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MACROSCOPIC CONTACT ANGLE AND LIQUID DROPS ON ROUGH SOLID
SURFACES VIA HOMOGENIZATION AND NUMERICAL SIMULATIONS
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Abstract. We discuss a numerical formulation for the cell problem related to a homogenization
approach for the study of wetting on micro rough surfaces. Regularity properties of the solution are
described in details and it is shown that the problem is a convex one. Stability of the solution with
respect to small changes of the cell bottom surface allows for an estimate of the numerical error, at least
in two dimensions. Several benchmark experiments are presented and the reliability of the numerical
solution is assessed, whenever possible, by comparison with analytical one. Realistic three dimensional
simulations confirm several interesting features of the solution, improving the classical models of study
of wetting on roughness.
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1. Introduction

Capillarity theory is a well established subject: the classical laws of Laplace and Young determining the shape
of a drop in equilibrium on a solid surface have been obtained two centuries ago. Nevertheless, the study of
sessile drops on rough surfaces has received considerable attention in the recent literature. This is mainly due to
the fact that the intrinsic hydrophobic or hydrophilic properties of a given surface can be considerably enhanced
by increasing its roughness (see Fig. 2). Some spectacular demonstrations of the effectiveness of roughness in
producing super-hydrophobic or super-hydrophilic surfaces are shown in [15].

While describing metastable states and accounting for contact angle hysteresis in contact line dynamics is
still quite challenging (see, however, [2, 6, 10] for recent progress on these issues), the effect of roughness on
the macroscopic contact angle exhibited by energy minimizing capillary drops is well understood, at least in
principle.

Following the Gauss variational formulation of the problem of capillarity, the shape L of a liquid drop of
prescribed volume V , sitting on a substrate S and surrounded by vapor environment V , is obtained by minimizing
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Figure 1. Sketch of a spherical cap.

Figure 2. On the left a fakir drop in equilibrium on a bed of micro pillars (Cassie–Baxter
configuration). If, after some evaporations, the radius of the drop is small enough, or external
pressure is exerted on the globule, the drop switches to a Wenzel state (drop on the right [15]).

F (L) = σSL|ΣSL| + σSV|ΣSV| + σLV|ΣLV|, (1.1)

where ΣXY is the interface between phases X and Y , |ΣXY | is its area and σXY is the corresponding interfacial
energy density (surface tension).

Minimizers of (1.1) satisfy Laplace’s law and Young’s law on the contact angle (see Fig. 1), namely

cos θ =
σSV − σSL

σLV
· (1.2)

Let us define

Lε = argmin
|L|=V

Fε(L), (1.3)

Fε = σSL|Σε
SL| + σSV|Σε

SV| + σLV|ΣLV|. (1.4)

It has been shown [1] that, if the rough solid surface is an ε-periodic perturbation Sε of a flat surface S,
converging to S as ε→ 0 (i.e., in the limit in which the scale of roughness is vanishingly small compared to the
true size of drop), then Fε Γ -converges, as ε→ 0, to the homogenized energy

F hom = σhom
SL |ΣSL| + σhom

SV |ΣSV| + σLV|ΣLV|, (1.5)

where σhom
SL and σhom

SV are obtained by suitable cell formulas and Lε converges towards L, given by

L = argmin
|L|=V

F hom(L). (1.6)
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Figure 3. A thin glassy polymer film covered by a regular array of pillars, as seen by scanning
electron microscopy (SEM) [17].

In particular, the macroscopic contact angle θhom satisfies

cos θhom =
σhom

SV − σhom
SL

σLV
· (1.7)

The renormalized surface tension σhom
SV (respectively σhom

SL ) represents the minimal energy per unit of macroscopic
area for a transition layer between the microscopically rough solid and the vapor phase (respectively, the liquid
phase). A physical explanation of the renormalization is that, for instance, the minimal energy transition between
a sufficiently rough solid surface and the liquid phase can be realized by a composite interface in which the
troughs near the bottom of the asperities are filled with vapor (see Fig. 2).

Moreover, the coefficients σhom
SV and σhom

SL can be characterized in principle as the solutions of well defined
variational problems (see Sect. 2).

The goal of this paper is to propose a numerical algorithm for computing σhom
SV and σhom

SL (and hence θhom

by (1.7)) in the case of a periodic rough surface of arbitrary complexity.
Complex micro-patterned surfaces, and even adaptive surfaces (see Fig. 3), are the subject of intense investi-

gation in the recent chemical and physical literature. We believe that our approach will provide a very valuable
predictive tool to guide the design of such surfaces.

The paper is organized as follows: in Section 2 we introduce the physical and mathematical setting of the cell
problems in (1.5), giving results about existence and regularity of the solution. Section 3 contains numerical
analysis on the approximation of the solution, in particular we provide an error estimate and a description
of the discretization. We also introduce a suitable minimization algorithm and show how to adapt it to our
framework. Finally, in Section 4, we perform some numerical experiments, both in two and three dimensions. In
some particular cases of the two-dimensional setting, the analytical solution is available and we compare it with
our numerical approximation. We complete the section with comments on the error obtained in the numerical
tests and the one predicted in Section 3.

2. Analysis of the cell problem

This section is devoted to a physical and mathematical introduction to the problem. Here we mention the
main physical aspects and we refer the interested reader to [1] for a detailed description. Then, we prove existence
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and regularity results for the solution of the problem. Finally, we provide an equivalent convex reformulation
that, combined with stability results, opens the way to the numerical resolution.

2.1. Homogenization formula and definition of the problem

Let us focus on the hydrophobic case, i.e. cos θhom < 0 (the hydrophilic case cos θhom > 0 is similar and it is
omitted in order to simplify the presentation). We assume that the solid surface is rough at a scale ε > 0 and
also flat at the macroscopic level, identified by the horizonal plane {xN = 0} (for N = 2, 3).

To be precise, we define a microscopically rough solid Aε of the form

Aε := {εx : x = (x1, ..., xN ) ∈ A}, (2.1)

where A is a closed set in R
N such that {xN ≤ 0} ⊂ A ⊂ {xN ≤ a} for some a > 0, it is t− periodic in the first

N − 1 directions for some t > 0 (i.e. invariant under translation by tei for i = 1, ..., N − 1) and it is symmetric
with respect to the coordinate planes {xi = 0} for i = 1, ..., N − 1.

In the limit ε→ 0, Aε converges to the half space S := {xN ≤ 0}, whereas energy-minimizing configurations
converge to the minimizers of the homogenized energy (1.5).

After a simple renormalization, we can reduce (1.1) to an equivalent interfacial energy of the form

F̃ = | cos θ||ΣSL| + |ΣLV|. (2.2)

The renormalized energy (2.2) shows that the only relevant physical parameter in the problem is cos θ. When
cos θ is negative, energy minimization promotes minimization of the area of the solid-liquid interface and ∂S is
called hydrophobic. In this situation (1.7) reduces to

− cos θhom = | cos θhom| = σhom
SL = σ̃SL = inf

V

F̃ (V,Qt)
|ωt|

, (2.3)

where ωt denotes the square in the plane {xN = 0} such that −t/2 < xi < t/2 for i = 1, ..., N − 1 and Qt is the
open cylinder ωt×R. Moreover, F̃ (V,Qt) denotes the energy associated with a test set V within the periodicity
cell ωt and the infimum is taken over all bounded sets V ⊆ Qt \ A which are symmetric with respect to the
coordinate planes {xi = 0} for i = 1, ..., N − 1.

It is evident that the numerical study of the minimization problem in (2.3) yields the apparent macroscopic
contact angle we are looking for.

From a mathematical point of view, we study this cell problem in Q = ω × [0, H ], H > 0, where ω =
R
N−1/ZN−1 is the (N − 1)-dimensional torus (see Fig. 4). We choose a connected open set A ⊂ Q (referred

to as the “bottom surface”) containing ω × {0} and at a positive distance from Γ = ω × {H} (in practice, a
subgraph). To simplify, we assume that A has Lipschitz boundary (sometimes this could be relaxed). The cell
problem consists in finding a set E ⊂ Ω = Q \A, containing Γ , that minimizes

σ = min
E

Per (E,Ω) +
∫
∂A

σχE dHN−1, (2.4)

where χE is the characteristic function of the set E and Per (E,Ω) =
∫
Ω |DχE | is the perimeter of E in Ω,

namely the Total Variation of χE .
Here σ is a constant such that 0 < σ ≤ 1. More generally, we will also consider the case where σ is a

continuous function defined on ∂A, with values in [0, 1] and positive minimum.
In this setting, the set E represents the volume occupied by the liquid and consists in the complement in Ω

of the bounded set V (“vapor”) in (2.3). Here we assume that H is large enough, so that V ⊂ Ω.
The minimum value σ is just a simpler notation for the effective surface tension σhom

SL = | cos θhom| of the
homogenized surface.
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Figure 4. The setting of the cell problem.

Remark 2.1. In a problem such as (2.4), the Dirichlet boundary condition Γ ⊆ E should be relaxed by adding
a term

∫
Γ
|1 − χE(x)| dHN−1(x) in the functional, taking into account (in the perimeter term) the parts of Γ

where the trace of χE vanishes, which therefore must be considered as parts of the boundary of E. However
observe that if E is a minimizer of the relaxed problem and if H ′ < H is such that ω × {H ′} is at positive
distance from ∂A, then the set E ∪ (ω × (H ′, H ]) has an energy lower than or equal to the relaxed energy
of E, showing that in fact the initial (non relaxed) problem actually has a minimizer in the class of sets which
contain Γ (or, precisely, such that the trace of χE on Γ is one).

2.2. Existence of a solution

The following lemma gives an existence result for our problem.

Lemma 2.2. Problem (2.4) has a solution.

The proof is given in [1] (Fig. 5 shows a possible solution). Here we provide a quick argument for the reader’s
convenience. The existence of a solution to (2.4) is an easy consequence of the lower semicontinuity (in L1) of
the functional which is minimized. This property can be shown as follows: let

dA(x) = dist(x,A) − dist(x,Q \A)

be the signed distance function to ∂A and assume that σ is extended to a continuous function σ(x) in Q, such
that 0 < σ < 1 in Q \ ∂A. We define

ψ(t) =
{
t2/(1 + t2) if t ≥ 0,
t2 otherwise.

The functional in (2.4) can be rewritten as the supremum

sup
n≥1

∫
Q

(σ(x) + ψ(n dA(x))(1 − σ(x))) |DχE | +
∫
Γ

|1 − χE(x)| dHN−1(x) +
∫
ω×{0}

ψ(n dA(x))χE(x) dHN−1(x)

if E is a finite perimeter set in Q, whereas it is +∞ if E ∩A has positive measure. Then, it is easy to see that,
for every n, each functional in this supremum is lower semicontinuous and this implies the thesis.
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Figure 5. A possible solution E.

2.3. Basic regularity properties

We recall that, by assumption, the boundary ∂A is at least of Lipschitz regularity. Moreover, we remark that
the boundary ∂E of any minimizer E is a minimal surface in Ω, hence it is analytical (if the dimension is not
too high, as in the cases N = 2, 3 we are interested in). In particular, ∂E ∩Ω ⊂ ∂E ∪ ∂A and then ∂E ∪ ∂A is
a closed set of finite measure HN−1 (covered by finitely many Lipschitz graphs). It follows that

|{dist(·, ∂E ∪ ∂A) ≤ δ}|
2δ

δ→0−→ HN−1(∂E ∪ ∂A) (2.5)

(see [3, 11] for the convergence of Minkowski contents).
The study of the contact surface ∂{x ∈ ∂A : χE(x) = 1} would be interesting. In particular, it is likely that

if ∂A is smooth enough, then the contact surface will have some regularity [4,12,16]. For a piecewise affine ∂A
this is less clear and we leave this point for future study. This will be important to get a complete proof of the
error estimate in dimension higher than N = 2 (see Sect. 3).

We observe, however, that a straightforward and standard estimate (see for instance [5]) bounds from below
the density of E at points in E (the closure being understood here in Q). To get rid of any ambiguity, we
identify E with the set E1 of the points where its Lebesgue density is 1. The density estimates will show that
this is an open set in Q, as well as the set of points E0 of density 0. The complement Q \ (E1 ∪ E0), which
is known as the set-theoretical boundary (and is Lebesgue-negligible), therefore coincides with its topological
boundary (and HN−1-a.e. with its reduced boundary, see [11]).

The estimate is obtained as follows. We assume, here and in the remainder of the paper, that σ > 0 is
either a constant or a function bounded from below by a constant σ0 > 0. Consider a point x ∈ E such that
|B(x, r) ∩ E| > 0 for each r > 0 (otherwise x is in the interior of the points of density 0 for E). Here B(x, r)
denotes the ball of center x and radius r, and we assume that r is small enough so that B = B(x, r) ⊂ Q.
More precisely, we should consider a ball in the periodic “unfolding” of Q in R

N−1 × [0, H ], whose canonical
projection onto ω× [0, H ] is Q, and consider only balls B which lie inside one period (hence, r ≤ 1). But, since
we think there is no ambiguity, we will skip this detail to make the proof more readable.
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Then, for a.e. r ∈ (0, 1),

Per (E ∩B) = HN−1(∂B ∩E) + HN−1(∂E ∩B ∩Ω) +
∫
∂A∩B

χE dHN−1

and, by the minimality of E, i.e.

Per (E,Ω) + σ0

∫
∂A

χE dHN−1 ≤ Per (E \B,Ω) + σ0

∫
∂A

χE\B dHN−1,

it follows that
HN−1(∂B ∩E) ≥ HN−1(∂E ∩B ∩Ω) + σ0

∫
∂A∩B

χE dHN−1.

Combining the last two inequalities and using the isoperimetric inequality, we get

c|E ∩B|1− 1
N ≤ σ0 + 1

σ0
HN−1(∂B ∩ E).

Letting f(r) := |E ∩ B(x, r)|, so that f ′(r) = HN−1(∂B ∩ E) for a.e. r, we deduce (using Gronwall’s lemma)
that there exists a constant κ > 0, depending only on the dimension and σ0, such that f(r)/rN ≥ κ > 0. In
particular, if |E ∩B(x, r)| < κrN for some small radius (≤ 1), then x is in the interior of the complement of E.
It follows that the set E0 of points of Q where E has density zero is open.

The same kind of argument would show that if x ∈ Ω \ E and B(x, r) ⊂ Ω, then |B(x, r) \ E| ≥ κrN . Since
we have assumed that ∂A is Lipschitz, we can easily prove (possibly changing the value of κ) that if x ∈ Q \E
and |B(x, r) \E| < κrN , then x is in the interior of E1. We deduce that the topological boundary of E consists
exactly of the points of Q where E has density neither 0 nor 1. We have shown the following:

Lemma 2.3. Let E solve (2.4). Then E, as a subset of Q, satisfies the two following density estimates: there
exists κ > 0 such that, for r small enough (r ≤ 1 and such that B(x, r) ⊂ Q),

• if |E ∩B(x, r)| ≤ κrN , then there is a smaller radius r′ > 0 such that |E ∩B(x, r′)| = 0,
• if |B(x, r) \ E| ≤ κrN , then there is a smaller radius r′ > 0 such that |B(x, r′) \ E| = 0.

In particular, the points of Lebesgue density 0 or 1 form two open sets, with common topological boundary
(denoted by ∂E), which coincides HN−1-a.e. with the reduced boundary of E in Q.

2.4. Equivalent convex formulation

Here we show that our minimization problem is a convex problem, i.e. a minimization of a convex functional
over a convex domain. The convex formulation will be useful to perform the numerical discretization of the
problem and implement the algorithm proposed for its resolution (see Sect. 3).

The approach is standard. Let u ∈ BV (Ω) and consider the problems

σ1 = min
{∫

Ω

|Du| +
∫
∂A

σu dHN−1 : u ∈ BV (Ω), u = 1 on Γ, u ≥ 0
}

(2.6)

and

σ2 = min
{∫

Ω

|Du| +
∫
∂A

σ|u| dHN−1 : u ∈ BV (Ω), u = 1 on Γ

}
(2.7)

The following proposition shows that σ1 = σ2 = σ, where σ is given by (2.4).

Proposition 2.4. We have σ1 = σ2 = σ. Moreover, given any solution E of (2.4), then χE solves both (2.6)
and (2.7). Conversely, given any solution u of either (2.6) or (2.7), then for any s ∈ (0, 1), {u > s} and {u ≥ s}
are both solutions of (2.4).
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Remark 2.5. As discussed in Remark 2.1, we should relax the boundary condition u = 1 on Γ , by adding a
term

∫
Γ |1− u(x)| dHN−1(x) to the functionals (2.6) and (2.7). Again, for any function u, we can always define

u′(x) =
{
u(x) if xN < H ′
1 otherwise

which has an energy less than or equal to the energy of u, showing that the non-relaxed problem can indeed be
minimized in the class of functions which are 1 in a neighborhood of Γ , where it is equivalent to the relaxed
problem.

Proof of Proposition 2.4. The proof is an easy consequence of the coarea formula. First, the value σ of (2.4) is
greater than or equal to the solutions of the two other minimization problems. Indeed, if E is a set with finite
perimeter in Ω, then the energy of E is the same as the energy of χE in (2.6) and (2.7). It follows that if u is a
solution of (2.7), then u ≥ 0 a.e. (and also u ≤ 1, since otherwise (0 ∨ u) ∧ 1 has lower energy, strictly lower if
it differs from u), so that it is a solution of (2.6). Now, we also have∫

Ω

|Du| +
∫
∂A

σu dHN−1 =
∫ 1

0

(
Per ({u > s}, Ω) +

∫
∂A

σχ{u>s} dHN−1

)
ds ≥ σ

and this shows that the value σ1 = σ2 is greater or equal to the value of (2.4). In particular {u > s} solves (2.4)
for a.e. s ∈ (0, 1). But, since {u > s} =

⋃
n{u > sn} for any sequence sn ↓ s and {u ≥ s} =

⋂
n{u > sn} for

any sequence sn ↑ s, the conclusion follows by approximation. �

2.5. Comparison

We show that our problem is monotone with respect to σ. In particular, the solution is generically unique,
in the sense that if we replace σ in (2.4) by σ + t, t ∈ R, then there is a unique minimizer Et for all t but a
countable number.

Lemma 2.6. Let σ < σ′ on ∂A. Assume that E solves (2.4) with σ and E′ solves the same problem with σ
replaced by σ′. Then ∂E ∩ ∂A ⊇ ∂E′ ∩ ∂A.

In particular, if E is the largest (in the sense of the inclusion) solution corresponding to σ and E′ is the
smallest solution corresponding to σ′, then E ⊇ E′.

Proof. Let u and u′ respectively solve (2.6) with σ and σ′. In particular,∫
Ω

|Du| +
∫
∂A

σu dHN−1 ≤
∫
Ω

|D(u ∨ u′)| +
∫
∂A

σ(u ∨ u′) dHN−1,∫
Ω

|Du′| +
∫
∂A

σ′u′ dHN−1 ≤
∫
Ω

|D(u ∧ u′)| +
∫
∂A

σ′(u ∧ u′) dHN−1.

Summing up both inequalities and using the celebrated inequality∫
Ω

|D(u ∨ u′)| + |D(u ∧ u′)| ≤
∫
Ω

|Du| + |Du′|,

we get ∫
∂A

σ′(u′ − u ∧ u′) dHN−1 ≤
∫
∂A

σ(u ∨ u′ − u) dHN−1.

Since u′ − u ∧ u′ = u ∨ u′ − u = (u′ − u)+, we deduce that if σ < σ′, then (u′ − u)+ = 0 HN−1-a.e. on ∂A. In
other words, the traces of u and u′ on ∂A satisfy u′ ≤ u. It follows that ∂E′ ∩ ∂A ⊆ ∂E ∩ ∂A.

If u′ is a minimal solution and u is a maximal solution, we also deduce that u′ ≤ u a.e. in Ω, since otherwise
u′ ∧ u ≤ u′ would have energy less than or equal to the energy of u′ in (2.6), and the same for u′ ∨ u ≥ u with
respect to u. �
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Remark 2.7. In dimension N = 2, if ∂A is a graph and u = χE is a solution of the problem, then it follows
that ∂E is also a graph. In particular, for a given trace u = χ∂E∩∂A on ∂A, the graph ∂E ∩ Ω is unique, as it
is the solution of a strictly convex problem. In this case, σ < σ′ ⇒ E ⊇ E′.

2.6. Stability of the cell problem

Here we show that if ∂A is Lipschitz, then the cell problem is “continuous” with respect to variations of ∂A,
provided that the measure of ∂A is continuously changed.

Proposition 2.8. For n→ ∞, let An → A be such that ∂An → ∂A in the Hausdorff sense and HN−1(∂An) →
HN−1(∂A). Assume that σn : Q→ [0, 1] is a continuous function, converging uniformly to σ. Assume also that
the boundary ∂A is Lipschitz and define

E(u) =
∫
Ω

|Du| +
∫
∂A

σ|u| dHN−1.

Moreover, set Ωn = Q \An and define

En(u) =
∫
Ωn

|Du| +
∫
∂An

σn|u| dHN−1,

σn = min
E⊃Γ

En(χE),

where σn is the effective surface tension associated to An and σn.
Then, for n→ ∞,

σn → σ = min
E⊃Γ

E(χE).

Remark 2.9. The assumption that ∂A is Lipschitz could be replaced by a slightly weaker assumption, such as
the fact of being locally a subgraph at each point.

Proof of Proposition 2.8. We show a Γ -convergence result: first we extend En and E to BV (Q), by defining
(with a little abuse of notation)

En(u) =
{
En(u|Ωn

) if u = 0 a.e. in An
+∞ otherwise

and

E(u) =
{
E(u|Ω) if u = 0 a.e. in A
+∞ otherwise .

Let un → u. For every B ⊂⊂ Ω, we have that B ⊂ Ωn for n large enough and∫
B

|Du| ≤ lim inf
n→∞

∫
B

|Dun|. (2.8)

If B is a neighborhood of ∂A, then it is also a neighborhood of ∂An for n large enough and∫
∂A

σ|u| ≤
∫
B

σ|Du| ≤ lim inf
n→∞

∫
B

σn|Dun| (2.9)

≤ lim inf
n→∞

∫
∂A

σn|un| +
∫
B∩Ωn

|Dun|.

From (2.8) and (2.9) we easily deduce the Γ - lim inf inequality, namely

E(u) ≤ lim inf
n→∞ En(un). (2.10)
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Conversely, let u ∈ BV (Ω; [0, 1]) (identified by uχΩ ∈ BV (Q; [0, 1])), such that u = 1 on Γ . We want to find
a sequence un (also satisfying un = 1 on Γ ), converging to u and such that the Γ - lim sup inequality holds, i.e.,

lim sup
n→∞

En(un) ≤ E(u). (2.11)

From both (2.10) and (2.11) it will follow the Γ -convergence of En to E , yielding σn → σ.
Now, by Meyers–Serrin’s theorem, there exists uk → u such that uk ∈ C∞(Ω; [0, 1]) and∫

Ω

|∇uk| dx→
∫
Ω

|Du| as k → ∞.

Since, by construction, the traces of uk and u coincide on ∂A (and in any case, since ∂A is Lipschitz, the trace
of uk goes to the trace of u as a consequence of the convergence of the total variations), then E(uk) → E(u) as
k → ∞ and (by a standard diagonal argument) it is enough to show that (2.11) holds for each uk: hence we
assume that u is smooth in Ω.

Since ∂A is Lipschitz, we can extend u|Ω to a function u′ defined on a slightly larger set Ω′ = {x ∈ Q :
dist(x,Ω) < δ}, for δ > 0, in such a way that 0 ≤ u′ ≤ 1 and u′ is Lipschitz in Ω′ (see for instance [9]).
Let un = u′χΩn for n large. Clearly,

lim
n→+∞

∫
Ωn

|∇un| dx = lim
n→+∞

∫
Ωn

|∇u′| dx =
∫
Ω

|∇u| dx.

By the assumption HN−1(∂An) → HN−1(∂A), we have, weakly-∗ as measures,

HN−1 ∂An ⇀ HN−1 ∂A,

where HN−1 ∂An and HN−1 ∂A denote the restrictions of the Hausdorff measure to ∂An and ∂A respec-
tively. Moreover, σnu′ → σu′ uniformly in Ω′. Hence,∫

∂An

σnun dHN−1 =
∫
∂An

σnu
′ dHN−1 →

∫
∂A

σu′ dHN−1 =
∫
∂A

σu dHN−1.

We conclude that En(un) → E(u), i.e. (2.11) holds, and this finishes the proof. �

3. Numerical approximation

In this section we provide an error estimate for the discretization of the problem discussed in Section 2.
We complete the analysis by describing the minimization algorithm that will be employed for the numerical
simulations and introducing a finite element formulation of the equivalent convex problem (2.7).

3.1. Error estimates

We wish to compute σ in (2.4) as precisely as possible. We assume, for simplicity, that ∂A is a polygonal
boundary. By Proposition 2.8, any Lipschitz surface ∂A can be replaced by a polygonal set with a small error,
provided its total surface HN−1(∂A) is precisely approximated. However, the error obtained in this case can
be tricky to estimate. The technique for obtaining error bounds for problems with discontinuous solution is
relatively standard and consists first in smoothing the solution, it has been applied in particular for studying
error bounds in Total Variation based regularization in [13, 18].

If ∂A is polygonal we can find, for each h > 0, a triangulation Th of Ω such that each simplex T of Th has a
diameter less than h. Moreover, we consider a standard regularity assumption on the triangulation, i.e., there
exists a constant K, not dependent on h, such that the radius of the largest ball contained in each T ∈ Th is
more than the diameter of T , divided by K.
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The approximate problem is
σh = min

u∈Vh

E(u), (3.1)

where E(u) is defined as in Proposition 2.8 and Vh denotes the set of piecewise affine functions in C(Ω), affine
on each T ∈ Th, with value 1 on Γ .

Let u = χE be a solution of (2.4). Consider uδ ∈ C2(Ω), with u = 1 on Γ and such that for some constant
C > 0,

|D2uδ| ≤ C

δ2
and {u �= uδ} ⊂ {dist(·, ∂E ∪ ∂A) ≤ Cδ}. (3.2)

In particular, u and uδ are constant at some distance from ∂E ∪ ∂A, which is a closed set of finite measure
HN−1.

Let uδh = Πh(uδ) be the Lagrange interpolation of uδ on Th, i.e., uδh ∈ Vh and uδh = uδ at each vertex of each
simplex of Th. Standard interpolation arguments show that, for every T ∈ Th,∫

T

|∇uδh −∇uδ| dx ≤ c|T |diam(T )
ρ(T )

2

‖D2uδ‖L∞(T ) ≤ cK|T |hC
δ2
, (3.3)

where c is an explicit constant depending only on the dimension and diam(T ), ρ(T ) are respectively the diameter
of T and the radius of the largest ball contained in T . On the other hand, if Σ is a facet of T ,∫

Σ

|uδh − uδ| dHN−1 ≤ c|Σ|diam(Σ)2‖D2uδ‖L∞(Σ) ≤ c|Σ|h2 C

δ2
· (3.4)

We deduce that

E(uδh) ≤ E(uδ) + cK|{u �= uδh}|
Ch

δ2
+ cHN−1(∂A)

Ch2

δ2
·

Since uδh = uδ = u at a distance from ∂A ∪ ∂E larger than Cδ + h, using (3.2) and (2.5), we get

|{u �= uδh}| ≤ 4(Cδ + h)HN−1(∂E ∪ ∂A)

if Cδ + h is small enough. Assuming also h ≤ δ, we can find a constant (still denoted by c), depending on K,
on the dimension, on C and on the energy of χE , such that

E(uδh) ≤ E(uδ) + c
h

δ
· (3.5)

Now suppose that we can build uδ such that, for some positive constant (denoted again by c),

E(uδ) ≤ E(u) + cδ = σ + cδ. (3.6)

Then, from (3.5) and (3.6), we deduce that, in order to minimize the global error, the optimal choice for δ is
δ = δh �

√
h. Letting uh = uδh

h , we eventually get the error estimate

σ ≤ E(uh) ≤ σ + c
√
h. (3.7)

It is easy to build uδ in a few situations. In dimension N = 2, since ∂A is piecewise affine, one can show that
∂E ∩ Ω is a finite union of straight lines connecting two points of ∂A. In this case, we can find a small δ > 0
such that we can add a segment of length δ to both extremities of each of these lines, so that the segment is in
the interior of A, except for its end which is in common with ∂E. This argument allows to extend the set E to
a set Eδ defined in the whole set {x ∈ Q : dist(x,Ω) < cδ} for some constant c > 0, depending only on ∂A.
We finally mollify χEδ by convolution with a radially symmetric kernel (1/δ′N )η(x/δ′), supported in the ball



848 S. CACACE ET AL.

centered at the origin with radius δ′ = cδ. The result, restricted to Ω, is a function uδ satisfying both (3.2)
and (3.6).

In higher dimension, the situation is more complicated. If we know, for instance, that there exists a constant
c such that

HN−1(∂E ∩ {0 < dist(x, ∂A) < δ}) ≤ cδ,

then by standard techniques we can reflect E across ∂A and the proof will follow as in dimension N = 2.
However, such estimate is not clear in general.

Remark 3.1. The error estimate (3.7) has been derived on simplices. However, for the numerical implemen-
tation, we found it more efficient to use unstructured quadrilateral meshes in dimension N = 2 and hexaedral
meshes in dimension N = 3. There is no difficulty in extending the error estimate (3.7) to a set Ω = Q\A which
is approximated, for instance, by piecewise N -linear polynomials. We would get similar estimates for uδh and
then for uh. But, in order to get rigorously all these estimates, we have to assume that the boundary ∂A of the
meshed domain is piecewise linear, fixed and not depending on the mesh size (which is even more restrictive with
quadrilaterals than with simplices). In practice, our mesh also approximates a piecewise smooth boundary ∂A
(with an error O(h) on the surface). In this situation, it is quite difficult to extend the analysis into a sound
error estimate, and would require a precise knowledge of the regularity of u near ∂A. We expect that this does
not change the final order of the approximation. Indeed, we found experimentally that the global order is much
better than expected, of order h rather than h1/2 (see Fig. 8 in Sect. 4). Understanding this behaviour is the
subject of future studies.

3.2. The minimization scheme: ADMM

From a numerical point of view, the major issue in finding the solution of the equivalent convex formulation
of (2.4) is the boundedness requirement u ≥ 0. The natural way to tackle this kind of minimization is to use
splitting techniques among which the most natural would be the Douglas–Rachford splitting [7, 14], after a
careful rewriting of the optimality conditions. Very useful for this kind of problem is also the so called ADMM
(“Alternating Direction Method of Multipliers”, also known as “split Bregman”, see [8] for details) which is very
flexible. After having investigated both directions, we have found the second one more efficient for this problem,
and will now describe it. ADMM is a Lagrangian-based technique, which is very popular in image restoration
problems, where a TV-l1 minimization is needed.

Following [8], we give here a brief sketch of the method. Consider the problem

min
u∈R

m

Ku=f

J(u) (3.8)

and assume that J(u) has separable structure, i.e. it can be written as

J(u) = H(u) +
M∑
i=1

Gi(Âiu+ bi),

where H : R
m → (−∞,∞] and all the Gi : R

ni → (−∞,∞] are closed proper convex functions. Moreover,
f ∈ R

s, bi ∈ R
ni , Âi is a ni ×m matrix and K is a s×m matrix.

Introducing new variables pi = Âiu+ bi, we can rewrite (3.8) as

min
p∈R

n,u∈R
m

Bp+Âu+b=0

F (p) +H(u), (3.9)

where

F (p) =
M∑
i=1

Gi(pi), n =
M∑
i=1

ni, p = (p1, · · · , pM )T , b = (b1, · · · , bM , f)T
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and

B =
[
−I
0

]
, Â =

⎡⎢⎢⎢⎣
Â1

...
ÂM
−K

⎤⎥⎥⎥⎦ .
The augmented Lagrangian associated to the primal problem (3.9) is

Lδ(p, u, μ) = F (p) +H(u) + 〈μ, b− Âu−Bp〉 +
δ

2

∥∥∥b− Âu−Bp
∥∥∥2

,

where the dual variable μ ∈ R
d (with d = n + s) is interpreted as a vector of Lagrange multipliers. The dual

functional qδ : R
d → [−∞,∞) is a concave function defined by

qδ(μ) = inf
u∈R

m

p∈R
n

Lδ(p, u, μ).

The dual problem to (3.9) is then
max
μ∈Rd

qδ(μ). (3.10)

Since (3.9) is a convex programming problem with linear constraints, if it has an optimal solution (p∗, u∗),
then (3.10) also has an optimal solution μ∗ and

F (p∗) +H(u∗) = qδ(μ∗),

which is to say that the duality gap is zero. It follows that finding an optimal solution to (3.9) and (3.10) is
equivalent to finding a saddle point of Lδ. More precisely, (p∗, u∗) is an optimal primal solution and μ∗ is an
optimal dual solution if and only if

Lδ(p∗, u∗, μ) ≤ Lδ(p∗, u∗, μ∗) ≤ Lδ(p, u, μ∗) ∀ p, u, μ.

Starting from an initial guess u0, μ0, the iterations of the ADMM algorithm at step (k + 1), with k ∈ N, are
given by

pk+1 = argmin
p∈Rn

Lδ
(
p, uk, μk

)
,

uk+1 = argmin
u∈Rm

Lδ
(
pk+1, u, μk

)
, (3.11)

μk+1 = μk + δ
(
b− Âuk+1 − Bpk+1

)
.

3.3. Finite element discretization

For h > 0, let Th be an unstructured subdivision of Ω into quadrilaterals (in dimension N = 2, hexaedra in
dimension N = 3) of maximal diameter h and let Kl be the l-th element of the corresponding mesh. Besides,
let ∂Ah be a polygonal approximation of the boundary of the solid A. In order to simplify the presentation, we
identify, with a little abuse of notation, Th with Ω and ∂Ah with ∂A. We then consider two finite dimensional
spaces Vh and Wh for the discrete representation of u and Du respectively, by means of piecewise N -linear and
piecewise constant polynomials:

Vh = {v ∈ C0(Ω) : v|Kl
∈ Q1, l = 1, .., Ne},

Wh = {w ∈ L2(Ω)N : w|Kl
∈ [P0]N , l = 1, .., Ne},
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where Ne is the number of elements of the mesh, Q1 denotes the polynomials of degree 1 in each coordinate
direction and [P0]N denotes the N -dimensional vectors of constant polynomials. In the Finite Element termi-
nology this choice is known as the Q1-P0 approximation. We remark that the reference basis for Q1 is given,
in dimension N = 2, by {1, x, y, xy} and that the degrees of freedom of Vh are identified by the vertices of
the quadrilaterals (hexaedra in dimension N = 3). On the other hand, the space Wh contains discontinuous
functions and its degrees of freedom are located at the baricenters of the elements.

In the discretized form, problem (2.7) can be read as

σ2 = min
{∫

Ω

|∇u| +
∫
∂A

σ|u| : u ∈ Vh, u = 1 on Γ
}
· (3.12)

Note that, for a discrete function u ∈ Vh, the total variation term
∫
Ω

|Du| reduces to the L1 norm of its gradient.

Now we can write the augmented Lagrangian associated with the energy in (3.12). We introduce p1 ∈Wh and
p2 ∈ Vh as auxiliary variables for the two terms in the functional and we denote by n1 the number of degrees
of freedom (dofs for short) of Wh, by n2 the number of dofs of Vh. Moreover, let us identify discrete functions
in Wh and Vh by the vectors of their dofs in the finite element representation, so that we can also write, with a
little abuse of notation, p1 ∈ R

n1 and p2 ∈ R
n2 (see Sect. 3.4 for further details). According to the notation of

the previous section, we set

K = 0, f = 0, H = 0, n = n1 + n2, p = (p1, p2)T ∈ R
n, b = (0, 0)T ,

F (p) = F (p1, p2) = G1(p1) +G2(p2) =
∫
Ω

|p1| +
∫
∂A

σ|p2|,

μ = (μ1, μ2) ∈ R
n, B = −I, Â =

[
∇
I

]
,

where I denotes the identity operator and ∇ is a discrete version of the gradient operator, that will be detailed
in Section 3.4. Then we can write, for δ > 0,

Lδ(p, u, μ) =
∫
Ω

|p1| +
∫
Ω

μ1· (p1 −∇u) +
δ

2

∫
Ω

|p1 −∇u|2 (3.13)

+
∫
∂A

σ|p2| +
∫
∂A

μ2(p2 − u) +
δ

2

∫
∂A

|p2 − u|2.

Following the ADMM algorithm, we define the alternating steps in (3.11) for every k ∈ N. We minimize first
in p, i.e. we find, given the initial guess μ0 = 0 and u0 arbitrary,

pk+1 = argmin
p∈Rn

∫
Ω

|p1| +
∫
Ω

μk1 · (p1 −∇uk) +
δ

2

∫
Ω

∣∣p1 −∇uk
∣∣2

+
∫
∂A

σ|p2| +
∫
∂A

μk2(p2 − uk) +
δ

2

∫
∂A

|p2 − uk|2.

This is equivalent to finding

pk+1 = argmin
p∈Rn

∫
Ω

[
|p1| +

δ

2

∣∣∣∣p1 −∇uk +
μk1
δ

∣∣∣∣2
]

+
∫
∂A

[
σ|p2| +

δ

2

∣∣∣∣p2 − uk +
μk2
δ

∣∣∣∣2
]
. (3.14)

Then, we can split the global minimization for p into two sub-problems for p1 and p2 and argue that, with little
abuse of notation,

pk+1 = argmin
p∈Rn

Lδ(p, uk, μk) =
(

argmin
p1∈Rn1

Lδ(p, uk, μk), argmin
p2∈Rn2

Lδ(p, uk, μk)
)

=
(
pk+1
1 , pk+1

2

)
.



DROPS ON ROUGH SURFACES 851

We look at the first term in (3.14) and define a = ∇uk − μk1
δ

. We get the following chain of inequalities:

T (p1) :=
∫
Ω

[
|p1| +

δ

2
|p1 − a|2

]
=

∫
Ω

[
|p1| +

δ

2
|p1|2 − δ(p1· a) +

δ

2
|a|2

]
≥

∫
Ω

[
|p1| +

δ

2
|p1|2 − δ|p1||a| +

δ

2
|a|2

]
≥

∫
Ω

[
δ

2
|a|2 + |p1|(1 − δ|a|)

]
. (3.15)

Now, if (1− δ|a|) ≥ 0, we conclude that T (p1) ≥
∫
Ω

δ

2
|a|2 for every p1 ∈ R

n1 and the minimum value is attained

at p1 = 0. On the other hand, If (1 − δ|a|) < 0, we can compute the differential of T out of the origin,

∇T (p1) =
∫
Ω

[
p1

|p1|
+ δ(p1 − a)

]
,

which is equal to 0 for p1 =
a

|a|

(
|a| − 1

δ

)
and we conclude that

pk+1
1 =

(
1 − 1

max(1, δ|a|)

)
a.

More generally, we can introduce the shrinkage operator Sλ : v �−→ v

|v| (|v| − λ)+, so that

pk+1
1 = S 1

δ

(
∇uk − μk1

δ

)
. (3.16)

Similarly, minimizing (3.14) in p2, we get

pk+1
2 = Sσ

δ

(
uk − μk2

δ

)
. (3.17)

The next step is the minimization in u, i.e., finding

uk+1 = argmin
u∈Rn2

Lδ(pk+1, u, μk).

By omitting in Lδ(pk+1, u, μk) the terms containing only pk+1
1 , pk+1

2 , μk1 and μk2 , which are constant with respect
to u, we have

uk+1 = argmin
u∈Rn2

δ

2

∫
Ω

[
|∇u|2 − 2

(
pk+1
1 +

μk1
δ

)
· ∇u

]
(3.18)

+
δ

2

∫
∂A

[
|u|2 − 2

(
pk+1
2 +

μk2
δ

)
u

]
.

Let us define ck1 := pk+1
1 +

μk1
δ

and ck2 := pk+1
2 +

μk2
δ

. Then, the stationarity condition for (3.18) reads, for every

v ∈ Vh such that v|Γ = 0, as ∫
Ω

∇u · ∇v +
∫
∂A

u v =
∫
Ω

ck1 · ∇v +
∫
∂A

ck2v. (3.19)
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As we will see in the next section, (3.19) gives rise to a linear system, whose solution uk+1 converges, as k → +∞,
to the numerical solution of our problem. Moreover, the boundary condition u = 1 on Γ will be imposed directly
on the linear system, by means of a Gaussian elimination.

The last step consists in the update of the Lagrange multipliers, which is done in a standard way:

μk+1
1 = μk1 + δ

(
pk+1
1 −∇uk+1

)
,

μk+1
2 = μk2 + δ

(
pk+1
2 − uk+1

)
.

3.4. Numerical implementation

The numerical implementation of the ADMM algorithm for our problem involves three main steps: the
representation of ∇u, the representation of p, i.e. the numerical counterpart of the shrinkage operator, and
the representation of u, i.e. the solution of the linear system associated to the discretization of the elliptic
equation (3.19).

Step 1. Since u and ∇u are defined on different finite element spaces, each one with its own degrees of freedom

and set of basis functions, we have to find a representation of ∇u inWh for a given u in Vh. So, given u =
n2∑
i=1

uiφi,

where {φi} is a basis for Vh and {ui} ∈ R
n2 , we represent ∇u through the projection Π(∇u) onto Wh. Let {ψj}

be a basis for Wh and cosider the problem of finding {wj} ∈ R
n1 such that Π(∇u) =

n1∑
j=1

wjψj pointwise, i.e.,

for every x ∈ Ω,
n1∑
j=1

wjψj(x) =
n2∑
i=1

ui∇φi(x).

We take the scalar product between each side of the equation and ψk(x), we perform a summation over k =
1, ..., n1 and we integrate on Ω, so that

n1∑
k=1

n1∑
j=1

wj

∫
Ω

ψj(x) · ψk(x) =
n1∑
k=1

n2∑
i=1

ui

∫
Ω

∇φi(x) · ψk(x).

Then, we have to solve the following linear system:

Mψw = T∇φ,ψu,

where Mψ is the mass matrix of Wh, w = {wj} is the unknown vector representing ∇u on Wh, T∇φ,ψ is the
n1 × n2 matrix for the change of coordinates between Vh and Wh and u = {ui} is the vector representing u
on Vh.

Step 2. The second issue of our implementation is the shrinkage operator related to the minimization of the
augmented Lagrangian (3.13) with respect to p1 ∈ Wh and p2 ∈ Vh. As in Step 1, we need to project the
pointwise formulas (3.16) and (3.17) on Wh and Vh respectively.
Recalling the definition a = ∇u− μ1

δ
, represented on Wh by {aj} ∈ R

n1 , we get for p1

n1∑
j=1

p1,jψj(x) =
(

1 − 1
max (1, δ |

∑n1
l=1 alψl(x)|)

) n1∑
j=1

ajψj(x),

from which we obtain the following linear system:

Mψp1 = Sψ1
δ

[a] a,
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Figure 6. Benchmark configurations. (a) Pillars with the same height. (b) A particular geom-
etry leading to an intermediate equilibrium between Wenzel and Cassie–Baxter configurations.

where Mψ is the mass matrix of Wh, p1 is the unknown vector representing p1 on Wh, a is the vector repre-
senting a on Wh and Sψ1

δ

[a] is the n1 × n1 shrinkage matrix defined by

(
Sψ1

δ

[a]
)
jk

=
∫
Ω

(
1 − 1

max(1, δ|
∑n1
l=1 âlψl(x)|)

)
ψj(x)·ψk(x).

Similarly, for a = u− μ2

δ
in Vh, we get the following linear system for p2

Mφp2 = Sφσ
δ
[a] a,

with analogous meaning of the symbols.

Step 3. The last step, concerning the minimization with respect to u, is standard. By classical arguments, it is
easy to see that (3.19) defines a bilinear form L : Vh × Vh → R and a linear continuous functional F : Vh → R,
i.e.,

L(u, v) :=
∫
Ω

∇u(x)· ∇v(x) +
∫
∂A

u(x)v(x),

F(v) :=
∫
Ω

c1(x)· ∇v(x) +
∫
∂A

c2(x)v(x).

Solving the associated linear system completes the iterative scheme. We recall that the Dirichlet boundary
condition u = 1 on Γ is enforced directly in the matrix of the linear system, by means of a standard Gaussian
elimination.

4. Numerical tests

We begin by showing some benchmark experiments in dimension N = 2, in order to check the performance of
the method. We first consider configurations in which the minimal energy σ, defining the cosine of the effective
contact angle θhom of the homogenized surface, can be plainly computed and compared with our numerical
results. In particular, for the case of equally spaced pillars with the same height, shown in Figure 6a, we would
like to give an estimate of the critical surface tension σ above which the liquid phase does not fill the space
between the asperities.

Indeed, it is easy to see that such a geometry allows only for two possible minimizers: the first fills the
cavities with the fluid (Wenzel configuration), the second performs the transition at the level of the top of the
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Table 1. Numerical results for the first benchmark test (see Fig. 6a).

σ θ Behaviour σ σnum θhom,num

0.32 108◦ Wenzel 0.5333 0.5333 122◦

0.34 110◦ Cassie–Baxter 0.56 0.5619 124◦

Table 2. Numerical results for the second benchmark test (see Fig. 6b).

σ θ Behaviour σ σnum θhom,num

0.2 101.5◦ Wenzel 0.44 0.44 116◦

0.205 102◦ Mixed 0.4417 0.4435 116◦

0.455 117◦ Mixed 0.7241 0.7256 136.5◦

0.46 117◦ Cassie–Baxter 0.73 0.7316 137◦

pillars (Cassie–Baxter configuration). So, if we choose a = 0.3333 and b = 0.3334, the critical σ that establishes
the switch is given by σcrit = 0.3334. We denote by the superscript “num” the quantities that are numerical
approximations of the corresponding mathematical quantities. The numerical results are very satisfactory: we
obtain the estimate σnum

crit ≈ 0.335.
Table 1 shows the results for different values of σ. We should specify that the accuracy of the approximation

depends on the mesh size: exploiting adaptive mesh refinement techniques and obviously more computing
resources, we can reach even much better estimates.

In the second test (see Fig. 6b) the possible behavior is more complicated, indeed it is allowed an equilibrium
configuration of the liquid that combines features of both Wenzel (complete contact on tall asperities) and
Cassie–Baxter (composite contact on short asperities) configurations. It is easy to show that this intermediate
configuration is the optimal one if

a′

b′
≤ 1 − σ

2σ
≤ a

b
· (4.1)

By choosing a = 0.2, b = 0.1, a′ = 0.2 and b′ = 0.3, we obtain that the bounds in (4.1) are violated for
σmin

crit = 0.2 and σmax
crit = 0.4285 respectively. To be precise, σmax

crit is an approximation, since the corresponding
bound in (4.1) has been obtained by replacing the length of the slightly tilted liquid-vapor interface with the
length of its horizontal projection (see [1] for details).

For σ ≤ σmin
crit the liquid fills all the cavities (Wenzel configuration), whereas for σ ≥ σmax

crit it touches only
the tallest faces of the pillars (Cassie–Baxter configuration). Also for this test the numerical results are very
satisfactory: we obtain the estimates σmin,num

crit ≈ 0.2 and σmax,num
crit ≈ 0.455 (as mentioned above, the analytical

critical values are affected by a simplification).
Figure 7 and Table 2 show, respectively, the numerical approximation of two minimizers and the results for

different values of σ.
The two examples above can be also used for checking the error estimate (3.7) on uniform grids with square
cells. Indeed, the local match of Young’s law allows for the calculation of the exact σ̄ in both cases. We have
that the lower bound in (3.7) is always fulfilled, that is, given a mesh size h, we have that σ̄h (the approximation
of σ̄ on Vh) is always greater than σ̄. Unexpectedly, the upper bound behavior is even linear with respect to h
(see Fig. 8 and also Rem. 3.1).

In the case of pillars at the same height the analysis is straightforward. Indeed, the best approximation on
Vh of the exact solution u is a function uh that makes a continuous transition between 0 to 1 along a straight
array of cells {Kl}, placed at the same height of the pillars and just above the cavity, with l = 1, ..., nh (up to
a renumeration of the dofs) and nh = b

h (see Fig. 9 and also Fig. 6a).
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Figure 7. Visualization of two minimizers.
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Figure 8. Plot of the error behaviour for the examples (a) and (b) in Figure 6. The multi-
plicative constant c is the one that best fits the observations.

For these cells, the value of uh in the upper vertices is 1 and the value in the lower ones is 0, so that, up to a
translation, we have uh(x, y)|Kl

= (1/h)y for every l = 1, ..., nh and∫
Ω

|∇uh| =
nh∑
l=1

1
h
|Kl| = nh

1
h
h2 =

b

h
h = b =

∫
Ω

|Du|,

that is the error due to the Total Variation term is 0. Then, the error only depends on the tension term, in
particular it is concentrated on the two vertical external edges of the cells with faces on the lateral walls of the
cavity, and we get

E(uh) − E(u) = 2σ
1
h

∫ h

0

ydy = σh, (4.2)

where E still denotes the energy defined in Proposition 2.8. We conclude that, in this particular case, we not
only can provide the analytical value of σ̄, but we can also calculate the smallest possible error of σ̄h on Vh.
Numerical experiments show that the ADMM algorithm is able to match the estimate (4.2), namely it can
provide the best possible numerical approximation.

In the case of pillars at different heights, where the interface is tilted, the Total Variation term of the
approximate solution cannot be directly computed. However, an analysis similar to the previous one still confirms
that the error given by the tension term is O(h) and the total numerical error is O(h) as well (see Fig. 8b).

The third test deals with a solid surface of complex geometry. The choice of optimal configurations is no
longer in a discrete set, as in the case of the first test, where only two equilibrium configurations are allowed.
Here we have a continuous range of liquid-vapor interfaces, determined by the value of σ.
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Table 3. Numerical results for the test with a solid of complex geometry.

σ θ Behaviour σnum θhom,num

0.2 101.5◦ Wenzel 0.3307 109◦

0.45 116.7◦ Mixed 0.7365 137.5◦

0.65 130.5◦ Mixed 0.9203 157◦

0.82 148◦ Cassie–Baxter 0.9884 171◦

uh = 0

uh = 1

{Kl}

h

Figure 9. Best numerical approximation of the Cassie–Baxter configuration for pillars at the
same height.

σ = 0.2 σ = 0.45

σ = 0.65 σ = 0.82

Figure 10. Equilibrium configurations (depending on σ) on a solid of complex geometry.

Table 3 shows the numerical results, Figure 10 shows the corresponding equilibrium configurations as σ
increases.

We remark that in this case the periodic condition at the lateral boundary of the cell is not “naturally”
matched as before. Indeed, in the previous tests, the position and the same height of the pillars forced the solution
to be periodic. Here the periodicity of the solution is an actual constraint, hidden in the implementation of our
finite element approximation. As a consequence, the liquid-vapor interfaces do not lie, in general, on straight
lines, but have to follow diagonal trajectories.

For this set of simulations we also introduced a gradient detector refinement method, in order to refine the
mesh only in the regions affecting the accuracy of the approximation, namely in small neighborhoods of the
liquid-vapor interfaces (see Fig. 11).
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Figure 11. Adaptive mesh refinement.

Table 4. Numerical results for the 3D simulations.

σ θ Pillars type Behaviour σnum θhom,num

0.42 115◦ Cylindrical Mixed 0.8092 144◦

0.42 115◦ Square Mixed 0.761 139.5◦

(a) (b)

Figure 12. Equilibrium configurations on square (a) and cylindrical (b) pillars.

We proceed with some experiments in dimension N = 3. Our aim is to recover, also in a three dimensional
environment, the configurations of intermediate type observed in the previous tests. In this case, the liquid-vapor
interfaces are no longer portions of straight lines, but are allowed to also assume bended shapes, making the
analytical computation much more complicated.

We consider both square and cylindrical pillars at different height, whose coordinate sections exibit the
peculiar sizes that, in two dimensions, let emerge the mixed configurations (neither Wenzel nor Cassie–Baxter).

Table 4 shows the numerical results for this test, Figure 12 shows the two type of pillars and also the
isosurfaces, at level 0.5, of the corresponding solutions.

Also in this setting there is a set of optimal solutions that can both touch the lateral part of the pillars and
make the liquid-vapor transition. We remark that the boundary ∂E of the geometrical solution E (remember
that our numerical solution is indeed an approximation of χE in (2.4)) is a minimal surface: the change of
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(a) (b)

Figure 13. Diagonal (a) and horizontal (b) sections of the solution on square pillars.

curvature near the asperities is evident, especially in the case of square pillars. In particular, Figure 13a shows
a diagonal section of the solution in which it is easy to see that the transition region is bended. On the other
hand, slices of the solution along the coordinate axis, as the one shown in Figure 13b, exhibit the same behavior
of the two dimensional experiments previously discussed.
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