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CONVERGENCE RATES OF THE POD–GREEDY METHOD

Bernard Haasdonk1

Abstract. Iterative approximation algorithms are successfully applied in parametric approximation
tasks. In particular, reduced basis methods make use of the so-called Greedy algorithm for approxi-
mating solution sets of parametrized partial differential equations. Recently, a priori convergence rate
statements for this algorithm have been given (Buffa et al. 2009, Binev et al. 2010). The goal of the
current study is the extension to time-dependent problems, which are typically approximated using
the POD–Greedy algorithm (Haasdonk and Ohlberger 2008). In this algorithm, each greedy step is
invoking a temporal compression step by performing a proper orthogonal decomposition (POD). Using
a suitable coefficient representation of the POD–Greedy algorithm, we show that the existing conver-
gence rate results of the Greedy algorithm can be extended. In particular, exponential or algebraic
convergence rates of the Kolmogorov n-widths are maintained by the POD–Greedy algorithm.
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1. Introduction

The goal of low dimensional approximation of function sets is becoming increasingly important as indicated
by the growing efforts in the field of model order reduction (MOR) for stationary or dynamical systems. In
particular, solution sets of parametrized partial differential equations are one of the central objects in reduced
basis (RB) methods. These assume a compact parameter set P ⊂ R

p and a parametrized partial differential
equation (PDE), whose solutions u(μ) for μ ∈ P form a (at most) p-dimensional manifold in a solution space X .
RB-methods identify compact linear subspaces XN ⊂ span(u(µ1), . . . , u(µn))) constructed by particular solu-
tions u(µi) ∈ X , the so-called snapshots. We refer to [18] and references therein for a general overview over this
class of methods. The crucial questions is, how to choose the parameter samples (µi)n

i=1 in order to obtain a
reduced space that allows to approximate the solution manifold well. For simple problems, e.g. one-parameter
elliptic coercive problems, it has been shown that a logarithmically equidistant choice of snapshot parameters
yields exponential convergence of the approximation error [16]. Such analytical results however only existed for
rather simple cases. For general problems, where no a priori information about the structure of the manifold ex-
ists, one refrains to practical algorithms that result in good convergence rates. The so-called Greedy algorithm,
introduced in the context of RB-methods in [22], has developed to be the method-of-choice for stationary PDEs.
This method is an incremental constructive method for basis generation. Starting with a small initial basis, the
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parameter for the currently worst resolved solution is identified by a search over (a fine but finite subset of) the
parameter domain. The solution for this worst parameter is computed and used as next basis element. These
search and extension steps are repeated until a sufficiently high accuracy of the reduced basis is obtained. The
accuracy and error in this procedure needs to be evaluated multiple times and hence is typically not computed
exactly, but evaluated by means of rapidly computable rigorous and effective a-posteriori error bounds. Only
recently, efforts have been started to get formal foundation for this primary heuristic algorithm. The central
concept for approximability of sets by linear subspaces is the so-called Kolmogorov n-width. Intuitively, the
Kolmogorov n-width is the worst approximation error of the best n-dimensional subspace. Explicit bounds for
these n-widths are known for certain compact sets [10], function classes such as Sobolev balls [20] or solution sets
of differential operators [17]. This approximation theoretic concept has been successfully applied to explain the
success of the Greedy algorithm. In particular, it has recently been shown that possible exponential convergence
rate of the Kolmogorov n-width transfers to the approximation error of the Greedy algorithm [2]. These results
have been refined and extended to the case of algebraic convergence [1]. The latter will be the most important
reference for the current study, as we will extend those results.

Our extension concerns the treatment of time-dependent RB-methods. In the time-discrete formulation, a
single solution consists of a sequence of possibly several hundred snapshots over time. Hence, an inclusion of
all snapshots along a trajectory during basis-enrichment is not feasible. Nor, a selection of single snapshots
from the sequence seems suitable, as a stalling of the basis-enrichment can be observed [5]. As a practical and
well-performing alternative, we suggested and introduced the POD–Greedy algorithm in our work [6]. This
algorithm is a combination of the Greedy algorithm with a temporal compression step.

The crucial ingredient for time-sequence compression is the use of a principal component analysis (PCA) [3,11]
of the snapshots’ Grammian matrix. Different notions for this method can be found in different research fields.
In probability theory it was introduced as Karhunen–Loeve transformation [12, 15], or even earlier in statistics
as Hotelling transformation [9]. In the field of numerical analysis for partial differential equations and model
order reduction, the notion proper orthogonal decomposition (POD) is very common. Therefore, we adopt
this terminology. Important fields of application of the POD are parabolic partial differential equations [14] or
problems in fluid dynamics [8]. A good motivation for using low-dimensional models, such as obtained from
POD, are sophisticated simulation scenarios such as optimal control [7].

The POD–Greedy method for reduced basis construction meanwhile has developed to the standard procedure
for instationary problems [4, 6, 13]. Still, it lacks theoretical foundation, and hence is only a heuristic method
so far. In the current paper, we will extend the convergence results of the Greedy algorithm for stationary
problems [1] to the POD–Greedy algorithm for time-dependent (or more general: sequence-based) problems.
We will similarly show that exponential or algebraic convergence rates of the Kolmogorov n-width of the to be
approximated set are maintained by the POD–Greedy algorithm only by a change of the multiplicative factor
and the exponent.

The paper is structured as follows. In the next section, we provide the basic notation and definitions of the
functional setting and approximability measures. Section 3 gives the definition of the POD, the POD–Greedy
algorithm and derives several formal properties that are required for the convergence analysis. In Section 4 we
prove the main lemma for obtaining the subsequent convergence rate estimates. We conclude in Section 5 with
some comments on future work.

2. Basic notation

Let X be a separable real Hilbert space with corresponding scalar product 〈·, ·〉 and norm ‖ · ‖. Let 0 ≤
t0 < . . . < tK ≤ T be K + 1 time-instants on the finite time interval [0, T ] and set T := {tk}K

k=0. Here
and in the following we make use of the convention that superscripts k do not indicate powers, but time-
indices. Let XT := L2(T, X) denote the space of time-sequences of elements stemming from X . For u ∈ XT

we abbreviate uk := u(tk) ∈ X . XT is endowed with a (weighted) L2-scalar product 〈u, v〉T :=
∑K

k=0 w
kukvk

with suitable weights wk ∈ R
+\{0} satisfying

∑K
k=0 w

k = T . The corresponding induced norm is denoted
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with ‖ · ‖T . We introduce the diagonal matrix W := diag(w0, . . . , wK) ∈ R
(K+1)×(K+1) and define a norm

on R
K+1 by ‖v‖W :=

√
vTWv, v ∈ R

K+1. Typical choices for wk comprise wk = T/(K + 1) for piecewise
midpoint integration or w0 = wK = T/(2K), wk = T/K, 0 < k < K for the piecewise trapezoidal quadrature
rule. In the argumentation, the specific values of wk will be of minor importance, so the reader can safely
think of wk = 1. But we want to cover the general setting and obtain the dependence of the final constants
on K,T , so we carry these weights wk through the argumentation. We assume the goal of approximating a
compact set (of sequences) FT ⊂ XT . The approximation will not be obtained via arbitrary subspaces of
XT but via spaces constructed by flat approximating spaces. More precisely: In addition to FT we introduce
F := {u(tk)|u ∈ FT , k = 0, . . . ,K} ⊂ X as the flat set. The elements u(tk) will be denoted snapshots of the
solution trajectory u ∈ FT . The flat set F is compact in X as it is the union of K + 1 compact sets via the
component projections. We assume finite dimensional flat spaces Xn ⊂ span(F) ⊂ X , dim(Xn) = n, n ∈ N0

and define the approximating spaces of sequences XT,n ⊂ XT by

XT,n := L2(T, Xn) ⊂ XT . (2.1)

We emphasize that in contrast to the time-independent case, the spaces Xn are not directly subspaces spanned
by snapshots. As a POD will be involved, the spaces will be given as subspaces of the span of certain snapshots.
Note, that for finite FT the space dimension will be bounded by n ≤ |FT | · (K + 1), but in general FT is
assumed to be infinite, allowing arbitrarily large n. For the flat subspaces Xn we introduce the orthogonal
projection operators Pn : X → Xn. For the approximating sequence spaces XT,n we analogously define PT,n.
Note that due to our choice of sequence spaces the sequence best-approximation is equivalent to componentwise
best-approximation and hence (PT,n(u))k = Pn(uk) for all u ∈ FT , k = 0, . . . ,K.

The relevant quantity of approximability is the Kolmogorov n-width of the flat set F in X :

dn := dn(F) := inf
Y ⊂ X

dim(Y ) = n

sup
f∈F

inf
f̂∈Y

‖f − f̂‖, n ≥ 0. (2.2)

Alternatively, one might be tempted to consider the Kolmogorov n-width of the time-sequence set FT in XT ,
dn(FT ). This, however, is not adequate in our context: In view of (2.1) we do not consider arbitrary subspaces
of FT , but only spaces defined by the identical flat space at each time-instant. Further, for the approximating
sequence spaces we would have dim(XT,n) = n(K +1), hence n-dimensional approximating sequence subspaces
would not have relevance.

The error measure which is relevant for the POD–Greedy is the maximum (weighted) L2 approximation error
of the sequence set FT , i.e. for n ≥ 0

σT,n := σT,n(FT ) := sup
u∈FT

‖u− PT,nu‖T = sup
u∈FT

√√√√ K∑
k=0

wk‖uk − Pnuk‖2. (2.3)

Again, other spaces may seem possible candidates for the definition of the approximation error, e.g. the
approximation error for the flat space X , or other variants, but they turn out to be of minor importance
in the analysis.

We give a few comments on realization of the above choices in RB-methods for time-dependent problems:
The flat solution space is frequently a Hilbert space of real valued functions on a bounded domain Ω ⊂ R

d, e.g.
X = L2(Ω) or X = H1

0 (Ω), hence separable. After suitable time-discretization, a numerical scheme produces
a solution trajectory u = (uk)K

k=0 ∈ XT . A compact parameter set P ⊂ R
p is given and the solution of the

parametrized problem u(µ) ∈ XT is assumed to be well defined and to have a continuous parameter dependence.
This guarantees the compactness of the set FT := {u(µ)|µ ∈ P} ⊂ XT as required above.
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Remark 2.1 (Generalization to further sequence-based schemes).
We deliberately choose a discrete-in-time rather than a time-continuous formulation, as this is the only way

in which the algorithm currently is applied. However, we do not exclude that a time-continuous formulation
and investigation would similarly be possible. By the time-discrete formulation, however, we are not limited to
instationary PDEs, but can treat any scenario where a solution consists of a sequence of functions. For instance,
the above framework also comprises nonlinear stationary problems, where k plays the role of a Newton-iteration
number, K being a globally fixed number of Newton iterations. Further, also iterative domain decomposition
schemes are covered by the formalization, where k is the iteration number and K is a globally fixed number
of iterations for accepting the final solution. The set of time-instants T is then merely an abstract index set
without interpretation as time.

3. Abstract POD–Greedy algorithm

For a given function sequence u ∈ XT , we introduce the (scaled) empirical correlation operator R : X → X
defined as

R(v) :=
K∑

k=0

wk
〈
uk, v

〉
uk, v ∈ X. (3.1)

This operator is linear, continuous, positive semidefinite, self-adjoint, and has a finite dimensional range R(X) =
span{uk}K

k=0, hence is compact. Due to the spectral theorem, for u �= 0 it has a discrete finite spectrum of
L + 1 eigenvalues {λk}L

k=0 ⊂ R
+\{0} for some 0 ≤ L ≤ K with corresponding orthonormal eigenfunctions

{ϕk}L
k=0 ⊂ span{uk}K

k=0 such that

R(v) =
L∑

k=0

λk 〈ϕk, v〉ϕk, (3.2)

where we assume descending eigenvalues, λi ≥ λj for i < j. To emphasize the dependence on u ∈ XT , we
occasionally write λi(u). Note that the eigenvalues also depend on the chosen time grid {tk}K

k=0. For 0 ≤ l ≤ L

we define the POD–basis as PODl : XT → X l (l here indicating a cartesian product power X l := ×l
i=1X) by

PODl(u) := (ϕ0, . . . , ϕl−1) ∈ X l.

Note that due to the possible non-uniqueness of normalized eigenfunctions, this operation could be seen as being
set-valued. In practice, an arbitrary ensemble of eigenfunctions is chosen.

This orthonormal POD–basis satisfies a best-approximation property

span(PODl(u)) ∈ arg min
Y ⊂X

dim(Y )=l

K∑
k=0

wk‖uk − PY u
k‖2. (3.3)

The eigenvalue problem for R is high or even infinite dimensional, and can be recast as aK+1-dimensional prob-
lem via the Gramian matrix of the snapshots. The corresponding eigenvectors of the Grammian then represent
the coefficient vectors of the corresponding eigenfunctions of R in the span of the snapshots. Correspondingly,
this procedure is sometimes called the method of snapshots [19]. A practical recipe for the computation of the
eigenvalue problem in our weighted setting can then be summarized as follows. Similar detailed analysis can be
found in [23].

Lemma 3.1 (POD via Kernel matrix).
We introduce the Kernel (or Gramian) matrix G :=

(〈
ui, uj

〉)K
i,j=0

∈ R
(K+1)×(K+1) and its weighted version

G̃ = WG. Let Ṽ Λ̃Ṽ −1 = G̃ be an eigenvalue decomposition with eigenvalues Λ̃ = diag(λ̃0, . . . λ̃K) monotonically
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decreasing and eigenvectors Ṽ = (ṽ0, . . . , ṽK), which are assumed to be scaled such that ṽT
i Gṽi = 1 if λ̃i �= 0.

Then for all i with λ̃i �= 0, λ̃i is also an eigenvalue of R with unit length eigenvector

ϕi =
K∑

k=0

(ṽi)ku
k, (3.4)

where ṽi = ((ṽi)k)K
k=0 ∈ R

K+1.

Proof. From the definition of the correlation operator we see that (ϕi, λ̃i) is an eigenvector/-value pair:

R

(
K∑

k=0

(ṽi)ku
k

)
=

K∑
k,k′=0

uk′
wk′ 〈

uk′
, uk
〉

(ṽi)k =
K∑

k′=0

uk′
(WGṽi)k′ = λ̃i

K∑
k′=0

uk′
(ṽi)k′ .

Unit scaling of ϕi is verified by

‖ϕi‖2 =
∑
k,k′

(ṽi)k(ṽi)k′
〈
uk, uk′〉

= ṽT
i Gṽi = 1. �

For further details on the POD resp. PCA, we refer to [11, 23].
Given the notation above, the POD–Greedy algorithm can be formulated in an abstract way. For simplicity

of presentation, we only consider the case l = 1, i.e. only include a single POD–mode in each iteration. We give
a weak formulation similar to [1], which means that maximization operations are allowed to deviate from the
real maximum by a certain prescribed factor γ ∈ (0, 1].

Definition 3.2 (Weak POD–Greedy algorithm).

1. Define X0 := {0} ⊂ X and XT,0 := L2(T, X0) ⊂ XT .
2. For n ∈ N

2a. choose un ∈ FT such that

‖un − PT,n−1un‖T ≥ γ max
u∈FT

‖u− PT,n−1u‖T . (3.5)

2b. Compute fn = POD1(un − PT,n−1un) ∈ X .
2c. Define Xn := Xn−1 ⊕ span(fn) and XT,n := L2(T, Xn).

In practice, the algorithm is assigned a stopping criterion such as an error threshold or a maximum number
of basis functions to generate. As we are interested in asymptotic convergence rates, we assume that the above
sequence always results in un − PT,n−1un �= 0, otherwise we have obtained exact approximation after finitely
many steps.

The factor γ accomplishes for equivalence factors between the projection error and RB a-posteriori error
estimators which are used as rapidly computable substitutes: If an error estimator Δ(u) satisfies cΔ(u) ≤
‖u − PT,nu‖T ≤ CΔ(u) for any u ∈ FT , then maximizing Δ(u) will at least reach the c

C fraction of the true
maximal projection error, hence γ := c

C is a suitable choice in the abstract algorithm. Such RB error estimators
can be obtained for PDE discretizations, which can be recast in an inf-sup stable space-time Petrov–Galerkin
formulation. For example, parabolic problem such as the heat-equation, but as well convection-dominant con-
servation laws can be treated [6, 21].
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We state some simple properties of the POD and POD–Greedy algorithm that will be used in the convergence
analysis:

Lemma 3.3 (Properties of the POD/POD–Greedy).

i) For all u ∈ XT the POD–eigenvalues satisfy

K∑
k=0

λk(u) = ‖u‖2
T . (3.6)

ii) The resulting family of functions (fn)n∈N is orthonormal, 〈fn, fm〉 = δnm.

Proof.

i) Setting uk =
∑K

k′=0 c
k
k′ϕk′ for suitable ckk′ ∈ R, the definition of R in (3.1) and orthonormality of {ϕk} gives

〈R(ϕk′ ), ϕk′ 〉 =

〈
K∑

k=0

wk
〈
uk, ϕk′

〉
uk, ϕk′

〉
=

K∑
k=0

wk
〈
uk, ϕk′

〉2
=

K∑
k=0

wk(ckk′ )2.

Additionally, we have ‖uk‖2 =
∑K

k′=0(c
k
k′ )2 and conclude with the spectral decomposition (3.2)

K∑
k′=0

λk′ =
K∑

k′=0

〈R(ϕk′ ), ϕk′〉 =
K∑

k,k′=0

wk(ckk′ )2 =
K∑

k=0

wk‖uk‖2 = ‖u‖2
T .

ii) The range of the correlation operator R in (3.1) is the span of the training samples, i.e. fn ∈ span{uk
n −

Pn−1u
k
n}K

k=0. The orthogonality of the projection error implies fn ⊥ Xn−1, which yields the statement by
induction. �

At this point it is simple to show the convergence of the POD–Greedy method.

Proposition 3.4 (Convergence of the POD–Greedy).
The sequence of approximation errors σT,n defined by (2.3) is monotonically decreasing, σT,n ≥ σT,m for

n ≤ m and limn→∞ σT,n = 0.

Proof. The orthogonal projection yields a best-approximation and for n ≤ m we have Xn ⊂ Xm, hence

‖uk − Pnu
k‖ = inf

f∈Xn

‖uk − f‖ ≥ inf
f∈Xm

‖uk − f‖ = ‖uk − Pmu
k‖

and the monotonicity statement follows in view of (2.3). As a consequence, the sequence (σT,n)n∈N converges to
a nonnegative limit, σ∗ := limn→∞ σT,n ≥ 0. Assuming σ∗ > 0 then leads to a contradiction: Choose arbitrary
m > n ∈ N and consider the corresponding two elements of the sequence of selected trajectories, these satisfy

‖um − un‖T ≥ ‖um − PT,num‖T ≥ ‖um − PT,m−1um‖T ≥ γ sup
u∈FT

‖u− PT,m−1u‖T = γσT,m−1 ≥ γσ∗.

Obviously (un)n∈N does not have a converging subsequence contradicting the compactness of FT . Therefore, we
conclude that σ∗ = 0. �

We comment on two extreme cases concerning the eigenvalue spectrum. These cases can appear in practice
and both are to be covered by the subsequent analysis.
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Example 3.5 (Worst/Best case advection problem). Consider the (non-parametric) advection problem ∂tψ +
∂xψ = 0 on Ω = [0,K + 1], T = K and set tk := k and xk := k for k = 0, . . .K. Assume initial data
ψ = ψ0 with ψ0(xk) = δ0k being piecewise linear on all intervals [k, k+ 1] and cyclical boundary conditions. Set
X = R

K+1, wk := 1. Then an (e.g. upwind finite difference) discretization yields u = (uk)K
k=0 with uk = (δki)K

i=0

discretizing the solution (uk)i = ψ(tk, xi). The set FT := {u} ⊂ XT contains a single trajectory. Obviously, uk

are already orthonormal, hence the correlation operator R in (3.1) is already in spectral form with eigenvalues
λ0 = . . . = λL = 1 and L = K. Hence, here indeed in each step of the POD–Greedy algorithm one single mode
is inserted decreasing the error σ2

T,n by an identical decrement. This is the worst case example of no decay
in the eigenvalue spectrum. The convergence rate proof respects this worst case. On the contrary, consider
∂tu = 0 as stationary (but time-dependent) problem with identical initial and boundary data as before. Then
uk = (1, 0, . . . , 0)T ∈ R

K+1 are identical for all k. The correlation operator has a single nonzero eigenvalue
λ0 = K + 1 with eigenfunction ϕ0 = u1. Inserting one mode of the POD yields exact approximation of the
trajectory. This is the best case of an eigenvalue spectrum with one nonzero eigenvalue, i.e. L = 0.

3.1. A coefficient representation of the POD–Greedy

The crucial point in the convergence analysis is the specification of a coefficient representation of the algorithm
and proofs of some of the characterizing coefficient properties.

The POD–Greedy algorithm generates a sequence of trajectories uj ∈ FT and orthonormal functions fj ∈ X .
For i, j ∈ N we then can define vectors aij ∈ R

K+1 by

(aij)k :=
〈
uk

i , fj

〉
, k = 0, . . .K.

If un = un′ , i.e. a sequence is selected at POD–Greedy-iteration n and n′, then also anj = an′j , j ∈ N, hence
they are indiscriminable. Clearly, any sequence un can only be selected K + 1 times due to definition of the
POD–Greedy algorithm.

We state some properties of the coefficient vectors that will be required later.

Proposition 3.6 (Properties of POD–Greedy coefficient vectors).

i) For all n ∈ N we have ∑
j∈N

‖anj‖2
W = ‖un‖2

T .

ii) For all i, n ∈ N we have ∑
j≥n

‖aij‖2
W = ‖ui − PT,n−1ui‖2

T ,

hence in particular, if ui − PT,n−1ui = 0, then aij = 0 ∈ R
K+1 for all j ≥ n.

iii) For all n ∈ N we have
‖ann‖W ≥ ‖anj‖W , j ≥ n.

iv) For all n ∈ N we have
‖ann‖2

W = λ0(un − PT,nun) ≥ γ2σ2
T,n/(K + 1).

v) For all i, n ∈ N with un = ui we have

γ2σ2
T,n ≤

∑
j≥n

‖aij‖2
W ≤ σ2

T,n.

The right inequality also holds if un �= ui.
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Proof.

i) The convergence statement in Proposition 3.4 implies that 0 = limm→∞ ‖u−PT,mu‖2
T for all u ∈ FT . Then

u = limm→∞ PT,mu which implies for each slice uk = limm→∞ Pmu
k. As (fj)j∈N is an orthonormal family

we get for each uk
n from the POD–Greedy selected trajectories

uk
n = lim

m→∞Pmu
k
n = lim

m→∞

m∑
j=0

〈
uk

n, fj

〉
fj =

∑
j∈N

(anj)kfj,

hence ‖uk
n‖2 =

∑
j∈N

((anj)k)2 and

‖un‖2
T =

K∑
k=0

wk‖uk
n‖2 =

K∑
k=0

wk
∑
j∈N

((anj)k)2 =
∑
j∈N

‖anj‖2
W .

ii) We note that

‖Pn−1u
k
i ‖2 = ‖

n−1∑
j=1

〈
uk

i , fj

〉
fj‖2 =

n−1∑
j=1

〈
uk

i , fj

〉2
=

n−1∑
j=1

((aij)k)2.

Then we get

‖PT,n−1ui‖2
T =

K∑
k=0

wk‖Pn−1u
k
i ‖2 =

n−1∑
j=1

‖aij‖2
W .

The claim then follows from the Pythagorean theorem with i).
iii) For any uk, f ∈ X with ‖f‖ = 1 we verify

‖uk − 〈uk, f
〉
f‖2 =

〈
uk, uk

〉− 2
〈
uk, f

〉2
+
〈
uk, f

〉2 〈f, f〉 =
〈
uk, uk

〉− 〈uk, f
〉2
.

This can be used to rewrite the POD-optimality property (3.3) as a maximization over f :

fn ∈ arg min
‖f‖=1

K∑
k=0

wk‖uk
n − 〈uk

n, f
〉
f‖2 = arg max

‖f‖=1

K∑
k=0

wk
〈
uk

n, f
〉2
.

This implies for all j ≥ n

‖ann‖2
W =

K∑
k=0

wk
〈
uk

n, fn

〉2 ≥
K∑

k=0

wk
〈
uk

n, fj

〉2
= ‖anj‖2

W .

iv) The right inequality follows from using λ0(u) ≥ λk(u) for all u ∈ XT , (3.6), the weak optimality of the
greedy selection rule (3.5) and the definition of σT,n (2.3):

(K + 1)λ0(un − PT,nun) ≥
K∑

k=0

λk(un − PT,nun) = ‖un − PT,n−1un‖2
T ≥ γ2σ2

T,n.

The left equality follows from the definition (3.1) and decomposition (3.2) of R

‖ann‖2
W =

K∑
k=0

wk((ann)k)2 =
K∑

k=0

wk
〈
uk

n, ϕ0

〉2

=

〈
K∑

k=0

wk
〈
uk

n, ϕ0

〉
uk

n, ϕ0

〉
= 〈R(ϕ0), ϕ0〉 = λ0.
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v) From the weak-POD–Greedy selection property (3.5) and definition of σT,n (2.3) we get

γ2σ2
T,n ≤ ‖un − PT,n−1un‖2

T ≤ σ2
T,n,

which exactly is the statement in view of ii) for un = ui. If un �= ui then still the right inequality holds. �

Remark 3.7 (Interpretation as isometric embedding into (l2(N))K+1). We consider X̄ := l2(N)K+1 with ele-
ments (ak)K

k=0 ∈ X̄, ak ∈ l2(N) which is a separable Hilbert space with respect to the weighted inner product

〈(ak), (a′k)〉X̄ :=
K∑

k=0

wk 〈ak, a
′
k〉l2 .

Let un ∈ FT be selected by the POD–Greedy algorithm at iteration n with corresponding coefficient vectors
anj ∈ R

K+1, j ∈ N. Then

J : {un}n∈N → X̄, J(un) := ((anj))j∈N (3.7)

is an isometric embedding.
Intuitively, this situation can be visualized as follows. All uk

n can be expressed as linear combination of the
{fj} by (3.1). We write this as an infinite matrix-vector-multiplication using the vectors anj ∈ R

K+1 as matrix
blocks: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u0
1
...
uK

1

u0
2
...
uK

2
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 . . .

a21 a22 a23 . . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
f1
f2
f3
...

⎞
⎟⎟⎠ (3.8)

Equation (3.7) implies that J(un) is the n-th (block)–row of this matrix which has an infinite number of
columns. The POD–Greedy applied to F̃T := J(FT ) will have (ũn)n∈N := (J(un))n∈N as a possible sequence of
selected trajectories and generated unit basis vectors f̃n = en ∈ l2(N).

In contrast to the Greedy case of [1], the coefficients cannot simply be arranged as a lower-triangular matrix,
but the matrix has block structure and is more dense. This is due to the fact that in the POD–Greedy algorithm
one trajectory can possibly be chosen multiple times, because a single selection and basis enrichment does not
guarantee zero error. Several properties stated in the previous propositions can be translated into corresponding
matrix properties. For example, there may be up to K+1 block–rows, which are identical, indicating a multiple
selection of one sequence. It may happen that a block-row does not contain any zero-vectors indicating that no
precise approximation by finite subspaces is reached. On the contrary, any case of finite exact approximation,
un − PT,n−1un = 0, is reflected in the matrix as anj = 0, j ≥ n by Proposition 3.6 ii). In the case of K = 0, we
recover the Greedy–algorithm, the vectors aij reduce to scalars and the matrix is lower triangular as in [1].

4. Convergence rates

Based on the findings from the previous sections, the arguments of [1] for obtaining convergence rate state-
ments can be adopted.
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4.1. Control of the approximation error sequence

The central step for obtaining convergence rate statements for the Greedy algorithm is the control of the ap-
proximation error sequence by the Kolmogorov n-width sequence. In our case, the flatness lemma [1], Lemma 2.2
can be extended for the POD–Greedy algorithm. It states that if the error sequence of the POD–Greedy scheme
is not decaying too fast (being flat), then the Kolmogov n-width at a certain iteration number must be large.
This is also denoted delayed comparison lemma, as σT,n and dm are compared with different indices n,m.

Lemma 4.1 (Flatness lemma for the POD–Greedy algorithm). Let θ ∈ (0, 1) be given and q ∈ N with q =
�(2γ−1θ−1

√
K + 1�2. If n,m ∈ N are such that

σT,n+qm ≥ θσT,n (4.1)

then we have
σT,n ≤

√
qTdm. (4.2)

Before providing the proof, we comment on the two notable extensions compared to [1], Lemma 2.2 and argue,
why these in general can not be eliminated.

Remark 4.2.

i) The final estimate (4.2) has an additional factor
√
T compared to the case of the Greedy algorithm. This is

expected due to the fact that we are comparing the approximability properties of the flat set (quantified by
dm) with an approximation error of time-sequences measured in the XT norm. Therefore, the

√
T factor is

suitable.
ii) The constant q (and herewith also the final bound) depends on a factor K + 1 which essentially indicates

a dependency on the number of time-steps. This is due to the fact that the proof respects the worst case
scenario, i.e. all eigenvalues of R being identical and the overall error decrease in every POD–Greedy step
only being σ2

n/(K+1). This is realistic in transport problems of discontinuous functions, see Example 3.5. By
additional assumptions on the decay rate of the eigenvalues, this might be reformulated. As we are mainly
interested in convergence rates, we are content with the current factors.

Proof of Lemma 4.1. Set n̄ = n+ qm and consider the block matrix

G =

⎛
⎜⎝
ann . . . ann̄

...
...

an̄n . . . an̄n̄

⎞
⎟⎠ ∈ R

(K+1)(1+qm)×(1+qm).

We define

gk
i :=

n̄∑
j=n

(aij)kfj ∈ X, i = n, . . . n̄, k = 0, . . .K

as the functions corresponding to the rows of G. Due to orthonormality of {fn} we get

‖gk
i ‖2 =

n̄∑
j=n

(aij)2k.

Let Ym ⊂ X denote the m-optimal approximating subspace for F with suitable basis {yi}m
i=1 ⊂ X . Let Ȳm be

the restriction of Y to the coordinates n . . . n̄, i.e.

ȳi :=
n̄∑

j=n

〈yi, fj〉 fj, i = 1, . . .m, Ȳm := span{ȳi}m
i=1·
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Set m̄ := dim(Ȳm) ≤ m and let {φi}m̄
i=1 be an orthonormal basis of Ȳm. Then

m̄ =
m̄∑

i=1

‖φi‖2 =
m̄∑

i=1

n̄∑
j=n

〈φi, fj〉2 =
n̄∑

j=n

m̄∑
i=1

〈φi, fj〉2 .

Therefore, there exists a j∗ ∈ {n, . . . , n̄} with
m̄∑

i=1

〈φi, fj∗〉2 ≤ m̄

n̄− n+ 1
<

m

n+ qm− n
=

1
q
· (4.3)

Set ḡk
i := PȲm

gk
i the orthogonal projection of gk

i on Ȳm. We introduce āij ∈ R
K+1 as the coefficient vectors of

ḡk
i by

(āij)k :=
〈
ḡk

i , fj

〉
, k = 0, . . .K, i, j = n, . . . , n̄.

Let j ∈ {n, . . . , n̄}, then we obtain with Proposition 3.6 iv), monotonicity of (σT,j), and assumption (4.1)

‖ajj‖2
W ≥ γ2σ2

T,j

K + 1
≥ γ2σ2

T,n+qm

K + 1
≥ θ2γ2σ2

T,n

K + 1
· (4.4)

For j∗ we bound the projected coefficients with Cauchy–Schwarz and (4.3):

(āj∗j∗)k =
〈
ḡk

j∗ , fj∗
〉

=

〈
m̄∑

l=1

〈
gk

j∗ , φl

〉
φl, fj∗

〉
=

m̄∑
l=1

〈
gk

j∗ , φl

〉 〈φl, fj∗〉

≤
(

m̄∑
l=1

〈
gk

j∗ , φl

〉2)1/2 (
〈φl, fj∗〉2

)1/2

≤ ‖gk
j∗‖q−1/2.

This allows to bound the coefficient vector norms with the right inequality of Proposition 3.6 v)

‖āj∗j∗‖2
W =

K∑
k=0

wk(āj∗j∗)2k ≤
K∑

k=0

wk‖gk
j∗‖2q−1 =

K∑
k=0

wk
n̄∑

j=n

(aj∗j)2kq
−1

= q−1
n̄∑

j=n

‖aj∗j‖2
W ≤ q−1

∞∑
j=n

‖aj∗j‖2
W ≤ q−1σ2

T,n. (4.5)

With the definition of q it is simple to observe that 2q−1/2 ≤ γθ/
√
K + 1. This concludes the proof

with (4.4), (4.5) the triangle inequality, orthonormality of fj∗ , Cauchy–Schwarz and the best-approximation
property of Ym:

q−1/2σT,n = 2q−1/2σT,n − q−1/2σT,n ≤ γθ√
K + 1

σT,n − q−1/2σT,n

≤ ‖aj∗j∗‖W − ‖āj∗j∗‖W ≤ ‖aj∗j∗ − āj∗j∗‖W

=

(
K∑

k=0

wk
〈
gk

j∗ − ḡk
j∗ , fj∗

〉2)1/2

≤
(

K∑
k=0

wk‖gk
j∗ − ḡk

j∗‖2‖fj∗‖2

)1/2

≤
(

K∑
k=0

wk‖gk
j∗ − PYmg

k
j∗‖2

)1/2

≤
(

K∑
k=0

wkd2
m

)1/2

=
√
Tdm. �

4.2. Convergence rates

With the previous result, the convergence rate statements of [1] can be adopted. The first statement is
that algebraic convergence of the Kolmogorov n-widths implies algebraic convergence of the POD–Greedy
approximation error with the same exponent but different multiplicative constant.
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Proposition 4.3 (Algebraic convergence of the POD–Greedy).
If dn(F) ≤Mn−α for some α,M > 0 and all n ∈ N and d0(F) ≤M then

σT,n(FT ) ≤ CMn−α, n > 0 (4.6)

with C :=
√
qT (ρq)α, q := �2γ−1θ−1

√
K + 1�2 ρ := �2(1 − θ1/α)−1� for arbitrarily chosen θ ∈ (0, 1) and γ the

parameter of the weak POD–Greedy algorithm.

The statement is a slight generalization of the corresponding statement for the Greedy–algorithm in [1], which
uses the fixed choice θ := 2−α implying ρ = 4. If θ is chosen, e.g. to be the minimizer of C, this multiplicative
constant C can be orders of magnitude smaller. In terms of approximation rates, the size of the constant is
irrelevant. However, in RB-methods, ultimately a small N is desired possibly with guaranteed error statement.
Such rigorous error bounds can be obtained from the error rate statements, as soon as Kolmogorov n-width
estimates are available. In this view, a decrease of the constants will be useful, as it reduces such final error
bounds. In this respect, our generalization also directly allows a slight improvement of the reference result.

Proof of Propropotion 4.3. We set q := �2γ−1θ−1
√
K + 1�2 of the form required by Lemma 4.1. We note that

for n = 0 we have by definition X0 := {0} and PT,0u = 0, u ∈ XT hence

σT,0(FT ) = sup
u∈FT

‖u‖T = sup
u∈FT

√√√√ K∑
k=0

wk‖uk‖2 ≤ sup
f∈F

√√√√ K∑
k=0

wk‖f‖2 =
√
Td0(F).

With the choice N0 := ρq we see that (4.6) holds for all n ≤ N0:

σT,n ≤ σT,0 ≤
√
Td0 ≤

√
TM ≤

√
TMNα

0 n
−α =

√
T (ρq)αMn−α ≤ CMn−α.

Let N be the smallest integer, for which (4.6) does not hold, i.e.

CMN−α < σT,N . (4.7)

This will lead to a contradiction and hence conclude the proposition. Let m be an integer satisfying (proof of
existence is postponed)

m > 0 and N − qm > 0, (4.8)

(N − qm)−α ≤ θ−1N−α, (4.9)√
qTMm−α ≤ CMN−α. (4.10)

We define n := N−qm resulting in n ∈ N due to (4.8). As m ≥ 1 and q ≥ 9 we have n < N , thus n satisfies (4.6).
Then, we can relate σT,n and σT,N using (4.9) and (4.7)

σT,n ≤ CMn−α ≤ CMN−αθ−1 < θ−1σT,N = θ−1σT,n+qm.

Then, Lemma 4.1 implies σT,n ≤ √
qTdm, which in combination with (4.10) results in

σT,N ≤ σT,n ≤
√
qTdm ≤

√
qTMm−α ≤ CMN−α

being the desired contradiction to (4.7).
It remains to show the existence of an m satisfying (4.8)–(4.10). For this, we set

m :=
⌊
N

q
(1 − θ1/α)

⌋
.
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Concerning (4.8), we immediately note that m < N
q and herewith N − qm > 0. For showing m ≥ 1, we note

the following equivalence:

m ≥ 1 ⇐⇒ N

q
(1 − θ1/α) ≥ 1 ⇐⇒

(
1 − q

N

)α

≥ θ. (4.11)

By definition of ρ and N0 we note that

2(1 − θ1/α)−1 ≤ ρ⇐⇒
(

1 − 2q
ρq

)α

≥ θ =⇒
(

1 − q

N0

)α

≥ θ.

As N > N0 this implies (4.11), hence (4.8) is proven.
For showing (4.9), we note that m ≤ N

q (1 − θ1/α) implies N − qm ≥ Nθ1/α. Both sides are positive due
to (4.8), hence exponentiation with −α gives (4.9).

In order to verify (4.10), we first note that by definition we have ρ ≥ 2(1− θ1/α), thus 1− θ1/α ≥ 2
ρ . Further,

the definition of N0 implies q = N0
ρ < N

ρ . These two auxiliary results allow to derive:

qm ≥ q

(
N

q
(1 − θ1/α) − 1

)
= N(1 − θ1/α) − q ≥ N

2
ρ
− N

ρ
=
N

ρ
·

Therefore, (N
m )α ≤ (ρq)α, which gives (4.10):

√
qTMm−α ≤

√
qTM

(
N

m

)α

N−α ≤
√
qTM(ρq)αN−α ≤ CMN−α. �

The next statement is that exponential convergence of the Kolmogorov n-widths implies exponential conver-
gence of the POD–Greedy error sequence with slightly slower decay and larger multiplicative constant. As the
modifications compared to the corresponding statement of [1] only consist of a change of constants, we refrain
from the detailed proof in the main text, but refer to the appendix.

Proposition 4.4 ((Sub)-exponential convergence of the POD–Greedy). If dn(F) ≤ Me−anα

for n ≥
0,M, a, α > 0, then

σT,n(FT ) ≤ CMe−cnβ

, n ≥ 0 (4.12)

for β := α
α+1 , arbitrary θ ∈ (0, 1), c := min(| ln(θ)|, a

(4q)α ), C := max(ecNβ
0
√
T ,

√
qT ), q := �2γ−1θ−1

√
K + 1�2,

N0 := �(8q)α+1� and γ the constant of the weak POD–Greedy algorithm.

5. Conclusion

In the convergence analysis above, we restricted to the case l = 1, i.e. only 1 eigenmode is added in each
iteration of the POD–Greedy algorithm. In practice, also generalizations are used that include a number of
l > 1 modes at each iteration. Generalizations of the results could be formulated for these cases by only
considering n ∈ lN and replacing the subscripts accordingly. For l = K + 1 all POD–modes are inserted at
once at each POD–Greedy extension step. In this case, the selected trajectory un is approximated exactly as
span{uk

n − Pn−1u
k
n}K

k=0 = span{ϕk(un − PT,n−1un)}K
k=0. In this case, the matrix representation of the POD–

Greedy algorithm is lower block-triangular.
The proof of the convergence rates of the POD–Greedy algorithm is a step towards theoretical explanation

why the method works well in practice, in particular in RB-methods. Herewith it provides a sound foundation
for the initially heuristic algorithm. In the original study [1] further properties and variants of the Greedy
algorithm are treated, e.g. robustness is proven, which takes into account different numerical approximation
errors. The same extensions and investigations might be performed for the POD–Greedy algorithm.
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An interesting and urging subsequent question is to provide estimates of the Kolmogorov n-width decay rate
for certain classes of time-dependent parametric PDEs. Example 3.5 given in this study already illustrates that
there exist cases of non-decaying eigenvalue spectrum (transport of discontinuities), but also well behaved exam-
ples (stationary processes). The restriction of the algorithm to time-dependent PDEs raises further interesting
questions on dependency of the eigenvalues, constants, decay rate, etc. on the choice of the time discretization.
This certainly will require a different formal framework, introducing spaces with certain time-regularity rather
than only spaces of sequences. Such detailed investigations will be subject to future work.

Acknowledgements. The author wants to thank A.T. Patera for his hospitality during a research visit at the MIT and
for fruitful discussions. We acknowledge the Baden-Württemberg Stiftung gGmbH for funding as well as the German
Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology
(EXC 310/1) at the University of Stuttgart,

A. Proof of exponential convergence rate

Here, we reproduce the proof of the (sub)exponential convergence rate statements from [1] with slight ad-
justment of constants adopted to our case.

Proof of Propropotion 4.4, (Sub)-Exponential Convergence Rate of POD–Greedy. As in the previous proof, we
use σT,0 ≤ √

Td0 and d0 ≤M to verify that (4.12) holds for all n ≤ N0:

σT,n ≤ σT,0 ≤
√
TMecNβ

0 e−cNβ
0 ≤ CMe−cnβ

.

Let N > N0 be the smallest integer, such that (4.12) does not hold, i.e.

σT,N > CMe−cNβ

. (A.1)

Let there be an m ∈ N (proof of existence is postponed) satisfying

ec(N−qm)β

e−cNβ ≥ θ, (A.2)
N − qm ≥ 1, (A.3)√

qTMe−amα ≤ CMe−cNβ

. (A.4)

Then, n := N − qm ∈ N due to (A.3) and we get with (A.2), (A.1)

σT,n ≤ CMe−cnβ ≤ CMθ−1e−cNβ

< θ−1σT,N = θ−1σT,n+qm.

Then we can apply Lemma 4.1 and obtain with (A.4)

σT,N ≤ σT,n ≤
√
qTdm ≤

√
qTMe−amα ≤ CMe−cNβ

,

which contradicts (A.1).
It remains to show the existence of a suitable m satisfying (A.2)–(A.4). For this we set

m :=
⌊
N1−β

2q

⌋
·

As β ∈ (0, 1), we have m ≤ N/(2q) and obtain (A.3)

N − qm ≥ N − q
N

2q
= N/2 ≥ 1.
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Using the mean value theorem, there exists a ξ ∈ (N − qm,N) such that

Nβ− (N − qm)β = βξβ−1qm ≤ β

(
N

2

)β−1

qm ≤ N1−β

2
β

(
N

2

)β−1

≤ 2−ββ ≤ 2−β2β = 1.

Here we used that ξ ≥ N/2, qm ≤ N1−β/2 and β ≤ 2β. Then, as c ≤ | ln θ|, we obtain (A.2).
For proving (A.4) we note that

√
qt ≤ C by definition of C, and it remains to show that amα ≥ cNβ. As

N > N0 one can see that m > 4 is sufficiently large to imply

m = �N
1−β

2q
� > N1−β

4q
·

With this we conclude

amα − cNβ ≥ a

(
N1−β

4q

)α

− cNβ = a
Nβ

(4q)α
− cNβ =

(
a

(4q)α
− c

)
Nβ ≥ 0,

as c ≤ a/(4q)α by definition. �

References

[1] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in
reduced basis methods. IGPM Report, RWTH Aachen 310 (2010).

[2] A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the
parametrized reduced basis. Math. Model. Numer. Anal. submitted (2009).

[3] R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification. Wiley Interscience, 2nd edition (2001).
[4] J.L. Eftang, D. Knezevic and A.T. Patera, An hp certified reduced basis method for parametrized parabolic partial differential

equations. MCMDS, Math. Comput. Model. Dynamical Systems 17 (2011) 395–422.
[5] M.A. Grepl, Reduced-basis Approximations and a Posteriori Error Estimation for Parabolic Partial Differential Equations.

Ph.D. Thesis. Massachusetts Inst. Techn. (2005).
[6] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution

equations. ESAIM: M2AN 42 (2008) 277–302.
[7] M. Hinze and S. Volkwein, Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal

decomposition. Comput. Optim. Appl. 39 (2008) 319–345.
[8] P. Holmes, J. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge

University Press, Cambridge (1996).
[9] H. Hotelling, Analysis of a complex of statistical variables into principal components. J. Educational Psychol. (1933).

[10] R.S. Ismagilov, On n-dimensional diameters of compacts in a Hilbert space. Functional Anal. Appl. 2 (1968) 125–132.
[11] I.T. Joliffe, Principal Component Analysis. John Wiley and Sons (2002).
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