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Abstract. We introduce and analyze a fully-mixed finite element method for a fluid-solid interaction
problem in 2D. The model consists of an elastic body which is subject to a given incident wave that
travels in the fluid surrounding it. Actually, the fluid is supposed to occupy an annular region, and hence
a Robin boundary condition imitating the behavior of the scattered field at infinity is imposed on its
exterior boundary, which is located far from the obstacle. The media are governed by the elastodynamic
and acoustic equations in time-harmonic regime, respectively, and the transmission conditions are given
by the equilibrium of forces and the equality of the corresponding normal displacements. We first
apply dual-mixed approaches in both domains, and then employ the governing equations to eliminate
the displacement u of the solid and the pressure p of the fluid. In addition, since both transmission
conditions become essential, they are enforced weakly by means of two suitable Lagrange multipliers.
As a consequence, the Cauchy stress tensor and the rotation of the solid, together with the gradient of p
and the traces of u and p on the boundary of the fluid, constitute the unknowns of the coupled problem.
Next, we show that suitable decompositions of the spaces to which the stress and the gradient of p
belong, allow the application of the Babuška–Brezzi theory and the Fredholm alternative for analyzing
the solvability of the resulting continuous formulation. The unknowns of the solid and the fluid are
then approximated by a conforming Galerkin scheme defined in terms of PEERS elements in the solid,
Raviart–Thomas of lowest order in the fluid, and continuous piecewise linear functions on the boundary.
Then, the analysis of the discrete method relies on a stable decomposition of the corresponding finite
element spaces and also on a classical result on projection methods for Fredholm operators of index
zero. Finally, some numerical results illustrating the theory are presented.
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1. Introduction

In this paper we focus again on the two-dimensional fluid-solid interaction problem studied recently in [7]
(see also [9] for a version employing boundary integral equation methods). More precisely, we consider an
incident acoustic wave upon a bounded elastic body (obstacle) fully surrounded by a fluid, and are interested in
determining both the response of the body and the scattered wave. The obstacle is supposed to be a long cylinder
parallel to the x3-axis whose cross-section is Ωs. The boundary of Ωs is denoted by Σ. We assume that the
incident wave and the volume force acting on the body exhibit a time-harmonic behaviour with e−ı ω t ansatz and
phasors pi and f , respectively, so that pi satisfies the Helmholtz equation in R2\Ωs. Hence, since the phenomenon
is supposed to be invariant under a translation in the x3-direction, we may consider a bidimensional interaction
problem posed in the frequency domain. In this way, in what follows we let σs : Ωs → C2×2, u : Ωs → C2, and
p : R2\Ωs → C be the amplitudes of the Cauchy stress tensor, the displacement field, and the total (incident +
scattered) pressure, respectively, where C stands for the set of complex numbers.

The fluid is assumed to be perfect, compressible, and homogeneous, with density ρf and wave number
κf :=

ω

v0
, where v0 is the speed of sound in the linearized fluid, whereas the solid is supposed to be isotropic

and linearly elastic with density ρs and Lamé constants μ and λ. The latter means, in particular, that the
corresponding constitutive equation is given by Hooke’s law, that is

σs = λ tr ε(u) I + 2μ ε(u) in Ωs,

where ε(u) := 1
2 (∇u + (∇u)t) is the strain tensor of small deformations, ∇ is the gradient tensor, tr denotes

the matrix trace, t stands for the transpose of a matrix, and I is the identity matrix of C2×2. Consequently,
under the hypotheses of small oscillations, both in the solid and the fluid, the unknowns σs, u, and p satisfy
the elastodynamic and acoustic equations in time-harmonic regime, that is:

divσs + κ2
s u = − f in Ωs,

Δp + κ2
f p = 0 in R2\Ωs,

where κs is defined by
√
ρs ω, together with the transmission conditions:

σs ν = − pν on Σ,

ρf ω
2 u · ν =

∂p

∂ν
on Σ,

(1.1)

and the behaviour at infinity given by
p− pi = O

(
r−1
)

(1.2)

and
∂(p− pi)

∂r
− ı κf (p− pi) = o

(
r−1
)
, (1.3)

as r := ‖x‖ → +∞, uniformly for all directions
x
‖x‖· Hereafter, div stands for the usual divergence operator

div acting on each row of the tensor, ‖x‖ is the euclidean norm of a vector x := (x1, x2)t ∈ R2, and ν denotes the
unit outward normal on Σ, that is pointing toward R2\Ωs. The transmission conditions given in (1.1) constitute
the equilibrium of forces and the equality of the normal displacements of the solid and fluid. In other words, the
first equation in (1.1) results from the action of pressure forces exerted by the fluid on the solid, and the second
one expresses the continuity of the fluid and structural normal displacement components at the interface. In
turn, the equation (1.3) is known as the Sommerfeld radiation condition.

Now, it is important to remark that the development of suitable numerical methods for the above described
fluid-solid interaction problems has become a subject of increasing interest during the last two decades. Several



A PRIORI ERROR ANALYSIS OF A FULLY-MIXED FINITE ELEMENT METHOD ... 473

approaches relying on a primal formulation in the solid, in which the displacement becomes the only unknown in
this medium, were originally studied in [5,17–20,23,25]. More recently, and in particular motivated by the need
of obtaining direct finite element approximations of the stresses, dual-mixed formulations in the solid have begun
to be considered as well (see e.g. [7, 9]). In fact, the model is first simplified in [7] by assuming that the fluid
occupies a bounded annular region Ωf , whence a Robin boundary condition imitating the behavior of the
scattered field at infinity is imposed on the exterior boundary of Ωf , which is located far from the obstacle.
Then, the method in [7] employs a dual-mixed variational formulation for plane elasticity in the solid and keeps
the usual primal formulation in the linearized fluid region. In addition, the elastodynamic equation is used to
eliminate the displacement unknown from the resulting formulation. Furthermore, since one of the transmission
conditions becomes essential, it is enforced weakly by means of a Lagrange multiplier. As a consequence, the
stress tensor in the solid and the pressure in the fluid, which solves the Helmholtz equation, constitute the
main unknowns. Next, a judicious decomposition of the space of stresses renders suitable the application of
the Fredholm alternative and the Babuška–Brezzi theory for the analysis of the whole coupled problem. The
corresponding discrete scheme is defined with PEERS elements in the obstacle and the traditional first order
Lagrange finite elements in the fluid domain. The stability and convergence of this Galerkin method also relies
on a stable decomposition of the finite element space used to approximate the stress variable. On the other
hand, the strategy from [7] is modified in [9] in such a way that, instead of introducing a Robin condition on the
exterior boundary, a non-local absorbing boundary condition based on boundary integral equations is considered
there. Consequently, the exterior boundary can be chosen as any parametrizable smooth closed curve containing
the solid, which, in order to minimize the size of the computational domain, is adjusted as sharply as possible
to the shape of the obstacle. The rest of the analysis for the corresponding continuous and discrete formulations
follows very closely the techniques and arguments developed in [7]. We refer to [9] for further details on this
modified approach.

The goal of the present paper is to additionally extend the approach from [7, 9] by employing now dual-
mixed formulations in both media. The extension concept refers here to the fact that, instead of using a primal
approach in the bounded fluid domain, as in [7, 9], we now apply in that region the same dual-mixed method
that is employed in the solid. In this way, the well-posedness of the formulation that would arise from the
additional use of the boundary integral equation method (BIEM) in the unbounded fluid domain, as it was
done in [9], will follow straightforwardly from the analyses in that reference and the present paper. By the way,
the advantages and disadvantages of using BIEM or not have to do mainly with the computational domain
(smaller with BIEM) and the complexity of the resulting Galerkin system (simpler without BIEM). In any case,
the above remarks emphasize that, besides σs, from now on we set the additional unknown

σf := ∇p in R2\Ωs,

so that the Helmholtz equation and the second condition in (1.1) are rewritten, respectively, as

divσf + κ2
f p = 0 in R2\Ωs, (1.4)

and
σf · ν = ρf ω

2 u · ν on Σ. (1.5)

The introduction of σf and the resulting equation (1.4) is motivated by the eventual need of obtaining direct and
more accurate finite element approximations for the pressure gradient σf := ∇p (instead of applying numerical
differentiation, with the consequent loss of accuracy, to the approximation of p arising from the usual primal
formulation). The above is required, for instance, to solve the inverse problem related to the Helmholtz equation,
in which the boundary integral representation of the far field pattern, a crucial variable in an associated iterative
algorithm, depends on both the trace of p and the normal trace of σf (see, e.g. [6], Chap. 2, Thm. 2.5). To this
respect, a H(div)-type approximation of σf is certainly better suited for this purpose. The usefulness of the
mixed formulation for the pressure p is also justified by the fact that it is locally mass conservative. Moreover,
since both transmission conditions become now essential, they are enforced weakly by using the traces of the
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displacement and the pressure on the interface as suitable Lagrange multipliers. Hence, the fact that these
variables of evident physical interest can also be approximated directly from the associated Galerkin schemes,
constitute another important advantage of the fully-mixed approach proposed here. Furthermore, the use of a
dual-mixed approach in the solid and the fluid simplify the corresponding computational code since Raviart–
Thomas based subspaces can be used in both domains. The rest of this work is organized as follows. In Section 2
we redefine the fluid-solid interaction problem on an annular domain Ωf ⊆ R2 (as in [7, 9]), and derive the
associated continuous variational formulation. Then, in Section 3 we utilize the Fredholm and Babuška–Brezzi
theories to analyze the resulting saddle point problem and provide sufficient conditions for its well-posedness.
The corresponding Galerkin scheme is studied in Section 4. Finally, some numerical experiments illustrating the
theoretical results are reported in Section 5.

We end this section with further notations to be used below. Since in the sequel we deal with complex valued
functions, we use the symbol ı for

√
−1, and denote by z and |z| the conjugate and modulus, respectively, of

each z ∈ C. Also, given τ s := (τij), ζs := (ζij) ∈ C2×2, we define the deviator tensor τ d
s := τ s − 1

2 tr(τ s) I,
the tensor product τ s : ζs :=

∑2
i,j=1 τij ζij , and the conjugate tensor τ s := (τ ij). In turn, in what follows we

utilize standard simplified terminology for Sobolev spaces and norms. In particular, if O is a domain, S is a
closed Lipschitz curve, and r ∈ R, we define

Hr(O) := [Hr(O)]2, Hr(O) := [Hr(O)]2×2, and Hr(S) := [Hr(S)]2.

However, when r = 0 we usually write L2(O), L2(O), and L2(S) instead of H0(O), H0(O), and H0(S), respec-
tively. The corresponding norms are denoted by ‖ · ‖r,O (for Hr(O), Hr(O), and Hr(O)) and ‖ · ‖r,S (for Hr(S)
and Hr(S)). In general, given any Hilbert space H , we use H and H to denote H2 and H2×2, respectively. In ad-
dition, we use 〈·, ·〉S to denote the usual duality pairings between H−1/2(S) andH1/2(S), and between H−1/2(S)
and H1/2(S). Furthermore, the Hilbert space

H(div;O) :=
{
w ∈ L2(O) : div w ∈ L2(O)

}
,

is standard in the realm of mixed problems (see [4,13]). The space of matrix valued functions whose rows belong
to H(div;O) will be denoted H(div;O). The Hilbert norms of H(div;O) and H(div;O) are denoted by ‖·‖div;O
and ‖ · ‖div;O, respectively. Note that if τ ∈ H(div;O), then div τ ∈ L2(O). Finally, we employ 0 to denote a
generic null vector (including the null functional and operator), and use C and c, with or without subscripts,
bars, tildes or hats, to denote generic constants independent of the discretization parameters, which may take
different values at different places.

2. The continuous variational formulation

We first observe, as a consequence of (1.2) and (1.3), that the outgoing waves are absorbed by the far field.
According to this fact, and in order to obtain a convenient simplification of our model problem, we now proceed
similarly as in [7] and introduce a sufficiently large polyhedral surface Γ approximating a sphere centered at
the origin, whose interior contains Ωs. Then, we define Ωf as the annular region bounded by Σ and Γ , and
consider the Robin boundary condition:

σf · ν − ı κf p = g := ∇pi · ν − ı κf pi on Γ,

where ν denotes also the unit outward normal on Γ . Therefore, given f ∈ L2(Ωs) and g ∈ H−1/2(Γ ), we
are now interested in the following fluid-solid interaction problem: Find σs ∈ H(div;Ωs), u ∈ H1(Ωs),
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σf ∈ H(div;Ωf ), and p ∈ H1(Ωf ), such that there hold in the distributional sense:

σs = C ε(u) in Ωs,

divσs + κ2
s u = − f in Ωs,

σf = ∇p in Ωf ,

divσf + κ2
f p = 0 in Ωf ,

σs ν = − pν on Σ,

σf · ν = ρf ω
2 u · ν on Σ,

σf · ν − ı κf p = g on Γ,

(2.1)

where C is the elasticity operator given by Hooke’s law, that is

C ζs := λ tr(ζs) I + 2μ ζs ∀ ζs ∈ L2(Ωs). (2.2)

Note from (2.1) the full symmetry existing between the dual-mixed formulations in the domains and between
the transmission conditions on Σ. This fact motivates later on the use of Raviart–Thomas based subspaces in
both domains.

It is clear from (2.2) that C is bounded and invertible and that the operator C−1 reduces to

C−1 ζs :=
1

2μ
ζs − λ

4μ (λ+ μ)
tr(ζs) I ∀ ζs ∈ L2(Ωs).

In addition, the above identity and simple algebraic manipulations yield∫
Ωs

C−1 ζs : ζs ≥ 1
2μ

‖ζds‖2
0,Ωs

∀ ζs ∈ L2(Ωs). (2.3)

We now apply dual-mixed approaches in the solid Ωs and the fluid Ωf to derive the fully-mixed variational
formulation of (2.1). Indeed, following the usual procedure from linear elasticity (see [1,7,27]), we first introduce
the rotation

γ :=
1
2
(∇u − (∇u)t) ∈ L2

asym(Ωs)

as a further unknown, where L2
asym(Ωs) denotes the space of asymmetric tensors with entries in L2(Ωs). According

to this, the constitutive equation can be rewritten in the form

C−1 σs = ε(u) = ∇u − γ,

which, multiplying by a function τ s ∈ H(div;Ωs) and integrating by parts, yields∫
Ωs

C−1 σs : τ s +
∫

Ωs

u · div τ s − 〈τ s ν,u〉Σ +
∫

Ωs

τ s : γ = 0. (2.4)

At this point we remark that, given τ s ∈ H(div;Ωs), τ s ν|Σ is the functional in H−1/2(Σ) defined as

〈τ s ν,ϕ〉Σ :=
∫

Ωs

τ s : ∇w +
∫

Ωs

w · div τ s ∀ϕ ∈ H1/2(Σ),

where w is any function in H1(Ωs) such that w = ϕ on Σ and w = 0 on Γ . Then, using the elastodynamic
equation (cf. second equation of (2.1)) to eliminate u in Ωs, and introducing the additional unknown

ϕs := u|Σ ∈ H1/2(Σ), (2.5)
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we find that (2.4) becomes∫
Ωs

C−1 σs : τ s − 1
κ2

s

∫
Ωs

divσs · div τ s − 〈τ s ν,ϕs〉Σ +
∫

Ωs

τ s : γ =
1
κ2

s

∫
Ωs

f · div τ s. (2.6)

Similarly, multiplying the constitutive equation σf = ∇p in Ωf by τ f ∈ H(div;Ωf ), integrating by parts,
noting that the normal vector points inward Ωf on Σ, replacing from the Helmholtz equation p = − 1

κ2
f

divσf

in Ωf , and introducing the auxiliary unknown

ϕf = (ϕ
Σ
, ϕ

Γ
) := (p|Σ , p|Γ ) ∈ H1/2(Σ) ×H1/2(Γ ), (2.7)

we arrive at ∫
Ωf

σf · τ f − 1
κ2

f

∫
Ωf

divσf div τ f + 〈τ f · ν, ϕ
Σ
〉Σ − 〈τ f · ν, ϕ

Γ
〉Γ = 0. (2.8)

Finally, the symmetry of σs, the transmission conditions on Σ, and the Robin boundary condition on Γ are
imposed weakly through the relations: ∫

Ωs

σs : η = 0 ∀η ∈ L2
asym(Ωs),

−〈σs ν, ψs 〉Σ − 〈ϕ
Σ
ν, ψs 〉Σ = 0 ∀ψs ∈ H1/2(Σ),

〈σf · ν, ψ
Σ
〉Σ − ρf ω

2 〈ψ
Σ
ν, ϕs 〉Σ = 0 ∀ψ

Σ
∈ H1/2(Σ),

−〈σf · ν, ψ
Γ
〉Γ + ı κf 〈ϕΓ

, ψ
Γ
〉Γ = −〈 g, ψ

Γ
〉Γ ∀ψ

Γ
∈ H1/2(Γ ),

(2.9)

where the traces of u and p have been replaced by the new unknowns introduced in (2.5) and (2.7), the expression
〈ϕs · ν, ψΣ

〉Σ in the second transmission condition has been rewritten as 〈ψ
Σ
ν, ϕs 〉Σ , and the signs of the first

transmission condition and the Robin boundary condition have been changed for convenience. Note that ϕs

and ϕf constitute precisely the Lagrange multipliers associated with the transmission and Robin boundary
conditions.

Throughout the rest of the paper we make the identification Ht(∂Ωf ) ≡ Ht(Σ) × Ht(Γ ) for each t ∈ R,
with the norm ‖ψf‖t,∂Ωf

:= ‖ψ
Σ
‖t,Σ + ‖ψ

Γ
‖t,Γ for each ψf := (ψ

Σ
, ψ

Γ
) ∈ Ht(∂Ωf ).

Therefore, adding (2.6)–(2.9), and defining the spaces

H := H(div;Ωs) × H(div;Ωf ) and Q := L2
asym(Ωs) × H1/2(Σ) ×H1/2(∂Ωf ),

we arrive at the following fully-mixed variational formulation of (2.1): Find σ̂ := (σs,σf ) ∈ H and γ̂ :=
(γ,ϕs,ϕf ) ∈ Q such that

A(σ̂, τ̂ ) + B(τ̂ , γ̂) = F (τ̂ ) ∀ τ̂ := (τ s, τ f ) ∈ H,

B(σ̂, η̂) + K(γ̂, η̂) = G(η̂) ∀ η̂ := (η,ψs,ψf ) ∈ Q,
(2.10)

where F : H → C and G : Q → C are the lineal functionals

F (τ̂ ) :=
1
κ2

s

∫
Ωs

f · div τ s ∀ τ̂ := (τ s, τ f ) ∈ H,

G(η̂) := −〈 g, ψΓ 〉Γ ∀ η̂ := (η,ψs,ψf ) := (η,ψs, (ψΣ , ψΓ )) ∈ Q,

and A : H× H → C, B : H× Q → C, and K : Q× Q → C are the bilinear forms defined by

A(ζ̂, τ̂ ) :=
∫

Ωs

C−1ζs : τ s − 1
κ2

s

∫
Ωs

div ζs · div τ s +
∫

Ωf

ζf · τ f − 1
κ2

f

∫
Ωf

div ζf div τ f

∀ (ζ̂, τ̂ ) := ((ζs, ζf ), (τ s, τ f )) ∈ H× H,

(2.11)

B(τ̂ , η̂) := Bs(τ s, (η,ψs)) + Bf (τ f ,ψf ) ∀ (τ̂ , η̂) := ((τ s, τ f ), (η,ψs,ψf )) ∈ H× Q, (2.12)
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with
Bs(τ s, (η,ψs)) :=

∫
Ωs

τ s : η − 〈τ s ν,ψs〉Σ , (2.13)

Bf (τ f ,ψf ) := 〈τ f · ν, ψΣ 〉Σ − 〈τ f · ν, ψΓ 〉Γ , (2.14)

and
K(χ̂, η̂) := −〈ξ

Σ
ν,ψs〉Σ − ρf ω

2 〈ψ
Σ
ν, ξs〉Σ + ı κf 〈ξ

Γ
, ψ

Γ
〉Γ

∀ χ̂ := (χ, ξs, ξf ) := (χ, ξs, (ξΣ , ξΓ )) ∈ Q,

∀ η̂ := (η,ψs,ψf ) := (η,ψs, (ψΣ
, ψ

Γ
)) ∈ Q.

(2.15)

It is straightforward to see, applying the Cauchy–Schwarz inequality, the duality pairings 〈·, ·〉Σ and 〈·, ·〉Γ , and
the usual trace theorems in H(div;Ωs) and H(div;Ωf ), that F , G, A, B, Bs, Bf , and K are all bounded with
constants depending on κs, μ, κf , ρf , and ω.

3. Analysis of the continuous variational formulation

In this section we proceed analogously to [7] and employ suitable decompositions of H(div;Ωs) and H(div;Ωf )
to show that (2.10) becomes a compact perturbation of a well-posed problem. To this end, we now need to
introduce two projectors defined in terms of auxiliary Neumann boundary value problems posed in Ωs and Ωf ,
respectively.

3.1. The associated projectors

We begin by recalling from the analysis in [7], Section 4.1, the definition of the projector in Ωs. In fact, let
us first denote by RM(Ωs) the space of rigid body motions in Ωs, that is

RM(Ωs) :=
{
v : Ωs → C2 : v(x) =

(
a
b

)
+ c

(
x2

−x1

)
∀x :=

(
x1

x2

)
∈ Ωs, a, b, c ∈ C

}
,

and let M : L2(Ωs) → RM(Ωs) be the associated orthogonal projector. Then, given τ s ∈ H(div;Ωs), we
consider the boundary value problem

σ̃s = C ε(ũ) in Ωs, div σ̃s = (I − M)
(
div τ s

)
in Ωs,

σ̃s ν = 0 on Σ, ũ ∈ (I − M)(L2(Ωs)),
(3.1)

where C ε(ũ) is defined according to (2.2). Hereafter, I denotes also a generic identity operator. Note that the
application of the operator I−M on the right hand side of the equilibrium equation is needed to guarantee the
usual compatibility condition for the Neumann problem (3.1) (cf. [3], Thm. 9.2.30), and that the orthogonality
condition on ũ is required for uniqueness. Indeed, it is well known (see, e.g. [8], Sect. 3, Thm. 3.1) that (3.1)
is well-posed. In addition, owing to the regularity result for the elasticity problem with Neumann boundary
conditions (see, e.g. [14, 15]), we know that (σ̃s, ũ) ∈ Hε(Ωs) × H1+ε(Ωs), for some ε > 0, and there holds

‖σ̃s‖ε,Ωs + ‖ũ‖1+ε,Ωs ≤ C ‖div τ s‖0,Ωs . (3.2)

We now introduce the linear operator Ps : H(div;Ωs) → H(div;Ωs) defined by

Ps(τ s) := σ̃s ∀ τ s ∈ H(div;Ωs), (3.3)
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where σ̃s := C ε(ũ) and ũ is the unique solution of (3.1). It is clear from (3.1) that

Ps(τ s)t = Ps(τ s) in Ωs, divPs(τ s) = (I − M)
(
div τ s

)
in Ωs, (3.4)

and
Ps(τ s)ν = 0 on Σ. (3.5)

Then, the continuous dependence result for (3.1) gives

‖Ps(τ s)‖div;Ωs ≤ C ‖div τ s‖0,Ωs ∀ τ s ∈ H(div;Ωs),

which shows that Ps is bounded. Moreover, it is easy to see from (3.1)–(3.5) that Ps is actually a projector,
and hence there holds

H(div;Ωs) = Ps(H(div;Ωs)) ⊕ (I − Ps)(H(div;Ωs)). (3.6)

Finally, it is clear from (3.2) that Ps(τ s) ∈ Hε(Ωs) and

‖Ps(τ s)‖ε,Ωs ≤ C ‖div τ s‖0,Ωs ∀ τ s ∈ H(div;Ωs). (3.7)

We proceed analogously for the domain Ωf . In fact, let P0(Ωf ) be the space of constant polynomials on Ωf ,
and let J : L2(Ωf ) → P0(Ωf ) be the corresponding orthogonal projector. Then, given τ f ∈ H(div;Ωf ), we
consider the Neumann boundary value problem

σ̃f = ∇p̃ in Ωf , div σ̃f = (I − J)
(
div τ f

)
in Ωf ,

σ̃f · ν = 0 on Σ ∪ Γ, p̃ ∈ (I − J)(L2(Ωf )).
(3.8)

Analogue remarks to those given for the compatibility condition and uniqueness of solution of (3.1) are valid
here with J instead of M. In addition, it is not difficult to see that (3.8) is well-posed as well. Furthermore, the
classical regularity result for the Poisson problem with Neumann boundary conditions (see, e.g. [14,15]) implies
that (σ̃f , p̃) ∈ Hε(Ωf ) ×H1+ε(Ωf ), for some ε > 0 (parameter that can be assumed, from now on, to be the
same of (3.2)), and that

‖σ̃f‖ε,Ωf
+ ‖p̃‖1+ε,Ωf

≤ C ‖div τ f‖0,Ωf
. (3.9)

We now define the linear operator Pf : H(div;Ωf ) → H(div;Ωf ) by

Pf (τ f ) := σ̃f ∀ τ f ∈ H(div;Ωf ), (3.10)

where σ̃f := ∇p̃ and p̃ is the unique solution of (3.8). It follows that

div Pf (τ f ) = (I − J)
(
div τ f

)
in Ωf and Pf (τ f ) · ν = 0 on Σ ∪ Γ. (3.11)

In addition, thanks to the continuous dependence result for (3.8), there holds

‖Pf (τ f )‖div;Ωf
≤ C ‖div τ f‖0,Ωf

∀ τ f ∈ H(div;Ωf ),

which shows that Pf is bounded. Furthermore, it is straightforward from (3.8)–(3.11) that Pf is a projector,
and therefore

H(div;Ωf ) = Pf (H(div;Ωf )) ⊕ (I − Pf ) (H(div;Ωf )) . (3.12)

Also, it is clear from (3.9) that Pf (τ f ) ∈ Hε(Ωf ) and

‖Pf (τ f )‖ε,Ωf
≤ C ‖div τ f‖0,Ωf

∀ τ f ∈ H(div;Ωf ). (3.13)
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3.2. Decomposition of the bilinear form A

We begin the analysis by introducing the bilinear forms A+
s : H(div;Ωs) × H(div;Ωs) → C and A+

f :
H(div;Ωf ) × H(div;Ωf ) → C given by

A+
s (ζs, τ s) :=

∫
Ωs

C−1 ζs : τ s +
1
κ2

s

∫
Ωs

div ζs · div τ s ∀ ζs, τ s ∈ H(div;Ωs), (3.14)

and
A+

f (ζf , τ f ) :=
∫

Ωf

ζf · τ f +
1
κ2

f

∫
Ωf

div ζfdiv τ f ∀ ζf , τ f ∈ H(div;Ωf ), (3.15)

which are clearly bounded, symmetric, and positive semi-definite. Actually, it is straightforward to see
from (3.15) that A+

f is H(div;Ωf )-elliptic, that is there exists α+
f := min

{
1, 1

κ2
f

}
> 0 such that

A+
f (τ f , τ f ) ≥ α+

f ‖τ f‖2
div;Ωf

∀ τ f ∈ H(div;Ωf ), (3.16)

and we show below in Section 3.3 that A+
s is also elliptic but on a subspace of H(div;Ωs).

In what follows, we employ the decompositions (3.6) and (3.12) to reformulate (2.10) in a more suitable form.
More precisely, the unknown σ̂ := (σs,σf ) and the corresponding test function τ̂ := (τ s, τ f ), both in H, are
replaced, respectively, by the expressions

σs = Ps(σs) + (I − Ps)(σs), σf = Pf (σf ) + (I − Pf )(σf ) (3.17)

and
τ s = Ps(τ s) + (I − Ps)(τ s), τ f = Pf (τ f ) + (I − Pf )(τ f ). (3.18)

To this respect, we observe, according to (3.4), (3.5), and the fact that ∇v ∈ L2
asym(Ωs) for all v ∈ RM(Ωs),

that for all ζs, τ s ∈ H(div;Ωs), there holds∫
Ωs

div(I − Ps)(ζs) · divPs(τ s) =
∫

Ωs

M(div ζs) · divPs(τ s)

= −
∫

Ωs

∇M(div ζs) : Ps(τ s) + 〈Ps(τ s)ν, M(div ζs) 〉Σ = 0.
(3.19)

Analogously, according to (3.11), we deduce that for all ζf , τ f ∈ H(div;Ωf ), there holds∫
Ωf

div
(
I − Pf

)
(ζf ) div Pf (τ f ) = J(div ζf )

∫
Ωf

div Pf (τ f )

= J(div ζf )
{
〈Pf (τ f ) · ν, 1〉Γ − 〈Pf (τ f ) · ν, 1〉Σ

}
= 0.

(3.20)

Hence, using the decompositions (3.6) and (3.12), and the identities (3.19) and (3.20), and adding and
substracting suitable terms, we find that A (cf. (2.11)) can be decomposed as

A(ζ̂, τ̂ ) = A0(ζ̂, τ̂ ) + K0(ζ̂, τ̂ ) ∀ (ζ̂, τ̂ ) := ((ζs, ζf ), (τ s, τ f )) ∈ H× H,

where A0 : H× H → C and K0 : H× H → C are given by

A0(ζ̂, τ̂ ) = As(ζs, τ s) + Af (ζf , τ f ), (3.21)

and
K0(ζ̂, τ̂ ) = Ks(ζs, τ s) + Kf(ζf , τ f ), (3.22)
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with the bilinear forms As : H(div;Ωs)×H(div;Ωs) → C, Af : H(div;Ωf )×H(div;Ωf ) → C,Ks : H(div;Ωs)×
H(div;Ωs) → C, and Kf : H(div;Ωf ) × H(div;Ωf ) → C defined by

As (ζs, τ s)) := −A+
s (Ps(ζs),Ps(τ s)) + A+

s ((I − Ps)(ζs), (I − Ps)(τ s)), (3.23)

Af

(
ζf , τ f

)
:= −A+

f (Pf (ζf ),Pf (τ f )) + A+
f ((I − Pf )(ζf ), (I − Pf )(τ f )), (3.24)

Ks (ζs, τ s)) := 2
∫

Ωs

C−1Ps(ζs) : Ps(τ s) +
∫

Ωs

C−1Ps(ζs) : (I− Ps)(τ s)

+
∫

Ωs

C−1(I − Ps)(ζs) : Ps(τ s) −
(
1 +

1
κ2

s

) ∫
Ωs

div(I − Ps)(ζs) · div(I − Ps)(τ s) ,
(3.25)

and
Kf

(
ζf , τ f

)
:= 2

∫
Ωf

Pf (ζf ) · Pf (τ f ) +
∫

Ωf

Pf (ζf ) · (I − Pf )(τ f )

+
∫

Ωf

(I − Pf )(ζf ) ·Pf (τ f ) −
(
1 +

1
κ2

f

) ∫
Ωf

div(I − Pf )(ζf ) · div(I − Pf )(τ f ).
(3.26)

Next, we let A0 : H → H, K0 : H → H, B : H → Q and K : Q → Q be the linear and bounded operators
induced by the bilinear forms (3.21)–(2.15), respectively. In addition, we let B∗ : Q → H be the adjoint of B,
and denote by F and G the Riesz representants of the functionals F and G. Hence, using these notations and
taking into account the decompositions (3.17) and (3.18), the fully-mixed variational formulation (2.10) can be
rewritten as the following operator equation: Find (σ̂, γ̂) ∈ H× Q such that(

A0 B∗

B 0

) (
σ̂
γ̂

)
+
(

K0 0
0 K

) (
σ̂
γ̂

)
=
(

F
G

)
. (3.27)

Moreover, it is quite straightforward from the definitions of A0 (cf. (3.21)) and B (cf. (2.12)) that (up to a
permutation of rows) there holds

(
A0 B∗

B 0

) (
σ̂
γ̂

)
=

⎛⎜⎝
As B∗

s

Bs 0 0

0
Af B∗

f

Bf 0

⎞⎟⎠
⎛⎜⎝ σs

(γ,ϕs)
σf

ϕf

⎞⎟⎠ , (3.28)

where As : H(div;Ωs) → H(div;Ωs), Bs : H(div;Ωs) → L2
asym(Ωs)×H1/2(Σ), Af : H(div;Ωf ) → H(div;Ωf ),

and Bf : H(div;Ωf ) → H1/2(∂Ωf ) are the bounded linear operators induced by As, Bs, Af , and Bf , respec-
tively.

In the following section we show that the matrix operators on the left hand side of (3.27) become bijective and
compact, respectively. In particular, concerning the bijectivity issue, and because of the block-diagonal saddle
point structure shown by the right-hand side of (3.28), it suffices to apply the well known Babuška–Brezzi
theory independently to each one of the two blocks arising there.

3.3. Application of the Babuška–Brezzi and Fredholm theories

We begin with the continuous inf-sup conditions for the bilinear forms Bs and Bf , which are equivalent to
the surjectivity of Bs and Bf , respectively. For this purpose, we first notice from (2.13) and (2.14) that these
operators are given by

Bs(τ s) :=
(

1
2
(
τ s − τ t

s

)
,−Rs(τ s ν)

)
∀ τ s ∈ H(div;Ωs), (3.29)
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and
Bf (τ f ) := (R

Σ
(τ f · ν),−R

Γ
(τ f · ν)) ∀ τ f ∈ H(div;Ωf ), (3.30)

where Rs : H−1/2(Σ) → H1/2(Σ), R
Σ

: H−1/2(Σ) → H1/2(Σ), and R
Γ

: H−1/2(Γ ) → H1/2(Γ ), are the
respective Riesz operators. Hence, we have the following lemmas.

Lemma 3.1. There exists βs > 0 such that

sup
τs∈H(div;Ωs)\{0}

|Bs(τ s, (η,ψs) |
‖τ s‖div;Ωs

≥ βs ‖(η,ψs)‖ ∀ (η,ψs) ∈ L2
asym(Ωs) × H1/2(Σ).

Proof. We proceed as in the proof of [10], Lemma 4.1. Given (η,ψs) ∈ L2
asym(Ωs)×H1/2(Σ) we let z ∈ H1(Ωs)

be the unique (up to a rigid motion) solution of the variational formulation∫
Ωs

ε(z) : ε(w) = −
∫

Ωs

r(η,ψs) · w −
∫

Ωs

η : ∇w + 〈R−1
s (ψs),w〉Σ ∀w ∈ H1(Ωs), (3.31)

where r(η,ψs) ∈ RM(Ωs) is characterized by∫
Ωs

r(η,ψs) ·w = −
∫

Ωs

η : ∇w + 〈R−1
s (ψs),w〉Σ ∀w ∈ RM(Ωs).

Then, defining ζs := ε(z) +η, we find from (3.31) that div ζs = r(η,ψs) in Ωs, whence ζs ∈ H(div;Ωs), and
thus ζs ν = −R−1

s (ψs) on Σ. It follows that Bs(ζs) = (η,ψs), which proves the surjectivity of Bs. �

Lemma 3.2. There exists βf > 0 such that

sup
τf∈H(div;Ωf )\{0}

|Bf(τ f ,ψf ) |
‖τ f‖div;Ωf

≥ βf ‖ψf‖1/2,∂Ωf
∀ψf := (ψ

Σ
, ψ

Γ
) ∈ H1/2(∂Ωf ).

Proof. Given ψf := (ψ
Σ
, ψ

Γ
) ∈ H1/2(∂Ωf ), we let z ∈ H1(Ωf ) be the unique solution (up to a constant) of

the Neumann boundary value problem

Δz = − 1
|Ωf |

{
〈R−1

Σ
(ψΣ ), 1〉Σ + 〈R−1

Γ
(ψΓ ), 1〉Γ

}
in Ωf ,

∇z · ν = R−1
Σ

(ψΣ ) on Σ, ∇z · ν = −R−1
Γ

(ψΓ ) on Γ.

(3.32)

Then, defining ζf := ∇z in Ωf , we easily see that

Bf (ζf ) :=
(
R

Σ
(ζf · ν),−R

Γ
(ζf · ν)

)
= (ψ

Σ
, ψ

Γ
),

which shows that Bf is surjective. �

We now let Vs and Vf be the kernels of Bs and Bf , respectively, that is, according to (3.29) and (3.30),

Vs :=
{
τ s ∈ H(div;Ωs) : τ s = τ ts in Ωs, τ s ν = 0 on Σ

}
, (3.33)

Vf :=
{
τ f ∈ H(div;Ωf ) : τ f · ν = 0 on Σ, τ f · ν = 0 on Γ

}
, (3.34)

and aim to prove that As|Vs×Vs and Af |Vf×Vf
induce bijective operators. In particular, for As we proceed as

in [7], Section 4.2 and make use of the decomposition

H(div;Ωs) = H0(div;Ωs) ⊕ C I,
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with
H0(div;Ωs) :=

{
τ s ∈ H(div;Ωs) :

∫
Ωs

tr τ s = 0
}
, (3.35)

and the inequalities

‖τ ds‖2
0,Ωs

+ ‖div τ s‖2
0,Ωs

≥ c1 ‖τ s,0‖2
0,Ωs

∀ τ s ∈ H(div;Ωs) (3.36)

(cf. [4], Prop. 3.1, Chap. IV), and

‖τ s,0‖2
div;Ωs

≥ c2 ‖τ s‖2
div;Ωs

∀ τ s ∈ H̃(div;Ωs) (3.37)

(cf. [7], Lem. 4.5), with

H̃(div;Ωs) :=
{
τ s ∈ H(div;Ωs) : τ s ν = 0 on Σ

}
, (3.38)

where each τ s ∈ H(div;Ωs) is written as τ s = τ s,0 + d I, with τ s,0 ∈ H0(div;Ωs) and d ∈ C.
The following lemma establishes the H̃(div;Ωs)-ellipticity of A+

s .

Lemma 3.3. There exists α+
s > 0, depending on μ, κs, c1, and c2, such that

A+
s (τ s, τ s) ≥ α+

s ‖τ s‖2
div;Ωs

∀ τ s ∈ H̃(div;Ωs). (3.39)

Proof. According to the definition of A+
s (cf. (3.14)), and using the inequalities (2.3)–(3.37), we find that for

each τ s ∈ H̃(div;Ωs) there holds

A+
s (τ s, τ s) ≥ 1

2μ
‖τ ds‖2

0,Ωs
+

1
κ2

s

‖div τ s‖2
0,Ωs

≥ min
{

1
2μ
,

1
2κ2

s

} {
‖τ ds‖2

0,Ωs
+ ‖div τ s‖2

0,Ωs

}
+

1
2κ2

s

‖div τ s‖2
0,Ωs

≥ c̃1 ‖τ s,0‖2
0,Ωs

+
1

2κ2
s

‖div τ s‖2
0,Ωs

≥ min
{
c̃1,

1
2κ2

s

}
‖τ s,0‖2

div;Ωs
≥ α+

s ‖τ s‖2
div;Ωs

,

with c̃1 := c1 min
{

1
2μ
,

1
2κ2

s

}
and α+

s := c2 min
{
c̃1,

1
2κ2

s

}
, which completes the proof. �

We are now in a position to prove that As and Af satisfy the continuous inf-sup conditions required by the
Babuška–Brezzi theory. To this end, we need to introduce the operators

Ξs := (I − 2Ps) : H(div;Ωs) → H(div;Ωs) (3.40)

and
Ξf := (I − 2Pf ) : H(div;Ωf ) → H(div;Ωf ), (3.41)

which, recalling that Ps and Pf are projectors, are certainly bounded and satisfy

Ps Ξs = −Ps, (I − Ps)Ξs = I − Ps, (3.42)

Pf Ξf = −Pf , and (I − Pf )Ξf = I − Pf . (3.43)

Then, we can establish the following lemmas.
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Lemma 3.4. There exist αs, Cs > 0 such that

As

(
ζs, Ξs(ζs)

)
≥ αs ‖ζs‖2

div;Ωs
∀ ζs ∈ H̃(div;Ωs), (3.44)

and

sup
τs∈Vs\{0}

|As(ζs, τ s)|
‖τ s‖div;Ωs

≥ Cs ‖ζs‖div;Ωs ∀ ζs ∈ Vs. (3.45)

In addition, there holds

sup
ζs∈Vs\{0}

|As(ζs, τ s)| > 0 ∀ τ s ∈ Vs, τ s �= 0. (3.46)

Proof. We first observe, thanks to the definitions of Vs and H̃(div;Ωs) (cf. (3.33), (3.38)), and the properties
of Ps (cf. (3.4), (3.5)), that Vs ⊆ H̃(div;Ωs) and Ps(ζs) ∈ Vs for each ζs ∈ H(div;Ωs), and hence, in
particular both Ps(ζs) and (I − Ps)(ζs) belong to H̃(div;Ωs) for each ζs ∈ H̃(div;Ωs). It follows, according
to the definition of As (cf. (3.23)), the properties of Ξs (cf. (3.42)), and the ellipticity of A+

s (cf. (3.39)), that
for each ζs ∈ H̃(div;Ωs) there holds

As

(
ζs, Ξs(ζs)

)
= A+

s (Ps(ζs),Ps(ζs)) + A+
s ((I − Ps)(ζs), (I − Ps)(ζs))

≥ α+
s

{
‖Ps(ζs)‖2

div;Ωs
+ ‖(I − Ps)(ζs)‖2

div;Ωs

}
≥ α+

s

2
‖ζs‖2

div;Ωs
,

which shows (3.44) with αs := α+
s /2. Next, given ζs ∈ Vs \ {0}, it is clear from the above analysis that

Ξs(ζs) ∈ Vs \ 0, and therefore, applying (3.44), we deduce that

sup
τs∈Vs\{0}

|As(ζs, τ s)|
‖τ s‖div;Ωs

≥
∣∣As(ζs, Ξs(ζs))

∣∣
‖Ξs(ζs)‖div;Ωs

≥ αs

‖ζs‖2
div;Ωs

‖Ξs(ζs)‖div;Ωs

,

which yields (3.45) with Cs := αs/‖Ξs‖. Finally, (3.46) is a straightforward consequence of (3.45) and the
symmetry of As. �

Lemma 3.5. There exist αf , Cf > 0 such that

Af

(
ζf , Ξf(ζf )

)
≥ αf ‖ζf‖2

div;Ωf
∀ ζf ∈ H(div;Ωf ), (3.47)

and

sup
τf∈Vf\{0}

∣∣Af (ζf , τ f )
∣∣

‖τ f‖div;Ωf

≥ Cf ‖ζf‖div;Ωf
∀ ζf ∈ Vf . (3.48)

In addition, there holds

sup
ζf∈Vf\{0}

∣∣Af (ζf , τ f )
∣∣ > 0 ∀ τ f ∈ Vf , τ f �= 0. (3.49)

Proof. We proceed analogously to the proof of the previous lemma. In fact, according to the definition of Af

(cf. (3.24)) and the properties of Ξf (cf. (3.43)), and applying the ellipticity of A+
f (cf. (3.16)), we find that for
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each ζf ∈ H(div;Ωf ) there holds

Af

(
ζf , Ξf (ζf )

)
= A+

f (Pf (ζf ),Pf (ζf )) + A+
f ((I − Pf )(ζf ), (I − Pf )(ζf ))

≥ α+
f

{
‖Pf (ζf )‖2

div;Ωf
+ ‖(I − Pf )(ζf )‖2

div;Ωf

}

≥
α+

f

2
‖ζf‖2

div;Ωf
,

which proves (3.47) with αf := α+
f /2. Next, it is clear from (3.47) that Ξf(ζf ) �= 0 for each ζf ∈

H(div;Ωf ) \ {0}. In addition, thanks to the properties of Pf (cf. (3.11)) and the definition of Vf (cf. (3.34)),
we deduce that Ξf (ζf ) belong to Vf \ {0} for each ζf ∈ Vf \ {0}, and hence

sup
τf∈Vf\{0}

∣∣Af (ζf , τ f )
∣∣

‖τ f‖div;Ωf

≥
∣∣Af (ζf , Ξf(ζf ))

∣∣
‖Ξf(ζf )‖div;Ωf

≥ αf

‖ζf‖2
div;Ωf

‖Ξf(ζf )‖div;Ωf

,

which implies (3.48) with Cf := αf/‖Ξf‖. Finally, the inequality (3.49) follows directly from (3.48) and the
symmetry of Af . �

As a consequence of Lemmas 3.1–3.4, and 3.5, and having in mind the identity (3.28) and the classical

Babuška–Brezzi theory (cf. [4], Thm. 1.1, Chap. II), we conclude that the matrix operator
(

A0 B∗

B 0

)
: H×Q →

H×Q is an isomorphism. In turn, the compactness of
(

K0 0
0 K

)
: H×Q → H×Q is proved by the following

lemma.

Lemma 3.6. The operators K0 : H → H and K : Q → Q are compact.

Proof. We first recall from Section 3.1 (cf. (3.7) and (3.13)) that there exists ε > 0 such that Ps(τ s) ∈ Hε(Ωs)
for each τ s ∈ H(div;Ωs), and Pf (τ f ) ∈ Hε(Ωf ) for each τ f ∈ H(div;Ωf ), which, thanks to the compact
imbeddings Hε(Ωs) ↪→ L2(Ωs) and Hε(Ωf ) ↪→ L2(Ωf ), imply the compactness of Ps : H(div;Ωs) → L2(Ωs)
and Pf : H(div;Ωf ) → L2(Ωf ). It follows that the adjoints P∗

s : L2(Ωs) → H(div;Ωs) and P∗
f : L2(Ωf ) →

H(div;Ωf ), and hence the operators P∗
s C−1 Ps, (I − Ps)∗ C−1 Ps, P∗

s C−1 (I − Ps), P∗
f Pf , (I − Pf )∗ Pf , and

P∗
f (I − Pf ) are all compact. This shows that the first three terms defining the bilinear forms Ks (cf. (3.25))

and Kf (cf. (3.26)) induce compact operators. In addition, it is clear from the second identity in (3.4) and the
first identity in (3.11) that the fourth terms of Ks and Kf yield finite rank operators, and therefore K0 : H → H
becomes compact.

Furthermore, the three terms defining K (cf. (2.15)), that is 〈ξΣ ν,ψs〉Σ , ρf ω
2 〈ψΣ ν, ξs〉Σ , and ı κf 〈ξΓ , ψΓ 〉Γ

also yield compact operators because of the compactness of the composition defined by the following diagram

H1/2(Σ)
compact−→ L2(Σ) continuous−→ L2(Σ)

compact−→ H−1/2(Σ)
ψ

Σ
−→ ψ

Σ
−→ ψ

Σ
ν −→ ψ

Σ
ν,

and thanks to the compact imbedding H1/2(Γ ) ↪→ H−1/2(Γ ). This completes the proof. �

We are able now to provide the main result of this section.

Theorem 3.7. Assume that the homogeneous problem associated to (2.10) has only the trivial solution. Then,
given f ∈ L2(Ωs) and g ∈ H−1/2(Γ ), there exists a unique solution (σ̂, γ̂) ∈ H × Q to (2.10) (equiva-
lently (3.27)). In addition, there exists C > 0 such that

‖(σ̂, γ̂)‖H×Q ≤ C
{
‖f‖0,Ωs + ‖g‖−1/2,Γ

}
.
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Proof. It suffices to notice, according to our previous analysis, that the left hand side of (3.27) constitutes a
Fredholm operator of index zero. �

We end this section by remarking that the extension of the previous continuous analysis to the 3D version
of our interaction problem is quite straightforward. However, this is not exactly the case when trying to extend
to 3D the Galerkin analysis shown below in Section 4. In particular, the proofs of the discrete inf-sup condi-
tions involving boundary or interface terms are rather technical and they require additional hypotheses on the
triangulations of both domains. In order to circumvent these difficulties, in the recent works [10, 11] we have
developed a new approach which incorporates the exact satisfaction of the transmission conditions into the
definitions of the continuous and discrete spaces.

4. Analysis of the Galerkin scheme

In this section we introduce a Galerkin approximation of (2.10) and show, under the same assumption of
Theorem 3.7, that it is well-posed. The corresponding result is given by Theorem 4.11, whose proof is obtained
as a consequence of the analysis in the following sections. In fact, we first define in Section 4.1 the main
finite element subspaces to be employed in the definition of the Galerkin scheme (cf. (4.7)) and provide their
approximation properties in Section 4.2. Then, in Section 4.3 we prove the existence of stable discrete liftings of
the normal traces on Σ and Γ of the finite element subspaces approximating the stresses. These lifting operators
allow us to establish certain equivalence results (cf. Lems. 4.3 and 4.4), which later on simplify the proofs of
the discrete inf-sup conditions for the bilinear forms Bf and Bs (cf. Lems. 4.7 and 4.8). Next, in Section 4.4 we
introduce uniformly bounded discrete operators Pf,h and Ps,h approximating Pf and Ps, respectively. Recall
that the latter operators were utilized in Section 3.3 to prove the continuous inf-sup conditions for the bilinear
forms As and Af (cf. Lems. 3.4 and 3.5). Hence, the key results in Section 4.4 refer to the upper estimates for
the errors ‖Ps −Ps,h‖ and ‖Pf −Pf,h‖ (cf. Lems. 4.5 and 4.6), which are utilized in Lemma 4.10 to prove the
discrete inf-sup conditions for As and Af . Finally, after establishing all the above mentioned discrete inf-sup
conditions in Section 4.5, the well-posedness of the Galerkin scheme, which follows at once, is summarized in
Theorem 4.11.

4.1. Preliminaries

We first let T s
h and T f

h be triangulations, belonging to shape-regular families, of the polygonal regions Ω̄s

and Ω̄f , respectively, by triangles T of diameter hT , with global mesh size

h := max
{

max
{
hT : T ∈ T s

h

}
; max

{
hT : T ∈ T f

h

}}
,

and such that the vertices of T s
h and T f

h coincide on Σ. In what follows, given an integer � ≥ 0 and a subset S
of R2, P	(S) denotes the space of polynomials defined in S of total degree ≤ �. In addition, following the
same terminology described at the end of the introduction, we denote P	(S) := [P	(S)]2. Furthermore, given
T ∈ T s

h ∪ T f
h and x := (x1, x2)t a generic vector of R2, we let RT0(T ) := span

{
(1, 0), (0, 1), (x1, x2)

}
be the

local Raviart–Thomas space of order 0 (cf. [4, 26]), and set curlt bT :=
(

∂bT

∂x2
,− ∂bT

∂x1

)
, where bT is the usual

cubic bubble function on T . Then we define

Hs
h :=

{
vs,h ∈ H(div;Ωs) : vs,h|T ∈ RT0(T ) ⊕ P0(T ) curlt bT ∀T ∈ T s

h

}
,

Hs
h :=

{
τ s,h ∈ H(div;Ωs) : ct τ s,h ∈ Hs

h ∀ c ∈ R2
}
, (4.1)

Hf
h :=

{
τ f,h ∈ H(div;Ωf ) : τ f,h|T ∈ RT0(T ) ∀T ∈ T f

h

}
, (4.2)
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Qs
h :=

{
ηh :=

(
0 ηh

−ηh 0

)
: ηh ∈ C(Ω̄s), ηh|T ∈ P1(T ) ∀T ∈ T s

h

}
, (4.3)

Qs
h := Λh(Σ) × Λh(Σ), (4.4)

Qf
h := Λh(Σ) × Λh(Γ ), (4.5)

where Λh(Σ) and Λh(Γ ) are generic finite dimensional subspaces (to be specified later on) of H1/2(Σ)
and H1/2(Γ ), respectively, and introduce the finite element subspaces Hh ⊆ H and Qh ⊆ Q, given by

Hh := Hs
h × Hf

h and Qh := Qs
h × Qs

h × Qf
h. (4.6)

Note that the associated generic subspaces Qf
h and Qs

h are employed below (cf. Lemmas 4.3 and 4.4) to establish
preliminary equivalence results concerning the discrete inf-sup conditions for Bf and Bs. Explicit definitions
of Λh(Σ) and Λh(Γ ), and hence of Qf

h and Qs
h, are given later on in Section 4.5 (cf. (4.48)–(4.51)) to finally

guarantee the ocurrence of the discrete inf-sup conditions for those bilinear forms (cf. Lems. 4.7 and 4.8).
In addition, our analysis below will also require the subspaces

H̃s
h :=

{
vs,h ∈ H(div;Ωs) : vs,h|T ∈ RT0(T ) ∀T ∈ T s

h

}
,

H̃s
h :=

{
τ s,h ∈ H(div;Ωs) : ct τ s,h ∈ H̃s

h ∀ c ∈ R2
}
,

Us
h :=

{
vh ∈ L2(Ωs) : vh|T ∈ P0(T ) ∀T ∈ T s

h

}
and

Uf
h :=

{
vh ∈ L2(Ωf ) : vh|T ∈ P0(T ) ∀T ∈ T f

h

}
.

We recall here that Hs
h ×Us

h ×Qs
h constitutes the well known PEERS space introduced in [1] for a mixed finite

element aproximation of the linear elasticity problem in the plane. In turn, Hf
h×U

f
h is the lowest order Raviart–

Thomas mixed finite element approximation of the Poisson problem for the Laplace equation (see [4,26]). Also,
it is important to notice, which will be used below, that H̃s

h ⊆ Hs
h and hence H̃s

h ⊆ Hs
h.

The Galerkin scheme associated to our continuous problem (2.10) is then defined as follows: Find σ̂h :=
(σs,h,σf,h) ∈ Hh and γ̂h := (γh,ϕs,h,ϕf,h) ∈ Qh such that

A(σ̂h, τ̂ h) + B(τ̂ h, γ̂h) = F (τ̂ h) ∀ τ̂h := (τ s,h, τ f,h) ∈ Hh,

B(σ̂h, η̂h) + K(γ̂h, η̂h) = G(η̂h) ∀ η̂h := (ηh,ψs,h,ψf,h) ∈ Qh,
(4.7)

We collect next the approximation properties of the finite element subspaces introduced above.

4.2. Approximation properties of the subspaces

We begin with the subspaces Hs
h and Hf

h. Indeed, given δ ∈ (0, 1], we let

Es
h : Hδ(Ωs) ∩ H(div;Ωs) → H̃s

h ⊆ Hs
h and Ef

h : Hδ(Ωf ) ∩ H(div;Ωf ) → Hf
h

be the usual Raviart–Thomas interpolation operators (see [4, 26]), which, given τ s ∈ Hδ(Ωs) ∩ H(div;Ωs) and
τ f ∈ Hδ(Ωf ) ∩ H(div;Ωf ), are characterized by the identities∫

e

Es
h(τ s)ν · q =

∫
e

τ s ν · q ∀ q ∈ P0(e), ∀ edge e of T s
h , (4.8)
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and ∫
e

Ef
h (τ f ) · ν q =

∫
e

τ f · ν q ∀ q ∈ P0(e), ∀ edge e of T f
h . (4.9)

In addition, the corresponding conmuting diagram properties yield

div(Es
h(τ s)) = Ps

h(div τ s) ∀ τ s ∈ Hδ(Ωs) ∩ H(div;Ωs), (4.10)

and
div(Ef

h (τ f )) = Pf
h (div τ f ) ∀ τ f ∈ Hδ(Ωf ) ∩H(div;Ωf ), (4.11)

where Ps
h : L2(Ωs) → Us

h and Pf
h : L2(Ωf ) → Uf

h are the corresponding orthogonal projectors, which satisfy
the following error estimates (see, e.g. [4])

(APs
h) For each t ∈ (0, 1] and for each v ∈ Ht(Ωs), there holds

‖v − Ps
h(v)‖0,Ωs ≤ C ht ‖v‖t,Ωs .

(APf
h) For each t ∈ (0, 1] and for each v ∈ Ht(Ωf ), there holds

‖v − Pf
h (v)‖0,Ωf

≤ C ht ‖v‖t,Ωf
.

Furthermore, it is easy to show, using the well-known Bramble–Hilbert Lemma and the boundedness of the
local interpolation operators on the reference element T̂ (see, e.g. [16], Eq. (3.39)), that there exist Ĉs, Ĉf > 0,
independent of h, such that for each τ s ∈ Hδ(Ωs) ∩ H(div;Ωs) and for each τ f ∈ Hδ(Ωf ) ∩ H(div;Ωf ), there
hold

‖τ s − Es
h(τ s)‖0,T ≤ Ĉs h

δ
T

{
|τ s|δ,T + ‖div τ s‖0,T

}
∀T ∈ T s

h , (4.12)

and
‖τ f − Ef

h (τ f )‖0,T ≤ Ĉf h
δ
T

{
|τ f |δ,T + ‖div τ f‖0,T

}
∀T ∈ T f

h . (4.13)

Hence, as a consequence of (4.10), (4.12), and (APs
h) (respectively, (4.11), (4.13), and (APf

h)), one can derive
the following two statements

(APσs

h ) For each δ ∈ (0, 1] and for each τ s ∈ Hδ(Ωs), with div τ s ∈ Hδ(Ωs), there holds

‖τ s − Es
h(τ s)‖div;Ωs ≤ C hδ

{
‖τ s‖δ,Ωs + ‖div τ s‖δ,Ωs

}
.

(APσf

h ) For each δ ∈ (0, 1] and for each τ f ∈ Hδ(Ωf ), with div τ f ∈ Hδ(Ωf ), there holds

‖τ f − Ef
h (τ f )‖div;Ωf

≤ C hδ
{
‖τ f‖δ,Ωf

+ ‖div τ f‖δ,Ωf

}
.

Finally, the orthogonal projector Rh : L2
asym(Ωs) → Qs

h satisfies the following property (see [4])

(APγ
h) For each t ∈ (0, 1] and for each η ∈ Ht(Ωs) ∩ L2

asym(Ωs), there holds

‖η −Rh(η)‖0,Ωs ≤ C ht ‖η‖t,Ωs .

The approximation properties of Qs
h and Qf

h will be provided once we introduce the specific finite element
subspaces Λh(Σ) and Λh(Γ ). In fact, as already mentioned, the choice of these discrete spaces will be indicated
throughout the analysis of well-posedness of our Galerkin scheme (4.7) (see Sect. 4.5 below), particularly when
proving the discrete inf-sup conditions for Bs and Bf . We previously need to define in Section 4.3 stable
discrete liftings towards Ωs and Ωf of normal traces on Σ and Γ and establish its connection with those
stability conditions for Bs and Bf . Then in Section 4.4 we introduce suitable discrete approximations of the
operators Ps|Hs

h
and Pf |Hf

s
, which will be employed in Section 4.5 to show the discrete inf-sup conditions for As

and Af .
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4.3. Stable discrete liftings of normal traces on Σ and Γ

In what follows we proceed as in [12], Sections 4.3 and 5.2 and assume from now on that {T s
h }h>0 and {T f

h }h>0

are quasi-uniform around Σ and Γ . This means that there exist Lipschitz-continuous neighborhoods ΩΣ and ΩΓ

of Σ and Γ , respectively, such that the elements of T s
h and T f

h intersecting those regions are more or less of the
same size. Equivalently, we define

TΣ,h :=
{
T ∈ T s

h ∪ T f
h : T ∩ ΩΣ �= ∅

}
, (4.14)

TΓ,h :=
{
T ∈ T f

h : T ∩ ΩΓ �= ∅
}
, (4.15)

and assume that there exist c > 0, independent of h, such that

max
{

max
T∈TΣ,h

hT ; max
T∈TΓ,h

hT

}
≤ c min

{
min

T∈TΣ,h

hT ; min
T∈TΓ,h

hT

}
∀h > 0. (4.16)

Note that the above assumption and the shape-regularity property of the meshes imply that Σh, the partition
on Σ inherited from T s

h (or from T f
h ), and Γh, the partition on Γ inherited from T f

h , are also quasi-uniform,
which means that there exist C

Σ
, C

Γ
> 0, independent of h, such that

hΣ := max
{
|e| : e edge of Σh

}
≤ C

Σ
min

{
|e| : e edge of Σh

}
and

hΓ := max
{
|e| : e edge of Γh

}
≤ C

Γ
min

{
|e| : e edge of Γh

}
.

Also, it is easy to see that there exist c, C > 0, independent of h, such that

c hΣ ≤ hΓ ≤ C hΣ . (4.17)

In addition, the quasi-uniformity of Σh and Γh guarantees the inverse inequality on the spaces

Φh(Σ) :=
{
φh ∈ L2(Σ) : φh|e ∈ P0(e) ∀ e edge of Σh

}
and

Φh(Γ ) :=
{
φh ∈ L2(Γ ) : φh|e ∈ P0(e) ∀ e edge of Γh

}
,

which means that

‖φh‖−1/2+δ,Σ ≤ C h−δ
Σ ‖φh‖−1/2,Σ ∀φh ∈ Φh(Σ), ∀ δ ∈ [0, 1/2] (4.18)

and
‖φh‖−1/2+δ,Γ ≤ C h−δ

Γ ‖φh‖−1/2,Γ ∀φh ∈ Φh(Γ ), ∀ δ ∈ [0, 1/2]. (4.19)

The following two lemmas establish our results on the existence of stable discrete liftings. These lifting operators
will then be employed to prove the equivalence results given by Lemmas 4.3 and 4.4, which later on simplify
the proofs of the discrete inf-sup conditions for Bf and Bs.

Lemma 4.1. There exist uniformly bounded linear operators Lf
h : Φh(Σ) × Φh(Γ ) → Hf

h such that

Lf
h(φh) · ν = φ

h,Σ
on Σ and Lf

h(φh) · ν = −φ
h,Γ

on Γ (4.20)

for each φh := (φ
h,Σ

, φ
h,Γ

) ∈ Φh(Σ) × Φh(Γ ).
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Proof. Given φh := (φ
h,Σ

, φ
h,Γ

) ∈ Φh(Σ)×Φh(Γ ), we let z ∈ H1(Ωf ) be the unique solution (up to a constant)
of the Neumann boundary value problem

Δz = − 1
|Ωf |

{
〈φ

h,Σ
, 1〉Σ + 〈φ

h,Γ
, 1〉Γ

}
in Ωf ,

∇z · ν = φ
h,Σ

on Σ, ∇z · ν = −φ
h,Γ

on Γ,

(4.21)

which can be seen as a discrete version of (3.32), and whose corresponding continuous dependence result says
that

‖z‖1,Ωf
≤ C ‖φh‖−1/2,∂Ωf

:= C
{
‖φ

h,Σ
‖−1/2,Σ + ‖φ

h,Γ
‖−1/2,Γ

}
. (4.22)

Furthermore, since the Neumann datum φh belongs to Hδ(Σ) × Hδ(Γ ) for any δ ∈ [−1/2, 1/2), the classical
regularity result for mixed boundary value problems on polygonal domains (see, e.g. [15]) implies that z ∈
H5/4(Ωf ) and

‖z‖5/4,Ωf
≤ C ‖φh‖−1/4,∂Ωf

:= C
{
‖φ

h,Σ
‖−1/4,Σ + ‖φ

h,Γ
‖−1/4,Γ

}
. (4.23)

In addition, since Ωint
f := Ωf\

(
ΩΣ ∪ ΩΓ

)
is strictly contained in Ωf , the interior elliptic regularity estimate

(see, e.g. [24], Thm. 4.16) yields
‖z‖2,Ωint

f
≤ C ‖φh‖−1/2,∂Ωf

. (4.24)

According to the above, we now let ζf := ∇z in Ωf , whence ζf belongs to H1/4(Ωf ), and notice from the first
equation in (4.21) that

div ζf = − 1
|Ωf |

{
〈φ

h,Σ
, 1〉Σ + 〈φ

h,Γ
, 1〉Γ

}
in Ωf , (4.25)

thus showing that ζf ∈ H(div;Ωf ). Then we can define

Lf
h(φh) := Ef

h (ζf ) ∈ Hf
h,

which, in virtue of the conmuting diagram property (4.11) and the characterization (4.9), and having in
mind (4.25) and the boundary conditions in (4.21), clearly satisfies

divLf
h(φh) = − 1

|Ωf |
{
〈φ

h,Σ
, 1〉Σ + 〈φ

h,Γ
, 1〉Γ

}
in Ωf , (4.26)

and the identities required by (4.20).
It remains to show that Lf

h is uniformly bounded. We first deduce, using (4.26), that there exists C > 0,
independent of h, such that

‖Lf
h(φh)‖div;Ωf

≤ C
{
‖φh‖−1/2,∂Ωf

+ ‖Lf
h(φh)‖0,Ωf

}
. (4.27)

Next, in order to estimate ‖Lf
h(φh)‖0,Ωf

, we divide Ωf into three regions by defining (cf. (4.14), (4.15))

Ωf
Σ,h := ∪

{
T : T ∈ T f

h ∩ TΣ,h

}
,

ΩΓ,h := ∪
{
T : T ∈ TΓ,h

}
,

and
Ωint

f,h := Ωf \
(
Ωf

Σ,h ∪ ΩΓ,h

)
.
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It follows, using the stability of Ef
h in H1(Ωint

f,h), the fact that ζf |Ωint
f,h

∈ H1(Ωint
f,h), the inclusion Ωint

f,h ⊆ Ωint
f ,

and the estimate (4.24), that

‖Lf
h(φh)‖0,Ωf

= ‖Ef
h (ζf )‖0,Ωf

≤ ‖Ef
h (ζf )‖0,Ωint

f,h
+ ‖Ef

h (ζf )‖0,Ωf
Σ,h

+ ‖Ef
h (ζf )‖0,ΩΓ,h

≤ C ‖z‖2,Ωint
f

+ ‖Ef
h (ζf )‖0,Ωf

Σ,h
+ ‖Ef

h (ζf )‖0,ΩΓ,h

≤ C ‖φh‖−1/2,∂Ωf
+ ‖Ef

h (ζf )‖0,Ωf
Σ,h

+ ‖Ef
h (ζf )‖0,ΩΓ,h

. (4.28)

Now, adding and substracting ζf = ∇z in Ωf
Σ,h ⊆ Ωf , noting that ‖ζf‖0,Ωf

Σ,h
≤ ‖z‖1,Ωf

, and employing

the estimates (4.22), (4.13) (with δ = 1/4) and (4.23), together with the identity (4.26), the quasi-uniformity
bound (4.16), the inverse inequalities (4.18) and (4.19), and the equivalence between hΣ and hΓ (cf. (4.17)), we
arrive at

‖Ef
h (ζf )‖2

0,Ωf
Σ,h

≤ C
{
‖ζf − Ef

h (ζf )‖2
0,Ωf

Σ,h

+ ‖ζf‖2
0,Ωf

Σ,h

}
≤ C

{ ∑
T∈T f

Σ,h

h
1/2
T ‖z‖2

5/4,T + ‖φh‖2
−1/2,∂Ωf

}

≤ C
{
h

1/2
Σ ‖φh‖2

−1/4,∂Ωf
+ ‖φh‖2

−1/2,∂Ωf

}
≤ C ‖φh‖2

−1/2,∂Ωf
. (4.29)

The estimate for ‖Ef
h (ζf )‖2

0,ΩΓ,h
proceeds similarly and yields the same upper bound. In this way, (4.27)–(4.29)

provide the uniform boundedness of Lf
h, which completes the proof. �

Lemma 4.2. There exist uniformly bounded linear operators Ls
h : Φh(Σ) × Φh(Σ) → Hs

h such that

Ls
h(φh)ν = φh on Σ ∀φh ∈ Φh(Σ) × Φh(Σ). (4.30)

Proof. Given φh ∈ Φh(Σ) × Φh(Σ) we let z ∈ H1(Ωs) be the unique solution (up to a constant vector) of the
Neumann boundary value problem (in vectorial form)

Δz =
1

|Ωs|

∫
Σ

φh in Ωs, ∇zν = φh on Σ,

whose corresponding continuous dependence result states that

‖z‖1,Ωs ≤ C ‖φh‖−1/2,Σ.

Since the Neumann datum φh belongs to Hδ(Σ) for any δ ∈ [0, 1/2), we know that we have at least
H3/2(Ωs)-regularity for z and

‖z‖3/2,Ωs
≤ C ‖φh‖0,Σ.

In addition, noting that Ωint
s := Ωs \ΩΣ is an interior region of Ωs, the interior elliptic regularity estimate

again (see, e.g. [24], Thm. 4.16) yields

‖z‖2,Ωint
s

≤ C ‖φh‖−1/2,Σ .

Next, we set ζs := ∇z in Ωs, which belongs to H1/2(Ωs) ∩ H(div;Ωs), define Ls
h(φh) := Es

h(ζs), and proceed
analogously to the proof of the previous lemma, by using now the conmuting diagram property (4.10), the char-
acterization (4.8), the error estimate (4.12), the quasi-uniformity bound (4.16), and the inverse inequality (4.18).
We omit further details. �



A PRIORI ERROR ANALYSIS OF A FULLY-MIXED FINITE ELEMENT METHOD ... 491

As a first consequence of Lemmas 4.1 and 4.2, and noting from the definitions of Hf
h (cf. (4.2)) and Hs

h

(cf. (4.1)) that

τ f,h · ν|∂Ωf
≡
(
τ f,h · ν|Σ , τ f,h · ν|Γ

)
∈ Φh(Σ) × Φh(Γ ) ∀ τ f,h ∈ Hf

h,

and
τ s,h ν|Σ ∈ Φh(Σ) × Φh(Σ) ∀ τ s,h ∈ Hs

h,

we deduce that actually there hold

Φh(Σ) × Φh(Γ ) =
{
τ f,h · ν|∂Ωf

: τ f,h ∈ Hf
h

}
, (4.31)

and
Φh(Σ) × Φh(Σ) =

{
τ s,h ν|Σ : τ s,h ∈ Hs

h

}
. (4.32)

Hence, the stable discrete liftings Lf
h and Ls

h, and the identities (4.31) and (4.32) allow to show equivalence results
concerning the discrete inf-sup conditions for Bf (cf. (2.14)) and for the second term defining Bs (cf. (2.13)).
More precisely, we have the following lemmas.

Lemma 4.3. Let us define, for each ψf,h := (ψ
h,Σ

, ψ
h,Γ

) ∈ Qf
h := Λh(Σ) × Λh(Γ ),

S(ψf,h) := sup
τf,h ∈Hf

h\{0}

|Bf (τ f,h,ψf,h) |
‖τ f,h‖div;Ωf

and

S̃(ψf,h) := sup
φh := (φ

h,Σ
,φ

h,Γ
)

∈Φh(Σ)×Φh(Γ )\{0}

| 〈φ
h,Σ

, ψ
h,Σ

〉Σ + 〈φ
h,Γ
, ψ

h,Γ
〉Γ |

‖φh‖−1/2,∂Ωf

·

Then there exist C1, C2 > 0, independent of h, such that

C1 S̃(ψf,h) ≤ S(ψf,h) ≤ C2 S̃(ψf,h) ∀ψf,h ∈ Qf
h. (4.33)

Proof. Let cf > 0, independent of h, whose existence is provided by Lemma 4.1, such that

‖Lf
h(φh)‖div;Ωf

≤ cf ‖φh‖−1/2,∂Ωf
∀φh := (φ

h,Σ
, φ

h,Γ
) ∈ Φh(Σ) × Φh(Γ ).

Then, for each φh := (φ
h,Σ

, φ
h,Γ

) ∈ Φh(Σ) × Φh(Γ ) \ {0} there holds, using (4.20),

| 〈φ
h,Σ

, ψ
h,Σ

〉Σ + 〈φ
h,Γ
, ψ

h,Γ
〉Γ |

‖φh‖−1/2,∂Ωf

≤ cf
| 〈φ

h,Σ
, ψ

h,Σ
〉Σ + 〈φ

h,Γ
, ψ

h,Γ
〉Γ |

‖Lf
h(φh)‖div;Ωf

= cf
| 〈Lf

h(φh) · ν, ψ
h,Σ

〉Σ − 〈Lf
h(φh) · ν, ψ

h,Γ
〉Γ |

‖Lf
h(φh)‖div;Ωf

≤ cf S(ψf,h),

which implies the left-hand side of (4.33) with C1 = c−1
f . Similarly, for each τ f,h ∈ Hf

h we find, using that
‖τ f,h · ν‖−1/2,∂Ωf

:= ‖τ f,h · ν‖−1/2,Σ + ‖τ f,h · ν‖−1/2,Γ ≤ C ‖τ f,h‖div;Ωf
and (4.31), that

|Bf (τ f,h,ψf,h) |
‖τ f,h‖div;Ωf

=
| 〈τ f,h · ν, ψ

h,Σ
〉Σ − 〈τ f,h · ν, ψ

h,Γ
〉Γ |

‖τ f,h‖div;Ωf

≤ C
| 〈τ f,h · ν, ψ

h,Σ
〉Σ − 〈τ f,h · ν, ψ

h,Γ
〉Γ |

‖τ f,h · ν‖−1/2,∂Ωf

≤ C S̃(ψf,h),

which yields the right-hand side of (4.33) with C2 = C. �
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Lemma 4.4. Let us define for each ψs,h ∈ Qs
h := Λh(Σ) × Λh(Σ)

T (ψs,h) := sup
τs,h ∈H

s
h\{0}

| 〈τ s,h ν,ψs,h〉Σ |
‖τ s,h‖div;Ωs

and

T̃ (ψs,h) := sup
φh ∈ Φh(Σ)×Φh(Σ)

φh �=0

| 〈φh,ψs,h〉Σ |
‖φh‖−1/2,Σ

.

Then there exist C3, C4 > 0, independent of h, such that

C3 T̃ (ψs,h) ≤ T (ψs,h) ≤ C4 T̃ (ψs,h) ∀ψs,h ∈ Qs
h. (4.34)

Proof. It follows analogously to the proof of Lemma 4.3 by using now, thanks to Lemma 4.2, that there exists
cs > 0, independent of h, such that ‖Ls

h(φh)‖div;Ωs ≤ cs ‖φh‖−1/2,Σ ∀φh ∈ Φh(Σ)×Φh(Σ), and noting that
‖τ s,h ν‖−1/2,Σ ≤ C ‖τ s,h‖div;Ωs . We omit further details. �

The previous two lemmas, more precisely the left-hand sides of the equivalences (4.33) and (4.34), will be
employed below in Section 4.5 to show that the bilinear forms Bf and Bs satisfy the discrete inf-sup conditions
on the corresponding finite element subspaces.

4.4. Discrete approximations of Ps|Hs
h

and Pf |Hf
h

In what follows we introduce uniformly bounded linear operators Ps,h : Hs
h → Hs

h and Pf,h : Hf
h → Hf

h

approximating Ps|Hs
h

: Hs
h → H(div;Ωs) and Pf |Hf

h
: Hf

h → H(div;Ωf ), respectively, and derive upper bounds
for the associated errors given by ‖Ps(τ s,h)−Ps,h(τ s,h)‖div;Ωs (cf. Lema 4.5) and ‖Pf (τ f,h)−Pf,h(τ f,h)‖div;Ωf

(cf. Lem. 4.6) for each (τ s,h, τ f,h) ∈ Hh := Hs
h×Hf

h. These are the key estimates utilized below in Section 4.5
to prove the discrete inf-sup conditions for the bilinear forms As and Af (cf. Lem. 4.10).

Indeed, given (τ s,h, τ f,h) ∈ Hh, we first recall from (3.3) and (3.1) that Ps(τ s,h) := σ̃s, where σ̃s = C ε(ũ)
and ũ is the unique solution of

σ̃s = C ε(ũ) in Ωs, div σ̃s = (I − M)
(
div τ s,h

)
in Ωs,

σ̃s ν = 0 on Σ, ũ ∈ (I − M)(L2(Ωs)),
(4.35)

In turn, we know from (3.10) and (3.8) that Pf (τ f,h) := σ̃f , where σ̃f := ∇p̃ and p̃ is the unique solution of

σ̃f = ∇p̃ in Ωf , div σ̃f = (I− J)
(
div τ f,h

)
in Ωf ,

σ̃f · ν = 0 on Σ ∪ Γ, p̃ ∈ (I − J)(L2(Ωf )).
(4.36)

We now let (σ̃s,h, ũh, γ̃h) ∈ Hs
h × (I − M)(Us

h) × Qs
h be the mixed finite element approximation of (4.35),

which was introduced and analyzed in [7], Section 5.2, and define

Ps,h(τ s,h) := σ̃s,h. (4.37)

Hence, we know from [7], Section 5.2 that there hold

‖Ps,h(τ s,h)‖div;Ωs ≤ C ‖τ s,h‖div;Ωs , (4.38)

Ps,h(τ s,h)ν = 0 on Σ and
∫

Ωs

Ps,h(τ s,h) : η̃h = 0 ∀ η̃h ∈ Qs
h. (4.39)
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The uniform boundedness of Ps,h is obvious from (4.38), whereas the first equation of (4.39) says that Ps,h(τ s,h)
belongs to H̃(div;Ωs) (cf. (3.38)). Furthermore, in virtue of [7], Lemma 5.4, whose proof makes use of the
definition (4.37), the conmuting diagram identity (4.10), the approximation properties (4.12), (APs

h), and (APγ
h),

and the regularity estimate for (4.35) (cf. (3.2), (3.7)), we have the following error estimate.

Lemma 4.5. Let ε > 0 be the parameter defining the regularity of the solution of (4.35). Then, there exists
C > 0, independent of h, such that for each τ s,h ∈ Hs

h there holds

‖Ps(τ s,h) − Ps,h(τ s,h)‖div;Ωs ≤ C hε ‖div τ s,h‖0,Ωs . (4.40)

We now turn to the definition and properties of Pf,h. According to the regularity estimates given by (3.9)
and (3.13), we know that Pf (τ f,h) belongs to Hε(Ωf ) and

‖Pf (τ f,h)‖ε,Ωf
≤ C ‖div τ f,h‖0,Ωf

, (4.41)

which suggests to consider the Raviart–Thomas interpolation operator Ef
h and define

Pf,h(τ f,h) := Ef
h

(
Pf (τ f,h)

)
. (4.42)

It follows, employing the conmuting diagram property (4.11), the second equation in (4.36) (which says that
div Pf (τ f,h) =

(
I − J

)
(div τ f,h)), and the fact that div τ f,h is piecewise constant, that

div Pf,h(τ f,h) = Pf
h

(
div Pf (τ f,h)

)
= Pf

h

(
(I − J)(div τ f,h)

)
= div Pf (τ f,h). (4.43)

Also, it is easy to see that the uniform boundedness of Ef
h : Hε(Ωf ) ∩ H(div;Ωf ) → Hf

h (which follows
from (4.13) and (4.11)), together with the estimate (4.41) and the identity (4.43), imply that Pf,h is uniformly
bounded as well. In addition, using the characterization property (4.9) and the third equation in (4.36) (which
says that Pf (τ f,h) · ν = 0 on Σ ∪ Γ ), we easily deduce that

Pf,h(τ f,h) · ν = 0 on Σ ∪ Γ. (4.44)

We are now in a position to establish our second error estimate.

Lemma 4.6. Let ε > 0 be the parameter defining the regularity of the solution of (4.36). Then, there exists
C > 0, independent of h, such that for each τ f,h ∈ Hf

h there holds

‖Pf(τ f,h) − Pf,h(τ f,h)‖div;Ωf
≤ C hε ‖div τ f,h‖0,Ωf

. (4.45)

Proof. We proceed as in the proof of [7], Lemma 5.4, though the present one becomes simpler. Let us first
notice, in virtue of (4.42) and (4.43), that

‖Pf (τ f,h) − Pf,h(τ f,h)‖div;Ωf
= ‖Pf (τ f,h) − Pf,h(τ f,h)‖0,Ωf

= ‖(I− Ef
h )
(
Pf (τ f,h)

)
‖0,Ωf

.

Hence, applying the approximation property (4.13) and the identity (4.43), we find that

‖(I− Ef
h )
(
Pf (τ f,h)

)
‖2
0,Ωf

=
∑

T∈T f
h

‖(I− Ef
h )
(
Pf (τ f,h)

)
‖2
0,T

≤ C
∑

T∈T f
h

h2ε
T

{
|Pf (τ f,h)|2ε,T + ‖div Pf (τ f,h)‖2

0,T

}
≤ C h2ε

{
‖Pf (τ f,h)‖2

ε,Ωf
+ ‖
(
I − J

)
(div τ f,h)‖2

0,Ωf

}
,

which, together with the estimate (4.41) and the fact that ‖I− J‖ ≤ 1, completes the proof. �
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4.5. Well-posedness of the Galerkin scheme

We now aim to show the well-posedness of the mixed finite element scheme (4.7). For this purpose, as
established by a classical result on projection methods for Fredholm operators of index zero (see, e.g. [21],

Thm. 13.7), one just needs to prove that the Galerkin scheme associated to the isomorphism
(

A0 B∗

B 0

)
is

well-posed. Equivalently, in virtue of the identity (3.28), it suffices to apply the discrete Babuška–Brezzi theory

to each one of the blocks
(

As B∗
s

Bs 0

)
and

(
Af B∗

f

Bf 0

)
. According to the above, in what follows we show that the

bilinear forms As, Bs, Af , and Bf (not necessarily in this order) satisfy the discrete inf-sup conditions on the
corresponding finite element subspaces.

We begin our analysis with the derivation of the discrete inf-sup condition for Bf . To this end, and in order
to apply Lemma 4.3, we first notice that for each ψf,h := (ψ

h,Σ
, ψ

h,Γ
) ∈ Qf

h := Λh(Σ) × Λh(Γ ) there holds

S̃(ψh) := sup
φh := (φ

h,Σ
,φ

h,Γ
)

∈Φh(Σ)×Φh(Γ ) \{0}

| 〈φ
h,Σ

, ψ
h,Σ

〉Σ + 〈φ
h,Γ
, ψ

h,Γ
〉Γ |

‖φh‖−1/2,∂Ωf

≥ 1
2

{
sup

φ
h,Σ

∈Φh(Σ)\{0}

| 〈φ
h,Σ

, ψ
h,Σ

〉Σ |
‖φ

h,Σ
‖−1/2,Σ

+ sup
φ

h,Γ
∈Φh(Γ )\{0}

| 〈φ
h,Γ
, ψ

h,Γ
〉Γ |

‖φ
h,Γ

‖−1/2,Γ

}
·

It follows, in virtue also of the left-hand side of (4.33), that a sufficient condition for the required inequality
concerning Bf is the existence of β̃f,Σ, β̃f,Γ > 0, independent of h, such that

sup
φ

h,Σ
∈ Φh(Σ)\{0}

| 〈φ
h,Σ

, ψ
h,Σ

〉Σ |
‖φ

h,Σ
‖−1/2,Σ

≥ β̃f,Σ ‖ψ
h,Σ

‖1/2,Σ ∀ψ
h,Σ

∈ Λh(Σ), (4.46)

and

sup
φ

h,Γ
∈Φh(Γ )\{0}

| 〈φ
h,Γ
, ψ

h,Γ
〉Γ |

‖φ
h,Γ

‖−1/2,Γ
≥ β̃f,Γ ‖ψ

h,Γ
‖1/2,Γ ∀ψ

h,Γ
∈ Λh(Γ ). (4.47)

Note that (4.46) and (4.47) constitute two independent discrete inf-sup conditions holding between subspaces
living in Σ and Γ , respectively. Then, we recall from [12], Lemma 5.2, that a suitable choice of the sub-
spaces Λh(Σ) and Λh(Γ ) guarantees the ocurrence of the above. More precisely, let us assume, without loss
of generality, that the number of edges of Σh and Γh are even numbers. Then, we let Σ2h (resp. Γ2h) be the
partition of Σ (resp. Γ ) arising by joining pairs of adjacent elements, and define

Λh(Σ) :=
{
ψh ∈ C(Σ) : ψh|e ∈ P1(e) ∀ e edge of Σ2h

}
, (4.48)

Λh(Γ ) :=
{
ψh ∈ C(Γ ) : ψh|e ∈ P1(e) ∀ e edge of Γ2h

}
, (4.49)

Qf
h := Λh(Σ) × Λh(Γ ). (4.50)

and
Qs

h := Λh(Σ) × Λh(Σ). (4.51)

In this way, we are in a position to establish the following result.

Lemma 4.7. Let Qf
h be given by (4.50). Then there exists β̃f > 0, independent of h, such that

sup
τ f,h ∈Hf

h\{0}

|Bf (τ f,h,ψf,h) |
‖τ f,h‖div;Ωf

≥ β̃f ‖ψf,h‖1/2,∂Ωf
∀ψf,h ∈ Qf

h := Λh(Σ) × Λh(Γ ).
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Proof. A straightforward application of [12], Lemma 5.2, to the pairs of subspaces (Φh(Σ), Λh(Σ)) and
(Φh(Γ ), Λh(Γ )) imply (4.46) and (4.47), and hence the previous discussion completes the proof with the constant
β̃f = C1

2 min
{
β̃f,Σ , β̃f,Γ

}
. �

Before continuing the analysis, we let Π
Σ

: H1/2(Σ) → Λh(Σ) and Π
Γ

: H1/2(Γ ) → Λh(Γ ) be the orthogonal
projectors, and recall from [2] that the approximation properties of Λh(Σ) and Λh(Γ ) are given as follows:

(APΣ,h) For each δ ∈ (0, 1] and for each ψ ∈ H1/2+δ(Σ), there holds

‖ψ − Π
Σ
(ψ)‖1/2,Σ ≤ C hδ

Σ ‖ψ‖1/2+δ,Σ.

(APΓ,h) For each δ ∈ (0, 1] and for each ψ ∈ H1/2+δ(Γ ), there holds

‖ψ − Π
Γ
(ψ)‖1/2,Γ ≤ C hδ

Γ ‖ψ‖1/2+δ,Γ .

Note that (APΣ,h) and (APΓ,h) yield the approximation properties of Qs
h and Qf

h (cf. (4.4), (4.5)).
We now turn to the connection between Lemma 4.4 and the discrete inf-sup condition for the bilinear

form Bs (cf. (2.13)) with Qs
h := Λh(Σ) × Λh(Σ) and Λh(Σ) given by (4.48). We first notice that for each

ψs,h := (ψ
h,Σ

, ψ̃
h,Σ

) ∈ Qs
h there holds, denoting φh := (φ

h,Σ
, φ̃

h,Σ
) ∈ Φh(Σ) × Φh(Σ),

T̃ (ψs,h) := sup
φh ∈ Φh(Σ)×Φh(Σ)

φh �= 0

| 〈φh,ψs,h〉Σ |
‖φh‖−1/2,Σ

≥ 1
2

⎧⎨⎩ sup
φ

h,Σ
∈Φh(Σ)\{0}

| 〈φ
h,Σ

, ψ
h,Σ

〉Σ |
‖φ

h,Σ
‖−1/2,Σ

+ sup
φ̃

h,Σ
∈Φh(Σ)\{0}

| 〈φ̃
h,Σ

, ψ̃
h,Σ

〉Σ |
‖φ̃

h,Σ
‖−1/2,Σ

⎫⎬⎭ ·

Hence, since [12], Lemma 5.2, guarantees (4.46), we deduce from the above inequality that

T̃ (ψs,h) ≥ β̃f,Σ

{
‖ψ

h,Σ
‖1/2,Σ + ‖ψ̃

h,Σ
‖1/2,Σ

}
∀ψs,h := (ψ

h,Σ
, ψ̃

h,Σ
) ∈ Qs

h,

which, combined with the left-hand side of (4.34), yields

T (ψs,h) := sup
τs,h ∈H

s
h\{0}

| 〈τ s,h ν,ψs,h〉Σ |
‖τ s,h‖div;Ωs

≥ C3 β̃f,Σ ‖ψs,h‖1/2,Σ ∀ψs,h ∈ Qs
h. (4.52)

Consequently, we are now able to prove the following lemma.

Lemma 4.8. Let Qs
h be given by (4.51). Then there exists β̃s > 0, independent of h, such that

sup
τs,h ∈H

s
h\{0}

|Bs(τ s,h, (ηh,ψs,h)) |
‖τ s,h‖div;Ωs

≥ β̃s ‖(ηh,ψs,h)‖ ∀ (ηh,ψs,h) ∈ Qs
h × Qs

h.

Proof. Given (ηh,ψs,h) ∈ Qs
h × Qs

h we have, according to the definition of Bs (cf. (2.13)), that

sup
τs,h ∈H

s
h\{0}

|Bs(τ s,h, (ηh,ψs,h)) |
‖τ s,h‖div;Ωs

≥ sup
τs,h ∈H

s
h\{0}

| 〈τ s,h ν,ψs,h〉Σ |
‖τ s,h‖div;Ωs

− ‖ηh‖0,Ωs ,

which, thanks to (4.52), implies that

sup
τs,h ∈H

s
h\{0}

|Bs(τ s,h, (ηh,ψs,h)) |
‖τ s,h‖div;Ωs

≥ C3 β̃f,Σ ‖ψs,h‖1/2,Σ − ‖ηh‖0,Ωs . (4.53)
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Furthermore, we know from [22], Theorem 4.5, (see also [1], Lem. 4.4) that there exists ζs,h ∈ Hs
h such that

ζs,h ν = 0 on Σ, div ζs,h = 0 in Ωs, and

|Bs(ζs,h, (ηh,ψs,h)) | ≥ C ‖ζs,h‖0,Ωs ‖η‖0,Ωs = C ‖ζs,h‖div;Ωs ‖η‖0,Ωs ,

which yields

sup
τs,h ∈H

s
h\{0}

|Bs(τ s,h, (ηh,ψs,h)) |
‖τ s,h‖div;Ωs

≥ C ‖ηh‖0,Ωs . (4.54)

Finally, a suitable linear combination of (4.53) and (4.54) gives the required inequality. �

We now let Vs,h and Vf,h be the discrete kernels of Bs (cf. (2.13) ) and Bf (cf. (2.14)), that is,

Vs,h :=
{
τ s,h ∈ Hs

h :
∫

Ωs

τ s,h : ηh = 0 ∀ηh ∈ Qs
h, 〈τ s,h ν,ψs,h〉Σ = 0 ∀ψs,h ∈ Qs

h

}
, (4.55)

Vf,h :=
{
τ f,h ∈ Hf

h : 〈τ f,h · ν, ψ
h,Σ

〉Σ = 〈τ f,h · ν, ψ
h,Γ

〉Γ = 0 ∀ (ψ
h,Σ

, ψ
h,Γ

) ∈ Qf
h

}
, (4.56)

and aim to prove that the bilinear forms As and Af satisfy the discrete inf-sup conditions on Vs,h × Vs,h and
Vf,h × Vf,h, respectively.

We begin by observing that Vs,h is certainly contained in

Ṽs,h :=
{
τ s ∈ H(div;Ωs) : 〈τ s ν,ψs,h〉Σ = 0 ∀ψs,h ∈ Qs

h

}
,

which is not a subspace of H̃(div;Ωs) (cf. (3.38)) but on the contrary contains it. While this latter fact prevent
us of applying directly (3.37) (and hence the ellipticity estimates (3.39) and (3.44)) to the whole Ṽs,h, we show
next that actually (3.37) does also hold in this bigger space. In fact, let us first pick one corner point of Σ and
define a function v that is continuous, linear on each side of Σ, equal to one in the chosen vertex and zero on all
other ones. Then, it is easy to check that, if ν1 and ν2 are the normal vectors on the two sides of Σ that meet
at the corner point, the function ψ ∈ H1/2(Σ) given by ψ := v (ν1 + ν2) belongs to Qs

h := Λh(Σ)×Λh(Σ) for
each h > 0, and satisfies

〈ν,ψ〉Σ �= 0.

This function ψ in Qs
h is employed next to prove the validity of (3.37) in Ṽs,h.

Lemma 4.9. There exists c̃2 > 0, independent of h, such that

‖τ s,0‖2
div;Ωs

≥ c̃2 ‖τ s‖2
div;Ωs

∀ τ s ∈ Ṽs,h, (4.57)

where τ s = τ s,0 + d I, with τ s,0 ∈ H0(div;Ωs) (cf. (3.35)) and d ∈ C.

Proof. Given τ s ∈ Ṽs,h we clearly have, using that ψ ∈ Qs
h for each h > 0, that

0 = 〈τ s ν,ψ〉Σ = 〈τ s,0 ν,ψ〉Σ + d 〈ν,ψ〉Σ ,

which gives

d = − 〈τ s,0 ν,ψ〉Σ
〈ν,ψ〉Σ

,

and hence

|d| ≤ C
‖ψ‖1/2,Σ

| 〈ν,ψ〉Σ | ‖τ s,0‖div;Ωs .

This inequality and the fact that ‖τ s‖2
div;Ωs

= ‖τ s,0‖2
div;Ωs

+ 2 d2 |Ωs| imply (4.57). �
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As a consequence of Lemma 4.9, and following basically the same arguments employed in the proofs of
Lemmas 3.3 and 3.4, we deduce that the inequalities (3.39) and (3.44) also hold in Ṽs,h. In particular, the latter
says that there exists α̃s > 0, independent of h, such that

As

(
τ s, Ξs(τ s)

)
≥ α̃s ‖τ s‖2

div;Ωs
∀ τ s ∈ Ṽs,h. (4.58)

We are now ready to prove the discrete analogues of (3.45) (cf. Lem. 3.4) and (3.48) (cf. Lem. 3.5), which
constitute the required discrete inf-sup conditions for As and Af .

Lemma 4.10. There exist C̃s, C̃f , h0 > 0, independent of h, such that for each h ≤ h0 there holds

sup
τs,h∈Vs,h\{0}

∣∣As(ζs,h, τ s,h)
∣∣

‖τ s,h‖div;Ωs

≥ C̃s ‖ζs,h‖div;Ωs ∀ ζs,h ∈ Vs,h. (4.59)

and

sup
τf,h∈Vf,h\{0}

∣∣Af (ζf,h, τ f,h)
∣∣

‖τ f,h‖div;Ωf

≥ C̃f ‖ζf,h‖div;Ωf
∀ ζf,h ∈ Vf,h. (4.60)

Proof. In order to prove (4.59) we introduce the natural discrete approximation of the operator Ξs (cf. (3.40))
given by Ξs,h :=

(
I − 2Ps,h

)
: Hs

h → Hs
h, with Ps,h defined by (4.37). In this way, it follows directly

from (4.40) (cf. Lem. 4.5) that

‖Ξs(ζs,h) − Ξs,h(ζs,h)‖div;Ωs ≤ C hε ‖ζs,h‖div;Ωs ∀ ζs,h ∈ Hs
h.

Hence, taking in particular ζs,h ∈ Vs,h, adding and substracting Ξs

(
ζs,h

)
, using the boundedness of As, and

applying the inequality (4.58) (having in mind that Vs,h ⊆ Ṽs,h), we find that∣∣As(ζs,h, Ξs,h(ζs,h))
∣∣ ≥ ∣∣As(ζs,h, Ξs(ζs,h))

∣∣ − C̃ hε ‖ζs,h‖2
div;Ωs

≥
{
α̃s − C̃ hε

}
‖ζs,h‖2

div;Ωs
,

from which we deduce the existence of c, h0 > 0, independent of h, such that∣∣As(ζs,h, Ξs,h(ζs,h))
∣∣ ≥ c ‖ζs,h‖2

div;Ωs
∀ ζs,h ∈ Vs,h, ∀h ≤ h0. (4.61)

Note from this inequality that Ξs,h(ζs,h) �= 0 for each ζs,h �= 0. Also, it is clear from (4.39) and the char-
acterization of Vs,h (cf. (4.55)) that Ps,h(ζs,h), and hence Ξs,h(ζs,h), belong to Vs,h for each ζs,h ∈ Vs,h.
Consequently, we employ (4.61) to bound the supremum on Vs,h\{0} as follows

sup
τs,h∈Vs,h\{0}

∣∣As(ζs,h, τ s,h)
∣∣

‖τ s,h‖div;Ωs

≥
∣∣As(ζs,h, Ξs,h(ζs,h))

∣∣
‖Ξs,h(ζs,h)‖div;Ωs

≥ c
‖ζs,h‖2

div;Ωs

‖Ξs,h(ζs,h)‖div;Ωs

for each ζs,h ∈ Vs,h and for each h ≤ h0, which, thanks to the uniform boundedness of ‖Ξs,h‖, say by a constant
C̄ > 0, imply (4.59) with C̃s = c/C̄.

The proof of (4.60) proceeds analogously by considering now Ξf,h :=
(
I − 2Pf,h

)
: Hf

h → Hf
h, with Pf,h

defined by (4.42), applying the inequality (3.47) (cf. Lem. 3.5), using, thanks to (4.45) (cf. Lem. 4.6), that

‖Ξf(ζf,h) − Ξf,h(ζf,h)‖div;Ωf
≤ C hε ‖ζf,h‖div;Ωf

∀ ζf,h ∈ Hf
h,

and noting, in virtue of (4.44), that Ξf,h(ζf,h) ∈ Vf,h (cf. (4.56)) for each ζf,h ∈ Vf,h. �

The following theorem establishes the well-posedness and convergence of the discrete scheme (4.7) with the
finite element subspaces Hs

h, Hf
h, Qs

h, Qs
h, Qf

h, Λh(Σ), and Λh(Γ ), given, respectively, by (4.1)–(4.49).
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Theorem 4.11. Assume that the homogeneous problem associated to (2.10) has only the trivial solution, and
let h0 > 0 be the constant provided by Lemma 4.10. Then there exists h1 ∈ (0, h0] such that for each h ∈ (0, h1],
the fully-mixed finite element scheme (4.7) has a unique solution (σ̂h, γ̂h) := ((σs,h,σf,h), (γh,ϕs,h,ϕf,h)) ∈
Hh × Qh. In addition, there exist C1, C2 > 0, independent of h, such that for each h ∈ (0, h1] there hold

‖(σ̂h, γ̂h)‖H×Q ≤ C1

{
sup

τ̂h ∈Hh\{0}

|F (τ̂ h)|
‖τ̂h‖H

+ sup
η̂h ∈Qh\{0}

|G(η̂h)|
‖η̂h‖Q

}
≤ C1

{
‖f‖0,Ωs + ‖g‖−1/2,Γ

}
and

‖(σ̂, γ̂) − (σ̂h, γ̂h)‖H×Q ≤ C2 inf
(τ̂h,η̂h)∈Hh×Qh

‖(σ̂, γ̂) − (τ̂ h, η̂h)‖H×Q, (4.62)

where (σ̂, γ̂) := ((σs,σf ), (γ,ϕs,ϕf )) ∈ H × Q is the unique solution of (2.10). Furthermore, if there exists
δ ∈ (0, 1] such that σs ∈ Hδ(Ωs), divσs ∈ Hδ(Ωs), σf ∈ Hδ(Ωf ), divσf ∈ Hδ(Ωf ), γ ∈ Hδ(Ωs), ϕs ∈
H1/2+δ(Σ), and ϕf ∈ H1/2+δ(∂Ωf ), then for each h ∈ (0, h1] there holds

‖(σ̂, γ̂) − (σ̂h, γ̂h)‖H×Q ≤ C3 h
δ
{
‖σs‖δ,Ωs + ‖divσs‖δ,Ωs + ‖σf‖δ,Ωf

+ ‖divσf‖δ,Ωf
+ ‖γ‖δ,Ωs + ‖ϕs‖1/2+δ,Σ + ‖ϕf‖1/2+δ,∂Ωf

}
,

with a constant C3 > 0, independent of h.

Proof. Because of Lemmas 4.7–4.10, the proof of the first part is a straightforward application of [21],
Theorem 13.7. In turn, the rate of convergence follows directly from the Cea estimate (4.62) and the ap-
proximation properties of the finite element subspaces involved (see (APσs

h ), (APσf

h ), (APγ
h) in Section 4.2, and

(APΣ,h) and (APΓ,h) above in the present section). �

5. Numerical results

In this section we present three examples showing the performance of our fully-mixed finite element
scheme (4.7). Examples 1 and 2 consider smooth exact solutions, whereas Example 3, whose exact solution
is singular, is utilized to illustrate the regularity dependence of the rate of convergence (cf. Thm. 4.11). We
begin by introducing additional notations. The variable N stands for the total number of degrees of freedom
defining the finite element subspaces Hh and Qh (cf. (4.6)), and the individual errors are denoted by

e(σs) := ‖σs − σs,h‖div;Ωs , e(σf ) := ‖σf − σf,h‖div;Ωf
, e(γ) := ‖γ − γh‖0,Ωs ,

e(ϕs) := ‖ϕs −ϕs,h‖1/2,Σ, e(ϕ
Σ
) := ‖ϕ

Σ
− ϕ

Σ,h
‖1/2,Σ and e(ϕ

Γ
) := ‖ϕ

Γ
− ϕ

Γ,h
‖1/2,Γ ,

where ϕf := (ϕ
Σ
, ϕ

Γ
) ∈ H1/2(Σ)×H1/2(Γ ) and ϕf,h := (ϕ

Σ,h
, ϕ

Γ,h
) ∈ Qf

h := Λh(Σ)×Λh(Γ ). Also, we let
r(σs), r(σf ), r(γ), r(ϕs), r(ϕΣ

) and r(ϕ
Γ
) be the experimental rates of convergence given by

r(σs) :=
log
(
e(σs)/e′(σs)

)
log(h/h′)

, r(σf ) :=
log
(
(e(σf )/e′(σf )

)
log(h/h′)

,

r(γ) :=
log
(
e(γ)/e′(γ)

)
log(h/h′)

, r(ϕs) :=
log
(
e(ϕs)/e

′(ϕs)
)

log(h/h′)
,

r(ϕ
Σ

) :=
log
(
e(ϕΣ )/e′(ϕΣ )

)
log(h/h′)

and r(ϕ
Γ
) :=

log
(
e(ϕΓ )/e′(ϕΓ )

)
log(h/h′)

,

where h and h′ denote two consecutive meshsizes with corresponding errors e and e′.
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Table 1. Convergence history for σs, σf , and γ (Ex. 1).

h N e(σs) r(σs) e(σf ) r(σf ) e(γ) r(γ)
2π/64 1117 6.150E−02 − 8.865E−01 − 6.642E−03 −
2π/96 2090 4.264E−02 0.903 5.996E−01 0.964 3.975E−03 1.266
2π/128 3686 3.112E−02 1.095 4.414E−01 1.065 2.570E−03 1.516
2π/192 7869 2.107E−02 0.962 3.044E−01 0.917 1.530E−03 1.279
2π/256 13666 1.586E−02 0.987 2.249E−01 1.053 1.018E−03 1.415
2π/384 31282 1.038E−02 1.046 1.489E−01 1.017 6.623E−04 1.061
2π/512 55438 7.784E−03 1.000 1.106E−01 1.035 4.324E−04 1.482
2π/768 125069 5.152E−03 1.017 7.397E−02 0.991 2.745E−04 1.121
2π/1024 221848 3.871E−03 0.994 5.540E−02 1.005 2.034E−04 1.041
2π/1536 498545 2.579E−03 1.001 3.670E−02 1.016 1.298E−04 1.109
2π/2048 887629 1.927E−03 1.014 2.770E−02 0.978 9.678E−05 1.019

We first consider Ωs := (−0.2, 0.2) × (−0.4, 0.4) and let the artificial boundary Γ be the ellipse cen-
tered at the origin with minor and major semiaxis given by 0.4 and 0.6, respectively, that is Ωf :={

(x1, x2)t ∈ R2 : x2
1

0.42 + x2
2

0.62 < 1
}
\Ωs. We take ρs = ρf = λ = μ = 1, and the rest of parameters

are given by the sets{
v0 = 1; ω = 5; κs = 5; κf = 5

}
and

{
v0 = 0.7; ω = 7; κs = 7; κf = 10

}
,

which define Examples 1 and 2, respectively. Furthermore, let K0, K1 and K2 be the modified Bessel functions
of the second kind and order 0, 1, and 2, respectively, and let H(1)

0 be the Hankel function of the first kind and
order zero. Then, we choose the data in such a way that the exact solution of (2.1) (or (2.10)) is determined by

u(x) =

⎛⎜⎜⎝
1
2π

ψ(x) − (x1 − 1)2

r21
χ(x)

− (x1 − 1)x2

r21
χ(x)

⎞⎟⎟⎠ ∀x := (x1, x2)t ∈ Ωs, and p(x) = H
(1)
0 (ω |x|) ∀x ∈ Ωf ,

where r1 :=
√

(x1 − 1)2 + x2
2 , ψ(x) := K0(ı ω r1) + 1

ı ω r1

{
K1(ı ω r1) − 1√

3
K1

(
ı ω r1√

3

)}
, and

χ(x) := K2(ı ω r1) − 1
3 K2

(
ı ω r1√

3

)
. Actually, u is the fundamental solution, centered at (1, 0)t, of the elasto-

dynamic equation, which yields f = 0 in Ωs, and p is the fundamental solution, centered at the origin, of the
Helmholtz equation in Ωf .

Then, for Example 3 we let Ωs be the L-shaped domain (−0.3, 0.3)2 \ (0, 0.3)2 and consider Γ as the boundary
of the unit circle B(0, 1). In addition, we take ρs = ρf = λ = μ = 1, v0 = 6/11, and ω = 6, so that κs = 6
and κf = 11. Then, we choose the data in such a way that the exact solution of (2.1) (or (2.10)) is given by

u(r, θ) := r5/3 sin
(
(2 θ − π)/3

) (1 + ı

1 + ı

)
∀ (r, θ) ∈ Ωs,

and
p(x) = H

(1)
0 (ω |x + (0.15, 0)|) ∀x ∈ Ωf ,

Note that u becomes singular at the origin, the corner of the L. More precisely, it is not difficult to see that
around this singularity divσs behaves of order r−1/3. It follows that divσs belongs to H2/3−ε(Ωs) for each
ε > 0, and hence, according to Theorem 4.11, we expect experimental rates of convergence, particularly r(σs),
close to 2/3.

In Tables 1 to 4 we present the convergence history of Examples 1 and 2 for finite sequences of quasi-uniform
triangulations of the computational domain Ωs ∪ Ωf . We remark that the rate of convergence O(h) predicted
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Table 2. Convergence history for ϕs, ϕΣ
, and ϕ

Γ
(Ex. 1).

h N e(ϕs) r(ϕs) e(ϕΣ ) r(ϕΣ ) e(ϕΓ ) r(ϕΓ )
2π/64 1117 9.684E−03 − 1.689E−01 − 4.819E−02 −
2π/96 2090 4.899E−03 1.681 7.439E−02 2.022 2.030E−02 2.133
2π/128 3686 2.727E−03 2.037 4.415E−02 1.813 1.226E−02 1.752
2π/192 7869 1.427E−03 1.598 2.362E−02 1.542 5.610E−03 1.928
2π/256 13666 8.446E−04 1.822 1.348E−02 1.951 3.850E−03 1.308
2π/384 31282 4.023E−04 1.829 6.741E−03 1.708 1.834E−03 1.830
2π/512 55438 2.521E−04 1.625 3.849E−03 1.948 1.187E−03 1.511
2π/768 125069 1.266E−04 1.699 1.896E−03 1.746 6.280E−04 1.571
2π/1024 221848 8.236E−05 1.494 1.290E−03 1.339 4.437E−04 1.208
2π/1536 498545 4.112E−05 1.713 6.765E−04 1.592 2.231E−04 1.695
2π/2048 887629 2.633E−05 1.550 4.455E−04 1.452 1.533E−04 1.305

Table 3. Convergence history for σs, σf , and γ (Ex. 2).

h N e(σs) r(σs) e(σf ) r(σf ) e(γ) r(γ)
2π/64 1117 1.260E−01 − 9.166E−01 − 1.166E−02 −
2π/96 2090 7.827E−02 1.174 6.046E−01 1.026 5.671E−03 1.777
2π/128 3686 5.687E−02 1.111 4.434E−01 1.077 3.591E−03 1.588
2π/192 7869 3.851E−02 0.962 3.052E−01 0.921 2.119E−03 1.301
2π/256 13666 2.880E−02 1.009 2.252E−01 1.057 1.414E−03 1.406
2π/384 31282 1.880E−02 1.052 1.490E−01 1.019 8.978E−04 1.121
2π/512 55438 1.410E−02 1.001 1.106E−01 1.036 5.736E−04 1.557
2π/768 125069 9.319E−03 1.021 7.398E−02 0.992 3.624E−04 1.133
2π/1024 221848 6.999E−03 0.995 5.541E−02 1.005 2.665E−04 1.069
2π/1536 498545 4.662E−03 1.002 3.670E−02 1.016 1.682E−04 1.135
2π/2048 887629 3.485E−03 1.012 2.770E−02 0.978 1.247E−04 1.040

Table 4. Convergence history for ϕs, ϕΣ
, and ϕ

Γ
(Ex. 2).

h N e(ϕs) r(ϕs) e(ϕΣ ) r(ϕΣ ) e(ϕΓ ) r(ϕΓ )
2π/64 1117 2.051E−02 − 2.498E−01 − 7.683E−02 −
2π/96 2090 8.132E−03 2.281 9.442E−02 2.399 2.670E−02 2.607
2π/128 3686 4.515E−03 2.045 5.483E−02 1.890 1.581E−02 1.820
2π/192 7869 2.478E−03 1.480 2.897E−02 1.573 7.554E−03 1.822
2π/256 13666 1.438E−03 1.892 1.611E−02 2.041 4.685E−03 1.660
2π/384 31282 7.075E−04 1.749 7.925E−03 1.749 2.200E−03 1.865
2π/512 55438 4.504E−04 1.570 4.488E−03 1.976 1.393E−03 1.587
2π/768 125069 2.114E−04 1.865 2.162E−03 1.802 7.204E−04 1.627
2π/1024 221848 1.435E−04 1.346 1.448E−03 1.393 5.041E−04 1.241
2π/1536 498545 7.019E−05 1.764 7.478E−04 1.629 2.517E−04 1.713
2π/2048 887629 4.461E−05 1.575 4.897E−04 1.472 1.728E−04 1.307

by Theorem 4.11 (when δ = 1) is attained for all the unknowns in both cases. In particular, we observe that the
errors e(ϕs), e(ϕΣ

), and e(ϕ
Γ
) converge a bit faster than expected. On the other hand, in Table 5 we display the

convergence history of some unknowns of Example 3 for finite sequences of quasi-uniform triangulations of the
computational domain Ωs ∪Ωf . We notice here, as already announced, that r(σs) oscillates in fact around 2/3.
However, the other rates of convergence shown there are not affected by the lack of regularity of σs. Finally, in
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Table 5. Convergence history for σs, σf , and γ (Ex. 3).

h N e(σs) r(σs) e(σf ) r(σf ) e(γ) r(γ)
2π/64 2215 9.938E−01 − 1.375E+01 − 1.115E−01 −
2π/96 4767 6.768E−01 0.947 8.337E−00 1.235 2.291E−02 3.903
2π/128 8495 5.373E−01 0.802 5.973E−00 1.159 1.020E−02 2.814
2π/192 19067 4.468E−01 0.455 3.971E−00 1.007 5.789E−03 1.396
2π/256 33331 3.899E−01 0.474 3.001E−00 0.974 3.776E−03 1.485
2π/384 75077 2.800E−01 0.817 1.973E−00 1.034 1.680E−03 1.998
2π/512 133497 2.351E−01 0.607 1.488E−00 0.981 1.154E−03 1.303
2π/768 299000 1.883E−01 0.547 9.898E−01 1.006 6.706E−04 1.340
2π/1024 534105 1.493E−01 0.807 7.408E−01 1.007 4.519E−04 1.372
2π/1536 1199275 1.109E−01 0.735 4.947E−01 0.996 2.701E−04 1.270
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Figure 1. Approximate and exact imaginary part of σs,12 (Ex. 1).

Figures 1 to 8 we display real and imaginary parts of some components of the approximate and exact solutions
of Examples 1 and 2 for N = 13666. The fact that they do not distinguish from each other illustrates the
accurateness of the proposed fully-mixed method. Note that in the case of the unknowns on the boundaries,
they are depicted along straight lines beginning at the points (0.2, 0.4) and (0.4, 0.0) for Σ and Γ , respectively,
and then continuing counterclockwise.
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Figure 2. Approximate and exact real part of σs,21 (Ex. 1).
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Figure 3. Approximate and exact imaginary part of σf,1 (Ex. 1).
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Figure 6. Approximate and exact real part of σf,1 (Ex. 2).
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Figure 7. Approximate and exact real part of σf,2 (Ex. 2).
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