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A NEW QUADRILATERAL MINI-ELEMENT FOR STOKES EQUATIONS
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Abstract. We introduce a new stable MINI-element pair for incompressible Stokes equations on
quadrilateral meshes, which uses the smallest number of bubbles for the velocity. The pressure is dis-
cretized with the P1-midpoint-edge-continuous elements and each component of the velocity field is
done with the standard Q1-conforming elements enriched by one bubble a quadrilateral. The supercon-
vergence in the pressure of the proposed pair is analyzed on uniform rectangular meshes, and tested
numerically on uniform and non-uniform meshes.
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1. Introduction

In the finite element methods for incompressible Stokes problems, the pair of discrete velocity and pressure
should fulfill the inf-sup condition for the stability, which is attributed to the analysis of Babus̆ka [2] and
Brezzi [4]. On triangular meshes, the MINI-element pair [1] of “[P1-conforming + bubble]2 × P1-continuous”
is one of the stable pairs of the lowest order, since the simplest pair of “[P1-conforming ]2 × P0” is not stable.

The several pairs of “
(
[Q1-conforming + bubble]2 + bubble

)
× Q1-continuous” have been suggested as the

MINI-element on quadrilateral meshes [3,7]. Their discrete velocities are the standard conforming spaces enriched
by at least three bubbles a quadrilateral, while the triangular MINI-element is done by two bubbles a triangle.

In this paper, we will introduce a new stable MINI-element pair on quadrilateral meshes which is
“[Q1-conforming + bubble]2×P1-midpoint-edge-continuous”. Compared to other quadrilateral MINI-elements,
the discrete pressure has continuous averages over edges instead of the pointwise continuity. The number of
bubbles for the velocity is then reduced to two a quadrilateral, similar to the triangular MINI-element. The
proposed MINI-element pair is interpreted as a subspace of the stable “[Q2-conforming]2 × piecewise P1” on
quadrilateral meshes.

Regarding the finite element solutions with the MINI-elements, although the order of convergence in pressure
is analyzed to be O(h) by the standard error analysis, the superconvergence of order O(h3/2) is fully understood
on three-directional triangular meshes with the aid of the stabilized formulation [6]. We will analyze the similar
superconvergence for the pressure of the proposed MINI-element on uniform rectangular meshes, as well as
numerical tests on both uniform and non-uniform meshes.

In the following section, our MINI-element will be defined and proven to be stable through the inf-sup
condition. Section 3 will be assigned for the superconvergence in pressure, which consists of three subsections
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for the stabilized formulation of the finite element method, the supercloseness of the bilinear interpolation and
the main proof of the superconvergence, respectively. The paper will be closed with the numerical results in the
final section.

Throughout the paper, standard notations for Sobolev spaces are employed and L2
0(Ω) denotes the space of

all functions in L2(Ω) whose average over Ω vanish. For a bounded set S ⊂ R
2, with its boundary ∂S, ‖ · · · ‖m,S

and | · · · |m,S will mean the norm and seminorm for Hm(S). We will denote by (·, ·)S and < ·, · >∂S the L2(S)
and L2(∂S) inner products, respectively. If S = Ω or m = 0, they may be omitted in the indices.

2. A new quadrilateral MINI-element

Let Ω be a simply connected polygonal domain and {Th}h>0 a regular family of triangulations of Ω which
consist of convex quadrilaterals. In Th, h is proportional to the maximum of diameters of quadrilaterals in Th.

2.1. P1-midpoint-edge-continuous quadrilateral pressure

Let Ph be a space of piecewise linear functions as follows:

Ph =
{
qh ∈ L2(Ω) qh|Q ∈ span{1, x, y} for all quadrilaterals Q ∈ Th

}
,

then the P1-midpoint-edge-continuous quadrilateral finite element space [9] is defined by

NCh(Ω) = {qh ∈ Ph qh is continuous at every midpoints of edges in Th}.

For each vertex V in Th, a function ψV ∈ NCh(Ω) is defined by its values at all midpoints m of edges in Th

such that

ψV(m) =

{
1, if m belongs to an edge which meets V,

0, otherwise.

Then, if we fix an arbitrary vertex V0 in Th, the following set is a basis for NCh(Ω),

{ψV ∈ NCh(Ω) V is a vertex in Th, V �= V0}.

Hence, the dimension of NCh(Ω) is the number of vertices in Th subtracted by one.
Define an interpolation πh : H1(Ω) ∩ C(Ω) → NCh(Ω) as

πhv =
∑
V

v(V)
2

ψV, ∀v ∈ H1(Ω) ∩ C(Ω), (2.1)

where the summation runs over all interior vertices V in Th. Then, the interpolation error is estimated by the
following, for v ∈ H2(Ω),

‖v − πhv‖0 + h

⎛⎝ ∑
Q∈Th

|v − πhv|21,Q

⎞⎠1/2

≤ C h2 |v|2 . (2.2)

It is noted that NCh(Ω) is a common subspace of other low order nonconforming spaces such as the Rotated
Q1 or DSSY finite element spaces [5, 10].
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2.2. A new MINI-element pair

Let Q̂ = [−1, 1]2 be a reference rectangle and Q̂1, Q̂2 bilinear and biquadratic polynomial spaces on Q̂,
respectively, that is,

Q̂1 = span {1, x̂, ŷ, x̂ŷ} , Q̂2 = Q̂1

⊕
span

{
x̂2, ŷ2, x̂2ŷ, x̂ŷ2, x̂2ŷ2

}
.

For each quadrilateral Q ∈ Th, the canonical bijective bilinear map from Q̂ to Q is denoted by FQ and function
spaces Q1(Q),Q2(Q) on Q are defined as follows:

Qk(Q) =
{
v̂ ◦ F−1

Q v̂ ∈ Q̂k

}
, k = 1, 2.

Then, the standard conforming finite element spaces Q1,h,Q2,h over Th are defined by

Qk,h = {vh ∈ C(Ω) vh|Q ∈ Qk(Q) for all quadrilaterals Q ∈ Th} ,

as well as Qk,h,0 = Qk,h ∩H1
0 (Ω) for k = 1, 2.

It is well-known that the pair of [Q2,h,0]2 for velocity and Ph∩L2
0(Ω) for pressure satisfy the inf-sup condition

for Stokes equations in the following proposition, whose proof is referred to Section 3.2, Chapter II in [8].

Proposition 2.1. Let ph ∈ Ph ∩ L2
0(Ω). There exists vh ∈ [Q2,h,0]2 such that∫

Ω

ph div vh ds = ||ph||20,Ω, |vh|1,Ω ≤ 1
β
||ph||0,Ω,

for a positive constant β which depends only on Ω.

In order to introduce a MINI-element pair, we choose a bubble function bQ ∈ Q2(Q) for each quadrilateral
Q ∈ Th such that

bQ ◦ FQ =
(
x̂2 − 1

) (
ŷ2 − 1

)
∈ Q̂2, (2.3)

which vanishes on the boundary of Q. Then, identifying bQ with its trivial extension into C(Ω), we propose a
new MINI-element pair for Stokes equations as follows:

Xh =

⎡⎣Q1,h,0

⊕
Q∈Th

span{bQ}

⎤⎦2

, Mh = NCh(Ω) ∩ L2
0(Ω).

The pair Xh ×Mh turns out to be stable to solve Stokes equations in the following theorem.

Theorem 2.2 (Inf-sup condition). Let μh ∈Mh. There exists vh ∈ Xh such that∫
Ω

μh divvh ds = ||μh||20,Ω, |vh|1,Ω ≤ 1
β
||μh||0,Ω,

for a positive constant β which depends only on Ω.

Proof. Define an interpolation operator Πh : Q2,h,0 → Q1,h,0

⊕
Q∈Th

span{bQ} such that

Πhv(V) = v(V),
∫

Q

Πhv ds =
∫

Q

v ds, ∀v ∈ Q2,h,0, (2.4)

for all vertices V and quadrilaterals Q in Th. Then, by Bramble lemma, we have

|v −Πhv|1,Q ≤ Ch|v|2,Q, for all quadrilaterals Q ∈ Th, (2.5)

with some constant C regardless of v,Q and h.
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Applying the argument of Lemma A.6, Appendix A in [8] for triangles into quadrilaterals, the following
inverse inequality is established with some constant C,

|v|2,Q ≤ Ch−1|v|1,Q. (2.6)

From (2.5) and (2.6), the operator Πh is bounded by

|Πhv|1,Ω ≤ C|v|1,Ω , ∀v ∈ Q2,h,0. (2.7)

Now, if μh ∈Mh, by Proposition 2.1, there exists wh ∈ [Q2,h,0]2 such that∫
Ω

μh divwh ds = ||μh||20,Ω, |wh|1,Ω ≤ 1
β
||μh||0,Ω, (2.8)

for a positive constant β which depends only on Ω. For wh = (w1, w2), define vh ∈ Xh by

vh = (Πhw1, Πhw2).

Then, it will be shown ∫
Ω

μh divwh ds =
∫

Ω

μh divvh ds. (2.9)

We have, by integration by parts,∫
Ω

μh div (wh − vh) ds =
∑

Q∈Th

∫
∂Q

μh(wh − vh) · ndl−
∑

Q∈Th

∫
Q

∇μh · (wh − vh)ds, (2.10)

where n is the unit vector which is outward normal to ∂Q. Since ∇μh is a constant vector, by definition of Πh

in (2.4), the second term in the right hand side of (2.10) is null.
Denote by mE the midpoint of edge E ∈ Th. Since wh − vh is continuous on interior edges and vanishes on

boundary edges, the first term is rewritten as:∑
Q∈Th

∫
∂Q

μh(wh − vh) · ndl =
∑

Q∈Th

∑
E∈∂Q

∫
E

(
μh − μh(mE)

)
(wh − vh) · ndl. (2.11)

We note that μh −μh(mE) and wh − vh are the linear and quadratic functions on E vanishing at the midpoint
and two endpoints of E, respectively. Thus, all integrals over edges in (2.11) vanish, since the integrands are
odd and cubic.

This means (2.9) and completes the proof with (2.7), (2.8). �

Let (u, p) ∈ [H1
0 (Ω)]2 × L2

0(Ω) be the solution of the variational form of a Stokes equation such that, for a
source function f ∈ [L2(Ω)]2,

(∇u,∇v) − (p, divv) + (q, divu) = (f ,v), ∀(v, q) ∈
[
H1

0 (Ω)
]2 × L2

0(Ω), (2.12)

and (uh, ph) ∈ Xh ×Mh be the solution of the following discrete variational problem,

(∇uh,∇vh) − (ph, divvh) + (qh, divuh) = (f ,vh), ∀(vh, qh) ∈ Xh ×Mh. (2.13)

If (u, p) belongs to [H2(Ω)]2 ×H1(Ω), through the inf-sup condition in Theorem 2.2, the approximation error
is estimated by

|v − vh|1 + ‖p− ph‖0 ≤ Ch(|v|2 + |p|1), (2.14)

for a constant C which depends only on Ω and the regularity of Th.
While the order of convergence in pressure is O(h) as in (2.14) on general quadrilateral meshes, the remaining

of the paper will be devoted to the analysis of the superconvergence of order O(h3/2) on uniform rectangular
meshes.



A NEW QUADRILATERAL MINI-ELEMENT FOR STOKES EQUATIONS 959

3. Superconvergence in pressure

The superconvergence in pressure is well understood [6] for the MINI-element of Arnold et al. [1] on three-
directional triangular meshes. In this section, following the arguments in [6] with the attention on the midpoint-
edge-continuous pressure instead of the continuous one, we will prove that the proposed MINI-element has the
same property. Throughout the section, we assume that Th consists of uniform rectangles, whose edges are all
parallel to the coordinate axes.

For a function vh in Xh, the bilinear and bubble parts of vh are denoted by vL,vb, respectively, so that:

vh = vL + vb, vL ∈ [Q1,h,0]2, vb|Q ∈ [span{bQ}]2 for all Q ∈ Th.

We note that they are orthogonal to each other in H1 inner product since:

(∇vL,∇vb)Q = 0, for each rectangle Q ∈ Th. (3.1)

3.1. Stabilized variational form

We will show that if (uh, ph) ∈ Xh×Mh satisfy (2.13), the pair of the bilinear part uL of uh and the pressure
ph is a solution of a stabilized variational problem.

Set a bilinear form Bh on H1
0 (Ω) × L2

0(Ω) as:

Bh(u, p;v, q) = (∇u,∇v) − (p, divv) + (q, divu) +
∑

Q∈Th

(−Δu + ∇p, τQ∇q)Q, (3.2)

where τQ is the bubble function bQ in (2.3) multiplied by a constant for each rectangle Q ∈ Th such that

τQ =

∫
Q
bQ ds∫

Q
|∇bQ|2 ds

bQ.

We note that τQ is a nonnegative function which satisfies,

(∇τQ,∇τQ)Q = (τQ, 1)Q = α2h2(1, 1)Q, ‖τQ‖∞,Q = γ2h2, (3.3)

with some fixed positive constants α and γ. From (3.3), we have an identity,∥∥∥τ1/2
Q ∇qh

∥∥∥
0,Q

= αh ‖∇qh‖0,Q , (3.4)

for all rectangles Q ∈ Th and piecewise linear pressures qh ∈Mh.

Lemma 3.1. If (uh, ph) ∈ Xh ×Mh satisfies (2.13), then (uL, ph) ∈ [Q1,h,0]2 ×Mh does

Bh(uL, ph;vL, qh) = (f ,vL) +
∑

Q∈Th

(f , τQ∇qh)Q, ∀(vL, qh) ∈ [Q1,h,0]2 ×Mh. (3.5)

Proof. Let (vL, qh) ∈ [Q1,h,0]2 ×Mh, then for any bubble vb, (2.13) establishes that, from the orthogonality
in (3.1),

(∇uL,∇vL) − (ph, divvL) + (qh, divuL) = (f ,vL + vb) − (∇ub,∇vb) + (ph, divvb) − (qh, divub)

= (f ,vL) +
∑

Q∈Th

(f −∇ph,vb)Q − (∇ub,∇vb) +
∑

Q∈Th

(∇qh,ub)Q.

(3.6)
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We note that ∇qh is piecewisely constant and ub|Q = τQ(c1, c2) for some constants c1, c2. If we choose a
bubble vb such that vb|Q = τQ∇qh for each rectangle Q ∈ Th, then the following identity comes from (3.3),

(∇ub,∇vb) =
∑

Q∈Th

(∇qh,ub).

Thus, the last two terms in (3.6) vanish and (3.6) implies (3.5), since ΔuL = 0. �

Although the bilinear form Bh in (3.2) is not uniformly coercive on [Q1,h,0]2 ×Mh, we have a stability for Bh

in the following lemma. Define a triple norm as

|||(v, q)|||B =

⎛⎝|v|21 + ||q||20 +
∑

Q∈Th

∥∥∥τ1/2
Q ∇q

∥∥∥2

0,Q

⎞⎠1/2

. (3.7)

Lemma 3.2. If (vL, qh) ∈ [Q1,h,0]2 ×Mh, there exists wL ∈ [Q1,h,0]2 such that

Bh(vL, qh;wL, qh) ≥ βB |||(vL, qh)|||B |||(wL, qh)|||B, (3.8)

where βB is a constant which depends only on Ω.

Proof. By the inf-sup condition in Theorem 2.2, there exists zh ∈ Xh such that

(−qh, div zh) = ||qh||20, |zh|1 ≤ 1
β
||qh||0, (3.9)

with some constant β regardless of h.
For the bubble part zb, we expand, from (3.4),

|(qh, div zb)| =
∑

Q∈Th

(∇qh, zb)Q ≤
∑

Q∈Th

h ‖∇qh‖0,Q |zb|1,Q

= α−1
∑

Q∈Th

∥∥∥τ1/2
Q ∇qh

∥∥∥
0,Q

|zb|1,Q

≤ α−1

⎛⎝ ∑
Q∈Th

∥∥∥τ1/2
Q ∇qh

∥∥∥2

0,Q

⎞⎠1/2 ⎛⎝ ∑
Q∈Th

|zb|21,Q

⎞⎠1/2

≤ β2

2
|zb|21 +

1
2α2β2

⎛⎝ ∑
Q∈Th

∥∥∥τ1/2
Q ∇qh

∥∥∥2

0,Q

⎞⎠ ,

(3.10)

as well as for the bilinear part zL,

|(∇vL,∇zL)| ≤ |vL|1|zL|1 ≤ β2

2
|zL|21 +

1
2β2

|vL|21. (3.11)

Then, by the orthogonality (3.1), we combine (3.9)–(3.11) to get the following:

Bh(vL, qh; zL, 0) ≥ 1
2
||qh||20 − σ

⎛⎝|vL|21 +
∑

Q∈Th

∥∥∥τ1/2
Q ∇qh

∥∥∥2

0,Q

⎞⎠ , (3.12)

for a constant σ = max
(
1/(2α2β2), 1/(2β2)

)
.
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If we set wL = vL + 2/(1 + 2σ)zL, then, from (3.12), wL satisfies that

Bh(vL, qh;wL, qh) = Bh(vL, qh;vL, qh) + 2/(1 + 2σ)Bh(vL, qh; zL, 0)
≥ 1/(1 + 2σ)|||(vL, qh)|||2B .

From (3.9), the triple norm of (wL, qh) is bounded by

|||(wL, qh)|||B ≤
(
1 + 2/(β + 2βσ)

)
|||(vL, qh)|||B .

Thus, wL satisfies (3.8) for the constant βB = 1/(1 + 2σ)
(
1 + 2/(β + 2βσ)

)−1
which depends only on Ω. �

3.2. Supercloseness

Let Q̂ = [−1, 1]2 be the reference rectangle and Ê = {(x, y) ∈ Q̂ x = 1} an edge of Q̂. If ĝ ∈ H1(Q̂), for a
vector field V = (x+ 1, 0) on Q̂, we have the following:

2
∫

Ê

ĝ2 dl =
∫

Q̂

div (ĝ2V ) ds =
∫

Q̂

(
ĝ2 + 2ĝ ∇ĝ · V

)
ds.

Thus, if E is an edge of a rectangle Q in Th and g ∈ H1(Q), then the following local trace theorem holds, with
a constant C which depends only the shape of Q,

‖g‖0,E ≤ C
(
h−1 ‖g‖2

0,Q + ‖g‖0,Q |g|1,Q

)1/2
. (3.13)

Especially, if rh is a linear function on Q in Th, since |rh|1,Q ≤ Ch−1 ‖rh‖0,Q, we have

‖rh‖0,E ≤ Ch−1/2 ‖rh‖0,Q . (3.14)

We will establish two superclosenesses in the following two lemmas, which are the principal ingredients for the
proof of the superconvergence of the pressure ph in (2.13). For any continuous function v ∈ C(Ω), denote by vI

the standard bilinear interpolation of v into Q1,h such that

vI(V) = v(V) for all vertices V in Th.

If v = (v1, v2) ∈ [C(Ω)]2, then vI = (v1,I , v2,I).

Lemma 3.3. Let u ∈ [H3(Ω)]2. Then, for all wh ∈ [Q1,h]2,∫
Ω

∇(u − uI) · ∇wh ds ≤ Ch2|u|3|wh|1,

where C is a constant which depends only on Ω.

Proof. Let u, uI , w be the first components of u,uI and wh, respectively. It is sufficient to prove∫
Ω

(u − uI)xwx ds ≤ Ch2|u|3 |w|1. (3.15)

For each rectangle Q in Th, define a linear functional Ψ on H3(Q) by the following:

Ψ(v) =
∫

Q

(v − vI)xwx ds, ∀v ∈ H3(Q).

Then, we have
|Ψ(v)| ≤ Ch |v|2,Q |w|1,Q . (3.16)
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Since wx is a function of y, by simple calculation with the definition of vI , we have

Ψ
(
x2

)
= Ψ

(
y2

)
= Ψ(xy) = 0. (3.17)

Let uxx, uxy, uyy be the respective averages of uxx, uxy, uyy over Q and ϕ a quadratic function in P2(Q) such
that

ϕ =
1
2

(
uxx x

2 + uyy y
2
)

+ uxy xy. (3.18)

Then, by Poincaré Lemma, we establish

|u− ϕ|2,Q =
(
‖uxx − uxx‖2

0,Q + 2 ‖uxy − uxy‖2
0,Q + ‖uyy − uyy‖2

0,Q

)1/2

≤ Ch |u|3,Q . (3.19)

From (3.16), (3.17), (3.19), we have

|Ψ(u)| = |Ψ(u − ϕ)| ≤ Ch |u− ϕ|2,Q |w|1,Q ≤ Ch2 |u|3,Q |w|1,Q ,

which means (3.15). �

The following proposition is a frequently used characteristic for the jump of a midpoint-edge-continuous function
across an edge in Th.

Proposition 3.4. Let rh ∈ NCh(Ω) and Q1, Q2 be two adjacent rectangles in Th which share an edge E. If
g ∈ H1(Q1 ∪Q2), then ∣∣∣∣∫

E

g(rh|Q1 − rh|Q2) dl
∣∣∣∣ ≤ C

2∑
k=1

|g|1,Qk

∥∥∥τ1/2
Q ∇rh

∥∥∥
0,Qk

, (3.20)

where C is a constant which depends only the shape of rectangles in Th.

Proof. Since rh is continuous at the midpoint of E, there is an average rh of rh over E such that∫
E

rh|Q1 dl =
∫

E

rh|Q2 dl =
∫

E

rh dl.

We split the left hand side of (3.20) into∣∣∣∣∫
E

g (rh|Q1 − rh|Q2) dl
∣∣∣∣ ≤ ∣∣∣∣∫

E

g (rh|Q1 − rh) dl
∣∣∣∣ +

∣∣∣∣∫
E

g (rh|Q2 − rh) dl
∣∣∣∣ .

For each k = 1, 2, denote by gk the average of g over Qk, then we have, from (3.4) and the local trace
Theorem (3.13),∣∣∣∣∫

E

g(rh|Qk
− rh) dl

∣∣∣∣ =
∣∣∣∣∫

E

(g − gk)(rh|Qk
− rh) dl

∣∣∣∣ ≤ ‖g − gk‖0,E ‖rh|Qk
− rh‖0,E

≤ Ch1/2 |g|1,Qk
h1/2 |rh|1,Qk

≤ C |g|1,Qk

∥∥∥τ1/2
Q ∇rh

∥∥∥
0,Qk

,

where C is a constant which depends only on the shape of Qk. It means (3.20). �

Lemma 3.5. Let u ∈ [H3(Ω)]2. Then, for all rh ∈Mh,

∫
Ω

rh div (u − uI) ds ≤ Ch3/2||u||3

⎛⎝||rh||20 +
∑

Q∈Th

∥∥∥τ1/2
Q ∇rh

∥∥∥2

0,Q

⎞⎠1/2

,

where C is a constant which depends only on Ω.
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Proof. Let u, uI be the first components of u,uI , respectively. It is enough to show that

∫
Ω

rh (u − uI)x ds ≤ Ch3/2||u||3

⎛⎝||rh||20 +
∑

Q∈Th

∥∥∥τ1/2
Q ∇rh

∥∥∥2

0,Q

⎞⎠1/2

. (3.21)

For each rectangle Q in Th of width h, define a linear functional Ψ on H3(Q) by

Ψ(v) =
∫

Q

(
rh(v − vI)x − h2

12
(vxxrh)x

)
ds, ∀v ∈ H3(Q). (3.22)

Since |rh|1,Q ≤ Ch−1 ‖rh‖0,Q, we estimate |Ψ(v)| as

|Ψ(v)| ≤ Ch ‖rh‖0,Q |v|2,Q +
h2

12

(
|v|3,Q ‖rh‖0,Q + |v|2,Q |rh|1,Q

)
(3.23a)

≤ Ch ‖rh‖0,Q

(
|v|2,Q + h |v|3,Q

)
. (3.23b)

We note that the integrand in (3.22) vanishes, if v belongs to span{1, x, y, xy, y2}. By definition of vI , we have

Ψ(x2) = 2
∫

Q

(
rh(x− α) − h2

12
(rh)x

)
ds, (3.24)

where α is the x-coordinate of the center of Q. Since the integral in (3.24) vanishes for the linear function rh,
Ψ(ϕ) = 0 for all quadratic functions ϕ ∈ P2(Q). Then, by similar arguments in (3.18) and (3.19), the following
estimation is obtained from (3.23a):

|Ψ(u)| = |Ψ(u− ϕ)| ≤ Ch ‖rh‖0,Q

(
|u− ϕ|2,Q + h |u|3,Q

)
≤ Ch2 ‖rh‖0,Q |u|3,Q . (3.25)

Next, the second term in the integrand for Ψ(u) in (3.22) satisfies:

∑
Q∈Th

∫
Q

(uxxrh)x ds =
∑

Q∈Th

∫
∂Q

uxxrhnx dl (3.26a)

=
∑
E

∫
E

uxx(rh|QL − rh|QR) dl +
∫

∂Ω

uxxrhnx dl, (3.26b)

where E runs over all interior vertical edges and QL shares E with QR in its right side.
By Proposition 3.4 above, the first term in (3.26a) and (3.26b) is estimated by

∣∣∣∣∣∑
E

∫
E

uxx(rh|QL − rh|QR) dl

∣∣∣∣∣ ≤ C |u|3,Ω

⎛⎝ ∑
Q∈Th

∥∥∥τ1/2
Q ∇rh

∥∥∥2

0,Q

⎞⎠1/2

. (3.27)

From the global trace theorem for uxx and the local one for rh in (3.14), the second term is done as∣∣∣ ∫
∂Ω

uxxrhnx dl
∣∣∣ ≤ ‖uxx‖0,∂Ω ‖rh‖0,∂Ω ≤ Ch−1/2 ‖u‖3,Ω ‖rh‖0,Ω . (3.28)

We establish (3.21) from (3.22) and (3.25)–(3.28). �
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3.3. Superconvergence

If the solution (u, p) in (2.12) has more regularity (u, p) ∈ [H2(Ω)]2 ×H1(Ω), then, since −Δu + ∇p = f ,
(u, p) satisfies the following:

Bh(u, p;v, q) = (f ,v) +
∑

Q∈Th

(f , τQ∇q)Q, ∀(v, q) ∈ [H1
0 (Ω)]2 ×Mh. (3.29)

For the finite element solution (uh, ph) ∈ Xh ×Mh in (2.13), we have the following orthogonality, from (3.29)
and Lemma 3.1,

Bh(u − uL, p− ph;vL, qh) = 0, ∀(vL, qh) ∈ [Q1,h,0]2 ×Mh, (3.30)

where uL is the bilinear part of uh.
We reach at the superconvergence of the pressure ph ∈Mh in the following theorem.

Theorem 3.6. Let (u, p) ∈ [H1
0 (Ω)]2 × L2

0(Ω), (uh, ph) ∈ Xh ×Mh be the solutions of (2.12), (2.13), respec-
tively. If the solution (u, p) belongs to [H3(Ω)]2 ×H2(Ω), then

||p− ph||0 ≤ Ch3/2(||u||3 + |p|2),

for some constant C which depends only on Ω.

Proof. Let pi ∈ NCh(Ω) be the standard interpolation of p ∈ H2(Ω) by (2.1) and define pI ∈Mh as

pI = pi −
∮

Ω

pi ds.

Then, from (2.2), the interpolation error is estimated by

‖p− pI‖0 + h

⎛⎝ ∑
Q∈Th

|p− pI |21,Q

⎞⎠1/2

≤ C h2 |p|2 , (3.31)

for some constant C which depends only on Ω.
For pI and the bilinear interpolant uI of u, the orthogonality in (3.30) is rewritten as

Bh(u − uI , p− pI ;vL, qh) = Bh(uL − uI , ph − pI ;vL, qh). (3.32)

Then, there exists (wL, rh) ∈ [Q1,h,0]2 ×Mh such that, by (3.32) and Lemma 3.2,

|||(uL − uI , ph − pI)|||B |||(wL, rh)|||B ≤ 1
β
Bh(uL − uI , ph − pI ;wL, rh) (3.33a)

=
1
β
Bh(u − uI , p− pI ;wL, rh), (3.33b)

with some constant β, since (uL − uI , ph − pI) ∈ [Q1,h,0]2 ×Mh.
From the definition of Bh, we have

Bh(u− uI , p− pI ;wL, rh) = (∇(u − uI) · ∇wL) +
(
rh, div (u − uI)

)
− (p− pI , divwL) +

∑
Q∈Th

(∇(p− pI), τQ∇rh)Q −
∑

Q∈Th

(Δ(u − uI), τQ∇rh)Q .

(3.34)
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We apply the superclosenesses in Lemmas 3.3 and 3.5 for the first two terms in the right hand side of (3.34) to
get, (

∇(u − uI) · ∇wL

)
≤ Ch2 |u|3 |||(wL, rh)|||B , (3.35a)(

rh, div (u − uI)
)
≤ Ch3/2 ‖u‖3 |||(wL, rh)|||B . (3.35b)

The third term is simply done by (3.31) into

|(p− pI , divwL)| ≤ Ch2 |p|2 |||(wL, rh)|||B. (3.36)

With (3.3) and (3.31), the fourth term is estimated by∣∣∣∣∣∣
∑

Q∈Th

(
∇(p− pI), τQ∇rh

)
Q

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

Q∈Th

(
τ

1/2
Q ∇(p− pI), τ

1/2
Q ∇rh

)
Q

∣∣∣∣∣∣
≤ γCh2|p|2 |||(wL, rh)|||B.

(3.37)

For the last term in the right hand side of (3.34), let Δu ∈ [Ph]2 be a piecewise constant interpolation of Δu
such that ∫

Q

Δu ds =
∫

Q

Δu ds, for all Q in Th, (3.38)

whose interpolation error is estimated by ∥∥Δu −Δu
∥∥

0
≤ Ch |u|3 . (3.39)

Then, by (3.3) and (3.38), we have,

(Δ(u − uI), τQ∇rh)Q =
(
Δu−Δu, τQ∇rh

)
Q

+
(
Δu, τQ∇rh

)
Q

(3.40a)

=
(
τ

1/2
Q

(
Δu −Δu

)
, τ

1/2
Q ∇rh

)
Q

+ α2h2 (Δu,∇rh)Q , (3.40b)

since ΔuI vanishes and ∇rh is a constant vector.
By (3.3) and (3.39), the sum of the first terms in (3.40a) and (3.40b) for all Q ∈ Th is estimated by∣∣∣∣∣∣

∑
Q∈Th

(
τ

1/2
Q

(
Δu −Δu

)
, τ

1/2
Q ∇rh

)
Q

∣∣∣∣∣∣ ≤ γCh2|u|3 |||(wL, rh)|||B. (3.41)

For the second term, through integration by parts and since divu vanishes, we have:∑
Q∈Th

(Δu,∇rh)Q =
∑

Q∈Th

< Δu · n, rh >∂Q −
∑

Q∈Th

(divΔu, rh)Q

=
∑

Q∈Th

< Δu · n, rh >∂Q .

Applying Proposition 3.4 for the edges in the interior of Ω, we obtain∣∣∣∣∣∣
∑

Q∈Th

(Δu,∇rh)Q

∣∣∣∣∣∣ ≤ C |Δu|1 |||(wL, rh)|||B + |< Δu · n, rh >∂Ω| . (3.42)
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Table 1. Error table for uniform rectangular meshes (M1).

Mesh
||u − uh||0 ||∇u −∇uh||0 ||p − ph||0

Value Order Value Order Value Order

16 × 16 2.2187E-3 1.8359E-1 5.7334E-2

32 × 32 5.2254E-4 2.0861 8.8997E-2 1.0447 2.3560E-2 1.2830

64 × 64 1.2736E-4 2.0367 4.4001E-2 1.0162 9.6639E-3 1.2857

128 × 128 3.1456E-5 2.0175 2.1889E-2 1.0074 3.5357E-3 1.4506

256 × 256 7.8178E-6 2.0085 1.0917E-2 1.0035 1.1435E-3 1.6285

512 × 512 1.9491E-6 2.0039 5.4530E-3 1.0015 3.5626E-4 1.6825

1024 × 1024 4.8663E-7 2.0019 2.7253E-3 1.0007 1.1460E-4 1.6363

Table 2. Error table for non-uniform bisection mesh (M2).

mesh
||u − uh||0 ||∇u −∇uh||0 ||p − ph||0

value order value order value order

16 × 16 2.6092E-3 1.9955E-1 6.1404E-2

32 × 32 6.1353E-4 2.0884 9.6495E-2 1.0482 2.4388E-2 1.3322

64 × 64 1.4974E-4 2.0347 4.7694E-2 1.0167 9.8453E-3 1.3087

128 × 128 3.7029E-5 2.0157 2.3729E-2 1.0072 3.5883E-3 1.4561

256 × 256 9.2103E-6 2.0073 1.1837E-2 1.0033 1.1704E-3 1.6164

512 × 512 2.2979E-6 2.0029 5.9127E-3 1.0014 3.7041E-4 1.6598

1024 × 1024 5.7649E-7 1.9949 2.9551E-3 1.0006 1.2099E-4 1.6142

Figure 1. 32 × 32 Uniform rectangular mesh (M1).

Then, the global trace theorem for Δu and the local one in (3.14) for rh establish∣∣∣ < Δu · n, rh >∂Ω

∣∣∣ ≤ Ch−1/2 ‖Δu‖1 |||(wL, rh)|||B . (3.43)

Combining (3.33a)–(3.37) and (3.40a)–(3.43), we have

|||(uL − uI , ph − pI)|||B ≤ Ch3/2(||u||3 + |p|2),

which completes the proof through (3.31) and the definition of the triple norm in (3.7). �

4. Numerical results

For the test problem, we chose the stream function φ on Ω = (0, 1)2 such that

φ(x, y) = s(x)s(y), for s(t) = sin (2πt)
(
t2 − t

)
,
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(a) 8 × 8 initial non-uniform mesh (b) 32×32 non-uniform mesh by bisecting

Figure 2. Non-uniform meshes by recursive bisecting from 8 × 8 mesh (M2).

(a) 8 × 8 zigzag mesh (b) 32 × 32 zigzag mesh

Figure 3. Zigzag meshes (M3).

Table 3. Error table for zigzag meshes (M3).

Mesh
||u − uh||0 ||∇u −∇uh||0 ||p − ph||0

Value Order Value Order Value Order

16 × 16 5.0339E-3 2.8134E-1 1.4795E-1

32 × 32 1.2634E-3 1.9944 1.4068E-1 0.9999 7.5569E-2 0.9692

64 × 64 3.1487E-4 2.0044 7.0199E-2 1.0029 3.7558E-2 1.0087

128 × 128 7.8388E-5 2.0061 3.5027E-2 1.0030 1.8444E-2 1.0260

256 × 256 1.9551E-5 2.0034 1.7489E-2 1.0020 9.0836E-3 1.0218

512 × 512 4.8839E-6 2.0011 8.7357E-3 1.0014 4.4880E-3 1.0172

1024 × 1024 1.1883E-6 2.0391 4.3573E-3 1.0035 2.1831E-3 1.0397

and the velocity u and pressure p as

u(x, y) = curl φ, p(x, y) = sin(2πx)
(

1
25 − 10 tan2 y

+
3
10

)
·

Solving (2.13) with the source function f = −Δu + ∇p, we obtained (uh, ph) ∈ Xh ×Mh.
The numerical results are shown in Tables 1 and 2 for uniform rectangular(M1) and non-uniform bisection(M2)

meshes as depicted in Figures 1 and 2, respectively. The non-uniform bisection meshes are obtained by recursive
bisecting from the 8 × 8 initial non-uniform mesh in Figure 2a.
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We can observe the expected order of convergence for the velocity in (2.14). For the pressure, the supercon-
vergence of more order than 3/2 analyzed in Theorem 3.6 appears in uniform rectangular and even non-uniform
bisection meshes.

For the zigzag meshes (M3) as in Figure 3, the numerical results in Table 3 does not show superconvergence
in pressure any more.
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