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A SIMPLE AND EFFICIENT SCHEME FOR PHASE FIELD CRYSTAL
SIMULATION ∗

Matt Elsey
1

and Benedikt Wirth
1

Abstract. We propose an unconditionally stable semi-implicit time discretization of the phase field
crystal evolution. It is based on splitting the underlying energy into convex and concave parts and
then performing H−1 gradient descent steps implicitly for the former and explicitly for the latter. The
splitting is effected in such a way that the resulting equations are linear in each time step and allow an
extremely simple implementation and efficient solution. We provide the associated stability and error
analysis as well as numerical experiments to validate the method’s efficiency.

Résumé. Une discrétisation semi-implicite et inconditionnellement stable est proposée pour l’évolution
du modèle appelé ��phase field crystal ��. L’idée principale consiste à décomposer l’énergie correspondante
en deux parties, l’une convexe et l’autre concave, puis à effectuer des pas de gradient H−1 pour lesquels
on traite les deux parties implicitement et explicitement respectivement. La décomposition de l’énergie
est choisie de façon à ce que l’équation resultante à résoudre à chaque pas de temps soit linéaire, ce qui
conduit à un algorithme facile à implanter et efficace. Nous prouvons la stabilité et la convergence de
l’algorithme puis nous présentons les résultats obtenus pour quelques expériences numériques.
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1. Introduction

During the past few years, the so-called phase field crystal (PFC) method has become quite popular in
physics [4,5]. It can be used to simulate the evolution of atomic crystals on time scales much longer than possible
for molecular dynamics, while keeping much more detail than standard phase field models. In particular, it allows
for the study of the evolution of lattice defects, the behavior of grain boundaries, the relation between elasticity
and lattice distortion, and various further physical phenomena such as, for instance, epitaxial growth [6,15] via
simulation.

The method is based on a free energy, which in its simplest dimensionless form reads

E [u] =
∫

Ω

1
2

(Δu + u)2 − δ

2
u2 +

1
4
u4 dx. (1.1)
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Here, Ω ⊂ Rd (d = 1, 2, 3) is the domain occupied by some atomic material, δ has the interpretation of a
dimensionless temperature, and the order parameter u can be thought of as a probability density for the atom
positions, whose average ū = 1

|Ω|
∫

Ω
u dx is typically prescribed as a parameter. Depending on the parameters

δ and ū, the energy E prefers different states, the most important being a constant-density liquid state and a
periodic hexagonal crystalline state. Different variants of E can produce different crystal symmetries [13, 14].

In physical simulations, the atomic density u is evolved in time via an H−1 gradient flow (which conserves
the average density ū) for the energy E ,

ut = Δ
(
(Δ + 1)2u − δu + u3

)
. (1.2)

Being sixth order parabolic, this partial differential equation is very stiff (explicit time stepping would by the CFL
condition require the time step τ to be limited by the sixth power of the grid size, h6, which is impracticable).
Since one is typically interested in its long-time behavior, corresponding efficient, stable numerical schemes are
indispensable. Note that the L2 gradient flow for the energy E , known as the Swift-Hohenberg evolution, is also
of physical interest. It is given by

ut = −(Δ + 1)2u + δu − u3 (1.3)

and will in this paper be treated alongside with the phase field crystal equation.
Our proposed numerical scheme is closely related to the one proposed by Wise et al. [12], who base their

scheme on a convex-concave splitting idea of Eyre [7]: If an energy E can be written as the difference of two
convex energies Ec and Ee, E = Ec − Ee, then the time discretization

un+1 − un

τ
= −∇H Ec[un+1] + ∇H Ee[un] (1.4)

of the gradient flow ut = −∇H E [u] is energy-stable, that is, it satisfies E [un+1] ≤ E [un] for all time steps n.
Here, τ is the discrete time step, un denotes the time-discrete approximation of u(nτ), and ∇H E denotes the
gradient of an energy E with respect to the inner product on a Hilbert space H , defined by

(∇H E [u], θ)H = δuE [u](θ) ∀θ ∈ H, (1.5)

where the right-hand side is the Gâteaux derivative of E in a test direction θ. Wise et al. decompose the phase
field crystal energy into two convex energies according to

Ec[u] =
∫

Ω

1
2
(Δu)2 +

1 − δ

2
u2 +

1
4
u4 dx, Ee[u] =

∫
Ω

|∇u|2 dx (1.6)

and then apply scheme (1.4) for H ≡ H−1(Ω), yielding an energy-stable time discretization of (1.2).
The disadvantage of the above approach is that each time step requires the solution of a nonlinear problem

since the term 1
4u4 is part of the implicitly treated energy. We therefore aim to shift this term into the energy

Ee. However, in this case we also have to add an additional quadratic term to both Ec and Ee in order to make
Ee sufficiently convex while respecting E = Ec − Ee. In detail, for a sufficiently large constant C > 0 and for the
operator L being either the identity L ≡ 1 or the gradient L ≡ ∇, we propose to split the phase field crystal
energy according to E = EL

c − EL
e with

EL
c [u] =

∫
Ω

1
2
(Δu + u)2 − δ

2
u2 +

C

2
|Lu|2 dx, (1.7)

EL
e [u] =

∫
Ω

C

2
|Lu|2 − 1

4
u4 dx (1.8)

and then apply scheme (1.4) for H ≡ H−1(Ω), which turns out to yield a stable linear scheme.
This idea of adding and subtracting a term C

2 ‖Lu‖2
L2(Ω) to a nonlinear energy E to obtain a

stable linear time discretization is not new [7]. In different contexts, explicit time stepping schemes
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1
τ (un+1 − un) = F [Δ2un, Δun, un] have been stabilized by adding and subtracting a higher order term [8,9,11],
1
τ (un+1−un)+CΔ2un+1 = F [Δ2un, Δun, un]+CΔ2un. Bertozzi et al. even stabilized a Cahn–Hilliard evolution
with a lower order term [2]. However, stability in these works is only observed numerically and not proven.

Concerning numerical discretization of the phase field crystal evolution, a linear stable scheme has also been
proposed by Cheng and Warren [3]. Besides the above-mentioned nonlinear convex-concave splitting scheme,
Wise and coworkers also introduced a second order accurate two-step scheme for which they could prove the
energy E to stay bounded. A different, promising approach is taken by Athreya et al. and Yeon et al. [1, 16],
who derive differential equations for the amplitude of the order parameter u, valid in the regime where u is
approximately periodic, which can be solved on coarser grids and from whose solution u can approximately be
reconstructed.

The next section will introduce the proposed time discretization in detail and provide the corresponding
stability and error analysis. The choice of the constant C in (1.7) and (1.8) is discussed in Section 3. Section 4
introduces a spatial discretization and transfers the stability and error analysis to the fully discrete scheme.
Finally, Section 5 shows various numerical experiments to demonstrate the practicability of the proposed scheme.

2. An efficient stable time discretization

For simplicity, throughout this article we will assume Ω ⊂ Rn to be a rectangular domain at whose boundary
we impose periodic boundary conditions. In this section, we prove the stability and convergence of the proposed
scheme.

2.1. Stable convex-concave splitting

For a sufficiently large constant C > 0 and for the operator L being either the identity L ≡ 1 or the gradient
L ≡ ∇, we propose to split the phase field crystal energy according to E = EL

c − EL
e with

EL
c [u] =

∫
Ω

1
2
(Δu + u)2 − δ

2
u2 +

C

2
|Lu|2 dx, (2.1)

EL
e [u] =

∫
Ω

C

2
|Lu|2 − 1

4
u4 dx. (2.2)

This splitting naturally leads to the semi-implicit time discretization of the Swift-Hohenberg or the phase field
crystal evolution given by (1.4). Its strong form, for the choices (2.1) and (2.2), thus reads

un+1 − un

τ
= −(Δ + 1)2un+1 + δun+1 − CL∗L(un+1 − un) − (un)3 (2.3)

for the Swift-Hohenberg scheme and

un+1 − un

τ
= Δ

[
(Δ + 1)2un+1 − δun+1 + CL∗L(un+1 − un) + (un)3

]
(2.4)

for the phase field crystal evolution, where either L∗L ≡ 1 or L∗L ≡ −Δ.
The above scheme satisfies many desirable properties. First of all, just as in the continuous case, the time-

discrete phase field crystal evolution conserves the average value ū. This is readily seen by integrating both sides
of (2.4) over Ω and applying the divergence theorem together with the periodic boundary conditions. Also, for
C chosen sufficiently large, each time step is uniquely solvable for un+1, since (2.3) and (2.4) are equivalent to
solving the strictly convex minimization problem

un+1 = argmin
u

‖u − un‖2
H

2τ
+ EL

c [u] − δuEL
e [un](u), (2.5)

which is coercive (the strict convexity and coercivity for C ≥ 2 are readily seen when expanding all squares in the
above energy). Here, H ≡ L2(Ω) for the Swift-Hohenberg scheme, and H ≡ H−1(Ω) for the phase field crystal
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evolution. Apparently, the scheme is first order consistent and in each time step only requires the solution of a
constant coefficient linear problem, which allows highly efficient implementations (e.g. via Fourier transforms,
see Sect. 5). Moreover, the linear system to be solved is the same in every time step, which makes the scheme
extremely simple to implement.

For C large enough, the proposed scheme is L∞-stable and decreases the phase field crystal energy in every
step, as shown by the following theorem.

Theorem 2.1 (Stability). Assume δ < 1. For any u0 : Ω → R with finite energy E there exists a C > 0 such
that the schemes (2.3) (for L ≡ 1) and (2.4) (for L ≡ 1,∇) are stable for any τ > 0 in the sense

E [un+1] ≤ E [un] ∀n ∈ N,

∃U > 0 : ‖un‖L∞(Ω) ≤ U ∀n ∈ N.

Proof. Let us abbreviate E [u0] = Ê . The same argument as in [12] leads to a bound

‖u0‖L∞(Ω) ≤
√

Ê + |Ω|/4
γ

=: U

for some γ > 0 independent of u0, where without loss of generality we assume U ≥ 1. Indeed, using 1
4‖u‖4

L4(Ω) ≥
1
2‖u‖2

L2(Ω) − |Ω|
4 and ‖∇u‖2

L2(Ω) = −(u, Δu)L2(Ω) ≤ 1
2β‖u‖2

L2(Ω) + β
2 ‖Δu‖2

L2(Ω) for any β > 0 we obtain

E [u] =
1
4
‖u‖4

L4(Ω) +
1 − δ

2
‖u‖2

L2(Ω) − ‖∇u‖2
L2(Ω) +

1
2
‖Δu‖2

L2(Ω)

≥
2 − δ − 1

β

2
‖u‖2

L2(Ω) +
1 − β

2
‖Δu‖2

L2(Ω) −
|Ω|
4

≥ 3
2
η(‖u‖2

L2(Ω) + ‖Δu‖2
L2(Ω)) −

|Ω|
4

for η = min
( 2−δ− 1

β

3 , 1−β
3

)
> 0 (take, e.g., β = 2

3−δ ). Hence,

E [u] +
|Ω|
4

≥ η
(‖u‖2

L2(Ω) + ‖Δu‖2
L2(Ω) +

1
2
(‖u‖2

L2(Ω) + ‖Δu‖2
L2(Ω))

)
≥ η
(‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω) + ‖Δu‖2

L2(Ω)

) ≥ γ‖u‖2
L∞(Ω)

for some γ > 0 by Sobolev embedding. We will show that for an appropriate choice of C, ‖un‖L∞(Ω) ≤ U and
E [un] ≤ Ê for all n ∈ N.

Choose

C > max

(
δ, 2, 3U2,

3
ν

U2, 3
Ê + 5

4 |Ω|U4

γ
,
3
ν

Ê + 5
4 |Ω|U4

γ

)
, (2.6)

where ν is the constant from the Poincaré inequality, satisfying ‖∇u‖2
L2(Ω) ≥ ν‖u − ū‖2

L2(Ω) with ū being the

average of u. We will prove the theorem by induction on n ∈ N, so let us assume E [un] ≤ Ê and ‖un‖L∞(Ω) ≤ U to
hold. We know that un+1 ∈ N , where N = {u ∈ L2(Ω) | ∫

Ω
u dx =

∫
Ω

u0 dx} for scheme (2.4) and N = L2(Ω)
for scheme (2.3).

First note that EL
c is a convex functional. Let us introduce

ẼL
e [u] =

∫
Ω

C

2
|Lu|2 − f(u) dx, where

f(u) =

{
1
4u4, |u| ≤ U,

3
2U2u2 − 2U3|u| + 3

4U4, else.
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ẼL
e is convex on N : Indeed, its second Gâteaux derivative in some test direction θ satisfies

δ2
uẼL

e [u](θ, θ) = C‖Lθ‖2
L2(Ω) −

∫
Ω

3 min(u2, U2)θ2 dx ≥ C‖Lθ‖2
L2(Ω) − 3U2‖θ‖2

L2(Ω).

In the case L ≡ 1 this is clearly non-negative. The case L ≡ ∇ is only considered for the phase field crystal
evolution. In that case, since the test functions may not lead outside of N , we have

∫
Ω

θ dx = 0. Thus, the
non-negativity of the second Gâteaux derivative follows by Poincaré’s inequality. By the analogous argument
we obtain that EL

e is convex on {u ∈ N | ‖u‖2
L∞(Ω) ≤ C

3 min(1, ν)}.
We now employ the classical convex-concave splitting argument: By the convexity of EL

c and ẼL
e ,

EL
c [un+1] − ẼL

e [un+1] ≤ EL
c [un] − ẼL

e [un] + (δuEL
c [un+1] − δuẼL

e [un])(un+1 − un)

= EL
c [un] − EL

e [un] + (δuEL
c [un+1] − δuEL

e [un])(un+1 − un)

= E [un] − 1
τ (un+1 − un, un+1 − un)H ≤ E [un] ≤ Ê ,

where H ≡ L2(Ω) for the Swift-Hohenberg scheme, and H ≡ H−1(Ω) for the phase field crystal evoluation.

However, this implies ‖un+1‖2
L∞(Ω) ≤ Ê+ 5

4 |Ω|U4

γ ≤ C
3 min(1, ν), since for any u we have

Ê ≥ EL
c [u] − ẼL

e [u] =
1
2
‖Δu + u‖2

L2(Ω) +
∫

Ω

f(u) − δ

2
u2 dx

≥ 1
2
‖Δu + u‖2

L2(Ω) +
U2

2
‖u‖2

L2(Ω) −
5
4
|Ω|U4

≥ γ‖u‖2
L∞(Ω) −

5
4
|Ω|U4

using the same estimates as earlier. Now, since EL
e is convex on {u ∈ N | ‖u‖2

L∞(Ω) ≤ C
3 min(1, ν)}, we may

again apply the classical convex-concave splitting argument, this time to EL
c − EL

e , which yields

E [un+1] = EL
c [un+1] − EL

e [un+1] ≤ EL
c [un] − EL

e [un] + (δuEL
c [un+1] − δuEL

e [un])(un+1 − un) ≤ E [un] ≤ Ê

and thus also ‖un+1‖L∞(Ω) ≤ U . �

Remark 2.2. The condition δ < 1 can be removed by slightly improving the derivation of the L∞-bound from
E [u] ≤ Ê .

2.2. Convergence of the scheme

The stability and first order consistency imply first order convergence. The argument is similar to the analysis
for the scheme in [12], nevertheless we will provide a compact version of the proof for the sake of completeness.
Quite naturally, it is essential for the convergence that C does not depend on τ (as proven by the previous
theorem) so that during the following analysis one should think of C as an O(1) constant.

Theorem 2.3 (Error estimate). Suppose the Swift-Hohenberg (or phase field crystal) equation is solved by a
smooth spatially periodic function u : [0, T ] × Ω → R for some T ∈ (0,∞), and denote the solution to (2.3)
(or (2.4)) by un, n = 0, 1, . . ., where u0 = u(0) and C is chosen according to Theorem 2.1. Then, there exists a
constant K > 0 independent of τ such that (for τ small enough)

‖u(nτ) − un‖L2(Ω) ≤ Kτ

for all n with nτ ≤ T .
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Proof. We show the argument for the phase field crystal equation (the treatment of the Swift-Hohenberg equa-
tion only requires obvious adaptions). Let us abbreviate tn = nτ and en = u(tn) − un. The time-continuous
solution satisfies

u(tn+1)−u(tn)
τ = Δ

[(
(Δ+1)2−δ

)
u(tn+1)+CL∗L

(
u(tn+1)−u(tn)

)
+u(tn)3

]
+ ρn+1,

where by a second order Taylor expansion about tn+1 the truncation error ρn+1 satisfies

|ρn+1| ≤ τ
(

1
2‖u‖C2([0,T ],C0(Ω)) + C‖u‖C1([0,T ],Ca(Ω)) + ‖u‖3

C1([0,T ],C2(Ω))

)
=: K̃τ

with a = 2 for L ≡ 1 and a = 4 for L ≡ ∇. Subtracting (2.4), we obtain

en+1 − en

τ
= Δ

[(
(Δ+1)2−δ

)
en+1 + CL∗L(en+1− en) + u(tn)3−(un)3

]
+ ρn+1.

Testing with τen+1 and integrating some terms by parts, we arrive at

‖en+1‖2 − (en, en+1) = τ
[−‖∇Δen+1‖2 + 2‖Δen+1‖2 − (1 − δ)‖∇en+1‖2

− C‖L∗∇en+1‖2 + C(L∗∇en, L∗∇en+1) + (u(tn)3 − (un)3, Δen+1) + (ρn+1, en+1)
]
,

where for simplicity we wrote ‖ · ‖ for the L2(Ω)-norm and (·, ·) for the corresponding inner product. We now
apply Young’s inequality (v, w) ≤ 1

2ε‖v‖2 + ε
2‖w‖2 (with appropriate ε) to all inner products, which yields

‖en+1‖2 − ‖en‖2

2
≤ τ
[
−‖∇Δen+1‖2 + 5

2‖Δen+1‖2 − (1 − δ)‖∇en+1‖2

− C(1 − 1
2α )‖L∗∇en+1‖2 + Cα

2 ‖L∗∇en‖2

+ 1
2‖u(tn)3 − (un)3‖2 + 1

2‖ρn+1‖2 + 1
2‖en+1‖2

]
for any α > 0. Since by Theorem 2.1 both u(tn) and un are bounded in L∞ by some constant U , we have
‖u(tn)3−(un)3‖2 ≤ K̂‖en‖2, where

√
K̂ is the Lipschitz constant of (·)3 on [−U, U ]. Furthermore, 5

2‖Δen+1‖2 ≤
125
54 ‖en+1‖2 + ‖∇Δen+1‖2 due to

‖Δv‖2 = −(∇v,∇Δv) ≤ 1
2ε

‖∇v‖2 +
ε

2
‖∇Δv‖2 = − 1

2ε
(v, Δv) +

ε

2
‖∇Δv‖2 ≤ 1

4ε2
‖v‖2 +

1
4
‖Δv‖2 +

ε

2
‖∇Δv‖2.

Applying these estimates, we obtain

‖en+1‖2 − ‖en‖2

2
≤ τ

[
−(1 − δ)‖∇en+1‖2 − C(1 − 1

2α )‖L∗∇en+1‖2

+ Cα
2 ‖L∗∇en‖2 + K̂

2 ‖en‖2 + |Ω|K̃2

2 τ2 + 76
27‖en+1‖2

]
and thus by induction (choosing α such that α = (2 − 1

α ) 1+K̂τ
1− 152

27 τ
)

‖en+1‖2 ≤ (1+K̂τ)‖en‖2 + |Ω|K̃2τ3 + Cτ
(
α‖L∗∇en‖2 − (2− 1

α )‖L∗∇en+1‖2
)

1 − 152
27 τ

≤
(

1 + K̂τ

1 − 152
27 τ

)n+1

‖e0‖2 +
|Ω|K̃2τ3

1 − 152
27 τ

n∑
j=0

(
1 + K̂τ

1 − 152
27 τ

)j

+
Cτ

1 − 152
27 τ

(
α

(
1 + K̂τ

1 − 152
27 τ

)n

‖L∗∇e0‖2 − (2 − 1
α )‖L∗∇en+1‖2

)

≤ |Ω|K̃2τ3

1 − 152
27 τ

n∑
j=0

(
1 + K̂τ

1 − 152
27 τ

)j

= |Ω|K̃2τ2

(
1+K̂τ

1− 152
27 τ

)n+1

− 1

K̂ + 152
27

.
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Due to tn+1 ≤ T we have
(

1+K̂τ
1− 152

27 τ

)n+1

≤
(

1+ K̂T
n+1

1− 152T
27(n+1)

)n+1

→n→∞ exp
(
T (K̂ + 152

27 )
)

so that the factor is bounded

for τ small enough (or equivalently, n large enough), which concludes the proof. �

3. Guidelines for choosing C

In this section we attempt to provide some understanding of the effect of the choice of C. First, we consider
the Swift-Hohenberg evolution, where it can be immediately seen that choosing a large C slows the evolution;
indeed, the effective time step is shown to be proportional to C−1 as τ → ∞. Here we also present a simple
condition on C to guarantee the energy stability of the Swift-Hohenberg evolution. Next, we proceed to the
more complicated phase field crystal evolution. We emulate a calculation of Cheng and Warren [3] to understand
the effect of the choice of C on the phase field evolution, finding that the maximum effective time step is again
proportional to C−1 as τ → ∞. For this reason, it is preferable to choose C as small as possible while still
maintaining the unconditional stability of the algorithm. We conclude this section by presenting some heuristic
arguments to motivate an expression for the choice of C which seems to be sufficient to give stable numerical
solutions for a wide variety of problems in the context of the phase field crystal evolution.

3.1. Swift-Hohenberg evolution

The constant C, which stabilizes the time stepping scheme, should be chosen as small as possible, not only
for accuracy reasons, but primarily because a larger C effects a slower evolution. This is particularly easy to
see for the Swift-Hohenberg case: The scheme (2.3) (with L ≡ 1) is equivalent to the time discretization

un+1 − un

τ̃
= −(Δ + 1)2un+1 + δun+1 − (un)3 (3.1)

with time step τ̃ = τ
1+Cτ . For the phase field crystal equation the relation is not as simple, but qualitatively

similar, and will be discussed later in this section. It therefore appears beneficial to understand what phenomena
limit the value of C. The proof of Theorem 2.1 provides a lower bound just in terms of the initial energy E [u0],
but this bound is based on a number of non-sharp estimates and thus must be quite pessimistic. The matter
seems more accessible for the Swift-Hohenberg discretization, for which we will provide a brief analysis in the
following.

Theorem 3.1 (Stability of (3.1)). If C > 0 is chosen such that the operator AC̃ =
[
1 − δ

C̃
+ (Δ+1)2

C̃

]−1

:

L∞(Ω) → L∞(Ω) has norm ‖AC̃‖L∞ ≤ 3
2 for all C̃ ≥ C, then the discretization (3.1) satisfies the following

stability properties: If ‖u0‖L∞(Ω) ≤
√

C
3 and τ̃ < 1

C , then

E [un+1] ≤ E [un] ∀n ∈ N,

‖un‖L∞(Ω) ≤ 1/
√

3τ̃ ∀n ∈ N.

Proof. Iteration (3.1) can be expressed as un+1 = A
1
τ̃ (un − τ̃ (un)3). Obviously, ‖un‖L∞(Ω) ≤ 1/

√
3τ̃ implies

‖un+1‖L∞(Ω) ≤ ‖A 1
τ̃ ‖L∞‖un − τ̃(un)3‖L∞(Ω) ≤ 3

2 · 2
3
√

3τ̃
, which upon induction proves the second inequality.

For the first inequality we note that (3.1) is equivalent to 0 = −δuE1
c [un+1] + δuE1

e [un] for the parameter
choice C = 1

τ̃ · Both E1
c and E1

e are convex on {u ∈ L∞(Ω) | ‖u‖L∞(Ω) ≤ 1/
√

3τ̃} =: M , and by the previous part
we may assume un, un+1 ∈ M . Hence, by the usual convex-concave splitting argument,

E [un+1] = E1
c [un+1] − E1

e [un+1]

≤ E1
c [un] − E1

e [un] + (δuE1
c [un+1] − δuE1

e [un])(un+1 − un)

= E1
c [un] − E1

e [un] = E [un]. �
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Remark 3.2. If C is chosen such that only ‖AC̃‖L∞ ≤ 3 for all C̃ ≥ C, then by the same proof ‖u0‖L∞(Ω) ≤
2
√

C/3 and τ̃ < 1
C imply ‖un‖L∞(Ω) ≤ 2/

√
3τ̃ for all n ∈ N, however, we can no longer guarantee E [un+1] ≤

E [un].

The above implies that unconditional stability of scheme (2.3) (given appropriate input data) is already
guaranteed if we choose C such that all C̃ > C satisfy ‖AC̃‖L∞ ≤ 3

2 (for L∞ and energy stability) or
even only ‖AC̃‖L∞ ≤ 3 (for L∞ stability). It turns out that ‖AC̃‖L∞ →C̃→∞

∥∥F [1/(1 + | · |4)]∥∥
L1(Rd)

=∥∥F−1
[
1/(1 + | · |4)]∥∥

L1(Rd)
(see Appendix 5.6), where F denotes the Fourier transform on Rd. For d = 1, 2, 3,

this number is smaller than 3
2 so that an appropriate C can indeed be found.

Note that the proof of Theorem 2.1 only provides sufficient lower bounds on C, but no information on whether
these bounds are good or on what type of initial data would lead to instabilities for too small C. However, the
analysis of the operator AC can provide some intuition: The proof of Lemma A.1 in the appendix shows that the
operator AC can be expressed as a convolution with a continuous function hC . Hence, AC increases the L∞ norm
most if it is applied to sign(hC(−·)) : Ω → {−1, 1}, which almost looks like a periodic oscillation between −1
and 1. Expressed differently, the initial data u0 = sign(hC(−·)) is most critical with respect to L∞ stability;
furthermore one can observe that discontinuous step functions in general are quite critical. This effect is similar
to the Gibbs phenomenon. Indeed, AC acts like a low pass filter which damps all frequencies larger than 4

√
C.

Hence, application of AC to a step function results in local overshoots near the discontinuity and thus in an
increased L∞ norm. For smooth initial data on the other hand, the operator AC is rather well-behaved so that
for smooth initial data C can be chosen smaller and one need not require ‖AC‖L∞ ≤ 3

2 .

3.2. Phase field crystal evolution

Though the phase field crystal model is more difficult to analyze than Swift-Hohenberg, we present some
heuristic calculations which suggest that the situation with regard to the choice of C is similar in this case. As
suggested by the work of Cheng and Warren [3], we calculate the Fourier space “effective time step”, which gives
the effective time step for a given Fourier mode k as compared to the equivalent explicit Euler time stepping
scheme. The Euler scheme for (1.2) is

un+1 − un

τE
= Δ

(
(Δ + 1)2un − δun + (un)3

)
, (3.2)

where τE is the Euler time step. The update for the kth Fourier mode is seen to be

ûn+1[k] − ûn[k]
τE

= −|k|2
(
(−|k2| + 1)2ûn[k] − δûn[k] + (̂un)3[k]

)
, (3.3)

where the hat denotes the Fourier coefficient, û[k] ≡ ∫
Ω u(x)e−ik·x dx. The unconditionally stable algo-

rithm (2.4) can be expressed in an analogous form,

ûn+1[k] − ûn[k]
τeff [k]

= −|k|2
(
(−|k|2 + 1)2ûn[k] − δûn[k] + (̂un)3[k]

)
, (3.4)

where the effective time step for the kth Fourier mode is given by

τeff [k] =
τ

1 + τ |k|2 ((1 − |k|2)2 + Cξ + δ)
(3.5)
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with ξ = 1 if L ≡ 1 and ξ = |k|2 if L ≡ ∇. Assuming δ � C, for the dominant modes k, with |k| ≈ 1, one
obtains

τeff [k] ≈ τ

1 + Cτ
, (3.6)

suggesting that the maximum effective time step for the dominant modes is τeff [k] = C−1 as τ → ∞, as was
observed for all frequencies in the Swift-Hohenberg evolution.

To provide guidelines for the choice of C which have proved reliable in a variety of numerical simulations, we
consider (2.4) in the limit that τ → ∞, i.e. the left-hand side of the equation approaches 0. What remains may
be rearranged as

Δ

(
L∗L − δ

C
+

(Δ + 1)2

C

)
un+1 = Δ

(
L∗Lun − 1

C
(un)3

)
. (3.7)

As periodic boundary conditions preclude linear terms, the above is solvable up to ūn+1. However, the phase
field crystal model in question fixes ū throughout the evolution. In Fourier space, this gives the nearly-pointwise
(up to the nonlinear term (un)3) updates

ûn+1[k] =

⎧⎨⎩ûn[0] k = 0,
ûn[k]− 1

Cξ (̂un)3[k]

1− δ
Cξ + (−|k|2+1)2

Cξ

otherwise.
(3.8)

The denominator indicates that high-frequency modes – those with |k| � 4
√

C for L ≡ 1 and |k| � √
C for

L ≡ ∇ – are immediately damped out.
First, we consider the case L ≡ 1. For k ≈ 1, we test the ansatz un(x) = A sin(k · x), with (un(x))3 =

3
4A3 sin(k · x) − 1

4A3 sin(3k · x), which gives

ûn+1[k] ≈ A
1 − 3A2

4C

1 − δ
C

. (3.9)

To prevent this coefficient from alternating signs at each discrete time step, we propose to choose C ≥ 3
4A2 for

A the maximum amplitude among all Fourier modes k ≈ 1 of the initial data u0. Furthermore, the denominator
indicates that C should be chosen such that C > δ to prevent blowup of the dominant |k| ≈ 1 modes. Finally,
for the reasons suggested in Theorem 3.1, we also recommend C ≥ 3‖u0‖2

L∞(Ω). Together, these conditions
suggest that C could be chosen as, for example,

C = max
(

2δ, max
|k|≈1

3
4
|û0[k]|2, 3‖u0‖2

L∞(Ω)

)
. (3.10)

Our heuristic analysis suggests that it is necessary that C be chosen with this scaling with respect to the initial
data and parameters; furthermore, numerical experiments suggest that this choice of C is also sufficient for a
wide range of numerical experiments.

In the case that L ≡ ∇, we observe that the update (3.8) is equivalent to the case of L ≡ 1 with a
frequency-dependent “constant” C|k|2. Supposing that u is smooth, the smallest non-zero frequency supported
in one dimension by the periodic boundary conditions is k = (2π)/�, where � denotes the domain length. Thus,
if (3.10) is sufficient to guarantee unconditional stability for L = 1, choosing

C =
(

�

2π

)2

max
(

2δ, max
|k|≈1

3
4
|û0[k]|2, 3‖u0‖2

L∞(Ω)

)
(3.11)

in the case that L ≡ ∇ must also be sufficient. Numerical experiments again suggest that this choice for C is
approximately necessary. This condition is obviously much more severe than the condition of (3.10), and for
this reason we always take L ≡ 1 in the numerical simulations presented in Section 5.
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We conclude this discussion with a few observations. First, while the heuristic calculations are essentially per-
formed in one dimension, our numerical experiments suggest that C may be chosen in a dimension-independent
way. Next, we consider the particular case of normally distributed initial data with mean μ, and standard
deviation σ. In this case, ‖u0‖L∞(Ω) ≈ |μ| + 5σ, however, numerical experiments suggest that the optimal
C � 3(|μ|+ 5σ)2. We suggest that the guidelines presented are based on “worst-case” estimates. In the numer-
ical experiments of Section 5 with this sort of initial data, we choose C much smaller than the guidelines here
suggest and numerically find energy stability. Finally, we remind the reader that these guidelines are based on
heuristic calculations and empirical observations, and we do not guarantee these to be sufficient conditions for
energy stability of the schemes proposed in (2.4) for all possible initial conditions.

4. Spatial discretization

Until this point, the discussion has been focused on time discrete but spatially continuous functions un(x).
Here we first describe the spatial discretization we employ to obtain a fully discrete description of the proposed
algorithm. Next, we present spatially discrete versions of Theorems 2.1 and 2.3. These new theorems verify that
the spatial discretization does not interfere with the existence of a C > 0 guaranteeing the energy stablity of
the proposed algorithm.

4.1. Finite difference approximation

For simplicity of exposition, we work on a uniform grid discretizing Ω = [0, �)d in d dimensions with m grid
points in each direction (with a total of M = md grid points) and grid spacing h, so that � = mh. It is trivial
to allow �, m, and h to depend on dimension. We apply periodic boundary conditions and denote the discrete
approximation of u(t,x) at t = nτ and x = jh by Un

j for n ∈ N, j ∈ {0, . . . , m − 1}d.
We discretize the spatial Laplacian using the standard second difference to define

ΔhUj =
d∑

i=1

Uj+ei − 2Uj + Uj−ei

h2
, (4.1)

where ei is the ith standard unit basis vector, and ΔhUj = Δu(jh) + O(h2) for u ∈ C4(Ω). Here, the index
arithmetic is to be interpreted in Z/mZ, taking account of the periodic boundary conditions. The temporally
and spatially discretized Swift-Hohenberg and phase field crystal evolution are now given by (2.3) and (2.4)
with U replacing u and (4.1) in place of Δu.

It is entirely straightforward to solve the discrete linear systems defined in this way. The matrix to be
inverted is sparse and constant-coefficient, and so needs only be computed once. Its inverse could thus be
precomputed, however, sparsity is lost following inversion so that the inverse contains M ×M non-zero entries.
The matrix-vector product then requires M2 operations to compute at each time step, in addition to the
M2 memory requirement. These requirements quickly become impracticable as m grows, particularly in the
physically-relevant case where d = 3.

As our preferred alternative, we remind the reader of the discrete Fourier transform (DFT), defined by

Û [k] =
∑
j

Uj exp(−2πik · j/m) (4.2)

for k ∈ {0, . . . , m − 1}d, and observe that

Δ̂p
hU [k] =

(
2
h2

d∑
i=1

(cos(2πki/m) − 1)

)p

Û [k] = F [k]pÛ [k] (4.3)
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for p = 1, 2, . . ., and the discretization (4.1). Making use of the DFT, we obtain the following expression for the
update of the kth Fourier coefficient by the discretized version of (2.3) and (2.4),

Ûn+1[k] =
Ûn[k] + τ(−F [k])ι

(
C(−F [k])σÛn[k] − (̂Un)3[k]

)
1 + τ(−F [k])ι

(
(F [k] + 1)2 + C(−F [k])σ − δ

) (4.4)

with ι =

{
0, if discretizing (2.3),
1, if discretizing (2.4),

σ =

{
0, if L ≡ 1,

1, if L ≡ ∇.

This update is pointwise in Fourier space. The computation of the Fourier and inverse Fourier transforms is
the most expensive part of the computation but can be done via the Fast Fourier Transform in O(M log M)
operations.

4.2. Transfer of stability and error analysis

Let us denote a spatially discretized function by U = (Uj)j and the M -dimensional space of such functions
by Vh. For U, V ∈ Vh we define the inner product

(U, V )h = hd
∑
j

Uj · Vj (4.5)

and the discrete Lp–norm
‖U‖p

Lp
h

= (|U |p,�)h, ‖U‖L∞
h

= max
j

|Uj|, (4.6)

where � denotes the discretized function which is constantly one. Let us introduce the discrete gradient

∇hUj =
1
h

(Uj − Uj−e1 , . . . , Uj − Uj−ed
)T , (4.7)

where again the index −1 shall be interpreted as m− 1. One can easily verify the integration by parts formula

(∇hU,∇hV )h = −(U, ΔhV )h. (4.8)

Finally, there are constants ν̃, γ̃ > 0 with

‖U‖2
L2

h
+ ‖∇hU‖2

L2
h

+ ‖ΔhU‖2
L2

h
≥ γ̃‖U‖2

L∞
h

, (4.9)

‖∇hU‖2
L2

h
≥ ν̃‖U − (U,�)h/|Ω|‖2

L2
h
, (4.10)

a discrete Sobolev and Poincaré inequality, the proofs of which can be performed analogously to the proofs of
the corresponding results in [12].

The spatially discrete version of the free energy is now given as

Eh[U ] =
1
2
‖ΔhU + U‖2

L2
h
− δ

2
‖U‖2

L2
h

+
1
4
‖U‖4

L4
h
. (4.11)

Replacing the differential operators, inner products, and norms in the proof of Theorem 2.1 by their discrete
counterparts, we arrive at the following stability result.

Theorem 4.1 (Stability of (4.4)). Assume δ < 1. For any U0 : Ω → R with finite energy Eh there exists a
C > 0 such that the fully discrete scheme (4.4) is stable for any τ > 0 in the sense

Eh[Un+1] ≤ Eh[Un] ∀n ∈ N,

∃U > 0 : ‖Un‖L∞
h (Ω) ≤ U ∀n ∈ N.
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Likewise, the proof of the error estimate Theorem 2.3 can be transferred one-to-one, noting that the truncation
error for temporal and spatial discretization can be bounded by

|ρn+1
j | ≤ τ

1
2
‖u‖C2([0,T ],C0(Ω)) + h2‖u‖C0([0,T ],C8(Ω))

+ τh2C‖u‖C1([0,T ],Ca(Ω)) + τh2‖u‖3
C1([0,T ],C4(Ω)) ≤ K̃(τ + h2)

for some K̃0 and with a = 4 for L ≡ 1 and a = 6 for L ≡ ∇.

Theorem 4.2 (Error estimate of (4.4)). Suppose the Swift-Hohenberg or phase field crystal equation is solved
by a smooth spatially periodic function u : [0, T ]×Ω → R for some T ∈ (0,∞), and denote the solution to (4.4)
by Un, n = 0, 1, . . ., where U0 = (u(0, jh))j and C is chosen according to the previous theorem. Then, there
exists a constant K > 0 independent of τ and h such that (for τ, h small enough)

‖(u(nτ, jh))j − Un‖L2
h
≤ K(τ + h2)

for all n with nτ ≤ T .

5. Numerical validation

The primary goal of this section is to present some numerical experiments validating this algorithm. We
present several simple simulations in one, two, and three spatial dimensions. We demonstrate the numerical
convergence of the algorithm as τ → 0 and also compare its evolution for large τ to an alternative linear
scheme from the literature. We then show the ability of the algorithm to preserve a coexistence solution in
one dimension, and perform fairly large, sufficiently resolved two- and three-dimensional simulations. Next, we
present a series of small simulations in three dimensions demonstrating various types of microstructure that can
be obtained in three dimensions even with fairly low spatial resolution.

5.1. Numerical convergence test

Though this work is primarily concerned with demonstrating the unconditional stability of the proposed
algorithm, it is also important to understand the convergence properties of the algorithm as τ → 0. To that
end, we performed a numerical convergence test on the two-dimensional developing periodic structure displayed
in Figure 1a. The parameters of the simulation are � = 24π, m = 500, C = 1, δ = 1/2, ū = 1/4, and the total
simulation time is 1. Twelve tests were run, with τ = 21−p for the pth test. The results, shown in Table 1,
are indicative of linear convergence to some unknown exact solution. Figure 1(b–c) demonstrates that the
relative error in energy dissipation and the discrete L2

h error with respect to the most refined computed solution
decrease approximately linearly for the intermediary tests. It is expected that if the exact solution were known
and compared to, this linear convergence would continue through the more refined tests.

5.2. Comparison to an alternative linear scheme

In [3], Cheng and Warren propose a linear scheme for the phase field crystal evolution, given by

un+1 − un

τ
=Δ

[
(1 − δ)(a1u

n + (a1 − 1)un+1)

+ 2(a2Δun + (a2 − 1)Δun+1) + (a3Δ
2un + (a3 − 1)Δ2un+1) + (un)3

]
, (5.1)

where from a linear stability analysis they derive the conditions

a1 <
1
2
− 3ū2

2(1 − δ)
, a2 ≥ 1

2
, a3 ≤ 1

2
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Figure 1. (a) The initial microstructure for the numerical convergence test. (b) Relative error
in energy dissipation and (c) L2

h error, as compared to the most refined solution. The line with
slope −1 is provided as a guide for the eye, suggestive of linear convergence to some (unknown)
exact solution.

Table 1. Each test ran n iterations at time step τ for total evolution time 1. The total discrete
energy dissipated throughout the evolution is denoted ΔEh. Reference values ΔE∗

h and U∗ refer
to the most refined simulation. By approximately n = 8, convergence in 1 − ΔEh/ΔE∗

h and
‖Un − U∗‖L2

h
appear approximately linear (compare Fig. 1).

n τ ΔEh 1 − ΔEh/ΔE∗
h ‖Un − U∗‖L2

h

1 1 1.8755 4.472 × 10−1 1.356 × 10−1

2 1/2 2.3964 2.936 × 10−1 9.199 × 10−2

4 1/4 2.8001 1.746 × 10−1 5.620 × 10−2

8 1/8 3.0651 9.646 × 10−2 3.163 × 10−2

16 1/16 3.2201 5.079 × 10−2 1.684 × 10−2

32 1/32 3.3044 2.594 × 10−2 8.652 × 10−3

64 1/64 3.3484 1.296 × 10−2 4.336 × 10−3

128 1/128 3.3709 6.317 × 10−3 2.117 × 10−3

256 1/256 3.3823 2.959 × 10−3 9.927 × 10−4

512 1/512 3.3881 1.271 × 10−3 4.264 × 10−4

1024 1/1024 3.3909 4.239 × 10−4 1.423 × 10−4

2048 1/2048 3.3924 0 0

for the weights a1, a2, a3. The underlying motivation is to evolve the phase field crystal model in steps as
large as possible, where each time step only requires the solution of a linear system of equations. From this
efficiency perspective it makes sense to compare (5.1) to our newly proposed scheme with regard to the number
of effective time steps needed to evolve to a similar state. Figure 2 shows solutions un for both schemes after
different numbers n of time steps. The top row depicts the evolution of our scheme, while the bottom two rows
are simulated via the algorithm from [3], using two different sets of numerical parameters: The first set has been
chosen experimentally to maximize the effective crystal evolution per time step (Fig. 2, middle row), whereas
the second set appears to achieve the fastest energy decrease (bottom row).

Remarkably, despite the large time step size and the inevitably associated inaccuracy, all three simulations
evolve through very similar states. It cannot be expected that these states occur after the same number of time
steps, though, as the schemes might have very different effective time steps for large τ (compare the discussion
in Sect. 3). Apparently, while each step of (5.1) with the first parameter set evolves the crystal almost as far
as our scheme does, the energy hardly decreases due to high frequency modes which are only slowly damped.
The second parameter set immediately smoothes out these high frequencies and thus leads to a low energy level
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n=5, E=39.23 n=10, E=39.17 n=15, E=38.94 n=20, E=38.71 n=25, E=38.54

n=7, E=58.42 n=14, E=56.21 n=21, E=54.37 n=28, E=53.05 n=35, E=52.06

n=265, E=39.23 n=530, E=39.16 n=795, E=38.90 n=1060, E=38.69 n=1325, E=38.53

Figure 2. Comparison of our new scheme (2.4) (top row: L ≡ 1, C = .05, τ = 105) with
the linear scheme from [3] (middle row: a1 = 0.45, a2 = 0.5, a3 = 0.5, τ = 105; bottom row:
a1 = 0.45, a2 = 1, a3 = 0, τ = 105). We show density snapshots after different numbers n of
time steps, starting from the same initial condition. The constants a1, a2, a3 for the middle and
bottom row have been chosen optimally to give the fastest evolution and the fastest energy
decrease, respectively. Parameters were chosen as in [3]: δ = 0.025, ū = 0.07, � = 128, m = 128.

as quickly as our method, however, the system is seen to evolve much more slowly. In all three cases, a further
increase of the nominal time step size τ does not have any visible effect on the results.

5.3. Coexistence in one dimension

Elder and Grant [4] studied the approximate phase diagrams for the phase field crystal model (δ = −r in
their notation) via one-mode approximations. They demonstrated that, for any δ > 1/4, there is a range of
values of ū for which it is energetically favorable to choose a solution that is essentially piecewise, corresponding
to a liquid solution in one region and a periodic solution in the other. We numerically demonstrate the ability
of our algorithm to preserve such solutions.

In this one-dimensional simulation, we take as parameters � = 28π, m = 1000, ū = 1/2, and δ = 3/4. We
compare three different initial conditions for u: a constant liquid state (u1 = 1/2), a one-mode approximation
of a periodic state (u2 = 1/2 + 1/25 sin(x)), and a coexistence state chosen so that the appropriate mean ū is
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Figure 3. (a) The initial microstructures for a one-dimensional simulation of coexistence.
(b) At t = 1000, the liquid solution remains stationary while the periodic solution changes
minimally. The calculated energy density for each remains εh = 0.0469 to four decimal places.
The coexistence solution has changed significantly and has a final calculated energy density
εh = 0.0437. In each plot, U1 is the black curve, U2 the blue curve, and U3 the red curve.

maintained and the function is continuous:

u3 =

{
2/5 + 3/5 sin(x), if 6π + sin−1

(
1
3

) ≤ x < 20π + sin−1
(

1
3

)
,

3/5, otherwise.
(5.2)

Discrete versions of these initial conditions are superimposed in Figure 3a. The proposed algorithm is run for
1000 iterations with τ = 1 and C = 1 with each initial condition, generating the resulting microstructure seen
in Figure 3b. The initial and final discrete energy densities (εh = Eh/�) for both U1 and U2 are 0.0469 to
four decimal places. U1 clearly remains stationary, which is not surprising, given that the liquid is a stationary
solution. The apparent amplitude of U2 shrinks slightly (to approximately 0.03), and the details of the profile
are expected to change some, though any changes from the one-mode approximation are not easily visible. It
is expected that after a longer simulation time, numerical perturbations will cause the system to leave this
periodic profile in favor of the coexistence state. The initial discrete energy density of U3 is calculated as 0.0767
(and is unbounded as h → 0 as u3 is not everywhere differentiable), but the final energy density is calculated
to be 0.0437, less than the calculated energy of the liquid or periodic solutions.

5.4. Medium-scale simulation of grain coarsening in 2D

The phase field crystal model is also able to describe a classic phenomenon known as grain coarsening: If
the initial condition u0 contains crystals of different orientation with interfaces in between (compare Fig. 4,
bottom), then these interfaces move during the evolution in such a way that large crystals or grains increase in
size on the expense of small grains, which shrink until they finally disappear. Such simulations of polycrystals
typically involve a large amount of atoms and can easily be performed using the proposed scheme. A very basic
Matlab implementation already yields the result shown in Figure 4 in just two hours computation time on a
single processor. Due to the scheme’s simplicity, a highly parallel implementation could readily be programmed
on a GPU, which would increase the simulation speed even much more.
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Figure 4. Simulation of grain coarsening (same parameters as Fig. 2 except � = 4097, m =
4097, ∼ 3.7 ·105 atoms). The coloring helps to distinguish regions of different lattice orientation,
the bottom image shows a zoom-in. The result is shown after 50, 100, and 500 time steps.
Simulation time on single processor was 2 h and 12min.

5.5. Well-resolved three-dimensional simulation

To demonstrate the efficiency of our algorithm, we present a small but well-resolved three-dimensional
simulation. We choose m = 100, � = 10π, τ = 1, δ = 1/2, and C = 5. The initial data is normally dis-
tributed with mean Ū = 0.02 and standard deviation 0.2. 10 000 time steps are performed. Figure 5 shows the
microstructural evolution through time. Initially, U appears to rapidly approach the liquid solution U ≡ Ū , but
structure quickly emerges and then on a much slower time scale appears to form rolls. The energy is numerically
calculated to decrease at each time step.

5.6. Phase portrait in three dimensions

Here we present a series of minimally-resolved calculations in three dimensions to demonstrate that this
algorithm can find the various types of microstructure expected to exist in three dimensions with quite minimal
computational effort. We choose m = 40 and � = 8π, so that h = π/5. We fix δ = 1/4, τ = 1, C = 1, and
compute until t = 10 000. We choose normally distributed initial data Ψ0 with mean 0 and standard deviation 1,
and vary the mean ū by setting U0 = Ψ0 + Ū . We explore the choices Ū = 0.1, 0.2, 0.3, and 0.4, finding four
distinct types of microstructure. In analogy with the striped and hexagonal phases found in two dimensions,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Microstructure from 3D simulation at (a) initial condition, (b) t = 10, (c) t = 100,
(d) t = 1000, (e) t = 2000, (f) t = 4000, (g) t = 6000, (h) t = 8000, (i) t = 10 000. The color
scale ranges from −1 (blue) to 1 (red) in each figure. The microstructure quickly evolves from
the random initial condition towards the pure liquid state around t = 10, then on a slower time
scale begins to evolve towards the “rolls” microstructure.

there are three periodic phases, with one-, two-, and three-dimensional periodicity, respectively. For large Ū , we
obtain the constant liquid microstructure. See Figure 6 for the various periodic phases. Table 2 compares the
energy of the periodic solutions to the calculated energy of the liquid solution with the same parameter choices
and demonstrates that the periodic solutions are, indeed, energetically favorable to the liquid solution where
they appear.
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(a) (b) (c)

Figure 6. The one-, two-, and three-dimensional periodic microstructures arising for Ū = 0.1,
0.2, and 0.3, respectively, and δ = 0.25. Even with low spatial resolution (h = π/5), the
algorithm is able to find the various types of microstructure for different values of Ū .

Table 2. Comparison of the calculated discrete energy density εh for the various types of
microstructure displayed in Figure 6 to the discrete energy density of the liquid solution for
δ = 1/4. In each of the periodic cases, the calculated energy density for the periodic solution is
less than the energy associated with the liquid solution.

Ū Microstructure εh(U) εh(Ū)

0.1 1–periodic −4.30 × 10−3 3.78 × 10−3

0.2 2–periodic 9.87 × 10−3 1.54 × 10−2

0.3 3–periodic 3.44 × 10−3 3.58 × 10−2

0.4 liquid 6.64 × 10−2 6.64 × 10−2

Appendix A. The limit of ‖AC‖L∞ as C → ∞
For simplicity we will assume Ω = [0, �]d ⊂ Rd. Let us introduce the functions

g̃κ(x) = κd
∑
k∈Nd

′′ cos(κk1x1) · · · cos(κkdxd)
1 + κ4(k2

1 + · · · + k2
d)2

,

gκ(x) =

{
g̃κ(x), x ∈ [0, π

κ ]d,
0 else,

g(x) =
∫

[0,∞)d

cos(k1x1) · · · cos(kdxd)
1 + (k2

1 + · · · + k2
d)2

dk,

where ki denotes the ith component of the vector k.
∑′′

k∈Nd is an abbreviation for
∑′

k1∈N . . .
∑′

kd∈N, where the
prime indicates that the first summand (ki = 0) is weighted with 1

2 . For x ∈ [0, π
κ ]d, gκ(x) is the trapezium

rule quadrature for g(x) on a uniform d-dimensional grid with spacing κ, and one can readily show gκ →κ→0 g
pointwise, since the integrand decays quickly enough in k. Let us furthermore introduce the d-dimensional
Fourier transform F : L2(Rd) → L2(Rd), F [u](k) =

∫
Rd u(x)e−i2πk·x dx, then we observe

g(x) =
1
2d

∫
Rd

e−ik·x

1 + |k|4 dk =
1
2d

F
[

1
1 + | · |4

] ( x
2π

)
.
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Lemma A.1. If gκ → g in L1([0,∞)d) as κ → 0, then ‖AC‖L∞ → ∥∥F [1/(1 + | · |4)]∥∥
L1(Rd)

as C → ∞.

Proof. Let F̂ : L2(Ω; C) → l2(Zd; C), F̂ [u](k) = 1
�d

∫
Ω

u(x)e−i2πk· x� dx, denote the semi-discrete Fourier trans-

form. For u ∈ L2(Ω) we have F̂ [ACu](k) = F̂ [u](k)
[
1 − δ

C + (| 2π
� k|2−1)2

C

]−1

and thus ACu = hC ∗ u for

hC(x) =
1
�d

∑
k∈Zd

ei2πk·x�

1 − δ
C + (| 2π

� k|2−1)2

C

=
(

2
�

)d∑
k∈Nd

′′ cos(2π
� k1x1) · · · cos(2π

� kdxd)

1 − δ
C + (( 2π

� )2(k2
1+···+k2

d)−1)2

C

·

Due to the high decay rate of its Fourier coefficients hC is continuous, and furthermore ‖AC‖L∞ = ‖hC‖L1(Ω).
We split up hC according to hC = hC

1 + hC
2 with hC

1 (x) = ( 4
√

C/π)dg̃(2π)/(� 4√C)( 4
√

Cx). It is straightforward to
show that the L2(Ω)-norm (and thus also the L1(Ω)-norm) of the remainder hC

2 converges to zero as C → ∞
so that limC→∞ ‖AC‖L∞ = limC→∞ ‖hC

1 ‖L1(Ω). Finally, abbreviating κ = 2π

� 4√C
,

‖hC
1 ‖L1(Ω) = 1

πd ‖g̃κ‖L1([0, 2π
κ ]d) =

(
2
π

)d ‖gκ‖L1([0,∞)d) −→
C→∞
κ→0

(
2
π

)d ‖g‖L1([0,∞)d)

= 2d‖F [1/(1 + | · |4)]‖L1([0,∞)d) = ‖F [1/(1 + | · |4)]‖L1(Rd),

where we have applied a change of variables in the first equality on either side of the limit and where we have
exploited the evenness and 2π

κ -periodicity of g̃κ. �

Due to the pointwise convergence gκ → g, by Lebesgue’s theorem it would be sufficient to majorize all gκ

by an L1(Ω) function in order to verify the conditions of the previous lemma. However, such a function is not
easily found. In 1D, one can find a direct proof of the L1-convergence gκ → g (see below). In higher dimensions,
similar methods can probably be applied (using higher-dimensional Euler–Maclaurin formulae [10]), however,
the resulting equations will become highly complicated.

Lemma A.2. In 1D (d = 1), gκ → g in L1([0,∞)) as κ → 0.

Proof. Define fx,κ(k) = κ cos(kκx)
1+(kκ)4 . For x ∈ [0, π

κ ], the classical second order Euler–Maclaurin formula yields

|gκ(x) − g(x)| =
∣∣∣∣∫ ∞

0

B2(k − �k�)
2

(fx,κ)′′(k) dk

∣∣∣∣ ,
where B2 is the second Bernoulli polynomial. It is known that B2(k−�k�)/2 =

∑∞
n=1

cos(2πnk)
(2πn)2 · Using this fact,

after some algebra we arrive at

|gκ(x) − g(x)| =
∣∣∣ ∞∑
n=1

1
(2πn)2

∫ ∞

0

[(
20k̂4−12

(1+k̂4)2
k̂2κ2 − y2

)
cos( 2πn−y

κ k̂)+cos( 2πn+y
κ k̂)

2(1+k̂4)

+ 8yκk̂3 − sin( 2πn−y
κ k̂)+sin( 2πn+y

κ k̂)

2(1+k̂4)2

]
dk̂
∣∣∣

for y = xκ and k̂ = kκ. Now,∫ ∞

0

|gκ(x) − g(x)| dx =
∫ π

κ

0

|gκ(x) − g(x)| dx +
∫ ∞

π
κ

|g(x)| dx.

Using g(x) = π
2 e−x/

√
2 sin(π

4 + x√
2
), the second integral approaches zero as κ → ∞. The first integral becomes∫ π

0

∣∣∣ ∞∑
n=1

1
(2πn)2

∫ ∞

0

[(
20k̂4−12

(1+k̂4)2
k̂2κ − y2

κ

)
cos( 2πn−y

κ k̂)+cos( 2πn+y
κ k̂)

2(1+k̂4)
+ 8yk̂3 − sin( 2πn−y

κ k̂)+sin( 2πn+y
κ k̂)

2(1+k̂4)2

]
dk̂
∣∣∣ dy

≤
∞∑

n=1

1
(2πn)2

∫ (2n+1)π

(2n−1)π

∣∣∣∫∞
0 cos( y

κ k̂) 10k̂4−6
(1+k̂4)3

k̂2κ dk̂
∣∣∣+ ∣∣∣∫∞

0 cos( y
κ k̂) π2

2(1+k̂4)κ
dk̂
∣∣∣+ ∣∣∣∫∞

0 sin( y
κ k̂) 4πk̂3

(1+k̂4)2
dk̂
∣∣∣ dy.
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The inner integrals in k̂ may all be viewed as Fourier coefficients of certain functions at the frequency y
κ . Since

these functions are integrable, their Fourier coefficients decay to zero as the frequency goes to infinity. Hence,
all inner integrals uniformly converge to zero as κ → ∞, and so does the complete term. �
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