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AN OPTIMAL QUANTITATIVE TWO-SCALE EXPANSION IN STOCHASTIC
HOMOGENIZATION OF DISCRETE ELLIPTIC EQUATIONS

Antoine Gloria1, Stefan Neukamm2,3 and Felix Otto2

Abstract. We establish an optimal, linear rate of convergence for the stochastic homogenization
of discrete linear elliptic equations. We consider the model problem of independent and identically
distributed coefficients on a discretized unit torus. We show that the difference between the solution
to the random problem on the discretized torus and the first two terms of the two-scale asymptotic
expansion has the same scaling as in the periodic case. In particular the L2-norm in probability of the
H1-norm in space of this error scales like ε, where ε is the discretization parameter of the unit torus.
The proof makes extensive use of previous results by the authors, and of recent annealed estimates on
the Green’s function by Marahrens and the third author.
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1. Introduction

We establish a linear rate of convergence for the stochastic homogenization of discrete linear elliptic equations,
which is optimal. Before we turn to the stochastic case, let us recall some standard analogous results in the
periodic case. Let A be a uniformly elliptic and bounded symmetric matrix field on the unit torus T := (R/Z)d,
D ⊂ R

d be a smooth domain, and f be a smooth function. Let ε > 0. It is well-known that the unique weak
solution uε ∈ H1

0 (D) of the linear elliptic equation{
−∇ · A

(
·
ε

)
∇uε = f in D,

uε = 0 on ∂D
(1.1)

converges weakly in H1(D) as ε → 0 to the unique weak solution uhom ∈ H1
0 (D) of the homogenized equation{−∇ · Ahom∇uhom = f in D,

uhom = 0 on ∂D.
(1.2)
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1 Université Libre de Bruxelles (ULB) Brussels, Belgium and Project-team SIMPAF Inria Lille - Nord Europe Villeneuve d’Ascq,
France. agloria@ulb.ac.be
2 Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig, Germany. neukamm@mis.mpg.de; otto@mis.mpg.de
3 Present address: Weierstraß-Institut Berlin, Germany.

Article published by EDP Sciences c© EDP Sciences, SMAI 2014

http://dx.doi.org/10.1051/m2an/2013110
http://www.esaim-m2an.org
http://www.edpsciences.org


326 A. GLORIA ET AL.

The homogenized matrix Ahom is symmetric and characterized for all ξ ∈ R
d by

ξ · Ahomξ =
�

T

(∇φξ + ξ) · A(∇φξ + ξ),

where φξ is the unique weak solution in H1(T) with vanishing mean of the periodic corrector equation in
direction ξ:

−∇ · A(∇φξ + ξ) = 0 in T.

From a two-scale expansion, one formally expects for all x in the interior of D:

uε(x) = uhom(x) + ε

d∑
j=1

φj(x
ε )∇juhom(x) + o(ε), (1.3)

where the φj are the correctors in the canonical directions ej (extended by periodicity to R
d). This identity can-

not hold at the boundary since the correctors φj do not satisfy the homogeneous Dirichlet boundary conditions:
there is indeed a boundary layer. Yet, for all D̃ compactly supported in D, Allaire and Amar [1], Theorem 2.3
proved the following rigorous version of (1.3) if the coefficients A are Hölder continuous:

‖uε − uhom − ε

d∑
j=1

φj( ·
ε)∇juhom‖H1(D̃) ≤ Cε, (1.4)

where the multiplicative constant C only depends on D̃, D, the Hölder exponent and norm of A, and on
the C3-norm of uhom (which is smooth since f and D are smooth). This result relies on a previous work by
Avellaneda and Lin [2], Theorem 5, who proved under similar assumptions that

‖uε − uhom‖L∞(D) ≤ Cε. (1.5)

These are bounds on the homogenization error.
In the stochastic case, we consider a matrix field A that is stationary and ergodic, in place of periodic. We

refer the reader to [18] for details. In order to obtain quantitative estimates in the spirit of (1.4) and (1.5), one
has to make assumptions on the statistics of A in addition to ergodicity. There are few results in the literature
on quantitative estimates of the homogenization error for elliptic equations in divergence form in the stochastic
case. In [19], Theorem 3.1, Yurinskĭı proved for algebraically decaying correlations that for all d > 2, there exists
some Hölder exponent γ > 0 and a function T of ε such that

〈
‖uε − uhom − ε

d∑
j=1

φT (ε),j( ·
ε)∇juhom‖2

H1(D)

〉1/2

≤ Cεγ , (1.6)

where φT,j is the modified corrector, which is the stationary, almost sure solution to

T−1φT,j −∇ · A(∇φT,j + ej) = 0 in R
d. (1.7)

This equation is an approximation of the corrector equation when T → ∞. This is the first quantitative result
in stochastic homogenization. Note that a formal linearization in the case of small ellipticity contrast λ ↑ 1
yields γ = 1 for d > 2. Besides not covering dimension d = 2, the work by Yurinskĭı does not allow to reach the
scaling γ = 1, even in the case of small ellipticity constrast (and for domains D̃ compactly included in D).
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In this article, we simplify the above setting with three respects:

(a) We treat finite difference equations instead of continuum partial differential equations. More precisely,
we replace the differential operator in (1.1) by the finite difference operator ∇∗

εa( ·
ε )∇ε which acts on discrete

functions defined on the scaled lattice εZ
d, ε > 0. Here ∇ε and ∇∗

ε are finite difference approximations of the
continuum gradient ∇ and continuum divergence operator −∇·, and are defined for scalar fields v : εZ

d → R

and vector fields, g = (g1, . . . , gd) : εZ
d → R

d as follows:

∇ε,iv(y) = ε−1(v(y + εei) − v(y)), ∇∗
ε,iv(y) = ε−1(v(y − εei) − v(y)),

∇εv = (∇ε,1v, . . . ,∇ε,dv), ∇∗
εg =

d∑
i=1

∇∗
ε,igi. (1.8)

The coefficients of the operator ∇∗
εa( ·

ε)∇ε are given by a randomly chosen matrix field a : Z
d → R

d×d. We
assume that a is diagonal and uniformly elliptic in the sense that

a(x) ∈ Ω0 :=

⎧⎪⎨⎪⎩
⎛⎜⎝a1 0

. . .
0 ad

⎞⎟⎠ ∣∣∣λ ≤ aj ≤ 1, j = 1, . . . , d

⎫⎪⎬⎪⎭
for all x ∈ Z

d. Above, λ > 0 is a (deterministic) ellipticity constant and fixed throughout the paper.
(b) In order to avoid boundary layers, we consider a problem on the (discretized) unit torus Tε := (εZ/Z)d

and assume w.l.o.g. that the grid size ε is the inverse of a large integer L := ε−1 ∈ N. The equation under
consideration is the following finite difference equation with random coefficients

∇∗
εa( ·

ε)∇εuε = fε on Tε,
∑
Tε

uε = 0, (1.9)

where fε : Tε → R is a deterministic r.h.s. with zero mean, and should be viewed as a discretization of a
continuum r.h.s. f ∈ L2(T). Note that on Tε we have by periodicity the discrete integration by parts formula∑

Tε

∇εv · g =
∑
Tε

v∇∗
εg for all v : Tε → R and g : Tε → R

d.

(c) We consider the simplest possible statistics, namely independent and identically distributed (i.i.d.)
coefficients. Since (1.9) is posed on the discretized unit torus Tε, ε−1 = L ∈ N, we in fact consider the
periodic i.i.d. ensemble which is constructed as follows: for a fixed measure β on our matrix space Ω0

(“single-site measure”) and for fixed size L of the discrete, rescaled torus TL := (Z/LZ)d = 1
ε Tε, we shall

throughout the paper denote by 〈·〉 the periodic i.i.d. ensemble on

ΩL = {a : Z
d → Ω0 | ∀z ∈ Z

d a(· + Lz) = a} =̂ΩTL
0 .

For a random variable, i.e. a measurable function ζ : ΩL → R, it is given by the product measure

〈ζ〉 =
∏

x∈TL

�
Ω0

ζ(a)β(da(x)). (1.10)

Evidently, our i.i.d. ensemble is stationary in the sense that for all shifts y ∈ Z
d the random (periodic)

tensor fields a and a(· + y) have the same distribution in ΩL.

In the above setting the qualitative theory of stochastic homogenization applies (see e.g. Kozlov [12],
Papanicolaou and Varadhan [18] and Künnemann [13], Theorem 4): there exists a deterministic, symmetric,
positive definite d × d matrix ahom (only depending on the single-site probability measure β) such that the
following statement is true: suppose that fε converges (in a discrete H−1-norm) to some function f ∈ L2(T)
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with
�

T
f = 0. Let uε be the unique (random) solution with vanishing mean to (1.9), and let uhom ∈ H1(T) be

the unique solution to the continuum homogenized equation

−∇ · ahom∇uhom = f in T,

�
T

uhom = 0. (1.11)

Then uε converges almost surely (weakly in the discrete H1-norm) to uhom.
We are interested in estimates on the speed of convergence of uε to uhom. The error uε − uhom consists of

two contributions that are of different nature, namely the homogenization error and the discretization error.
The latter is purely deterministic and introduced by approximating the deterministic, continuum, homogenized
equation (1.11) by the deterministic, homogenized, finite difference equation

∇∗
εahom∇εu0,ε = fε in Tε,

∑
Tε

u0,ε = 0, (1.12)

where fε ∈ L2(Tε) denotes a suitable approximation of the continuum r.h.s. f . The discretization error is
well-studied and well-understood (see for instance [11]).

In this paper we focus on the homogenization error that monitors the difference between the random, variable-
coefficient equation (1.9) and the deterministic, constant-coefficient equation (1.12). The main result of this
paper is the upcoming quantitative two-scale expansion estimate. We quantify the error in the discrete L2(Tε)-
and H1(Tε)-norms, which are defined for v : Tε → R as

‖v‖L2(Tε) =
√

εd
∑
Tε

v2, ‖v‖H1(Tε) =
√

εd
∑
Tε

(v2 + |∇εv|2).

Theorem 1.1. Let d ≥ 2 and a be i.i.d. coefficients. Then there exists a deterministic, symmetric, positive
definite matrix ahom ∈ R

d×d (only depending on β and d) with the following property.
Given ε > 0 with ε−1 = L ∈ N, and a r.h.s.

fε : Tε → R with
∑
Tε

fε = 0,

let uε : ΩL × Tε → R and u0,ε : Tε → R be the unique solutions to (1.9) and (1.12), respectively. Then

〈
‖uε − u0,ε − ε

d∑
j=1

φj( ·
ε )∇ε,ju0,ε‖2

H1(Tε)

〉1/2

� ε ||fε||L2(Tε)

{
(ln 1

ε )1/2 for d = 2
1 for d > 2 , (1.13)

where φ1, . . . , φd are the periodic correctors associated with the periodic i.i.d. ensemble 〈·〉 via the periodic
corrector equation (see (2.3) below). The multiplicative constant in (1.13) only depends on the constant of
ellipticity λ, and the dimension d.

As a corollary we get:

Corollary 1.2. In the situation of Theorem 1.1 we have

〈
‖uε − u0,ε‖2

L2(Tε)

〉1/2

� ε ‖fε‖L2(Tε)

{(
ln 1

ε

)1/2 for d = 2
1 for d > 2

, (1.14)

The multiplicative constant in this estimate only depends on λ and d.
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Note that a bound similar to (1.14) (with however a suboptimal exponent) was recentlty obtained by Conlon
and Spencer in [4], in the case of the whole space and a massive term. This result complements the estimates
of the quantity uε − 〈uε〉 obtained in [5], Theorem 2, and in their optimal form in [14], Corollaries 2 and 3. In
particular, the annealed estimates of [14], Theorem 1, see Lemma 3.3 further, on the gradient of the (periodic)
Green’s function, combined with the argument leading to [5], Theorem 2, allow one to prove that〈

‖uε − 〈uε〉 ‖2
L2(Tε)

〉1/2

� ε ‖fε‖L2(Tε)

{(
ln 1

ε

)1/2 for d = 2
1 for d > 2

.

The combination of this estimate with Corollary 1.2 then yields an estimate of the difference between the
solution u0,ε of the problem with constant coefficients and the expectation 〈uε〉 of the solution of the original
problem – i.e. the systematic error:

‖u0,ε − 〈uε〉 ‖L2(Tε) � ε ‖fε‖L2(Tε)

{(
ln 1

ε

)1/2 for d = 2
1 for d > 2

.

It is rather surprising that we have to go through the H1-norm in order to control this systematic error, or
conversely that we do not have to estimate this term in order to prove the (seemingly stronger) statement of
Theorem 1.1. Compared to the work [19] by Yurinskĭı, Theorem 1.1 covers dimension d = 2 and gives optimal
estimates (in terms of scaling in ε) in any dimension, as can be seen by considering the regime of small ellipticity
contrast. Note that for d = 1, the scaling is different: (1.14) is expected to be replaced by〈

‖uε − u0,ε‖2
L2(Tε)

〉1/2

�
√

ε ‖fε‖L2(Tε),

as explicity checked in the continuum setting by Bourgeat and Piatnitski in [3]. As opposed to these works, the
present analysis heavily relies on the use of a spectral gap estimate in the probability space. We refer the reader
to [6] for relevant references on the subject.

Remark 1.3. The reason why we consider the discrete setting is the following: in the proof of Theorem 1.1
we make extensive use of recent, quantitative results that we obtained in a series of paper [6, 9, 10, 14] in the
discrete setting. The extension of some results to the continuum setting is currently under investigation, see [8].

Remark 1.4. (Rescaling). For the proof of Theorem 1.1 it is convenient to rescale the discretized torus Tε

so that the grid size becomes 1. Recall that ε = 1
L for some integer L ∈ N. Hence, the L-rescaled version

of Tε yields the discrete rescaled torus TL = (Z/LZ)d = 1
εTε. In analogy with (1.8) we introduce discrete

derivatives ∇ and ∇∗ acting on scalar fields v : TL → R and vector fields g = (g1, . . . , gd) : TL → R
d as follows:

∇iv(x) = v(x + ei) − v(x), ∇∗
i v(x) = v(x − ei) − v(x),

∇v = (∇1v, . . . ,∇dv), ∇∗g =
d∑

i=1

∇∗
i gi. (1.15)

In order to state Theorem 1.1 in its rescaled version, we set

u(x) := uε(εx), u0(x) := u0,ε(εx), f̃(x) := ε2fε(εx) for x ∈ Z
d.

So defined, u, u0 and f̃ are functions on the rescaled torus TL with vanishing mean, and the finite difference
equations (1.9) and (1.12) turn into

∇∗a∇u = f̃ on TL,
∑
TL

u = 0, (1.16)

∇∗ahom∇u0 = f̃ on TL,
∑
TL

u0 = 0. (1.17)
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Furthermore, the two-scale expansion in (1.13) takes the form

z := u − u0 −
d∑

j=1

φj ∇ju0, (1.18)

and estimate (1.13) of Theorem 1.1 can be reformulated as〈∑
TL

(z2 + L2|∇z|2)
〉 1

2

� Lμ
1
2
d (L)

(∑
TL

f̃2

) 1
2

, (1.19)

where we set for abbreviation

μd(L) =

{
ln L for d = 2,

1 for d > 2.

In fact we shall establish (1.19) (and thus (1.13)) in form of the estimate〈∑
TL

(z2 + L2|∇z|2)
〉 1

2

� Lμ
1
2
d (L)

(∑
TL

|∇2u0|2
) 1

2

, (1.20)

where ∇2u0(x) denotes the discrete Hessian of u0 at x and is given by the d×d matrix with entries −∇∗
i∇ju0(x).

Note that (1.20) indeed implies (1.19), since u0 (as a solution to the constant-coefficient difference equa-
tions (1.17)) satisfies the a priori estimate

∑
TL

|∇2u0|2 �
∑

TL
f2 up to a multiplicative constant that only

depends on λ and d.

Notation

Throughout this article, we use the following notation:

• d ≥ 2 is the dimension;
• (e1, . . . , ed) denotes the canonical basis of Z

d;
• TL = (Z/LZ)d denotes the discretized L-rescaled torus;
• x mod L denotes the unique point in ([0, L) ∩ Z)d with x = (x mod L) + Lx′ for some x′ ∈ Z

d;
• � and � stand for ≤ and ≥ up to a multiplicative constant which only depends on the quantities specified

in the context;
• when both � and � hold, we simply write ∼;
• β denotes a single-site probability measure on Ω0, see Section 2.1;
• 〈·〉 denotes the L-periodic i.i.d. ensemble on ΩL associated with β, see Section 2.1;
• cov [·; ·] denotes the covariance associated with 〈·〉;
• we denote the (i, j)th entry of a d × d-matrix b by bij and write “:” for the inner product in R

d×d, i.e.
a : b =

∑d
i,j=1 aijbij ;

• for all L > 0, μd(L) = ln L for d = 2 and μd(L) = 1 for d > 2.

2. Assumptions on the ensemble and the notion of the corrector

In this section we introduce and motivate the required assumptions on the ensemble, the definition of the
corrector and the homogenized coefficients. We recall some recent quantitative estimates from stochastic ho-
mogenization that are at the basis of the proof of Theorem 1.1. Finally, we comment on the role played by the
i.i.d. assumption.
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2.1. Assumptions on the ensemble

Recall that 〈·〉 denotes the i.i.d. ensemble associated with the single-site measure β via (1.10). Our theory
involves only two probabilistic ingredients: a covariance estimate and a Logarithmic Sobolev Inequality (LSI)
for 〈·〉. We start with the covariance estimate, which is explicitly used in the proof of this paper. We shall
comment on the LSI in the following section.

Lemma 2.1. Let 〈·〉 denote the periodic i.i.d. ensemble (see (1.10)). Then we have for any two random variables
ζ, ζ̃:

cov
[
ζ; ζ̃
]
≤
∑

y∈TL

〈(
∂ζ

∂y

)2
〉 1

2
〈(

∂ζ̃

∂y

)2〉 1
2

. (2.1)

Here
cov
[
ζ; ζ̃
]

:= 〈(ζ − 〈ζ〉)(ζ̃ − 〈ζ̃〉)〉

denotes the covariance of ζ and ζ̃. Furthermore, for a site y ∈ TL, the random variable ∂ζ
∂y is defined by(

∂ζ

∂y

)
(a) := ζ(a) −

�
Ω0

ζ(a)β(da(y)).

Like the classical partial derivatives { ∂ζ
∂akk(y)}k=1,...,d, the function ∂ζ

∂y measures how sensitively ζ depends
on the variable a(y) = {akk(y)}k=1,...,d ∈ Ω0. For reasons explained in [6] we call these derivatives vertical. For
obvious reasons, ∂ζ

∂y is called the discrete vertical derivative of ζ at y.

We note that for ζ = ζ̃, (2.1) turns into the Spectral Gap Estimate (SG) with constant 1, i.e.

〈ζ2〉 ≤
〈∑

y∈TL

(
∂ζ

∂y

)2
〉

(2.2)

for any random variable ζ with vanishing expectation 〈ζ〉 = 0. We refer to [6], Lemma 2 for a proof in the present
context and note that (2.2) is extensively used in the proof of Lemma 2.2 as only probabilistic ingredient. This
estimate is reminiscent of the Brascamp-Lieb inequality used by Naddaf and Spencer in [16]. In a slightly
different context, a covariance estimate like (2.1) was established in [10], Lemma 3. For the convenience of the
reader, we present the elementary proof of Lemma 2.1.

2.2. Corrector

We now introduce the important concept of the corrector. Since we only have to deal with the periodic (as
opposed to the infinite) ensemble 〈·〉, we can avoid discussing all technicalities. Indeed, for any realization of a
according to 〈·〉, that is, for any periodic coefficient field a ∈ ΩL and for any coordinate direction j = 1, . . . , d,
there exists a unique scalar field φj(a, ·) : TL → R characterized by

∇∗a(∇φj + ej) = 0 on TL and
∑
TL

φj = 0. (2.3)

Here ej denotes the unit vector in direction of the jth coordinate axis, and the discrete derivatives are defined
in (1.15). Clearly, for every j = 1, . . . , d, this defines a random scalar field φj . Evidently, this random field is
stationary in the sense that for any shift y ∈ R

d one has φj(a(· + y), ·) = φj(a, · + y). The periodic function
φj : Z

d → R “corrects” the affine function x �→ xj such that the resulting function Z
d � x �→ φj(x) + xj

is a-harmonic. In this sense, (φ1, . . . , φd) provide a-harmonic coordinates for TL. We thus call the φj ’s the
(periodic) corrector.
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A crucial ingredient in the proof of our main result is the following boundedness estimate on the moments of
the corrector:

Lemma 2.2 (Gloria, Neukamm & Otto [6]). For j = 1, . . . , d we have〈|φj |2
〉

�
{

ln L for d = 2
1 for d > 2 , (2.4)〈|∇φj |4

〉
� 1. (2.5)

The multiplicative constants in these estimates only depend on λ and d.

We remark that the previous estimate indeed holds for the more general class of stationary ensembles which
satisfy SG. For the question in which sense limL↑∞ φj exists, which is however is not relevant for this paper, we
refer to [6], Chapter 4.

2.3. Homogenized coefficient

Let us recall that a coefficient field

a ∈ Ω := {a : Z
d → Ω0} = ΩZ

d

0

can be seen as a description of a network of resistors: suppose u : Z
d → R is an a-harmonic function; if u(x)

is interpreted as the potential at vertex x and akk(x) as conductivity along the edge joining x to ek + x,
then akk(x)∇ku(x) can be interpreted as the (stationary) current along this edge. In this sense, the merit
of the homogenized coefficient ahom is that, almost surely, it relates the spatially averaged potential gradient
ξ =
∑∇u to the spatially averaged current ahomξ =

∑
a∇u. For our special a-harmonic function u = φj + xj ,

the spatially averaged (over one period cell) potential gradient is given by

L−d
∑
TL

(∇φj + ej) = ej ,

whereas the spatially averaged current is given by

L−d
∑
TL

a(∇φj + ej).

Hence the expected value of the latter, that is,〈
L−d
∑
TL

a(∇φj + ej)

〉
stationarity

= 〈a(0)(∇φj(0) + ej)〉 =: ahom,Lej (2.6)

is a good (and computable) proxy for ahom as L ↑ ∞. Qualitative homogenization theory ensures that it is
indeed true that

lim
L↑∞

ahom,L = ahom, (2.7)

see for instance [17], Theorem 4.6. For us, this has the convenient side-effect that we do not have to give
the technically more demanding, independent definition of ahom. For the latter, we refer to [6], Chapter 5 for
instance. Moreover – and this is a second important ingredient for our result – the quantitative theory in [6]
provides an optimal estimate of this “systematic error” in the case of the (infinite) i.i.d. ensemble.

Lemma 2.3 (Gloria, Neukamm & Otto [6], Proposition 1). Consider the i.i.d. ensemble. Then we have

|ahom,L − ahom| � L−d lnd L,

where the multiplicative constant depends only on d and λ.
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As opposed to the other important ingredients for our result, the annealed estimates on the corrector and on
the Green’s function in Lemma 2.2 and in Lemma 3.3 below, the above ingredient relies on the i.i.d. property
in a subtle way. In fact, if we were not dealing with the i.i.d. ensemble 〈·〉, but with a more general infinite
ensemble (that we call 〈·〉 for the purpose of the discussion in this paragraph only), the choice of the periodic
ensemble 〈·〉L (that we endow with the index L for the purpose of this discussion only) is more subtle – and of
practical importance: on the one hand, in view of Lemma 2.2 and of Lemma 3.3 below in particular, 〈·〉L should
satisfy a Logarithmic Sobolev Inequality (LSI) uniformly in L ↑ ∞. On the other hand, in view of Lemma 2.3,
〈·〉L should be well-coupled to 〈·〉 in order to avoid a large systematic error. If the ensemble is not i.i.d., the
definition of 〈·〉L through a “brutal” periodization, which is obtained by restricting a(· + y) to TL, with a
random shift y ∈ TL to retain stationarity, seems both unnatural and difficult to control. It seems more natural
and promising to us to define 〈·〉L as the distribution of a under 〈·〉 conditioned on the TL-periodicity of a.
However, this conditioning is singular; and we only expect control if the ensemble 〈·〉 can be characterized by a
sufficiently short-range (translation invariant) Hamiltonian. In this case, we expect that Dobrushin–Shlosman
criteria (which as uniform mixing conditions ensure near-independence of a(x) and a(y) for |x − y| � 1 for all
conditional measures) conveniently provide LSI for 〈·〉L uniform in L. The extension of Lemma 2.3 to such a
situation is investigated in a forthcoming work, see [7]. Let us also point out that the present proof relies on
the covariance estimate of Lemma 2.1. It is not yet clear to us whether such a covariance estimate can survive
beyond the i.i.d. case.

3. Proofs of Theorem 1.1 and Corollary 1.2

In this section we present the proofs of Theorem 1.1 and Corollary 1.2. Beforehand, we recall some auxiliary
estimates on the elliptic Green’s function that we need in the proof.

Structure of the proof and auxiliary estimates on the Green’s function

The starting point to prove Theorem 1.1 is the same as in the proof of [18], Theorem 3 by Papanicolaou and
Varadhan. Recall that z is given by (1.18). By uniform ellipticity and L-periodicity of a, an integration by parts
on TL yields

λ

〈∑
TL

|∇z|2
〉

≤
〈∑

TL

∇z · a∇z

〉
=

〈∑
TL

z ∇∗a∇z

〉
. (3.1)

As we shall see below, in Step 1 of the proof of Theorem 1.1, an application of ∇∗a∇ to z yields the decomposition

∇∗a∇z = ∇∗g + r1 + r2, (3.2)

where the random vector field g : TL → R
d, the deterministic scalar field r1 : TL → R, and the random scalar

field r2 : TL → R are given by

gi = −
d∑

j=1

aii φj(· + ei)∇i∇ju0,

r1 =(ahom,L − ahom) : ∇∗∇u0,

r2 =(b − ahom,L) : ∇∗∇u0. (3.3)

Above, ahom,L is defined via (2.6), ahom is defined via (2.7), and b : TL → R
d×d denotes the matrix field with

entries
bij := aii(· − ei)

(∇iφj(· − ei) + δ(i − j)
)

for i, j = 1, . . . , d. (3.4)

As we shall see below, in Step 3 of the proof of Theorem 1.1, the scalar fields r1 and r2 satisfy∑
TL

r1 = 0 and 〈r2(x)〉 = 0 for all x ∈ TL. (3.5)
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By combining (3.1) and (3.2), the bound (1.20) follows from estimates of the terms
〈∑

TL
∇z · g〉,〈∑

TL
(z − z̄) r1

〉
and
〈∑

TL
z r2

〉
, an estimate of the spatial mean

z̄ := L−d
∑
TL

z,

and the discrete Poincaré inequality on the torus.
The most intricate estimate is the one of

〈∑
TL

z r2

〉
, see Step 5 in the Proof of Theorem 1.1 below. Since

the term r2(x) has vanishing expectation for all x ∈ TL one may write it as a covariance〈∑
x∈TL

z(x)r2(x)

〉
=
∑

x∈TL

cov [z(x); r2(x)] .

In order to benefit from this, we appeal to the covariance estimate of Lemma 2.1 and to a vertical derivative
calculus on coefficient fields that we introduced in [6]. The process of estimating the vertical derivatives of r2

and z involves the (periodic) Green’s function:

Definition 3.1. The L-periodic Green’s function GL : TL ×TL ×ΩL → R is defined as follows. For all y ∈ TL

and a ∈ ΩL the function GL(·, y; a) is the unique L-periodic mean free solution to

∇∗a∇GL(·, y; a) = δ(· − y) − L−d on TL, (3.6)

where δ is the Dirac mass at zero.

When no confusion occurs we use the shorthand notation GL(x, y) for GL(x, y; a). We shall use both quenched
(i.e. pointwise deterministic) and annealed (i.e. statistically averaged) estimates on |∇GL|. The pointwise esti-
mates rely on the De Giorgi–Nash–Moser Hölder regularity theory (and are standard in the continuum case):

Lemma 3.2. There exists γ > 0 depending only on λ and d such that for all a ∈ ΩL and L ∈ N, the Green’s
function GL(·, ·; a) satisfies the following quenched estimate:

|∇xGL(x, y; a)|, |∇yGL(x, y; a)| � (|x − y mod L| + 1)2−d−γ . (3.7)

In the estimate the multiplicative constant only depends on λ and d. (Note that GL is symmetric, so that the
estimate (3.7) does not depend on the variable with respect to which we differentiate.)

See Appendix A for the proof. The crucial other ingredient is the recent annealed estimate of [14] by Marahrens
and the third author, which we recall below in a version for the L-periodic Green’s functions:

Lemma 3.3 (Marahrens & Otto [14], Theorem 1). The periodic Green’s function GL satisfies the following
annealed estimates: 〈|∇GL(x, y)|4〉 1

4 � (|x − y mod L| + 1)1−d, (3.8)

and 〈|∇x∇yGL(x, y)|4〉 1
4 � (|x − y mod L| + 1)−d, (3.9)

where the multiplicative constants only depend on λ and d.

Let us mention that the proof of the annealed estimates on the derivatives of the Green’s functions relies on
a strengthened version of the spectral gap estimate (2.2), namely a Logarithmic–Sobolev Inequality. We refer
the reader to [14] for details. Note that as for the variance estimate by Naddaf and Spencer in [16], an optimal
control of the fourth moment is enough for our quantitative expansion.
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Proof of Theorem 1.1

We prove the estimate of Theorem 1.1 in its rescaled formulation (1.20). Note that the identity

∑
TL

d∑
i,j=1

|∇∗
i∇ju0|2 =

∑
TL

d∑
i,j=1

|∇i∇ju0|2 =
∑
TL

|∇2u0|2 (3.10)

follows from periodicity and the elementary identity |∇∗
i∇ju0(·)| = |∇i∇ju0(· − ei)|. The argument is divided

into five steps. In the first step we derive the decomposition (3.2) with property (3.5). In Steps 2 and 3 we
argue that it suffices to prove 〈∑

TL

|∇z|2
〉

� μd(L)
∑
TL

|∇2u0|2. (3.11)

In the remaining steps we prove (3.11) starting with the inequality λ
〈∑

TL
|∇z|2〉 ≤ 〈∑

TL
z ∇∗a∇z

〉
. To

that end we appeal to the representation formula (3.2) which is a sum of a term in divergence form ∇∗g, a
deterministic term r1 and a remainder with vanishing expectation r2. The first two terms are estimated in Step 4.
The third term r2, which has vanishing expectation, is controlled using the covariance estimate of Lemma 2.1
and will be treated in Steps 5a–5d.

Step 1. Derivation of the decomposition (3.2) with property (3.5).

Let us show that (3.2) holds with g, r1 and r2 given by (3.3). By the defining equation (1.9) for u,

∇∗a∇z
(1.18)
= ∇∗a∇u −∇∗a∇u0 −

d∑
j=1

∇∗a∇(φj∇ju0)

(1.9)
= f̃ −∇∗a∇u0︸ ︷︷ ︸

=: I

−
d∑

j=1

∇∗a∇(φj∇ju0)︸ ︷︷ ︸
=: II

. (3.12)

We shall use the following discrete Leibniz rule: for all ζ1, ζ2 : TL → R,

∇i(ζ1ζ2) = (∇iζ1) ζ2 + ζ1(· + ei)∇iζ2, ∇∗
i (ζ1ζ2) = (∇∗

i ζ1) ζ2 + ζ1(· − ei)∇∗
i ζ2. (3.13)

For the first term this yields

I =
d∑

i=1

(∇∗
i a

ii)∇iu0 +
d∑

i=1

aii(· − ei)∇∗
i∇iu0,

while for the second term we obtain

II =
d∑

i,j=1

∇∗
i

(
aii∇i(φj∇ju0)

)
(3.13)
=

d∑
i,j=1

∇∗
i

(
aii(∇iφj∇ju0 + φj(· + ei)∇i∇ju0)

)
(3.13)
=

d∑
i,j=1

∇∗
i (aii∇iφj )∇ju0 +

d∑
i,j=1

aii(· − ei)∇iφj(· − ei)∇∗
i∇ju0

+
d∑

i,j=1

∇∗
i

(
aii φj(· + ei)∇i∇ju0

)
.
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Because of the periodic corrector equation (2.3), the first term of the r.h.s. turns into

d∑
i,j=1

∇∗
i (a

ii∇iφj)∇ju0 = −
d∑

j=1

(∇∗
ja

jj
)∇ju0.

Hence, the terms in I + II that involve the first derivative of u0 cancel, so that

I + II =
d∑

i,j=1

aii(· − ei)
(
δ(i − j) + ∇iφj(· − ei)

)∇∗
i∇ju0

+
d∑

i,j=1

∇∗
i

(
aii φj(· + ei)∇i∇ju0

)
. (3.14)

The last term on the r.h.s. is precisely −∇∗g, the first term is b : ∇2u0, cf. (3.3) and (3.4). The claim (3.2) then
follows from (3.12), (3.14) and identity (1.17) which can be written in the form f̃ = ahom : ∇∗∇u0 since ahom

is constant.
To conclude this step, we prove (3.5). The first identity simply follows from the L-periodicity of u0. The

second identity can be seen as follows: By the definition of b, the stationarity of a and φj , and the definition of
ahom,L via (2.6) we have 〈

bij(·)〉 =
〈
aii(0)

(
δ(i − j) + ∇iφj(0)

)〉
= aij

hom,L,

so that 〈
b : ∇2u0

〉
= 〈b〉 : ∇2u0 = ahom,L : ∇2u0

as desired.

Step 2. Reduction to an estimate for ∇z.

We claim that (1.20) and thus the statement of Theorem 1.1, see Remark 1.4, follows from (3.11). Indeed,
by the discrete Poincaré inequality

∑
TL

z2 � L2
∑

TL
|∇z|2 + Ldz̄2 we only need to prove that〈

z̄2
〉

� L2−dμd(L)
∑
TL

|∇2u0|2.

Since the spatial means of u and u0 vanish by definition, we have z̄ = −L−d
∑

TL

∑d
j=1 φj∇ju0, so that

〈
z̄2
〉

= L−2d
∑

x∈TL

∑
x′∈TL

〈(
d∑

i=1

φi(x)∇iu0(x)

)⎛⎝ d∑
j=1

φj(x′)∇ju0(x′)

⎞⎠〉 .

We expand the square on the r.h.s. Since u0 is deterministic we get

〈
z̄2
〉

= L−2d
∑

x∈TL

∑
x′∈TL

d∑
i,j=1

∇iu0(x)∇ju0(x′) 〈φi(x)φj(x′)〉 .

By Cauchy–Schwarz’ inequality, stationarity of the correctors, and the bounds of Lemma 2.2,

〈φi(x)φj(x′)〉 ≤ max
k=1,...,d

〈
φ2

k

〉
� μd(L).
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Hence, 〈
z̄2
〉

� μd(L)

(
L−d

∑
x∈TL

|∇u0|
)2

.

The desired estimate then follows from Jensen’s and Poincaré’s inequalities.

Step 3. Reduction based on the decomposition (3.2).

In this step we argue that the desired estimate reduces to the following statement: suppose that the functions g,
r1 and r2 of the decompositon (3.2) satisfy the following estimates in addition to (3.5):〈∑

TL

|g|2
〉

� μd(L)
∑
TL

|∇2u0|2, (3.15)

∑
TL

r2
1 � lnd L

Ld

∑
TL

|∇2u0|2, (3.16)

〈∑
TL

z r2

〉
�
〈∑

TL

|∇z|2
〉 1

2
(∑

TL

|∇2u0|2
) 1

2

+ μd(L)
∑
TL

|∇2u0|2, (3.17)

then estimate (1.20) and thus Theorem 1.1, holds.
By Step 2 we just have to check (3.11). Indeed, by combining (3.1), the decomposition (3.2), the triangle

inequality, an integration by parts, and (3.5) we get

λ

〈∑
TL

|∇z|2
〉

≤
∣∣∣∣∣
〈∑

TL

∇z · g
〉∣∣∣∣∣+

∣∣∣∣∣
〈∑

TL

(z − z̄)r1

〉∣∣∣∣∣+
∣∣∣∣∣
〈∑

TL

z r2

〉∣∣∣∣∣ .
The first term is estimated by (3.15) and the Cauchy–Schwarz inequality:∣∣∣∣∣

〈∑
TL

∇z · g
〉∣∣∣∣∣ � μ

1
2
d (L)

〈∑
TL

|∇z|2
〉 1

2
(∑

TL

|∇2u0|2
) 1

2

.

The second term is estimated by (3.16), the Cauchy–Schwarz inequality, the Poincaré inequality for functions
on TL with zero mean, and the elementary estimate lnd L

Ld−1 � 1 for d > 1:∣∣∣∣∣
〈∑

TL

(z − z̄)r1

〉∣∣∣∣∣ �
〈∑

TL

|∇z|2
〉 1

2
(∑

TL

|∇2u0|2
) 1

2

.

The combination of (3.17) with the previous three inequalities yields〈∑
TL

|∇z|2
〉

� μ
1
2
d (L)

〈∑
TL

|∇z|2
〉 1

2
(∑

TL

|∇2u0|2
) 1

2

+ μd(L)
∑
TL

|∇2u0|2,

which implies (3.11) by Young’s inequality.

Step 4. Proof of the estimates (3.15) and (3.16).

Estimate (3.15) follows from the definition of g, cf. (3.3), the bound (2.4) of Lemma 2.2 on the second moment
of the stationary φj and identity (3.10). Similarly, (3.16) follows from the definition of r1 and the optimal bound
on the error |ahom,L − ahom| of Lemma 2.3.
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In the last step we prove (3.17). Since this step is rather long, we subdivide it further.

Step 5a. Application of the covariance estimate.

Since by (3.5), 〈r2(x)〉 = 0 for all x ∈ TL, we have∣∣∣∣∣
〈∑

x∈TL

z(x)r2(x)

〉∣∣∣∣∣ =

∣∣∣∣∣ ∑
x∈TL

cov [z(x); r2(x)]

∣∣∣∣∣
(3.3)
=

∣∣∣∣∣∣
∑

x∈TL

d∑
i,j=1

∇∗
i∇ju0(x) cov

[
z(x); aij

hom,L − bij(x)
]∣∣∣∣∣∣

(3.10)

≤
(∑

TL

|∇2u0|2
) 1

2
⎛⎝∑

x∈TL

d∑
i,j=1

(
cov
[
z(x); aij

hom,L − bij(x)
])2

⎞⎠
1
2

.

With the covariance estimate in Lemma 2.1 the r.h.s. is bounded by

(∑
TL

|∇2u0|2
) 1

2

⎛⎜⎝∑
x∈TL

d∑
i,j=1

⎛⎜⎝∑
y∈TL

〈(
∂z(x)
∂y

)2
〉 1

2
〈(

∂bij(x)
∂y

)2〉 1
2

⎞⎟⎠
2⎞⎟⎠

1
2

.

Hence, for (3.17) it suffices to prove that

⎛⎜⎝∑
x∈TL

⎛⎜⎝∑
y∈TL

〈(
∂z(x)
∂y

)2
〉 1

2
〈(

∂bij(x)
∂y

)2〉 1
2

⎞⎟⎠
2⎞⎟⎠

1
2

≤
〈∑

TL

|∇z|2
〉 1

2

+ μd(L)

(∑
TL

|∇2u0|2
) 1

2

for i, j = 1, . . . , d. (3.18)

To estimate the vertical derivatives we need to identify ∂z
∂y and ∂bij

∂y . This is done by appealing to the elliptic
equations (1.16) and (2.3) and vertical differential calculus. Since the basic argument is simple, but polluted due
to the discrete nature of the vertical and spatial derivatives, we will first present a formal calculation where the
vertical derivative ∂

∂y is replaced by the classical partial derivative ∂
∂akk(y) (defined for differentiable functions

on ΩL). The rigorous argument is then carried out in Steps 5c and 5d below.

Step 5b. Formal derivation of formulas for the vertical derivatives.

We first (formally) identify ∂u
∂akk(y) and ∂φi(x)

∂a(x) . Applying ∂
∂akk(y) to the elliptic equations (1.16) and (2.3)

yields

∇∗a(x)∇ ∂u(x)
∂akk(y)

= −∇∗ ∂a(x)
∂akk(y)

∇u(x),

∇∗a(x)∇ ∂φj(x)
∂akk(y)

= −∇∗ ∂a(x)
∂akk(y)

(∇φj(x) + ej),
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using that ∂
∂akk(y) and ∇ commute. Since ∂a(x)

∂akk(y) = (ek ⊗ ek)δ(x − y mod L) for all x, y ∈ TL, the Green
representation formula yields

∂u(x)
∂akk(y)

= −∇yk
GL(x, y)∇ku(y),

∂φj(x)
∂akk(y)

= −∇yk
GL(x, y)(∇kφj(y) + δ(k − j)). (3.19)

Next we identify ∂bij

∂akk(y) . We apply ∂
∂akk(y) to the definition (3.4) of bij and use the identity above in the form of

∂∇iφj(x)
∂akk(y)

= −∇xi∇yk
GL(x, y)(∇kφj(y) + δ(k − j)). (3.20)

Rearranging the terms yields the identity

∂bij(x + ei)
∂akk(y)

= δ(k − i)δ(x − y mod L)(∇iφj(y) + δ(i − j))

− aii(x)∇xi∇yk
GL(x, y)(∇kφj(y) + δ(k − j)). (3.21)

Likewise, for the identification of ∂z(x)
∂akk(y) we apply ∂

∂akk(y) to (1.18):

∂z(x)
∂akk(y)

=
∂u(x)

∂akk(y)
−

d∑
j=1

∂φj(x)
∂akk(y)

∇ju0(x)

(3.19)
= −∇yk

GL(x, y)

⎛⎝∇ku(y) −
d∑

j=1

(∇kφj(y) + δ(k − j))∇ju0(x)

⎞⎠ .

Since we want to make ∇z appear, we substitute ∇u by the following expression

∇u(y) = ∇z(y) +
d∑

j=1

(∇φj(y) + ej)∇ju0(y) +
d∑

j=1

φj(y)∇∇ju0(y), (3.22)

which can formally be obtained by applying ∇ to (1.18) and using the continuum Leibniz rule ∇(φj∇ju0) =
∇φj∇ju0 + φj∇∇ju. We then get

∂z(x)
∂akk(y)

= −∇yk
GL(x, y)

(
∇kz(y) +

d∑
j=1

(∇kφj(y) + δ(k − j))(∇ju0(y) −∇ju0(x))

+
d∑

j=1

φj(y)∇k∇ju0(y)

)
. (3.23)

Let us stress the fact that the expression in the brackets on the r.h.s. is ∇z(y) plus terms that vanish if u0 is
affine. This will be crucial in order to obtain an optimal estimate.

Step 5c. Rigorous derivation of formulas for the vertical derivatives.

We now derive rigorous versions of (3.21) and (3.23), which will lead to the desired estimate (3.18). For the
rigorous argument ∂

∂akk(y) has to be replaced by the discrete vertical derivative ∂
∂y for which the Leibniz rule
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is not valid. The main ingredient is the following rigorous version of (3.19): For j = 1, . . . , d and x, y ∈ TL we
have

∂φj(x)
∂y

= −∇yGL(x, y) · [∇φj(y) + ej ]y, (3.24)

∂∇iφj(x)
∂y

= −∇xi∇yGL(x, y) · [∇φj(y) + ej ]y (3.25)

∂u(x)
∂y

= −∇yGL(x, y) · [∇u(y)]y, (3.26)

where [·]y denotes the commutator of the multiplication with a(y) and ∂
∂y , i.e.

[F ]y :=
∂(a(y)F )

∂y
− a(y)

∂F

∂y
= a(y) 〈F 〉y − 〈a(y)F 〉y (3.27)

for all random vectors F . By Jensen’s inequality, the commutator satisfies the following estimate: For all 1 ≤
q < ∞,

〈|[F ]y|q〉 ≤ 2q 〈|F |q〉 , (3.28)

which we will use in the sequel for q = 2 and q = 4. Note that for all x, y ∈ TL, since the coefficients are i.i.d.,

∂(a(x)F )
∂y

− a(x)
∂F

∂y
= [F ]yδ(x − y mod L). (3.29)

Here comes the argument for (3.24). By (2.3) we have

0 = ∇∗a(x)(∇φj(x) + ej) − 〈∇∗a(x)(∇φj(x) + ej)〉y
= ∇∗

(
a(x)(∇φj(x) + ej) − 〈a(x)(∇φj(x) + ej)〉y

)
= ∇∗

(
a(x)

∂∇φj(x)
∂y

+ a(x) 〈∇φj(x) + ej〉y − 〈a(x)(∇φj(x) + ej)〉y
)

Using then (3.27) and (3.29) for F = ∇φj(x) + ej , this turns into

∇∗
(

a(x)∇∂φj(x)
∂y

)
= −∇∗

(
[∇φj(x) + ej]yδ(x − y mod L)

)
,

from which (3.24) follows by the Green representation formula and an integration by parts. Identity (3.25)
follows from applying ∇x to (3.24). The argument for (3.26) is similar to the one for (3.24) and left to the
reader.

We are now in position to derive the rigorous versions of (3.21) and (3.23), and start with bij . We claim that

∂bij(x + ei)
∂y

=
(
δ(x − y mod L)ei − aii(x)∇xi∇yGL(x, y)

)
· [∇φj(y) + ej]y, (3.30)

Indeed, using again (3.27) for F = ∇φj(x) + ej, we have

∂(a(x)(∇φj(x) + ej))
∂y

= a(x)∇∂φj(x)
∂y

+ a(x) 〈∇φj(x) + ej〉y − 〈a(x)(∇φj(x) + ej)〉y

= a(x)
∂∇φj(x)

∂y
+ δ(x − y mod L)[∇φj(y) + ej ]y,

which, combined with (3.25), yields (3.30).
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We then turn to z and claim that

∂z(x)
∂y

= −∇yGL(x, y) ·
(
F1(y) + F2(y, x) + F3(y)

)
, (3.31)

where

F1(y) := [∇z(y)]y, F2(y, x) :=
d∑

j=1

(∇ju0(y) −∇ju0(x)
)
[∇φj(y) + ej ]y,

F3(y) :=
d∑

i,j=1

∇i∇ju0(y)[φj(y + ei)ei]y.

We first apply ∂
∂y to (1.18) and use (3.24) and (3.26):

∂z(x)
∂y

= −∇yGL(x, y) ·
⎛⎝[∇u(y)]y −

d∑
j=1

∇ju0(x) [∇φj(y) + ej ]y

⎞⎠ . (3.32)

We then wish to substitute the term ∇u(y) by an expression that involves ∇z(y). To that end we apply ∇
to (1.18) and get with the help of the discrete Leibniz rule (3.13)

∇u(y) = ∇z(y) + ∇u0(y) +
d∑

j=1

∇ju0(y)∇φj(y) +
d∑

i,j=1

∇i∇ju0(y)φj(y + ei)ei

= ∇z(y) +
d∑

j=1

∇ju0(y)(∇φj(y) + ej) +
d∑

i,j=1

∇i∇ju0(y)φj(y + ei)ei.

Combined with (3.32) the desired identity (3.31) follows.

Step 5d. Estimates of the vertical derivatives of bij and z.

We claim that 〈(
∂bij(x)

∂y

)2〉1/2

� (|y − x mod L| + 1)−d (3.33)

and 〈(
∂z(x)
∂y

)2
〉1/2

� I1 + I2, (3.34)

where

I1 := (|y − x mod L| + 1)2−d−γ
(〈|∇z(y)|2〉1/2

+ μd(L)|∇2u0(y)|
)

,

I2 := (|y − x mod L| + 1)1−d|∇u0(x) −∇u0(y)|,
for some γ > 0 depending only on λ and d.

We start with (3.33). By the Cauchy–Schwarz inequality in probability, (3.30) turns into

|[L.H.S. of (3.33)]| �
〈
δ(x−ei−y mod L) + |∇xi∇yGL(x−ei, y)|4〉1/4

× 〈|[∇φj(y) + ej]y|4
〉1/4

.
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The first term of the r.h.s. is estimated by the annealed estimate (3.9) of Lemma 3.3. For the second term we
appeal to (3.28) with q = 4, and to the bound (2.5) in Lemma 2.2 on the quartic moment of ∇φj :〈|[∇φj(y) + ej]y|4

〉 ≤ 24
〈∣∣∇φj(y) + ej

∣∣4〉 �
〈|∇φj |4

〉
+ 1 � 1. (3.35)

The desired estimate (3.33) follows.
We then turn to (3.34). Based on (3.31), we first bound the l.h.s. in (3.34) by the sum of three terms:

|[L.H.S. of (3.34)]| �
〈|∇yGL(x, y)|2|F1(y)|2〉1/2

+
〈|∇yGL(x, y)|2|F2(y, x)|2〉1/2

+
〈|∇yGL(x, y)|2|F3(y)|2〉1/2

. (3.36)

We estimate the first and third terms on the r.h.s. by appealing to the quenched estimate of Lemma 3.2 and
Jensen’s inequality in probability:〈|∇yGL(x, y)|2|F1(y)|2〉1/2

+
〈|∇yGL(x, y)|2|F3(y)|2〉1/2

� (|x − y mod L| + 1)2−d−γ

(〈|∇z(y)|2〉1/2
+ max

j=1,...,d

〈
φ2

j

〉1/2 |∇2u0(y)|
)

.

Due to (2.4) in Lemma 2.2 the second moment of φj is bounded by μd(L), and thus we can control the r.h.s.
by I1. It remains to estimate the second term in (3.36). By appealing to the definition of F2, the Cauchy–Schwarz
inequality in probability, and (3.35) we have〈|∇yGL(x, y)|2|F2(y, x)|2〉1/2 �

〈|∇yGL(x, y)|4〉1/4 |∇u0(x) −∇u0(y)|.
In view of the annealed estimate (3.8) of Lemma 3.3 the r.h.s. is controlled by I2 as desired.

Step 5e. Proof of (3.18) and thus (3.17).

By combining (3.34) and (3.33) we get

[L.H.S. of (3.18)] �

⎛⎜⎝∑
x∈TL

⎛⎝∑
y∈TL

(|y − x mod L| + 1)2(1−d)−γ
(〈|∇z(y)|2〉1/2

+ μd(L)|∇2u0(y)|
)⎞⎠2
⎞⎟⎠

1/2

+

⎛⎜⎝∑
x∈TL

⎛⎝∑
y∈TL

(|y − x mod L| + 1)1−2d|∇u0(x) −∇u0(y)|
⎞⎠2
⎞⎟⎠

1/2

.

Since γ > 0, the discrete convolution kernel x �→ (|x mod L| + 1)2(1−d)−γ has �1(TL)-norm bounded indepen-
dently of L (even for d = 2), i.e.

∑
TL

(|x mod L| + 1)2(1−d)−γ � 1. Hence, by the convolution estimate w.r.t.
the �2(TL)-norm, the first term on the r.h.s. is controlled by the r.h.s. of (3.18). It remains to treat the second
sum and suffices to show that⎛⎜⎝∑

x∈TL

⎛⎝∑
y∈TL

(|y − x mod L| + 1)1−2d|∇u0(x) −∇u0(y)|
⎞⎠2
⎞⎟⎠

1/2

� μd(L)

(∑
TL

|∇2u0|2
)1/2

. (3.37)

By the definition of the discrete gradient and periodicity we have for i = 1, . . . , d(∑
x∈TL

|∇u0(x + ei) −∇u0(x)|2
)1/2

=

(∑
TL

|∇i∇u0|2
)1/2

,
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which combined with the triangle inequality and periodicity yields(∑
x∈TL

|∇u0(x + z) −∇u0(x)|2
)1/2

� |z mod L|
(∑

TL

|∇2u0|2
)1/2

(3.38)

for all Z
d. We then use the triangle inequality in the form of⎛⎝∑

x

(∑
z

Xxz

)2
⎞⎠1/2

≤
∑

z

(∑
x

X2
xz

)1/2

,

so that

[L.H.S. of (3.37)]

=

⎛⎝∑
x∈TL

(∑
z∈TL

(|z mod L| + 1)2(1−d) |∇u0(x) −∇u0(x + z)|
(|z mod L| + 1)

)2
⎞⎠1/2

Δ-inequality

≤
∑

z∈TL

(
(|z mod L| + 1)4(1−d)

∑
x∈TL

|∇u0(x) −∇u0(x + z)|2
(|z mod L| + 1)2

)1/2

(3.38)

≤
∑

z∈TL

(|z mod L| + 1)2(1−d)

(∑
TL

|∇2u0|2
)1/2

.

Evaluating the sum in z on the r.h.s. yields the claimed estimate (3.37), recalling that μd(L) = ln L for d = 2
and μd(L) = 1 for d > 2. This proves (3.18), and therefore the desired estimate (3.17) by Step 5a. �

3.1. Proof of Corollary 1.2

Estimate (1.14) is a direct consequence of (1.13) and the estimate

max
j=1,...,d

〈|φj |2
〉

�
{

ln L for d = 2
1 for d > 2

of Lemma 2.2. �

A. Proofs of the auxiliary lemmas

A.1. Proof of Lemma 2.1

We adapt the arguments of [6], proof of Lemma 2, as for the proof of [10], Lemma 3 starting from [9],
Lemma 2.3. We first introduce a couple of notations: Let {yn}n=1,...,N , N := Ld, be an enumeration of TL. For
n = 1, . . . , N define the average

〈·〉≤n :=
∏

1≤k≤n

�
Ω0

β(da(yk)).

Set ζn := 〈ζ〉≤n , ζ̃n :=
〈
ζ̃
〉
≤n

for n ≥ 1 and ζ0 := 〈ζ〉≤0 := ζ, ζ̃0 :=
〈
ζ̃
〉
≤0

:= ζ̃. W.l.o.g. we assume that both

ζ and ζ̃ have zero expectation. We split the proof into two steps.

Step 1. Martingale decomposition.
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We claim that 〈
ζζ̃
〉

=
N∑

n=1

〈
(ζn − ζn−1)(ζ̃n − ζ̃n−1)

〉
. (A.1)

Here comes the argument: Since {y1, . . . , yN} = TL we have 〈·〉 = 〈·〉≤N by (1.10), and thus ζN = 〈ζ〉 = 0,

ζ̃N =
〈
ζ̃
〉

= 0 and ζN ζ̃N = 0. Moreover, by construction we have ζ0 = ζ and ζ̃0 = ζ̃, and thus

ζζ̃ =
N∑

n=1

ζn−1ζ̃n−1 − ζnζ̃n. (A.2)

The identity (A.1) then follows from taking the expectation of (A.2) provided we prove that〈
(ζn − ζn−1)(ζ̃n − ζ̃n−1)

〉
=
〈
ζn−1ζ̃n−1

〉
−
〈
ζnζ̃n

〉
. (A.3)

This last identity can be seen as follows: By definition we have

ζ̃n =
〈
ζ̃
〉
≤n

=
∏

1≤k≤n

�
Ω0

ζ̃ β(da(yk)) =
�

Ω0

ζ̃n−1 β(da(yn)).

Since ζn does not depend on y1, . . . , yn, we have

ζnζ̃n =
�

Ω0

ζnζ̃n−1 β(da(yn)).

Integrating both sides w.r.t. a(yk), k �= n, yields
〈
ζnζ̃n

〉
=
〈
ζnζ̃n−1

〉
and thus by symmetry

〈
ζnζ̃n

〉
=〈

ζn−1ζ̃n

〉
, so that we obtain (A.3).

Step 2. Conclusion.

From [6], Step 2, Proof of Lemma 7, since 〈·〉 is an L-periodic i.i.d. measure, for all n ∈ {1, . . . , N} we have

〈
(ζn−1 − ζn)2

〉 ≤ 〈( ∂ζ

∂yn

)2
〉

,
〈
(ζ̃n−1 − ζ̃n)2

〉
≤
〈(

∂ζ̃

∂yn

)2〉
.

Hence the claim follows from (A.1) and Cauchy–Schwarz’ inequality. �

A.2. Proof of Lemma 3.2

It suffices to consider the case y = 0, since GL(x, y; a) = GL(x − y, 0; a(· − y)) and due to the fact that the
asserted estimate depends on a only through its ellipticity constant λ. We shall write GL(x) := GL(x, 0; a) for
brevity. We divide the proof into three steps. First we derive quenched estimates on the Green’s function for
d > 2 from the quenched estimates of [6], Lemma 10 on the corresponding parabolic Green’s functions. In the
second step we prove the desired estimate for d > 2 using the De Giorgi–Nash–Moser Hölder estimate, see [15],
Theorem 5.2 in the discrete setting. We then deduce the estimate for d = 2 from the estimate for d = 3 using
an argument by Avellaneda and Lin, see [2], proof of Theorem 13.

Step 1. Quenched estimate on GL for d > 2.

Let G′
L(t, y) denote the periodic, parabolic Green’s function considered in [6], Section 3.1; it is characterized

as follows: For all x ∈ Z
d the function G′

L is the unique C∞(R, �∞(Zd)) solution of{
∂tG

′
L(t, x) −∇ · a∇G′

L(t, x) = 0,
G′

L(0, x) = δ(x mod L). (A.4)
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Since both the initial data and the coefficient field are L-periodic, G′
L is in fact of class C∞(R, �1(TL)). The

elliptic Green’s function GL can be formally obtained by integrating in time the mean free version of the
parabolic Green’s function:

GL(x) =
� ∞

0

(G′
L(t, x) − L−d)dt.

To turn this into a rigorous argument one needs to prove that t �→ G′
L(t, x)−L−d ∈ L1(0, +∞). This is a direct

consequence of [6], Lemma 10: for all α > 0 we have

0 ≤ G′
L(t, x) � (t + 1)−

d
2

(
(|x mod L| + 1)2

t + 1
+ 1
)−α

2

for t � L2,

|G′
L(t, x) − L−d| � L−d exp

(
−c0

t

L2

)
for t � L2.

For d > 2, this directly yields

|G′
L(x)| ≤

� ∞

0

|GL(t, x) − L−d|dt � (1 + |x mod L|)2−d. (A.5)

Step 2. Quenched estimate on ∇GL for d > 2.

We now deduce (3.7) from (A.5) for d > 2. Recall that it suffices to prove the estimate for y = 0 and that
we write GL(x) = GL(x, 0) for brevity. Fix a radius 2 ≤ R ∼ 1 � L. For |x mod L| ≤ 2R the r.h.s. of (3.7)
is of order 1 so that the estimate directly follows from the combination of (A.5) with the discrete estimate
|∇iGL(x)| ≤ |GL(x + ei)| + |GL(x)|. Hence, it suffices to consider the case |x mod L| ≥ 2R. For all y′ ∈ TL

and r > 0, set Br(y′) = {y′′ ∈ TL, |y′ − y′′ mod L| ≤ r}. Using the elementary inequality

|∇GL(x)| ≤
√

d osc
B1(x)

GL ,

this turns into an estimate of the oscillation of GL on B1(x). Noting that GL satisfies

∇∗a∇GL = L−d (A.6)

in the set B|x mod L|/2(x) (which does not contain 0 mod L), one may appeal to the De Giorgi–Nash–Moser
Hölder estimate. In particular, by [15], Theorem 5.2, there exists 0 < γ < 1 depending only on λ and d such
that

osc
B1(x)

GL �
(
|x mod L|−γ max

B|x mod L|/2(x)
|GL|
)

+ L−d, (A.7)

Combined with (A.5), this yields (3.7) for d > 2.

Step 3. Quenched estimate on ∇GL for d = 2.

Following [2], proof of Theorem 13, we derive the estimates for d = 2 from the estimate for d = 3. To distin-
guish quantities in different dimensions we use the superscripts (2) and (3); e.g. T

(2)
L denotes the 2-dimensional

torus. To a given two-dimensional, L-periodic coefficient field a(2) ∈ Ω
(2)
L we associate a three-dimensional

coefficient-field a(3) ∈ Ω
(3)
L via

a(3)(x, x3) := diag
[
[a(2)(x)]1, [a(2)(x)]2, 1

]
(x, x3) ∈ Z

2 × Z = Z
3.

In the following we use the shorthand notation G
(2)
L (x) := G

(2)
L (x, 0; a(2)) and G

(3)
L (x, x3) :=

G
(3)
L ((x, x3), (0, 0); a(3)). It is elementary to check that

G
(2)
L (x) =

∑
x3∈([0,L)∩Z)

G
(3)
L (x, x3),
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and thus
∇iG

(2)
L (x) =

∑
x3∈([0,L)∩Z)

∇iG
(3)
L (x, x3) for i = 1, 2.

The quenched estimate (3.7) for d = 3 then turns into

|∇iG
(2)
L (x)| ≤

∑
x3∈([0,L)∩Z)

|∇iG
(3)
L (x, x3)|

�
∑

x3∈([0,L)∩Z)

(1 + |(x, x3) mod L|)−1−γ

�
∑

x3∈([0,∞)∩Z)

(1 + |x mod L| + x3)−1−γ

� (1 + |x mod L|)−γ � (1 + |x mod L|)−γ

which is nothing but (3.7) for d = 2. �
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