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ANALYSIS OF AN ASYMPTOTIC PRESERVING SCHEME
FOR RELAXATION SYSTEMS *

FraNcis FILBET' AND AMELIE RAMBAUD!

Abstract. We consider an asymptotic preserving numerical scheme initially proposed by F. Filbet
and S. Jin [J. Comput. Phys. 229 (2010)] and G. Dimarco and L. Pareschi [SIAM J. Numer. Anal.
49 (2011) 2057-2077] in the context of nonlinear and stiff kinetic equations. Here, we propose a con-
vergence analysis of such a scheme for the approximation of a system of transport equations with a
nonlinear source term, for which the asymptotic limit is given by a conservation law. We investigate
the convergence of the approximate solution (uj,, vj,) to a nonlinear relaxation system, where ¢ > 0 is a
physical parameter and h represents the discretization parameter. Uniform convergence with respect to
€ and h is proved and error estimates are also obtained. Finally, several numerical tests are performed
to illustrate the accuracy and efficiency of such a scheme.

Mathematics Subject Classification. 35102, 82C70, 656MO06.

Received January 5, 2012. Revised August 7, 2012
Published online January 15, 2013.

1. INTRODUCTION

The numerical resolution of kinetic and hyperbolic equations is a challenging task because these models often
contain small parameters describing multiscale phenomena. It is particularly difficult to capture the behavior
of the solution characterized by time multiscale features since a straightforward discretization leads typically
to stiff differential system of equations. Such problems are encountered in many physical applications, for
example rarefied gas dynamics [9, 10], semiconductor modeling [8], quasi-neutral plasma simulations [7], the
list of possible applications being not exhaustive. The motivation of this work is closely related to rarefied gas
dynamics simulations [10]. In this case the source term is represented by the nonlinear and non local Boltzmann
operator modelling collision mechanism of particles, the intensity of collisions 1/e reaching several orders of
magnitude. The difficulty with these stiff problems is that they become singular in the limit ¢ — 0, where ¢
is a small parameter responsible of the stiffness. A straightforward discretization of such problems (using, for
example, explicit Runge-Kutta schemes) generates a very restrictive condition on the time step At = O(e),
which becomes unfeasible for ¢ < 1. In this paper we present a new approach based on the so called Asymptotic
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Preserving reformulation introduced initially in [16]. This work presents an important improvement in the
rigorous convergence analysis of an asymptotic preserving scheme proposed in [9,10] in the framework of kinetic
equations with stiff operators. Of course, a complete analysis seems to be tricky for fully nonlinear kinetic
equations like the Boltzmann equation. Therefore, we focus on a simple hyperbolic relaxation system, which is
the standard benchmark model for all relaxation problems : for all (¢, z) in RT x T:

Opu + 0,v° =0, u(0,2) = ug(x)

) (1.1)
O +adyut = — R(u,v%), v°(0,7) = vg(x),

where a > 0 is a constant coefficient to be discussed later, € is the relaxation parameter, which can be either
large or small (leading to a stiff source term) and R : R xR — R is a nonlinear function such that R(0,0) = 0.
The system of equations (1.1) is often referred as a two velocity kinetic model and it has been intensively
studied for many years [3]. Here we will assume that the function R € C}(R x R,R) and its partial derivative
with respect to the second variable is bounded from below, then from the implicit function theorem it possesses
a unique local equilibrium,

R(u,v) =0 < v=A(u), (1.2)

where A is a locally Lipschitz continuous function with A(0) = 0. Therefore, under some assumptions on R
and on the initial data, the solution (u®,v¢) to (1.1) converges to (u,v) with v = A(u) and u solution to the
conservation law [6, 18]
O+ 0, A(u) =0, in RT x T,
(1.3)
u(t =0) = up,

where the initial datum ug is given by

up = limug. (1.4)

Developing robust numerical schemes for (1.1) that work in various asymptotic regimes (for a wide range
of values of € > 0) becomes challenging. It has been done in the framework of Asymptotic-Preserving (AP)
schemes [10, 16]. From a numerical point of view, the treatment of the stiffness cannot be done with explicit
schemes, so that semi-implicit or fully implicit schemes have to be applied, but this procedure becomes time
consuming and should be avoided when the operator R is nonlinear and non local since it requires an additional
step for the numerical resolution of a nonlinear problem. One solution offered by E. Gabetta, L. Pareschi and
G. Toscani [12] to design an uniformly stable scheme, was to penalize the nonlinear collision operator R by a
linear function B v and then absorb the linearly stiff part into the time variable to remove the stiffness.

More recently, F. Filbet and S. Jin [10] proposed to penalize the operator R by the BGK type operator
B (A(u) — v) in order to build stable schemes with respect to € > 0. If such schemes are now numerically
validated and extensively used to discretize various equations [9-12,16], their mathematical study has only
been done in some particular cases [13,14]. Indeed, few works are devoted to the mathematical analysis of
asymptotic preserving schemes for the approximation of hyperbolic systems with source terms. Actually most
of the theoretical works concern the numerical analysis of Relaxation scheme where (1.1) is only solved in the
asymptotic limit ¢ — 0 and for simple source terms. We refer for instance to the series of paper [1,2] and
then [5,17,19,23] on relaxation schemes. The requirement of asymptotic preserving scheme is to be uniformly
accurate and stable for all range values of € > 0.

Therefore, the goal of the present paper mainly consists in providing error estimates between the approxi-
mate solution (uj,v§) and the exact solution to (1.1) which are uniform with respect to ¢ and the numerical
parameter h. Here we propose a rigorous analysis of the Asymptotic Preserving scheme proposed by F. Filbet
and S. Jin [10] and G. Dimarco and L. Pareschi [9] for a nonlinear relaxation operator.
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Concerning the mathematical study of the system (1.1), we refer for instance to [20] for convergence proof
and to [21,22] for error estimates.

Theorem 1.1. Assume that the initial datum (u§,v§) is bounded independently of € in BV (T). Consider R €
CHR x R,R), with R(0,0) =0 and VR is uniformly bounded with respect to v and locally bounded with respect
to u such that, for any (u,v) in [—Up, Up] x R:

|0uR(u,v)| < g(Uy), w9
0 < Bo(Uo) < 8uR(u,v) < h(Up), '

where By, g and h are some constants depending only on Uy. Then (1.2) is satisfied and there exists a char-
acteristic speed a > 0 large enough (see the condition (2.6) below) such that the system (1.1) admits a unique
solution (u®,v%) in C ([0,00[, L*(T)?) and there exists a constant C' > 0 which only depends on a and (ug,v§),
such that for any e > 0:

[v°(t) £ Vau (t)|| + TV (u(t) + TV (v°(t)) < C Vi>0,

lus(t+7) —u @)1 < C7, VteR" reRt,
c (1.6)
[o(t+7) =0 ()| < e VteRT, 7 €RT,
ot +7)—v°(t)]1 < Cp7, Vt> v, 7eRT
where v > 0, and C,, only depends on a, (uf,v§) and v. Moreover, there exists By > 0 such that,
ot
[0°(¢,) = A(u(t, ), < C e & flug—A(ug)lly + ¢ (L.7)

Finally, if uf converges, as € goes to zero, toug defined by (1.4), then the sequence (u®,v®) converges to (u, A(u))
when € goes to 0, such that, for any v > 0: for all T > 0,

lus(t) = w(@®)llzr + [[v°(t) = A(u(®)[[r < Cove, v <t<T, (1.8)

where Cp > 0 depends on the initial data and T and u is the unique entropic solution to the Cauchy prob-
lem (1.3).

The paper is organized as follows. We present in Section 2 the asymptotic preserving scheme for the relaxation
model, and state the both convergence results of the Asymptotic Preserving scheme when the relaxation pa-
rameter £ goes to zero (Thm. 2.2) and next when the discretization parameter h goes to zero (Thm. 2.3). Then,
we establish some a priori estimates in L> and BV on the numerical solution to the Asymptotic Preserving
scheme in Section 3 in order to prove both the zero relaxation limit (Sect. 4) and the convergence of the scheme
(Sect. 5). Notice that these a priori estimates are uniform both with respect to the relaxation parameter € and
the time step At and space step Az. Finally, we present some numerical results in Section 6.

2. NUMERICAL SCHEMES AND MAIN RESULTS

We remind that when R (u,v) = v— A(u), where A € C!(R,R) is a given function, the necessary and sufficient
stability condition is given by the so called sub-characteristic condition [3,16]:

A'(w)] < Va. (2.1)
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It means that the propagation speed of the equilibrium problem has to be bounded by the speeds of the
relaxation system, which is therefore dissipative. For more details about this case, we refer to [6,18,20].
Hence the sub-characteristic condition reads, in our case:

OuR (u,v)

5;&1;;5' < VE. (22)

For the sequel, we define for any N > 0 and o > 0,

F(N,a):= sup [A(§)], (2.3)
|EI<U(N,a)

V(N,a):=U(N,a) + = F(N,a).

We also denote by I(N, «) the compact set
I(N,a) == [-vVaV(N,a), VaV(N,a)]”. (2.4)

Moreover, we assume that the initial conditions u§, v§ are bounded independently of € in L>°(T), such that:
Ny := max {sup|u8|oo,sup|v6|oo} < o0. (2.5)
e>0 e>0

Consider any ag > 0 and assume that the function R € C1(R x R, R) satisfies (1.2) and (1.5). We choose the
characteristic speed \/a > 0 and the parameter 3 > 0 such that

9(V(No, a0))

va > max{\/%, Bo (V(No, ao))

} and 5 = h(V(No,ap)). (2.6)

where V' is given by (2.3).

We present here the splitting Asymptotic Preserving scheme and its relaxed version. To this aim, we introduce
a space time discretization based on a uniform grid of points (2 4 1/2);ez C T, with space step Az, and discrete
time t" = n At, n € N, for which the time step At satisfies the CFL condition:

Ja At

A=
0< Ax

< 1. (2.7)

We denote by h = (At, Ax) the discretization parameter.

2.1. An Asymptotic Preserving scheme for the relaxation system

In this section, we design a numerical scheme for system (1.1), by introducing a splitting between the linear
transport part, and the nonlinear relaxation part, for which we will take advantage of the knowledge of the
equilibrium (1.2). In the asymptotic regime ¢ — 0, the second equation of (1.1) becomes stiff and explicit
schemes are subject to a stability constraint At = O(e). Of course, implicit schemes allow larger time steps, but
new difficulty arises in computing the numerical solution of a fully nonlinear problem at each time step. Here
we want to combine both advantages of implicit and explicit schemes, that is, large time step for stiff problems
and low computational complexity of the numerical solution at each time step. This is done, as said in the
introduction, in the spirit of Asymptotic Preserving schemes for nonlinear relaxation problems introduced by
F. Filbet and S. Jin [10] and G. Dimarco and L. Pareschi [9].
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Thus we construct a numerical solution (u5,v5) to (1.1) for (t,z) € Rt x T as follows

uh(tr) =Y > ul 1o, (@) L g (2),

neN jeZ

vi(ta) = > ) 1oy (@) Lgn gner (1),

neN jeZ

(2.8)

where Cj =|z;_1/2,2;41/2] are the space cells and the sequences (u})n,; and (v}),,; depend on € and are given

J
below.
First, initial data are computed as the averaged values of the initial data through each space cell: for all j
in 7Z,
ud= = / us(z)dz  and 9= L / vg(z) dz. (2.9)
J Ax C; J A.T e

Then, in order to discretize the system (1.1), we apply a splitting strategy into a linear transport part and a
stiff ordinary differential part as follows. The first part consists to apply a time explicit scheme combined with
a finite volume method to the following linear differential system

Oy + Ogv = 0,
(2.10)
O +ady,u =0,
and then the second part deals with the stiff ordinary differential equations
8{& = O,
(2.11)

O = —é R(u,v).

We first approximate the linear transport part (2.10), that is, for a given (u", v™), we compute
(un+1/2, 9" F1/2) at time t"+! with a standard Finite Volume scheme, that is, for all j € Z,

u?+1/2 = uj — AtDpvy,

(2.12)
n+1/2 n n
v; = v} — AtaDpuj,

where Djvi and a Dpuf are discrete derivatives with respect to x of v and u, given for instance by a
Lax—Friedrichs scheme, namely:

1

th;’ = 5z [(U;LJ,»] — U;Ll) —Va (U?H — Qu? +U?71)] ,
(2.13)
1
aDpuj = 3 As la (ufy —uf ) —Va (vf, — 207 + 07 )]

Remark 2.1. Of course, there is a wide range of possible choices for the numerical flures. As we will see
below, the main property of the numerical scheme for the linear transport term that we require is the TVD
(Total Variation Diminishing) property, namely, for alln € N,

TV(u"Y?) < TV(W™) and TV("TY?) < TV ("),

where TV (u) = Z [ujp1 — uyl.
JjEZ
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Hence, the second part of the splitting only consists in approximating the nonlinear ordinary differential
n+1/2  n+1/2
v

equation (2.11), for all j € Z, starting from (uj s U; ) To this aim, we use the decomposition

R(u,v) = [R(u,v) = (v = A(w))] + 8 (v — A(u)),

where 8 > 0 is given by (2.6). Then, we apply a time exponential scheme on the dissipative part and get the
following numerical scheme:

n+l _  n41/2
Uj _uj )
1 +1/2 +1/2 +1/2 BALN 5 At
e (e () [ (1 22 a0 210
At
. -8 At/ n+1/2 n+1/2
— e ER(uj S U; )

This numerical scheme (2.12)—(2.14) allows to define the sequence (uf,v})(j n)czxn-

2.2. Convergence results

We first establish a convergence result on the asymptotic behavior of the numerical solution to (2.12)—(2.14)
when ¢ tends to zero and h = (At, Azx) such that the CFL condition (2.7) is satisfied.

Theorem 2.2 (discrete asymptotic limit: h fixed and £ — 0). Under the assumption of Theorem 1.1 where R
satisfies (1.2) and (1.5), Ny is given by (2.5), the characteristic speed \/a > 0 and the parameter 3 > 0 are given
by (2.6). We also assume that the CFL condition (2.7) is verified. Then, the solution (u},v};) given by (2.8)
to the scheme (2.12)—(2.14) with the initial data (2.9), converges in L'(T), as ¢ — 0, to a numerical solution
(wn,vn), that is,

s, (8) = un (@)l + 1105, (8) = (@)l < Cre™®2 [1 4 [|6%] ] + [luf,(0) — un(0) |1 + [[v5,(0) — va(0)]l1,

where Cy > 0 depends on the initial data and t > 0, (up,vy) is a consistent approzimation to the conservation

laws (1.3) with vy, = A(up),
un(t,w) =3 ) 1o, () Lpn gusr (1),
neN jez
and the sequence
uith =} — At DpA(uf), jez, n>1, (2.15)

where the initial data a9 is the local average of ug is given by (1.4) and 6° = u§ — A(vf).

The proof of this theorem is analogous to the one corresponding to the continuous problem. The fact that
we are able to establish uniform BV bounds on the numerical solution allow to get error estimates with respect
to €.

On the other hand, we propose a convergence result of the Asymptotic Preserving scheme when h = (At, Ax)
goes to zero and ¢ is fixed:

Theorem 2.3 (convergence analysis : ¢ fixed and h — 0). Under the assumption of Theorem 2.2, the solution
(u5, v5) to the scheme (2.12)—~(2.14) and the initial data (2.9) verifies for all T > 0

t 50 1/2
[ug,(8) = w* (@)l + [lop(8) == ()]l < % (At (@ + 1) + Azt ) , te[0,T].

where Cp > 0 depends on the initial data and T, 6 = u§ — A(v§).
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Gathering these results together with Theorem 1.1, we get the following error estimates proving the uniform
accuracy of the numerical scheme (2.12)—(2.14).

Theorem 2.4 (uniform error estimates with respect to € and h). Under the assumption of Theorem 2.2, we
denote by

Ene = [lup(t) —u (D)l + [[vp(t) — o= (@)1,
where (u5,,v5) is given by the scheme (2.12)(2.14) and the initial data (2.9). Then we have for all T > 0

50 1/2
Ene < Crmin (% (@ + 1) + AxT’e—ﬁoAt/s [1_1_”50”1] + e+ \/A];), v<t<T,

where Cp > 0 depends on the initial data and T, §° = u§ — A(v§).

Proof. To prove this result we show that both error estimates are valid. On the one hand the classical convergence
analysis in Theorem 2.3 gives for all 7" > 0 that

0 1/2
oz (2 (1) 4 22 e

On the other hand, we split &, . as
gh,s = 5}1,5 +&n + 557

with the numerical error 5}1,5 = ||u}, (t) —un(®)|l1 + |Jvg(t) — A(un(t))|l1, where (un, A(up)) corresponds to the
numerical solution in the asymptotic limit e — 0 and is given by (2.15), the term &, = ||u(t) — up(t)|1 +
llv(t) — A(up(t))|l1, where (u, A(u) is the solution to the conservation laws (1.3) and the continuous error
E = |lus(t) —u(t)||r + [|[v°(t) — A(u(t))]|1. From Theorem 2.2, we have

En = llu(t) —un(®)|1 + [Jo(t) — A(un(t))||; < Cpe PoAt/e [1+ H50H1] , v<t<T.

Then, the error &, represents the L! error between the solution to the conservation laws (1.3) and its approxi-
mation by a first order Lax-Friedrichs scheme, which gives &, < Cpv Az and finally from Theorem 1.1, we have
E. < Cpy/e. Gathering these latter estimates, we get the second error estimate on &, .. O

3. A PRIORI ESTIMATES

We first make sure that the sub-characteristic condition (2.2) is always satisfied to ensure the stability of
the scheme (2.12)—(2.14) and prove estimates on the solution to the relaxation problem which are uniform with
respect to €. In following section, we drop the subscripts € for sake of clarity.

3.1. A priori estimate on the relaxation operator

Let us focus on the second part of the scheme devoted to the approximation of the relaxation source term
and give a technical lemma, which establishes a quasi-monotonicity property on the operator G, s with s > 0.
In order to do this, we will rather consider the equivalent formulation on the diagonal variables w and z. Let
us rewrite the splitting scheme on these variables. For u and v given, we set

w=—v—+au and z = 4+v — Vau. (3.1)

Therefore, the linear transport scheme (2.12) written for (w, z) exactly coincides with an upwind finite volume
method: for all j € Z,
At

wn+1/2 = w" — \/a
Ax

b j (wf —wj_y),

L (3.2)

nt1/2 At
z = 27 +\/5E (241 — 27),
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whereas the nonlinear stiff part (2.14) yields, for all j € Z

1/2 1/2 1/2
Wt = o G ()

1/2 1/2 1/2
= T G (w ),

J J
z—w w4+ z BAt\ _
G, = -Al(- 1— (145 e Pat/s 3.4
= (52-4(55) [-(+22)- o
At w+z z—w
e hAtfep 2T 2 7
+ B e < 2va 2 ) .
The main result of this section is to establish the quasi-monotonicity of the operator G, s, which will lead to
L an BV estimates.

with

Lemma 3.1 (Comparison principle). Assume the function R satisfies (1.2), (1.5) and choose a > 0, § > 0
such that (2.6) is verified. Then,

(i)  the sub-characteristic condition is satisfied for all (w,z) € I(Ny,aq), that is,

OuR
R

< Va, (3.5)

(u,v)

where 2\/au == —(w+z) and 2v := z—w ;
(13) for all e, s > 0, the source term operator G: s is quasi-monotone on the compact set I(No,ao), that is,

—1 < 0uGe, s(w,z) <0, ¥ (w,z) € I(Ny,ap),
(3.6)
0 < 0,G. s(w,z) <1, V(w,z) € I(No,ao);
(iii) consider for i = 1,2, (WPt 2! two solutions to (3.3) corresponding to two initial data
(w?+1/2 zﬁH/Q) € I(No,ap). Then there exist w and z € R such that (w,z) € I(Np,ag) and

u/f“ — wgﬂ = (w?“/2 — w;+1/2> (1 + 0y G s (w, z?+1/2>)
+ (Z?H/2 — Z;+1/2) 0.G. s (wgﬂ/z, z) ;

2Pt antl = (z?ﬂ/z — z;H/z) (1 —0,G. s (wgﬂ/z, z))

_ (w?+1/2 _w;+1/2> 90 Gy (,w’Z;H-l/Q) .

Proof. For any Ng > 0 and ag > 0, we first observe that for (w,z) € I(No,ao), |u| < V(No,ag). Therefore,
using the assumption (1.5) and the definition (2.3), we get that

g (V(No, ao))
(u,v)’ = Bo (V(No, ao))

R

R < a,

which proves the first assertion (i).
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Now we prove (ii) the quasi-monotonicity property of Ges. Computing the partial derivatives of G, it
yields for all s > 0,

_ 1 A/(u) /63 7ﬁ8/6 S 755/5 81LR
8UJG575__§(1_ \/a) |:1_(1+? e —Ee W%—&,R s

- 1 A/(u) /63 —Bs/e S —Bs/e —8uR
8ZGE,S_+2<1+ \/a>|:1 (1"‘5)6 "‘266 \/a +61;R .

Hence, from the implicit function theorem we obtain

OuR (u, A(u))

Allu) = = BuR (u, Aw))

and the sub-characteristic condition (3.5), we obtain that for all (u,v) € I(No,ag), 0upGe s(w,z) < 0 and
0.G4.,s(w, z) > 0. Moreover, still using condition (3.5), we also get for all (w, z) € I(Ny, ap)

OuwGe s(w,z) > — [1 — %e_ﬁs/s} — Oy R(u,v) ge_ﬁs/g,

0.Ge s(w, z) < [1 — % e_ﬁs/e] + Oy R(u,v) Se_ﬁs/g.

Now since |u| < V(Ny,ao) and from the choice of the parameter 3 in (2.6), it yields that |0,R(u,v)| < S.
Therefore, we conclude that —1 < 0,,Ge s(w, 2) and 0.Ge s(w, z) < 1, for all (w, z) € I(Ny, ao).
Finally (i77) follows from a first order Taylor expansion of G¢ ;. U

This Lemma allows to obtain the following comparison principle.

Corollary 3.2. Consider fori = 1,2, two initial data (w?+1/2, Z?H/Q
+1/2 w;z+1/2 nt1/2 Z;L+1/2

and z;
n+1/2 Zn+1/2

7 ka2

) € I(Ny, ao) satisfying the monotonicity
nt 2t given by (3.3)

L, n
condition w,; : #

. Then, the numerical solution (w

corresponding to the initial data (w ) fori=1,2, satisfies

wit <wh™ and T < 20

3.2. L°° estimates

We establish a uniform bound on the numerical solution to the scheme (2.12)—(2.14) with respect to the
time-space step h = (At, Ax) such that (2.7) is satisfied.

Proposition 3.3. Consider any ag > 0 and Ngy given by (2.5). We assume that the function R satis-
fies (1.2), (1.5) and choose a > 0, 8 > 0 such that (2.6) is verified. Moreover, the time step At satisfies
the CFL condition (2.7). Then, for alln € N, |[u"||cc < V(No,ao) and ||[v"|lcc < vaV (No,ag).

Proof. We proceed in two steps and first construct a particular solution (w™,z") € R? to the scheme (3.2)—(3.3)
which is uniformly bounded, then we apply the comparison principle on the compact set I(Ny,ag) to prove an
L bound on (w", z™).

To this aim we choose Ry = (1 + y/a) Ny and construct a numerical solution (@w™,z") to (3.2)-(3.3) cor-
responding to the initial data (w",z") = (Rg, Ry), which does not depend on the space variable so that the
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transport step (3.2) is invariant. Then we apply the relaxation scheme (3.3), which yields " = —7" — /au"
and z" = +0" — /auw", where (u",70") are only given by

0:_%:(1+%> No,

- (1 + —ﬁAt) e AAt/egn—l (1 - (1 + —ﬁAt> e—ﬁAt/E) A (@)
13 g

_ﬁ efﬁAt/s R (ﬂo’ﬁnq) )
3

ﬂn

Il
g

Then, we proceed by induction to show that for all n € {0,..., N}, we have (@",z") € I(No, ao).

We assume that ( n=1 zn=1) € I(Ny, ag), for some n > 1 Let us prove that (@w™,z") € I(Np,ap). On the
one hand since u" 1t yields |7 s < |7°]l < U(No, ao), where U(Ny, ap) is given by (2.3).

On the other hand, ublng a first order Taylor expansion of the source term R(@’,.), we get that there exists
"~1 € R such that

_ =0 ~n—1
. _ (1+ B—0,R(@, 0 )At) o BAt/e Zn—1

€
0 ~n—1
+ ( ( ﬁ 3UR( , U ) At) e—ﬁAt/s) A (ﬂO) )
5
Therefore, denoting by A\r € R, the real number such that

_ —0 ~k
A= (1 + %(“’”)At) e PAYe  yLeN,

with |#%| < F(No, ag), hence we get 7" = \,_1 9" ' + (1 — \,_1) A(w®) and since 7° = 0, we have

n—1
= (1 — H /\k> A®@°)
k=0

Moreover, using that [u°| < U(No, ag) and % < \/a V(Ny, ap), for all k € N, we get from (1.5) and (2.6),
- At
0 < (1+ %At) e PAe < )\, < (1+ %) e PAt/e 1 VkeN.

Therefore, ||7"|| s < F(No,ao) and (@w",z") € I(No, ao).

Furthermore, startlng from the following initial datum (w?, 2°) = (= Ry, —Rp), we can also construct another
particular solution (w™,2") € I(Ny, ap) for all n € {0,..., N}.

Now, we proceed to the second step which consists in applying the comparison principle of Corollary 3.2 to
prove an L estimate for any initial data u%, v9 € L>°(T) given by (2.9). From the definition of Ny, we have
[u°]| o and [|v°]|sc < No. Then, we have for the initial data || ||, [|2°]lce < (1++/@) No = Ry < v/aV(No,ao),
that is,

OSZO O.

o
IN
|

w’ <w’ <@°, an

< < Zz™. We first consider
the linear transport step (3.2) to (w", 2™) and get that w™ < w ntl/2 < " and 2" < 2"t1/2 < z" . Thus,

we apply Corollary 3.2 to the two solutions to (3.3) associated to the initial conditions (w;’H/Q,z?H/Q) =

(wnt1/2, 2n+1/2) and (ng/Q,zQH/z) = (w™,2") (and then (@W",z")), we have

Thus, we proceed by induction and assume that w” < w” < @W" and 2" < 2"

wnJrl S wnJrl S w’ﬂJrl and ZnJrl S Zn+1 S inJrl’
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which finally gives for all n € N, that (w™,2") € I(No,ap). By construction of (u™,v™) we have proved that
[0 <V (No,ap) and [|[v"||eo < v/a V(No,agp)- O

3.3. BV estimates

In this section, we obtain a BV estimate on the numerical solution to the scheme (2.12)-(2.14) with the
time-space step h = (At, Ax) such that (2.7) is satisfied.

Proposition 3.4. Assume that ug,ve are uniformly bounded with respect to € in BV (T). For any ap > 0 and
Ny given by (2.5), we assume that the function R satisfies (1.2), (1.5) and choose a > 0, 8 > 0 such that (2.6)
is verified and h satisfies (2.7). Then, for all n € N, we have:

TV (w"™) + TV("h < TV (w™) + TV (").

The proof is straightforward applying (iii) of Lemma 3.1 to initial conditions (wn+1/2 zn+1/2) and

J ]
n+1/2 _n+1/2
)

4. TREND TO EQUILIBRIUM (PROOF OF THEOREM 2.2)

For a sequence u = (u;) ez we set
lully =" Awfuy|.
JEZ
In this section we first focus on the asymptotic behavior of the numerical solution to (2.12)-(2.14) when e goes
to zero or when times goes to infinity. Then, we prove that this numerical solution converges to a consistent
approximation of the conservation laws (1.3) when € goes to zero.

4.1. Asymptotic behavior

In this subsection, we drop the subscripts € for sake of clarity and estimate the deviation to the local
equilibrium 0™ = v™ — A(u").

Proposition 4.1. Assume that ug, vy are uniformly bounded with respect to € in BV (T). For any ap > 0 and
Ny given by (2.5), we assume that the function R satisfies (1.2), (1.5) and choose a > 0, 8 > 0 such that (2.6)
is verified and h satisfies (2.7). Then the deviation from the equilibrium, 6 = v — A(u) satisfies for allm € N

and all € >0
[6mH12] < 6n)y + C At

(4.1)
o7y < e= /= 60, + Cee.
where C' > 0 is a constant only depending on the parameters a, By and the BV norm of the initial data.
Moreover, if ¢ < At then we get
1871, < =P EE 00|, + Ca Ate A, (42)

Proof. We set for j € Z, n € N the sequence of deviations from the equilibrium:

5;’:U;L—A(u;l).
We first consider the transport step (2.12) of the numerical scheme: for all j € Z, we apply a Taylor expansion
to A, then there exists {7 such that |§j"’ < V(No,ap) and
n+1/2 _ on At n n n n n
J =0~ 5z [a (wiy = wfoy) = Va (v =207 +0j1)]

At n n n n n n
5 A€ [ —vjty) =V (ufy = 2uf +uj )]
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Thanks to the uniform BV estimate, proved in Proposition 3.4, the sub-characteristic condition |A/ (53”)’ < Va
and the TVD property of the numerical fluxes we get the first estimate (4.1), by multiplying by Az and summing
over j € Z:

\|5”+1/2H1 < 16" + At C, [TV(UO) + \/ETV(uO)] , (4.3)

where C, > 0 is a constant only depending on a.
Then, we consider the second step of the numerical scheme (2.14). On the one hand, since u"*! = w2 it
yields
At At

n n+1/2 — — n+1/2 n+1/2

5j+1:5j+/ |:1+ﬂ?:|eﬁAt/E—?e ﬁAt/sR(ujJr/’,UjJr/).
On the other hand, applying a Taylor expansion, since R(u, A(u)) = 0 we get that there exists n such that
In| < VaV(No,ao) and:

R(u;}+1/2’1}?+1/2> — O,R (U?H/z,??) 5;1+1/2_

Hence, we have

5;;+1 _ 5;;+1/2 o BAt/e

- 1_8u7€(u?+1/2,77) BA
I} €

Therefore under the assumption (1.5), we set for all s > 0

o) = [1+ (1-2) o] e

for which we easily show that for all s € R*, we have that e=* < g (s) < e /8. Hence, taking s = BAt/e
lo7 ], < e At a2 (44)

Finally, gathering (4.3) and (4.4), we obtain that there exists a constant C; > 0 depending only on a, TV (u°)
and TV (v°) such that ||§"*1]|, < e=P A/ [|57]|, + C1 At]. By induction, we easily get

n —ﬁo At/s
7, < e 0], 4 Codt (45)

_ o—BoAt/e

To conclude we only observe that ze™ <1 — e~ %, for any « > 0, then it gives the second estimate of (4.1): there
exists a constant C' > 0, only depending on a, By, TV (u°) and TV (v°) such that ||§7]|, < e Fot"/¢ H50H1 + Ce.

Moreover, when & < At, we again start from the estimate (4.5) and note that 1/(1 — e %04t/¢) < 1/(1 — e=).
Thus, there exists another constant C' > 0, only depending on a, 3y, TV (u°) and TV (v°) such that

157, < e=® /=60, + C AtemFodt/E,
which gives (4.2). O

4.2. Proof of Theorem 2.2

We are now ready to perform the asymptotic analysis of the numerical scheme (2.12)—(2.14) when ¢ goes to
zero. We keep now the subscript € for the solution to the relaxation system.
Let us consider the numerical solution (uj,v;) to the scheme (2.12)-(2.14) written in the form (3.2)-(3.3)
with
wi, = —v) — Vauj, and zj, = +vj — Vauj,
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such that
Zzwsn 5 1[tn tn+1[( )

neN jeZ

ZZzenlc 1[tn tn+1[( )

neN jEZ
)j.n is given by (3.2)—(3.3). Let us also define (wp, 25) the numerical solution to the limit of the

where (w}, 2}
(3.

scheme (3.2)—(3.3), when ¢ — 0. Namely, wj, and z, are given by

= 57wl 1, (@) L o (1),

neN jeZ
= Z Z Zjn 1c, (x) l[tn7tn+1[(t),
neN jEZ

where (w7, 27') is given by the formal cancellation of € in (3.2)-(3.3). To obtain an error estimates we rewrite the
values (w}, 27 ) (n,j)enxz as a perturbation of the numerical solution to (3.2)-(3.3) with a fixed value of £ > 0:

1/2
Wit = — Va5 (wf —wiy),

1/2 At
G = VAL (-2,

and then
Wit = W G (w2 ) - Avep (o),
(4.6)
At = G (w2 4 At o).
where At £ (e) represents the consistency error of the operator Ge a: with respect to e, that is
n+1/2 Zn+1/2> Go.at ( n+1/2’zjn+1/2)

ALE ) = Ge (w122
Therefore, we apply Lemma 3.1 (4) and (i) in (4.6), with (w1, 21) = (w}, 25) and (w2, 22) = (wj, z;), it yields
IR Lo |ater )]

’wj,n+1/2 n+1/2’ I

e,n+1 o n+l <
Zj Zj ’f

e,n+1 n+1
-
and by linearity of the transport scheme (3.2), we have for all n > 0
en+1 n+1 en
T ‘<|wj —wi| + |2

‘wg,n+1 —w;”'l‘ n < "2t 42 |AtEN )|

J
Thus, multiplying by Az, summing over j € Z and applying a straightforward induction, we get the following

— ) + 2 ZZAtAx E5(e)) -

k=0 jEZ

stability result
ZAwﬂwj”—wﬂ + ]zj” ") SZAw (‘wj-’o—
JEZ

JEZ
It now remains to evaluate the error £7(¢). Using that for any (w,z) € I(Np, ao), the function R € C'(RT,R)

verifies Gy < 0, R(u,v) < 3, we have
ny | _ .—BAt)e nt1/2 nt1/2 B At At n41/2  nl/2
At g ()] = e | (w12 - a (w2 (1+T + SR (u) )
< e*ﬁoAt/E ,UV}+1/2 _A (uﬂ‘i‘l/?)‘
= j j :
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Thanks to the estimates (4.1) and (4.2) in Proposition 4.1 on the deviation applied to v"*1/2 — A (un+1/2)
which is also valid in the asymptotic € — 0, it yields

» 16°||, + C Atif n=0,
o2 — A ) <

C At if n>0.
Then, we get for k£ > 0 and e < At,

ZAxAt |EF(e)| < e PR |80, + C At].

jEL
Hence summing over 0 < k < n, it gives

n

ZZAxAt |EF o < e7PoRtE (|||, + 7]

k=0 j€Z

Finally, we get the estimate

lwh (¢%) = wn ()l + 25 (E") = 20 (E") 1 < [[wp(0) = wn(0)[1 +[[25(0) = 2 (0)[x
#2e B 0], + €1

and the result follows (u3,v;) — (un,vr), when € goes to zero. The Proof of Theorem 2.2 is now complete.

5. PROOF OF THEOREM 2.3

In this section, we prove the convergence of the relaxation Asymptotic Preserving scheme. As in the stability
analysis of the relaxation scheme, we will rather consider the diagonal variables w and z and drop the subscripts
¢ for sake of clarity when it is not necessary.

5.1. Consistency error

Consider (u,v) the exact solution to (1.1) and define (w, z) by (3.1). Unfortunately, this solution is not smooth
enough to study the consistency error, then we introduce a regularization (ws, 25) given by

ws(t,x) = w* ps(t, x),
zs5(t,x) = z % ps(t, x),

where * denotes the convolution product with respect to z € T and

1 /z o B
ps(x) = 5p (5> and p € CZ(T), p =0, /T/)(Z)dz =1

Thus, the couple (ws, 25) is solution to
1
Ows + Vad,ws = +ER6(U’U)’

(5.1)
8t25 - \/aaxzé = —%R(S(’U/,’U),
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with Rs = R * ps and (u,v) solution to (1.1). Therefore, applying the Duhamel’s representation, the solution
can be written as
At

1
ws(t" T x) = ws(t", x — VaAt) + = Rs(u, v)(t" + 5,2 — Va(At — s)) dt,
€Jo
(5.2)
1 At
zs(t" T x) = z5(t", @ + VaAt) — = Rs(u,v)(t" + s,x + Va(At — s)) dt.
€Jo
Then we set 1 1
= /C ws(t" 2y dw, 5= /C 25", 7) da (5.3)
J J
Integrating (5.2) over o € C; and dividing by Az, it yields
@ = a2 Gl (@*1/2,5;“/2) +ALED + ALEY,
(5.4)
= 52 G, s (u?jH/Q,Z;LH/z) +ALEY + ALEY,
with At
n+1/2 - - -
@ = af — Va3 (@ —@),),
At
nt1/2 - - -
gt =gy +va 3 (Fa - 7).
The consistency errors related to the transport operator £7';, £3'; are respectively defined by
ALET — €1j+1/2 ~ €172 ALED — £3.j+1/2 ~ 3,4-1/2
L.j Az ’ 3,7 Az ’
where e?’j +1/2 and eg’j 41/ AT€ the consistency errors of the numerical flux and are given by
VaAt
el jr1y2 = —/O ws(t", 4172 — s)ds + \/EAtu?;L,
(5.5)

VaAt
6g’j+1/2:+A Z5(tn’l'j+1/2+8)d8 — \/aAtéyli,l,

whereas the consistency errors At €3 ; and At EY'; correspond to the stiff source term and are given by

1 At ) .
Atey ;= +E /C /0 ER(; (u,v) (" + 8,2 — Va(At — s))ds — Ge Ay (wj +1/27 Z; H/Q) dax,

n 1 At 1 n ~N ~N
AtEY; = e /c /0 ER(; (u, ) (t" + s,z + Va(At — 5))ds — Gc At (ij/z, Z; +1/2) dz.

We then evaluate successively each consistency error term. On the one hand, we prove the following consis-
tency error for smooth solutions, which is related to the transport approximation.

Proposition 5.1. Let (w,z) be given by (3.1), where (u,v) is the exact solution to (1.1) and such that w,
z € L>®(R*, BV(T)). Then the consistency error related to the transport part satisfies

> Ax (€7 + 1€5,]] < C% (TV(w(t™)) + TV (2(t")).

JEL
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Proof. We first study the consistency error for w € L (R*, BV(T)). We perform a simple change of variable
n (5.5), which yields since \/aAt = X Az,

Az Az
€112 = —/\/O ws (t”,ach/Q — )\s) ds + /\/O ws (t”,ach/Q — s) ds,

Az s
)\/ OpWs (t",wj+1/2 — ’I”) drds.
0 As

Therefore, since wg is smooth we have

\/a Az s
’S{’,j| = A3 /0 /}\s Opws(t", 412 — 1) — Opws(t", 2512 —r)drds|,
Tit1/2
<+a |02, ws(t", z)| dx.
Ti—3/2

By multiplying by Az and summing over j € Z, we get an estimate for a smooth solution ws(t") € W2(T),

> Az |er| < 2vaAx|02,ws(t")]s.
JEZ
To achieve the proof, we need to estimate |02, ws(t")||1 with respect to w and ps. Using the convolution
properties, we easily get
102, ws (™)l < 5 0zws()ll < = TV(w(t")),
which allows to conclude that A
YAzl < © Tf” TV (w(t™)).
JEZL
Using a similar technique, we also get for a smooth solution z € L>(R™, BV (T)),
A
> Aw ey < O TV((). O
JEZ
On the other hand, we treat the consistency errors £ ; and &y ;» which are related to the stiff source term.

Proposition 5.2. Let (w,z) be given by (3.1), where (u,v) is the exact solution to (1.1). Assume that w,
z € L>®(R*, BV(T)). Then there exists a constant C' > 0, only depending on u and v such that the consistency
error related to the stiff source part satisfies

w18
S acley,| < © [ﬁ (eﬁot e 1200, 1) LA o
| : :

JEZ c c
and
At n e ||0° 5
Y Acley] < C —(‘ﬁot/eH H1+1>+—x+—
; ’ € € €
JEZ
Proof. We first define (a},7) such that 2\/au} = —(@} + 27) and 20} = Z}' — @] Therefore, we split the

consistency error £5'; as
,
n o __ n n n n n
Erj = &+ &y + Exy + Euy + Ea5
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with

Aty ;= — {1 — (1 + @) eﬁAt/e} (@?H/z ) (a;m/z)) ’

At/ viiss
atggy, = (1—e302) ZER (a2, )

1 At
Ategy; = /C | Retw ) 4. V(AL = 8) ~ R )t 2 - Va(An)dsda
At = - / R, v)(t", @ — V/a(At) - R(u, v)(t",x — Va(Ab))da,

Aty 5 = 6A:c/ R(u,v)(t", z — a(At)) — R(u?+1/2’1~};z+1/2) .

On the one hand, the two terms &3 ; and &3, ; can be easily evaluated using a Taylor expansion of s — e Ps/e

it yields
BAL
atlepl < 5 (22

G2 _n+1/2
0; - A (uj ) ’ .

Using that R(u, A(u)) = 0 and R € C*(R?,R) with 9, R(u,v) < 3, we also obtain that
. BAL\ 2
At|E35 4] < <T

Therefore, from (4.1) in Proposition 4.1, we have

~n+1/2 n-+1/2
v; - A (uj )‘ .

n 59
ZAf (€3 1 + 1€5551] < C% (eﬁot /Eu + 1). (5.6)

, €
JEZ
On the other hand, we proceed to the evaluation of the terms &35 ;, £ ; and &35 ;. First, for s € [0, At], we set

©05.2(5) = [R(u,v) * ps] (t" + 8,2 — Va(At — s)).

Then, from (1.5) and (2.6), we know that |0, R(u,v)| < v/a B and |9, R(u,v)| < 3, for any (w, z) € I(No,ap),
we obtain

At

> AvAt|€3, ] <- dz,

JEZL

90535 n)dnds

n+1
< C— // (|0pus| + |0zus|) (t, ) dt da
n

n+1
+C—// (10vvs| + |9svs]) (¢, 2) dt da.
-

Thus we can use the estimates on the continuous relaxation system listed in Theorem 1.1. Indeed, since

atué = _amvéa

1
Ovs = —adyus — gRg(u,v),
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we obtain, by applying a first order Taylor expansion of R, the inequalities
/ (I8eus| + 10,usl) (t,2) da < TV (u(t) + TV (0 (t)),
T
1
[ el + 1oaas) v ) e < € (TVGate) + 3 o = AN, ).

Hence, integrating over ¢ € (t",t"*1) and using (1.6) and (1.7), we get:

e—ﬁot"/€

Sar el = 02 (TVan) + TV +

JEL
where C' > 0 only depends on /a and (3.
Now we treat the term &3, ; using the smoothness properties (1.5) and (2.6) on R, it gives

ZA:MS;QJ =

JEZ

18] + 1), (5.7)

/‘/ (w,0)(t",x =y — VaAt) - ()(n»ff—\/aﬂt)]pg(y)dy’dx,

<; [lu(t",2) —u(t™,z —y)| + [v(t", z) —v(t", 2 = y)[] ps(y) dy dz.
’H‘2

Thus, applying Fubini’s theorem the BV estimate on the exact solution (1.6) and the value of the integral of

ps, we get 5
S Ax ey ;| < CZTV(u(t") + TV (u(t")]. (5.8)

JEL

Finally, to deal with the last term £J; ;, we split it in two parts

ZA:E|525J\< /|T\’, (u,v) (A", & — Vadt) — R (us,vs) (1", 2 — VaAt)| do

JEZL

+ - Z/ (ugs,vs) (t", @ — VaAt) — ( n+1/2’1~);n+1/2)‘ dx
and treat the different terms as for &) ;, we get for the first one
/1r IR (u,v) (t", ) — R (us,vs) (", z)] de < C§ [TV (u(t™)) + TV (v(t™))].
and for the latter one using the BV estimate on the exact solution (1.6),

Z/ (us,v) (1", = Vadt) = R (@ 2,5 V2) | do < € Aw [0us(t)lls + 0051,

JEZ

Thus, we have

ZAw |52"5,j

JEZ

< c(? Aw) [TV (u(t™)) + TV (u(t™))]. (5.9)

Gathering (5.6)-(5.9), and finally using the uniform bound on the BV norms of (u,v) given in (1.6), it yields

Y Acley] < C At (e—ﬁot el 6”1 n 1) . % L8

€
JEZ
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Using the same arguments we also prove that

Y Arley| < ©

JET

5.2. Convergence proof

Now we perform a rigorous analysis of the numerical scheme (2.12)—(2.14) when h = (At, Azx) goes to zero.
We consider the numerical solution (u5,v;) to the scheme (2.12)—(2.14) and (u®, v®) the exact solution to (1.1)
and define (w®, 2¢) using (3.1). Then we denote by

S 1 e(4n =n __ _l_ e(n
wj = S /Cjw(t y;x)dz,  Z; =1 /Cjz(t ;o) da

and (w7, 27')(jn)ezxn the numerical solution given by (3.2)-(3.3). Thus,

ZA.T lw} — 7| + [z} — z} ZA.T |w} —@F| + [z} — Z} M

JEL JEZ
+ 2 Aw[af —af| + | -]
JEZ
where (@7, 27') (j.n)ezxn is given by (5.3). On the one hand, we estimate the second terms of the right hand side
using the convolution properties and have
S Ax[lay —af| + |2 — 2] < CS[TV(w) + TV(v)]. (5.10)
JEZ

On the other hand, we apply the consistency error analysis to estimate the first term of the right hand side.
Applying (3.6)—(3.7) established in Lemma 3.1 with (@}, Z;) and (wj, z;), it yields

ZAw ’ pntl ”+1| < ZA:U ‘ I "+1/2‘ (1 + 0wGe At (wj,z"+1/2))

JEZ !
+ZA1’

JEZ

+> Az AL[IEY,| + 1631
JEZ

n+1/2 +1/2 +1/2
g G (a7, 5)

and

j{:éﬁ$|~n+1 n+1|5225343x

2;L+1/2 _ Z;L+1/2’ (1 —0.Gen ( n+1/2’zj>)

JEZ JEZ
- Z Az ‘@?H/z — w?H/z‘ OwGe, At (wyvz?H/Q)
JEZ
+> AxAt[IER] + €81
JEZ

Summing the two inequalities and using that the scheme (3.3) is TVD, we get the following inequality
sn+1 1 ntl 1 5 ~
ZAQC (|20 — 20 4 [ ;"Jr|]§ZA.T“Z;‘L_Z?|+|U)?_U};L‘]
JEZ JEZ

+3Av At [lEr] + €8] + 1€8,] + €81
JEZ
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Therefore,
ZAm [|2;l+1 _ Z;L-i—l‘ + |u~)§l+1 _w;}—&-l” < ZA.T “2;) — z;)| + |u~)9 —w9|]
JEL JEZ

+ 305 Avat[Ier,] + €51+ €8] + 1€k,

k=0 j€Z

Finally the consistency error analysis performed in Propositions 5.1 and 5.2 yields, taking § = Az'/?

ZAJC “2;‘“ —z;‘+1| + |u~);‘+1 —w;”rl\] < ZA.T [|2?—z?| + |u~)§J —w?”

JEL JEL
0
L ¢ (At(At—l—e) (M + 1>
€ €
+ {Am + eAt/? Axl/ﬂ > (5.11)

Gathering (5.10) and (5.11), the right hand side converges to zero when h = (At, Ax) goes to zero, which proves
the convergence of the numerical solution (2.12)—(2.14) to the exact solution to (1.1).

Therefore, from the smoothness of the exact solution and the initial data (ug,vp), it proves that for any
discretization parameter h, for all € > 0:

50
/ [uf, (¢, 2) — u (8, 2)] + |} (t,2) — v (t, 2)| do < g (m (@ + 1) + Ax1/2> .
T

6. NUMERICAL SIMULATIONS

This section is devoted to the numerical simulation of (1.1). We consider a nonlinear source term R(u,v)
given by
2
v—u
R(u,v) = ———.
(u,v) 1+ u2+v2
On the one hand we compute approximations for different meshes in space and time in order to evaluate the
order of accuracy of the numerical scheme for different regimes corresponding to small and large values of the

relaxation parameter € > 0. To this aim, we define an estimate of the numerical error by
Ei(h) = llup —ugpll + vk — v3all,

where h = (Az, At) is the discretization parameter and || - [|; is the discrete L! norm.

On the other hand, we compare our numerical approximation with ones obtained by two other schemes. The
first one is based on a splitting scheme, where the transport part is treated by (2.12)—(2.13), whereas the source
term is approximated by

1/2
u7,‘+1 = un+ /

J J ’
(6.1)
'U;LJFI = U;Hrl/Q (1 + %) e—ﬁAt/E _ ﬁ e~ B At/sR (u;z+1/2’v21+1/2> ’
€ €
This scheme is uniformly stable with respect to e, but it is not asymptotic preserving since v"*! does not

n+1)

converge to A(u when € goes to zero.
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L L D L
100 n, 1000 10000

FIGURE 1. Test with smooth initial data (6.3): L' error for different regimes from ¢ = 107°
to e = 10.

The second one couples the transport part (2.12)—(2.13) with a fully implicit scheme for the relaxation

1/2
7.L+1 :un+ /

uﬂ J ’

(6.2)
ot = 2 —At’R(u"'*'1 U”H)
i U R

This scheme is uniformly stable with respect to € and asymptotic preserving, but it requires an additional
step for the numerical resolution of the nonlinear problem (using a Newton algorithm). Note that the nonlinear
problem (6.2) may have several solutions (polynomial equation of order three for € > 0) and then the convergence
of the Newton or fixed point algorithm may be an open issue.

6.1. Test with a smooth initial datum

First we choose a smooth initial datum given by
uo(x) = sin(rx), wo(x) =0, Vre(-1,1) (6.3)

and vg = 0. In Figure 1, we present the curves corresponding to the order of accuracy with respect to h,
computed from &;(h) and observe that the order is relatively close to one when the solution is smooth. We also
observe that when e goes to zero the numerical error becomes smaller and smaller, which illustrates perfectly
the uniform accuracy of the scheme for different regimes.

Then in Figures 2, 3 and 4, we propose a comparison of the numerical solutions obtained with n, = 400
obtained with our scheme (2.14), the scheme (6.1) is based on a linear penalization proposed in [12] and a fully
implicit scheme (6.2) for the relaxation term. For these schemes the numerical solution is stable with respect to
¢ and the time step At is only chosen according to the CFL condition (2.7), but not with respect to ¢, that is
At = 0.003. The numerical solutions are compared with a reference solution obtained with a fine mesh n, = 10*
and At = 10~ We observe that all the schemes give accurate results when € < 0.1. However, the scheme (6.1)
is not asymptotic preserving and does not give consistent results when e — 0 and At is fixed (see Figs. 3 and 4).
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05|
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FIGURE 2. Test with smooth initial data (6.3): cross (x) numerical solution obtained with

nz = 400 and line (-) reference solution with n, = 10*. Numerical solution obtained from (1)

AP scheme (2.14) (2) linear penlization (6.1) (3) fully implicit scheme (6.2) for e = 0.1.

t=0.0

15

1 L

05|

t=0.0

15
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05 ')

0 \

t=0.0

FIGURE 3. Test with smooth initial data (6.3): cross (x) numerical solution obtained with
nz = 400 and line (-) reference solution with n, = 10*. Numerical solution obtained from (1)
AP scheme (2.14) (2) linear penalization (6.1) (3) fully implicit scheme (6.2) for e = 0.01.
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FIGURE 4. Test with smooth initial data (6.3): cross (x) numerical solution obtained with
nz = 400 and line (-) reference solution with n, = 10*. Numerical solution obtained from (1)
AP scheme (2.14) (2) linear penalization (6.1) (3) fully implicit scheme (6.2) for e = 0.001.
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FIGURE 5. Test with a discontinuous initial datum (6.4) L' error for different regimes from
e=107° to e = 10.
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FIGURE 6. Test with a discontinuous initial datum (6.4): cross (x) numerical solution obtained
with n, = 400 and line (-) reference solution with n, = 10%. Numerical solution obtained from
(1) AP scheme (2.14) (2) linear penalization (6.1) (3) fully implicit scheme (6.2) for e = 0.1.

6.2. Test with a discontinuous initial datum

Now we choose a discontinuous initial datum
05 if —1<z<0,
uo(w) = {0.125 ifo<z<l, (6.4)

and vy = 0.

In Figure 5, we present the curves corresponding to the order of accuracy with respect to h, we observe now
that the order of accuracy decreases to 1/2, which is coherent with the convergence analysis we performed in
this paper. Moreover, the numerical error is not much affected by the variations the relaxation parameter €.

Finally in Figures 6, 7 and 8, we present a comparison of the different approximations in various regimes. Our
AP scheme (2.14) gives accurate results uniformly with respect to ¢ with a computational cost of an explicit
scheme even when At is large compared with e.
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FIGURE 7. Test with a discontinuous initial datum (6.4): cross (x) numerical solution obtained
with n, = 400 and line (-) reference solution with n, = 10*. Numerical solution obtained from
(1) AP scheme (2.14) (2) linear penalization (6.1) (3) fully implicit scheme (6.2) for e = 0.01.

(1)

t=0.00

In this paper we proposed a rigorous convergence proof of an asymptotic preserving numerical scheme applied
to a system of transport equations with a nonlinear and stiff source term, for which the asymptotic limit is given
by a conservation laws. We have proved the convergence of the approximate solution (uj,v5) to a nonlinear
relaxation system, where € > 0 is a physical parameter and h represents the discretization parameter. Uniform
convergence with respect to € and h is proved and error estimates are also obtained allowing to justify rigorously

FIGURE 8. Test with a discontinuous initial datum (6.4): cross (x) numerical solution obtained
with n, = 400 and line (-) reference solution with n, = 10%. Numerical solution obtained from
(1) AP scheme (2.14) (2) linear penalization (6.1) (3) fully implicit scheme (6.2) for e = 0.001.
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7. CONCLUSION

the efficiency of such approach for multi-scale problems.

Note that this numerical approximation can be applied to other scaling like the “diffusive scaling” containing
scales of order 1, ¢ and €2 [15] and more recently [4]. Our decomposition technique of the nonlinear source
term together with the scheme proposed [15] leads to a robust asymptotic preserving, which can be applied to
various models as Boltzmann equation for semi-conductors [8] and kinetic models for chemotaxis [4]. A rigorous
convergence analysis should also work for such problems since this scaling leads to convection-diffusion models,
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t=0.00

which is mathematically simpler than nonlinear hyperbolic conservation laws.
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