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CONVOLUTIVE DECOMPOSITION AND FAST SUMMATION METHODS
FOR DISCRETE-VELOCITY APPROXIMATIONS

OF THE BOLTZMANN EQUATION
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Abstract. Discrete-velocity approximations represent a popular way for computing the Boltzmann
collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically
O(N2d+1) where d is the dimension of the velocity space. In this paper, following the ideas introduced
in [C. Mouhot and L. Pareschi, C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71–76, C. Mouhot
and L. Pareschi, Math. Comput. 75 (2006) 1833–1852], we derive fast summation techniques for the
evaluation of discrete-velocity schemes which permits to reduce the computational cost from O(N2d+1)
to O(N̄dNd log2 N), N̄ � N , with almost no loss of accuracy.
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1. Introduction

Among deterministic methods to approximate the Boltzmann collision integral, one of the most popular is
represented by discrete velocity models (DVM). These methods [3, 6, 7, 14, 25, 26, 30, 36] are based on a regular
grid in the velocity field and construct a discrete collision mechanics on the points of the quadrature rule in
order to preserve the main physical properties.

As compared to Monte-Carlo methods, these methods have certain number of assets: accuracy, absence of
statistical fluctuations, and the fact that the distribution function is explicitly represented in the velocity space.
However their computational cost is more than quadratic and they cannot compete with the linear cost of
a Monte Carlo approach. Indeed the “naive” cost of a product quadrature formula for the (d − 1) + d fold
Boltzmann collision integral in dimension d is O(Md−1Nd), where M is related to the angle and N to the
velocity discretizations. More concretely Buet presented in [7] a DVM algorithm widely used since then in
O(N2d+1+ε) for all ε > 0 (and a constant depending on ε); Michel and Schneider algorithm in [26] is O(N2d+δ)
where δ depends on d and is close to 1; finally the method of Panferov and Heinz [30] is O(N2d+1). For this
reason several acceleration techniques for DVM have been proposed in the past literature. We do not seek to
review them here, and refer the reader to [7, 22, 24, 35, 37].
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More recently a new class of methods based on the use of spectral techniques in the velocity space has
attracted the attention of the scientific community. The method first developed for the Boltzmann equation
in [31] is based on a Fourier−Galerkin approximation of the integral collision operator. As shown in [32,33] the
method permits to obtain spectrally accurate solution at a reduced computational cost of O(N2d). A proof of
stability and convergence for this method has been given in [16]. Finally the method has been extended to the
case of the quantum Boltzmann collision operator [15, 20]. Other methods based on spectral techniques have
been developed in [4, 18].

One of the major differences between DVM and spectral methods is that in the latter the interaction kernel of
the Boltzmann collision integral is not modified in order to obtain a conservative equation on a bounded domain.
This aspect has a profound influence on the resulting structure of the algorithm since most of the symmetries
which are present in the original operator are preserved. Using this fact, in [27, 28], the authors developed a
numerical technique based on the Fast Fourier Transform (FFT) that permits to reduce the cost of spectral
method from O(N2d) to O(Md−1Nd log2 N) where M is the number of angle discretizations. These ideas have
been successfully used in [17] to compute space non homogeneous solutions of the Boltzmann equation.

In this paper we will consider general discrete velocity approximation of the Boltzmann equation without
any modification to the original collision kernel and show how the FFT techniques developed in [27, 28] can
be adapted to this case to obtain acceleration algorithms. In this way, for a particular class interactions using
a Carleman-like representation of the collision operator we are able to derive discrete velocity approximations
that can be evaluated through fast algorithms at a cost of O(N̄dNd log2 N), N̄ � N . The class of interactions
includes Maxwellian molecules in dimension two and hard spheres molecules in dimension three.

Let us emphasize here that a detailed analysis of the computational complexity in DVM is non trivial since
imposing conservations on the points of the quadrature rule originates a summation formula that requires the
exact enumeration of the set of involved orthogonal directions in Z

d.
The rest of the paper is organized in the following way. In the next Section we introduce briefly the Boltzmann

equation and give a Carleman-like representation of the collision operator which is used as a starting point for
the development of our methods. In Section 3 a fast DVM method is introduced together with a detailed analysis
of its computational complexity. In Section 4, we present some numerical results obtained with the fast and the
classical DVM methods.

2. Preliminaries

2.1. The Boltzmann equation

The Boltzmann equation describes the behavior of a dilute gas of particles when the only interactions taken
into account are binary elastic collisions. It reads for x, v ∈ R

d (d ≥ 2)

∂f

∂t
+ v · ∇xf = Q(f, f)

where f(t, x, v) is the time-dependent particle distribution function in the phase space. The Boltzmann collision
operator Q is a quadratic operator local in (t, x). The time and position acts only as parameters in Q and
therefore will be omitted in its description

Q(f, f)(v) =
∫

v∗∈Rd

∫
σ∈Sd−1

B(cos θ, |v − v∗|) [f ′
∗f

′ − f∗f ] dσ dv∗. (2.1)

In (2.1) we used the shorthand f = f(v), f∗ = f(v∗), f
′

= f(v′), f
′
∗ = f(v

′
∗). The velocities of the colliding

pairs (v, v∗) and (v′, v′∗) are related by

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ.

The collision kernel B is a non-negative function which by physical arguments of invariance only depends on
|v − v∗| and cos θ = ĝ · σ (where ĝ = (v − v∗)/|v − v∗|).
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Boltzmann’s collision operator has the fundamental properties of conserving mass, momentum and energy∫
v∈Rd

Q(f, f)φ(v) dv = 0, φ(v) = 1, v, |v|2

and satisfies the well-known Boltzmann’s H-theorem

− d
dt

∫
v∈Rd

f log f dv = −
∫

v∈Rd

Q(f, f) log(f) dv ≥ 0.

The functional − ∫
f log f is the entropy of the solution. Boltzmann H-theorem implies that any equilibrium

distribution function, i.e. any function which is a maximum of the entropy, has the form of a locally Maxwellian
distribution

M(ρ, u, T )(v) =
ρ

(2πT )d/2
exp

(
−|u − v|2

2T

)
,

where ρ, u, T are the density, mean velocity and temperature of the gas

ρ =
∫

v∈Rd

f(v)dv, u =
1
ρ

∫
v∈Rd

vf(v)dv, T =
1
dρ

∫
v∈Rd

|u − v|2f(v)dv.

For further details on the physical background and derivation of the Boltzmann equation we refer to [12, 38].

2.2. Carleman-like representation in bounded domains

In this short paragraph we shall approximate the collision operator on a bounded domain starting from
a representation which somehow conserves more symmetries of the collision operator when one truncates it
in a bounded domain. This representation was used in [1, 4, 5, 21, 28] and is close to the classical Carleman
representation (cf. [10]).

The starting point of this representation is the identity

1
2

∫
Sd−1

F (|u|σ − u) dσ =
1

|u|d−2

∫
Rd

δ(2 x · u + |x|2)F (x) dx. (2.2)

It can be verified easily by completing the square in the delta Dirac function, taking the spherical coordinate
x = r σ and performing the change of variable r2 = s. Then, setting u = v − v∗ and r = |u|, we have the
following Lemma.

Lemma 2.1 (Cf. [28], Sect. 2.1). Introducing the change of variables

x =
1
2

r σ, y = v∗ − v − x,

the collision operator (2.1) can be rewritten in the form

Q(f, f)(v) =
∫

x∈Rd

∫
y∈Rd

B̃(x, y) δ(x · y) [f(v + y) f(v + x) − f(v + x + y) f(v)] dxdy,

where

B̃(x, y) = B̃(|x|, |y|) = 2d−1 B

(
|x|√|x|2 + |y|2 ,

√
|x|2 + |y|2

)
(|x|2 + |y|2)− d−2

2 . (2.3)

Now let us consider the bounded domain DT = [−T, T ]d (0 < T < +∞). First one can remove the collisions
connecting with some points out of the box. This is the natural preliminary stage for deriving conservative
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schemes based on the discretization of the velocity. In this case there is no need for a truncation on the modulus
of x and y since we impose them to stay in the box. It yields

Qtr(f, f)(v) =
∫ ∫{

x, y ∈Rd | v+x, v+y, v+x+y ∈DT

} B̃(x, y) δ(x · y) [f(v + y) f(v + x) − f(v + x + y) f(v)] dxdy

defined for v ∈ DT . One can easily check that the following weak form is satisfied by this operator∫
Qtr(f, f)ϕ(v) dv =

1
4

∫ ∫ ∫{
v, x, y ∈Rd | v, v+x, v+y, v+x+y ∈DT

} B̃(x, y) δ(x · y)

× f(v + x + y) f(v) [ϕ(v + y) + ϕ(v + x) − ϕ(v + x + y) − ϕ(v)] dv dxdy (2.4)

and this implies conservation of mass, momentum and energy as well as the H-theorem on the entropy. The
problem of this truncation on a bounded domain is the fact that we have changed the collision kernel itself by
adding some artificial dependence on v, v∗, v′, v′∗. In this way convolution-like properties are broken.

A different approach consists in truncating the integration in x and y by setting them to vary in BR, the
ball of center 0 and radius R. For a compactly supported function f with support BS , we take R = S in order
to obtain all possible collisions. Since we aim at using the FFT algorithm to evaluate the resulting quadrature
approximation, and hence we will make use of periodic distribution functions, we must take into account the
aliasing effect due to periods superposition in the Fourier space. As for the spectral method a geometrical
argument (see [32] for further details) shows that using the periodicity of the function it is enough to take
T ≥ (3 +

√
2)S/2 to prevent intersections of the regions where f is different from zero.

The operator now reads

QR(f, f)(v) =
∫

x∈BR

∫
y∈BR

B̃(x, y) δ(x · y) [f(v + y)f(v + x) − f(v + x + y)f(v)] dxdy (2.5)

for v ∈ DT . The interest of this representation is to preserve the real collision kernel and its properties. It is
easy to check that, except for the aliasing effect, the operator preserves all the original conservation properties,
see the weak form in equation (2.6).

In order to understand the possible effect of periods superposition we can rely on the following weak form
valid for any function ϕ periodic on DT∫

DT

QR(f, f)ϕ(v) dv =
1
4

∫
v∈DT

∫
x∈BR

∫
y∈BR

B̃(x, y) δ(x · y)

× f(v + x + y)f(v) [ϕ(v + y) + ϕ(v + x) − ϕ(v + x + y) − ϕ(v)] dv dxdy. (2.6)

About the conservation properties one can show that

1. The only invariant ϕ is 1: it is the only periodic function on DT such that

ϕ(v + y) + ϕ(v + x) − ϕ(v + x + y) − ϕ(v) = 0

for any v ∈ DT and x⊥y ∈ BR (see [11] for instance). It means that the mass is locally conserved but not
necessarily the momentum and energy.

2. When f is even there is global conservation of momentum, which is 0 in this case. Indeed QR preserves the
parity property of the solution, which can be checked using the change of variable x → −x, y → −y.

3. The collision operator satisfies formally the H-theorem∫
v∈Rd

QR(f, f) log(f) dv ≤ 0.
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4. If f has compact support included in BS with T ≥ (3+
√

2)S/2 (no-aliasing condition, see [32] for a detailed
discussion) and R = S, then no unphysical collisions occur and thus mass, momentum and energy are
preserved. Obviously this compactness is not preserved with time since the collision operator spreads the
support of f by a factor

√
2.

2.3. Application to discrete-velocity models

The representation QR of this section can also be used to derive discrete velocity models (DVM). Any DVM
can be written in the general form

Di(f, f) =
∑

j,k,l∈Zd

Γ k,l
i,j

[
fkfl − fifj

]
, (2.7)

where Di denotes the discrete Boltzmann collision operator and the integer indexes refer to the points in the
computational grid.

In order to keep conservations the coefficients Γ k,l
i,j are defined by

Γ k,l
i,j = 1(i + j − k − l)1(|i|2 + |j|2 − |k|2 − |l|2)B(|k − i|, |l − j|)wk,l

i,j (2.8)

where 1 denotes the function on Z defined by 1(z) = 1 if z = 0 and 0 elsewhere, and wk,l
i,j > 0 are the weights

of the quadrature formula, which characterize the different DVM. The function B > 0 is the discrete collision
kernel. One can check on this formulation that the scheme satisfies the usual conservation laws and entropy
inequality (see [8, 34] and the references therein). More details on the DVM schemes can also be found in [8].

Thanks to equations (2.7) and (2.8), we can write at the discrete level the same representation as in the
continuous case

Di(f, f) =
∑

k,l∈Zd

Γ̃k,l

[
fi+kfi+l − fifi+k+l

]
with

Γ̃k,l = 2d−1 B

(
|k|√|k|2 + |l|2 ,

√
|k|2 + |l|2

)
(|k|2 + |l|2)− d−2

2 1(k · l)wk,l.

This is coherent with the DVM obtained by quadrature starting from the Carleman representation in [30].
Now again when one is interested to compute the DVM in a bounded domain there are two possibilities. First

as in the case of Qtr one can force the discrete velocities to stay in a box, which yields for i ∈ �−N, N�d (again
using the one index notation for d-dimensional sums)

Dtr
i (f, f) =

∑
k,l

−N≤ i+k, i+l, i+k+l≤N

Γ̃k,l

[
fi+kfi+l − fifi+k+l

]
.

This new discrete operator is completely conservative but the collision kernel is not invariant anymore according
to i, which breaks the convolution properties and then prevents the derivation of a fast algorithm.

The other possibility is to periodize the function f over the box and truncate the sum in k and l. It yields
for a given truncation parameter Ñ ∈ N

∗

DÑ
i (f, f) =

∑
−Ñ≤k,l≤Ñ

Γ̃k,l

[
fi+kfi+l − fifi+k+l

]
, (2.9)

for any i ∈ �−N, N�d.
It is easy to see that DÑ satisfies exactly a discrete weak form and conservation properties similar to QR.

Let us briefly state and sketch the proof of the conservation and stability properties of the scheme.
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Proposition 2.2. Assume that the quadrature weight wk,l
i,j > 0 are positive. Consider some truncation numbers

Ñ ≤ N ∈ N
∗ and some non-negative initial data fi(0) ≥ 0, i ∈ �−N, N�d. Then the discrete evolution equation

∂tfi = DÑ
i (f, f) =

∑
−Ñ≤k,l≤Ñ

Γ̃k,l

[
fi+kfi+l − fifi+k+l

]
, i ∈ �−N, N�d,

is globally well-posed in R
�−N,N�d

. Moreover the coefficients fi(t) are non-negative for all time, and

∀ t ≥ 0,
∑

i∈�−N,N�d

fi(t) =
∑

i∈�−N,N�d

fi(0).

Remark 2.3. The DVM scheme we consider therefore preserves non-negativity, but let us also emphasize that
it preserves momentum and energy up to aliasing issues. This is different from spectral methods where the
truncation of Fourier modes introduces an additional error in the conservation laws. Concerning the spectral
method, stability and convergence have been proved recently in [17] to hold in L1 but only asymptotically, i.e.
for N big enough related to the initial data.

Proof of Proposition 2.2. We have the following L1-like estimate

d
dt

∑
i∈�−N,N�d

|fi(t)| =
∑

i∈�−N,N�d

∣∣∣∣∣∣
∑

−Ñ≤k,l≤Ñ

Γ̃k,l

[
fi+kfi+l − fifi+k+l

]∣∣∣∣∣∣
≤ C

⎛⎝ ∑
i∈�−N,N�d

|fi|
⎞⎠2

. (2.10)

The use of a Grönwall argument then gives the local well-posedness of the scheme in R
�−N,N�d

. Moreover, given
a local solution fi(t), for t ∈ [0, T ] and T > 0, it is clear by construction that the conservation of mass holds.

The proof of preservation of non-negativity for this solution is essentially contained in the pioneering work
of Carleman [10]. We will sketch its proof in the following. Let us rewrite the system of ordinary differential
equations satisfied by fi for a fixed i ∈ �−N, N�d as

d
dt

fi + fi

∑
−Ñ≤k,l≤Ñ

fi+k+l =
∑

−Ñ≤k,l≤Ñ

Γ̃k,l fi+k fi+l. (2.11)

Let us assume by contradiction that we have{
fj (t) > 0, ∀t ∈ [0, T [, ∀j ∈ �−N, N�d,

fi (T ) = 0.

Then, we have necessarily
f ′

i (T ) ≤ 0,

and thus, according to (2.11), ∑
−Ñ≤k,l≤Ñ

Γ̃k,l fi+k(T ) fi+l(T ) ≤ 0.

By continuity in time of fj , it comes that

fj(T ) = 0, ∀j ∈ �−N, N�d.

As these conditions implies using (2.11) that fj(t) = 0 for all t ∈ [0, T ], we have a contradiction with the
non-negativity of the initial condition.
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Finally, the conservations of mass and non-negativity implies the preservation of L1 norm, and we can iterate
the argument giving the local well-posedness (still using inequality (2.10)) to obtain the global well-posedness
of the scheme. �

Finally one can derive the following consistency result from [30] Theorem 3, in the case of hard spheres
collision kernel with d = 3

Theorem 2.4. Assume that f, g ∈ Ck(R3) (k ≥ 1) with compact support BS. The uniform grid of step h is
constructed on the box DT with the no-aliasing condition T ≥ (3 +

√
2)S/2. Then for Ñ = [S/h] (where [ · ]

denotes the floor function) and h > 0 sufficiently small,∥∥∥Q(g, f) − DÑ
· (g, f)

∥∥∥
L∞(Zh)

≤ C hr

where DÑ
· is the DVM operator defined in (2.9) (for the precise quadrature weights derived in [30]) on the grid

above-mentioned, and fi = f(ih). Here r = k/(k + 3) and the constant C is independent on h.

Remark 2.5. As can be seen from Theorem 2.4, the periodized DVM presented in this subsection is expected
to have a quite poor accuracy. On the contrary the spectral method [31], even in the fast version of [28], has been
proven to be spectrally accurate, i.e. of infinite order for smooth solutions. Nevertheless this periodized DVM
has some interesting features compared to the spectral method: preservation of sign, stability, and preservation
of the conservation laws up to aliasing issues.

3. Fast DVM’s algorithms

The fast algorithms developed for the spectral method in [28] can be in fact extended to the periodized
DVM method. The method that originates was triggered by the reading of the direct FFT approach proposed
in [1, 4, 5].

3.1. Principle of the method: a pseudo-spectral viewpoint

We start from the periodized DVM in �−N, N�d with representation (2.9) and as in the continuous case we
set, for k, l ∈ −Ñ ≤ k, l ≤ Ñ ,

B̃(|k|, |l|) = 2d−1 B

(
|k|√|k|2 + |l|2 ,

√
|k|2 + |l|2

)
(|k|2 + |l|2)− d−2

2 .

With this notation
Γ̃k,l = 1(k · l) B̃(|k|, |l|)wk,l,

and thus the DVM becomes

∂tfi =
∑

−Ñ≤k,l≤Ñ

1(k · l) B̃(|k|, |l|)wk,l

[
fi+kfi+l − fifi+k+l

]
.

Now we transform this set of ordinary differential equations into a new one using the involution transformation
of the discrete Fourier transform on the vector (fi)−N≤i≤N . This involution reads for I ∈ �−N, N�d

f̃I =
1

2N + 1

N∑
i=−N

fi e−I(i), fi =
N∑

I=−N

f̃I eI(i)
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where eK(k) denotes e
2iπ K·k
2N+1 , and thus the set of differential equations becomes

∂tf̃I =
N∑

K,L=−N

(
1

2N + 1

N∑
i=−N

eK+L−I(i)

)⎡⎣ ∑
−Ñ≤k,l≤Ñ

1(k · l) B̃(|k|, |l|)wk,l (eK(k)eL(l) − eL(k + l))

⎤⎦ f̃K f̃L

for −N ≤ I ≤ N . We have the following identity

1
2N + 1

N∑
i=−N

eK+L−I(i) = 1(K + L − I)

and so the set of equations is

∂tf̃I =
N∑

K,L=−N
K+L=I

β̃(K, L) f̃K f̃L (3.1)

with
β̃(K, L) =

∑
−Ñ≤k,l≤Ñ

1(k · l) B̃(|k|, |l|)wk,l

[
eK(k)eL(l) − eL(k + l)

]
= β(K, L) − β(L, L)

where
β(K, L) =

∑
−Ñ≤k,l≤Ñ

1(k · l) B̃(|k|, |l|)wk,l eK(k)eL(l). (3.2)

Let us first remark that this new formulation allows to reduce the usual cost of computation of a DVM exactly
to O(N2d) (as with the usual spectral method) instead of O(N2d+δ) for δ ∼ 1 [7,26,30]. Note however that the
(2N +1)d × (2N + 1)d matrix of coefficients (β(K, L))K,L has to be computed and stored first, thus the storage
requirements are larger with respect to usual DVM. Nevertheless symmetries in the matrix can substantially
reduce this cost.

Now the aim is to give an expansion of β(K, L) of the form

βK,L 

M∑

p=1

αp(K)α′
p(L),

for a parameter M ∈ N
∗ to be defined later. Indeed, this formulation will allow us to write (3.1) as a sum of

M discrete convolutions and then this algorithm can be computed in O(M Nd log2(N)) operations by using
standard FFT techniques [9, 13], as in the fast spectral method.

3.2. Expansion of the discrete kernel modes

We make a decoupling assumption on the collision kernel as in the spectral case [28]

B̃(|k|, |l|)wk,l = a(k) b(l). (3.3)

Note that the DVM constructed by quadrature in dimension 3 for hard spheres in [30] on the cartesian velocity
grid h Z

3 (for h > 0) satisfies this decoupling assumption with a(k) = h5 |k|/gcd(k1, k2, k3) and b(l) = 1 (see [30],
Formula (20–21)), and gcd(k1, k2, k3) denotes the greater common divisor of the three integers. For Maxwell
molecules in dimension 2 on the grid h Z

2, these coefficients are a(k) = h3 |k|/gcd(k1, k2) and b(l) = 1.
The difference here with the spectral method, which is a continuous numerical method, is that we have to

enumerate the set of {−Ñ ≤ k, l ≤ Ñ | k⊥ l }. This motivates for a detailed study of the number of lines passing
through 0 and another point in the grid (this is equivalent to the study of this set), in order to compute the
complexity of the method in term of N .
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N

N1
N̄

1
N̄

N̄

Figure 1. Representation of the Farey series F1
N̄

and of A1
N̄

, the primal representant of lines
in [−N, N ] associated, for N = 7 and N̄ = 3.

To this purpose let us introduce the Farey series and a new parameter 0 ≤ N̄ ≤ Ñ for the size of the grid
used to compute the number of directions. The usual Farey series is

F1
N̄ =

{
(p, q) ∈ �0, N̄�2 | 0 ≤ p ≤ q ≤ N̄ , q ≥ 1, and gcd(p, q) = 1

}
where gcd(p, q) denotes again the greater common divisor of the two integers (more details can be found in [19]).
We gave a schematic representation of the two dimensional Farey series in Figure 1. It is straightforward to see
that the number of lines A1

N̄
passing through 0 in the grid �−N̄ , N̄�2 is

A1
N̄ = 4

(∣∣F1
N̄

∣∣− 1
)
,

where the factor 4 allows to take into account the permutations when counting the couples (p, q) as well as the
ordering (symmetries in Fig. 1), minus the line which is repeated during the symmetry process.

Similarly one can define the set

F2
N̄ =

{
(p, q, r) ∈ �0, N̄�3 | 0 ≤ p ≤ q ≤ r ≤ N̄ , r ≥ 1, and gcd(p, q, r) = 1

}
and the number of lines A2

N̄
passing through 0 in the grid �−N̄, N̄�3 is

A2
N̄ = 24

(∣∣F2
N̄

∣∣− ∣∣F1
N̄

∣∣)− 2 A1
N̄

all possible permutations of the three numbers times 4 and minus the interfaces 2A1
N̄

accounting for the possible
negative values by symmetry, minus 24

∣∣F1
N̄

∣∣ for the spurious terms when two equal numbers are swapped.
The exponents of the Farey series refer to the dimension of the space of lines (which is d − 1). Now let us
estimate the cardinals of F1

N̄
and F2

N̄
.
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Lemma 3.1. The Farey series in dimension d = 2 and d = 3 satisfy the following asymptotic behavior∣∣F1
N̄

∣∣ =
N̄2

2 ζ(2)
+ O(N̄ log N̄) =

3N̄2

π2
+ O(N̄ log N̄),

∣∣F2
N̄

∣∣ =
N̄3

12 ζ(3)
+ O(N̄2),

where ζ(s) =
∑

n≥0 n−s denotes the usual Riemann zeta function.

Remark 3.2. In dimension d, the formula would be

Fd−1
N̄

=
{
(p1, p2, . . . , pd) ∈ �0, N̄�d | 0 ≤ p1 ≤ p2 ≤ . . . ≤ pd ≤ N̄ , pd ≥ 1 and gcd(p1, p2, . . . , pd) = 1

}
.

The cardinal of Fd−1
N̄

could be computed by induction with the same tools as in the proof:

∣∣Fd−1
N̄

∣∣ = Cd
N̄d

ζ(d)
+ O(N̄d−1).

The non-negative constant Cd is given by

Cd :=
1

2d−2 d!
,

the factorial coming from the successive summations of the Riemann series.

Proof of Lemma 3.1. The proof of the first equality is extracted from ([19], Thms. 330 and 331 p. 268), and
given shortly for convenience of the reader. The proof of the second inequality is inspired from this first proof.

Let us introduce ϕ(n) the Euler function (i.e. the number of integers less than and prime to n) and the multi-
plicative Möbius function μ(n) such that μ(1) = 1, μ(n) = 0 if n has a squared factor and μ(p1p2 · · · pk) = (−1)k

if all the primes p1, p2, . . . , pk are different. We have the following connection between these two arithmetical
functions (see [19], formula (16.3.1), p. 235):

ϕ(n) = n
∑
d|n

μ(d)
d

=
∑

dd′=n

d′μ(d).

Now let us compute the cardinal of the Farey series in dimension 2:

∣∣F1
N̄

∣∣ = ϕ(1) + · · · + ϕ(N̄) =
N̄∑

m=1

∑
dd′=m

d′μ(d)

=
∑

dd′≤N̄

d′μ(d) = 1 +
N̄∑

d=1

μ(d)

⎛⎝[N̄/d]∑
d′=1

d′

⎞⎠
=

1
2

N̄∑
d=1

μ(d)
(
[N̄/d]2 + [N̄/d]

)
=

1
2

N̄∑
d=1

μ(d)
(
(N̄/d)2 + O(N̄/d)

)
=

N̄2

2

N̄∑
d=1

μ(d)
d2

+ O

⎛⎝N̄

N̄∑
d=1

1
d

⎞⎠ =
N̄2

2

∞∑
d=1

μ(d)
d2

+ O

⎛⎝N̄2
∞∑

N̄+1

1
d2

⎞⎠
+ O

(
N̄ log N̄

)
=

N̄2

2 ζ(2)
+ O(N̄ ) + O

(
N̄ log N̄

)
where we have used the classical formula 1/ζ(s) =

∑∞
n=1 μ(n)/ns (cf. [19], Thm. 287, p. 250).

Now for the dimension d = 3, we enumerate the set F2
N̄

in the following way: we fix r ≥ 1 then 1 ≤ q ≤ r (the
case q = 0 is trivial and treated separately), then p ≤ q such that gcd(p, gcd(q, r)) = 1 (we use the associativity
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of the function gcd). This leads us to count the number of p in �1, q� such that gcd(p, δ) = 1 for a given δ|q.
When δ > 1, writing p = kδ + p0 with p0 ∈ �1, δ − 1�, this number is seen to be ϕ(δ) (q/δ). When δ = 1 this
number is q + 1 (all the values from 0 to q). Thus the formula ϕ(δ) (q/δ) is still valid if we deal separately with
the case p = 0, which has cardinal

∣∣F1
N̄

∣∣. Now let us compute the cardinal of F2
N̄

. We first write

∣∣F2
N̄

∣∣ =
∣∣F1

N̄

∣∣ +
N̄∑

r=1

r∑
q=1

q
ϕ (gcd(q, r))

gcd(q, r)

=
N̄2

2 ζ(2)
+ O

(
N̄ log N̄

)
+

N̄∑
r=1

r∑
q=1

q
∑

d|q, d|r

μ(d)
d

= O
(
N̄2

)
+

1
2

N̄∑
d=1

μ(d)
d

N̄∑
r=1
d|r

r∑
q=1
d|q

q. (3.4)

We shall now focus on the last member of the right hand side of this expression. We have

N̄∑
r=1
d|r

r∑
q=1
d|q

q = d

N̄∑
r=1
d|r

[r/d]∑
d′=1

d′ =
d

2

N̄∑
r=1
d|r

([ r

d

]2

+
[ r

d

])

=
d

2

[N̄/d]∑
d′′=1

(
(d′′)2 + d′′

)
=

d

2

(
1
3
(
N̄/d

)3 + O
(
(N̄/d)2

)
+ O

(
N̄/d

))
. (3.5)

Finally, we obtain by plugin (3.5) into (3.4)

∣∣F2
N̄

∣∣ = O
(
N̄2

)
+

1
4

N̄∑
d=1

μ(d)
(

1
3
(
N̄/d

)3 + O
(
(N̄/d)2

)
+ O

(
N̄/d

))

= O
(
N̄2

)
+

N̄3

12

N̄∑
d=1

μ(d)
d3

+ O

⎛⎝N̄2
N̄∑

d=1

μ(d)
d2

⎞⎠ + O

⎛⎝N̄

N̄∑
d=1

μ(d)
d

⎞⎠
=

N̄3

12

+∞∑
d=1

μ(d)
d3

+ O

⎛⎝N̄3
+∞∑

d=N̄+1

1
d3

⎞⎠ + O
(
N̄2

)
=

N̄3

12 ζ(3)
+ O

(
N̄2

)
.

This conclude the proof. �

Now one can deduce the following decomposition of the kernel modes using their definition (3.2) and the
decoupling assumption (3.3) on the discrete kernel

β(K, L) =
∑

−Ñ≤k,l≤Ñ

1(k · l) a(|k|) b(|l|) eK(k)eL(l)


 βN̄ (K, L) =
∑

e∈Ad−1
N̄

⎡⎢⎢⎣ ∑
k∈eZ

−Ñ≤k≤Ñ

a(|k|) eK(k)

⎤⎥⎥⎦
⎡⎢⎢⎣ ∑

l∈e⊥

−Ñ≤l≤Ñ

b(|l|) eL(l)

⎤⎥⎥⎦
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with equality if N̄ = Ñ . Here Ad−1
N̄

denotes the set of primal representants of directions of lines in �−N̄ , N̄�

passing through 0. After indexing this set, which has cardinal Ad−1
N̄

, one gets

βN̄ (K, L) =
Ad−1

N̄∑
p=1

αp(K)α′
p(L) (3.6)

with
αp(K) =

∑
k∈ep Z

−Ñ≤k≤Ñ

a(|k|) eK(k), α′
p(L) =

∑
l∈e⊥

p

−Ñ≤l≤Ñ

b(|l|) eL(l).

After inversion of the discrete Fourier transform, this method yields a decomposition of the discrete collision
operator

DÑ
i 
 DÑ,N̄

i =
Ad−1

N̄∑
p=1

DÑ,N̄,p
i , i ∈ �−N, N�d, (3.7)

with equality with (2.9) if N̄ = Ñ . Each DÑ,N̄,p
i (f, f) is defined by the pth term of the decomposition of the

kernel modes (3.6). Each term DÑ,N̄,p of the sum is a discrete convolution operator when it is written in Fourier
space. Moreover, each αp (resp. α′

p) is defined as the discrete Fourier transform of some non-negative coefficients
a(|k|) times the characteristic function of k ∈ epZ (resp. b(|l|) times the characteristic function of l ∈ e⊥p ). Hence,
we get after inversion of the transform that DÑ,N̄,p is a discrete convolution with non-negative coefficients.

By using the approximate kernel modes βN̄ (K, L), we obtain a new discrete evolution equation, which her-
itates the same nice stability properties as the usual DVM schemes, as stated in the following proposition.
Its proof is exactly similar to the one of Proposition 2.2, when computing by inverse Fourier transform the
coefficients Γ̃ N̄

k,l associated to the approximate kernel modes βN̄ (K, L).

Proposition 3.3. Assume that the quadrature weight wk,l
i,j > 0 are positive. Consider some truncation numbers

N̄ ≤ Ñ ≤ N ∈ N
∗ and some non-negative initial data fi(0) ≥ 0, i ∈ �−N, N�d. Then the discrete evolution

equation
∂tfi = DÑ,N̄

i (f, f), i ∈ �−N, N�d, (3.8)

is globally well-posed in R
�−N,N�d

. Moreover the coefficients fi(t) are non-negative for all time, and

∀ t ≥ 0,
∑

i∈�−N,N�d

fi(t) =
∑

i∈�−N,N�d

fi(0).

Remark 3.4. Using the non-negativity of the coefficients together with the conservation of mass, momentum
and energy, we can prove thanks to standard arguments (see [8]) that the discrete entropy of solutions to the
fast DVM method is non-increasing in time.

3.3. Implementation of the algorithm

The fast DVM method described in the last subsection depends on the three parameters N (the size of the
gridbox), R (the truncation parameter) and N̄ (the size of the box in the space of lines). The only constraint on
these parameters is the no-aliasing condition that relates R and the size of the box (and thus R and N , thanks
to the parameter Ñ).

Thus one can see thanks to Lemma 3.1 that even if we take N̄ = Ñ = N , i.e. we take all possible directions
in the grid �−N, N�d, we get the computational cost O(N2d log2 N) which is better than the usual cost of the
DVM, O(N2d+1) (but slightly worse than the cost O(N2d) obtained by solving directly the pseudo-spectral
scheme, thanks to a bigger storage requirement).

More generally for a choice of N̄ < N we obtain the cost O(N̄dNd log2 N), which is slightly worse than the
cost of the fast spectral algorithm (namely O(Md−1Nd log2 N) where M is the number of discrete angle [28]),
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but interesting given that the algorithm is accurate for small values of N̄ , and more stable. The justification
for this is the low accuracy of the method (the reduction of the number of direction has a small effect on the
overall accuracy of the scheme).

Finally, as for the fast spectral algorithm, the decomposition (3.7) is completely parallelizable and the com-
putational cost should be reduced (formally) on a parallel machine up to O(Nd log2 N). This method also has
the same adaptivity of the fast spectral algorithm: in a space inhomogeneous setting, the parameter N̄ can be
made space dependent, according to the fact that some regions in space deserve less accuracy than others, being
close to equilibrium.

Remark 3.5.

1. Concerning the construction of the set of directions Ad
N̄

, it can be done with systematic algorithms of iterated
subdivisions of a simplex, thanks to the properties of the Farey series. In dimension d = 2 this construction
is quite simple (see [19]). In dimension 3 we refer to [29].

2. Let us remark that in order to get a regular scheme (i.e. with no other conservation laws than the usual
ones) in spite of the reduction of directions, it is enough that the schemes contains the directions 0 and π/2
(see [11]). This is satisfied if we take the directions contained in Fd−1

1 , i.e. as soon as N̄ ≥ 1.
3. Finally in the practical implementation of the algorithm one has to take advantage of the symmetry of

the decomposition (3.6) in order to reduce the number of terms in the sum: for instance in dimension 2, if
a = b = 1, one can write a decomposition with Ad−1

N̄
/2 terms.

4. Numerical Results

We will present in this Section some numerical results for the space homogeneous Boltzmann equation in
dimension 2, with Maxwell molecules. We will compare the fast DVM method presented in Section 3 with
the method introduced in [30] (this latter method shall be referred to as the classical DVM one). The time
discretization is performed by a total variation diminishing second order Runge−Kutta method.

The first remark concerning the numerical simulations is that, thanks to the discrete velocity approach, the
conservations of mass, momentum and energy is only affected by the aliasing error and thus, for a sufficiently
large computational domain, it is exact up to machine precision. This is a relevant advantage compared to the
spectral (classical of fast) methods, where only mass (and momentum if one considers symmetric distributions)
is conserved exactly.

Let us now present some accuracy tests. In the case of two dimensional Maxwell molecules, we have an exact
solution of the homogeneous Boltzmann equation given by

f(t, v) =
exp(−v2/2S)

2π S2

[
2 S − 1 +

1 − S

2 S
v2

]
with S = S(t) = 1 − exp(−t/8)/2. It corresponds to the well known “BKW” solution, obtained independently
in [2, 23]. This test is performed to check the accuracy of the method, by comparing the error at a given time
Tend when using N = 8 to N = 128 grid points for each coordinate (the case N = 128 for the classical DVM
has been omitted due to its large computational cost). We give the results obtained by the classical DVM
method and the fast one, with different numbers of N̄ . We choose the value Ñ such that the classical method
is convergent according to Theorem 2.4, namely

Ñ =
[

2N

3 +
√

2

]
·

Then, one has Ñ = 1 when N = 8, Ñ = 3 when N = 16, Ñ = 7 when N = 32 and Ñ = 14 when N = 64. These
values give a result corresponding to the kernel mode (3.2), namely that no truncation of the number of lines
has been done: the solution obtained is essentially the same obtained with the classical DVM method. Note
that N̄ must be chosen less of equal than Ñ and this is why we do not present the results with, e.g., N = 16
and N̄ = 7.
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Table 1. Comparison of the L1 error between the classical DVM method and the fast DVM
method with different values of N̄ at time T = 0.01, after one iteration.

Number of Classical Fast DVM Fast DVM Fast DVM Fast DVM
points N DVM with N̄ = 1 with N̄ = 3 with N̄ = 7 with N̄ = 14
8 1.445E-3 1.4511E-3 x x x
16 8.912E-4 9.887E-4 8.9646E-4 x x
32 6.1054E-4 6.5209E-4 5.8397E-4 6.1328E-4 x
64 2.6351E-4 4.094E-4 2.906E-4 3.667E-4 2.7341E-4
128 x 2.6669E-4 1.8245E-4 2.0371E-4 1.6341E-4
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Figure 2. Evolution of the numerical relative L1 error of the fast DVM method for N = 32
(left) and N = 64 (right) grid points.

Table 1 shows the relative L1 error between the exact “BKW” solution f and the approximate one fi. It is
defined by

E1(t) =
∑N

i=−N |fi(t) − f(vi, t)|∑N
i=−N |fi(t)|

·

The size of the domain has to be chosen carefully in order to minimize the aliasing error. In this test, we used
T = 5 for N = 8, T = 5.5 for N = 16, T = 7 for N = 32 and T = 8 for N = 64, 128.

We can see that, even with very few directions, there is a small loss of accuracy for the fast DVM method
compared to the classical one, and that taking all possible directions we recover the original DVM solution. The
observed order of convergence in N is close to 1, as predicted by Theorem 2.4 and nearly the same for all values
of the truncation parameter N̄ (with a small loss for N̄ = 1).

We also observe that the method is convergent with respect to N̄ , although being not necessarily monotone
(in the sense that the accuracy can be better for a fixed couple of parameters (N, N̄1), N̄1 < N , compared to
the result obtained with another couple (N, N̄2) with N̄1 < N̄2 < N). This is due to the very irregular discrete
sphere associated with the Farey series, which implies that the information contained in the kernel modes can
be more complete with the Farey series F1

N̄1
rather than F1

N̄2
.

We then compare in Figure 2 the time evolution of this error, still in L1 norm. We can see that it increases
initially (exactly as in the classical and fast spectral methods [17]), and then decreases monotonically in time.
A saturation phenomenon due to aliasing errors finally occurs as for the fast spectral method (see [17], Fig. 1).
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Table 2. Comparison of the computational time between the classical DVM method and the
fast DVM method with different values of N̄ at time T = 1 (Δt = 0.01).

Number of Classical Fast DVM Fast DVM Fast DVM Fast DVM
points N DVM with N̄ = 3 with N̄ = 7 with N̄ = 14 with N̄ = 28
16 2 s. 95 0 s. 5 x x x
32 2 min. 18 s. 3 s. 19 14 s. 52 x x
64 133 min. 44 s. 16 s. 2 73 s. 4 4 min. 43 s. x
128 x 85 s. 8 6 min. 18 s. 23 min. 2 s. 92 min. 11 s.

102 103 104 105

Total number of grid points n := N2

10−1

100

101
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103

104

105

106

Se
co

nd
s

Classical DVM

n5/2
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n log(n)

Fast DVM, N̄ = 7
Fast DVM, N̄ = 14

Figure 3. Evolution of the computational time with respect to the total number of points for
the classical and fast DVM methods, at time T = 1.

We then give the computational cost of the classical and fast DVM methods in Table 2. Here one can see
the drastic improvement when comparing the two methods: taking e.g. N = 64 points in each direction, the
fast method is more than 28 time faster than the classical one when no truncation is done (i.e. when we take
N̄ = Ñ = 14), and even 109 times faster with a small loss of accuracy when taking N̄ = 7.

We also present the evolution of these computational times with respect to the total number of points in
Figure 3. It is clear when we look at the interpolant curve that the theoretical predictions and the effective
computational costs agree perfectly. When N̄ is fixed, the fast DVM method is of order N2 log(N) whereas when
N is fixed, the dependence in N̄ is very close to N̄2 (actually, the slope of the interpolant curve is about 1.9).

5. Conclusions

We have presented a deterministic way for computing the Boltzmann collision operator with fast algorithms.
The method is based on a Carleman-like representation of the operator that allows to express it as a combination
of convolutions (this is trivially true for the loss part but it is not trivial for the gain part). A suitable periodized
truncation of the operator is then used to derive fast algorithms for computing discrete velocity models (DVM).
This can be adapted to any DVM, provided it features a decoupling properties on the quadrature nodes. Our
approach will bring the overall cost in dimension d to O(N̄dNd log2 N) where N is the size of the velocity
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grid and N̄ is the size of the grid used to compute directions in the approximation of the discrete operator.
Numerical evidences show that the quantity N̄ can be taken small compared to N . Consistency and accuracy
of the proposed schemes are also presented, both theoretically and numerically.

Acknowledgements. The first author wishes to thank Bruno Sévennec for fruitful discussions on the Farey series. The
third author wishes to thank Francis Filbet for fruitful discussions and comments about the implementation of the
numerical method.
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