure 9. Velocity is in non-dimensional units.

6.5. Droplet adherence/detachment

6.5.1. Wetting regime

Figure 12 shows a simulation of a droplet pulled upward by gravity (wetting regime). The parameters used
are given in Tables 2 and 3, except γs,g is changed to a value such that the equilibrium contact angle is 45◦, the
contact line viscous coefficient is βcl = 1.0 N sm−2, and Cpin = 0 N m−1 (i.e. no pinning). The non-dimensional
body force has the form

f(t) = 2.5 min
(

t

0.3
, 1
)

StCa ey.

Figure 13 shows the dynamics of the contact angles θcl and contact points xcl. Again, the oscillations of the
contact angles and contact point velocities are due to the presence of inertia in the fluid. The droplet eventually
reaches a stationary configuration with a contact angle of 45◦.

6.5.2. Non-wetting regime

Figure 14 shows a simulation of a droplet pulled upward by gravity (non-wetting regime). The parameters
used are given in Tables 2 and 3, except γs,g is changed to a value such that the equilibrium contact angle
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Time = 0.0 Time = 0.1 Time = 0.2

Time = 0.4 Time = 1.0 Time = 2.0

Figure 12. Simulation of a droplet “pulled up” by gravity (wetting regime). The triangulation
of Ωh is shown. Plot window is [−0.5, 1.5]× [0, 0.8] in non-dimensional units, and times listed
are in non-dimensional units.
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Figure 13. Dynamic contact angles and contact points for wetting droplet in Figure 12. The
steady-state droplet configuration has a contact angle of 45◦. Time and velocity axes are in
non-dimensional units.

Time = 0.0 Time = 0.1 Time = 0.2

Time = 0.3 Time = 0.4 Time = 2.4

Figure 14. Simulation of a droplet “pulled up” by gravity (non-wetting regime). The triangu-
lation of Ωh is shown. Plot window is [−0.5, 1.5]× [0, 0.8] in non-dimensional units, and times
listed are in non-dimensional units.
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Figure 15. Dynamic contact angles and contact points for non-wetting droplet in Figure 14.
The steady-state droplet configuration has a contact angle of 120◦. Time and velocity axes are
in non-dimensional units.

is 120◦, the contact line viscous coefficient is βcl = 1.0 N sm−2, and Cpin = 0 N m−1 (i.e. no pinning). The
non-dimensional body force has the form

f(t) = min
(

t

0.3
, 1
)

StCa ey.

Figure 15 shows the dynamics of the contact angles θcl and contact points xcl. Again, the oscillations of the
contact angles and contact point velocities are due to the presence of inertia in the fluid. The droplet eventually
reaches a stationary configuration with a contact angle of 120◦. Note that increasing the body force would cause
the area of the liquid-solid interface to decrease further and eventually lead to the droplet detaching from the
solid surface.

7. Conclusion

The method presented here offers a well-posed, robust way of modeling flows with moving contact lines. Our
methodology provides a framework for including additional physics, such as a soft/elastic substrate, electric
fields (i.e. electrowetting [18, 45, 70–72]), thermal effects, etc. This simply requires adding terms to the free
energy and choosing an appropriate dissipation functional.

The model is easily extended to 3-D; in particular, the pinning relation becomes

λ = Cpin sgn
(
Ẋ · νcl

∣∣∣
xcl

)
,

where νcl is the unit normal vector to the 1-D contact line ∂Γg in the plane of the solid substrate. Most of
the analysis does not change much for the 3-D case. In particular, Proposition 3.1 and Lemma 3.2 can be
suitably modified. The continuity, coercivity, and inf-sup conditions can also be modified, accounting for the
fact that X is in H1/2(∂Γg) which implies that λ is in (H1/2(∂Γg))∗. Thus, the details of the construction in
Lemmas 3.11 and 4.10 change, but the essential idea is the same. But the error analysis is more difficult because
the variational inequality is posed in a function space defined on ∂Γg, i.e. we must deal with the approximation
of the variational inequality. Moreover, solving the discrete system is harder because λh is high dimensional, so
using the projection property (6.3) may not be the most efficient solution method.
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In addition, generating a mesh that conforms to the contact line, and deforming the mesh, introduces some
complications. Dealing with topological changes further compounds the problem, but some possible remedies
exist; see [49] for a 2-D method. However, there are many industrial applications of wetting with contact lines
that do not involve topological changes. Another extension is to consider solid substrates with rigid corners and
edges. This will reduce the regularity of the fluid velocity field near the corners of the substrate. Furthermore,
the motion of the contact line over a substrate edge will not be trivial. Clearly, this will require adapted meshes
near the contact line.
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