
ESAIM: M2AN 47 (2013) 449–469 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2012039 www.esaim-m2an.org

A PRIORI ERROR ESTIMATES FOR REDUCED ORDER MODELS
IN FINANCE ∗

Ekkehard W. Sachs1 and Matthias Schu1

Abstract. Mathematical models for option pricing often result in partial differential equations. Recent
enhancements are models driven by Lévy processes, which lead to a partial differential equation with an
additional integral term. In the context of model calibration, these partial integro differential equations
need to be solved quite frequently. To reduce the computational cost the implementation of a reduced
order model has shown to be very successful numerically. In this paper we give a priori error estimates
for the use of the proper orthogonal decomposition technique in the context of option pricing models.
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1. Introduction

Proper Orthogonal Decomposition (POD) has been a successful technique to reduce the order of the com-
plexity of a model described by partial differential equations. There are various examples and a vast literature
on both theoretical and numerical aspects of this topic, we mention only [17, 27].

In two areas of applications, modeling options prices in finance [1] and biological models [6], the usual parabolic
partial differential equation models of diffusion type are replaced by partial integro-differential equation (PIDE)
models. They include a linear spatial integral term as an addition to the traditional PDE formulation. This
additional term causes for finite difference and finite element discretization a dense matrix for the resulting
system of equations and therefore has to be treated numerically with special care, cf. [2, 13, 21, 26] or [12].

The problem of the additional numerical complexity in the solution of PIDEs becomes even more pronounced,
if parameters in the models have to be fitted to certain market prices. This results into an optimization problem,
a so called calibration problem, formulated as a nonlinear least squares problem, which is usually solved by an
optimization algorithm. Such an algorithm requires for each iteration in the optimization a certain number of
function evaluations and possibly gradient information of the least squares function and therefore also of the
solution of the PIDE. This results in a very high effort from a computational point of view.
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Therefore, the concept of reduced order models carries a lot of potential to be very useful in this context.
First results in this direction were obtained in [8, 23] for a reduced basis model, [24, 25] for the calibration of a
POD model and [15] for the model reduction of a high dimensional PIDE. The numerical results in [24, 25]
show that the use of POD model reduction leads to a substantial saving in computing time for the solution of
calibration problems including PIDEs. Another important aspect of the POD model reduction technique is the
fact that it preserves the structure of the original model which contains a parabolic and an integral term.

If one replaces the original PIDE by an approximate problem like a POD model, the question of the error
for such an approximation arises. For the reduced basis approach, error estimates for parabolic differential
equations can be found in [14]. In the context of a PDE approximation via POD, papers by [16,20] show results
in this direction. These types of POD error estimates are important also for a calibration process since they
can be used to control the improvement of the accuracy of the model in the course of the iteration of the
optimization algorithm. However, these estimates do not apply to the problem under consideration since it
leads to a formulation with a time-dependent bilinear form not covered by the cited authors.

The goal of this paper is to provide error estimates of the POD approximation for a PIDE as it occurs in the
area of mathematical finance. In order to achieve this, we need to develop a weak formulation of the PIDE which
also includes time dependent bilinear forms. Since the spatial domain is the whole real line, the weak formulation
requires some nonstandard function spaces which have been introduced in this context in [21]. It is a new aspect
in this paper that this framework is extended to Dupire PIDEs with time and space dependent coefficients, as
they appear in local volatility models. This approach leads to an existence and uniqueness theorem for a weak
solution of the PIDEs investigated here. Furthermore, we also derive error estimates for a POD approximation in
the framework where the bilinear forms also depend on time. In [4,5] error estimates for the difference between
the finite element solution and the solution of the reduced model are provided for the gradient of an optimization
problem driven by the Stokes problem. The reduction is carried out by balanced truncation including techniques
from domain decomposition.

The paper is organized as follows. In the following two introductory subsections, the PIDE model for finance
is laid out and its weak formulation is motivated and defined. After that we give a brief introduction into the
basic concept of POD. We also point out the original projection error introduced by a POD approach using
general snapshots.

The second section contains the assumptions on the bilinear form. Furthermore, for the purpose of the proof
two projections are defined and a series of Lemmas leads to an error estimate for the error introduced by the
POD approximation. Since the original POD error estimate uses an average norm, this also affects the final
error estimate, where a similar average norm is estimated.

In the third section we verify all the assumptions for the bilinear form of the PIDE coming from a Lévy
model in finance. It proves that this is a viable theoretical framework, since all the assumptions imposed on
the example to make the theory applicable are reasonable conditions for the models in finance. The last section
contains numerical results for the error of the PIDE model including a comparison of computing time.

1.1. Option pricing models

First we give a brief motivation for the occurrence of partial integro-differential equations in option price
modeling. For the definition of an option and the financial background we refer the reader to, e.g. [18].

In their seminal paper, Black and Scholes [7] showed that under certain assumptions the price of a call option
C(t, S) depending on the current time t and the current underlying price S follows the solution of a partial
differential equation. However, if large jumps should be incorporated in this model, a more general model for
the development of the stock prices has to be applied. Here the Brownian motion of the Black–Scholes model
is replaced by a more general Lévy process such as the addition of a Poisson process to the Brownian motion.
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These models are called jump-diffusion models (see [9, 28]) and their call price is given by the solution of the
following parabolic integro-differential equation (PIDE):

Ct(t, S) + σ2(t,S)
2 S2CSS(t, S) + r(t)SCS(t, S) − r(t)C(t, S)

+λ
+∞∫
−∞

(
C(t, Sey) − C(t, S) − S(ey − 1)CS(t, S)

)
f(y)dy = 0,

(t, x) ∈ (0, T ) × (0,∞)

C(t, 0) = 0, t ∈ [0, T ]
C(T, S) = max{S − B, 0}, S ∈ (0,∞).

(1.1)

Here T represents the maturity, B the strike price of the option, r(t) the risk-free interest rate, σ(t, S) the
volatility, λ ≥ 0 the frequency of the jumps and f(y) the density function of the distribution of the jump sizes.

Note that the price we are usually interested in is C(t0, S0) with t0 = 0, the price today for the current stock
price S0.

If one considers a calibration problem, where for example σ or f should be determined from various market
prices of options Ci at time t0 with stock price S0 for the same underlying but with various maturities Ti and
strike prices Bi, the following optimization problem occurs where we denote the model prices from (1.1) by
C(t0, S0; Ti, Bi)

Minimize
I∑

i=1

||C(t0, S0; Ti, Bi) − Ci||2. (1.2)

For each function evaluation I partial integro-differential equations would have to be solved, which makes the
problem intractable. Instead one can resort to a Dupire-type formulation, first introduced by Dupire [11] for the
Black–Scholes model and by Andersen and Andreasen [3] for the PIDE. According to this and the additional
variable transformation x = ln

(
B
S

)
one can compute the prices also by solving the following PIDE, where the

current time t and the current stock price S appear in the initial condition, but the prices can be obtained from
D(T, x) for all maturities T and strike prices S.

DT (T, x) − σ2(T,x)
2 Dxx(T, x) +

(
r(T ) + σ2(T,x)

2 − λζ
)

Dx(T, x) + λ(1 + ζ)D(T, x)

−λ
+∞∫
−∞

D(T, x − y)eyf(y)dy = 0, (T, x) ∈ (0, Tmax) × (−∞,∞)

D(0, x) = max{S0 − S0ex, 0} =: D0(x)

(1.3)

where we used the abbreviation ζ =
∫

IR
eyf(y) dy − 1.

Then the calibration problem (1.2) can be rewritten as

Minimize
I∑

i=1

||D(Ti, xi) − Ci||2, (1.4)

where only one PIDE per function evaluation needs to be solved. This could be viewed already as a model
reduction compared to the complexity of (1.2). Nevertheless, when an optimization algorithm is applied to
solve (1.4), each function evaluation requires the solution of a partial integro-differential equation, where the
nonlocal term in the PIDE needs special attention in the discretization, since it leads to dense matrices. The
goal of this paper is to replace in (1.4) the map D by a reduced model Dred and solve

Minimize
I∑

i=1

||Dred(Ti, xi) − Ci||2, (1.5)
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In the sequel we confine ourselves to analyze the choice of Dred and to derive error estimates. The analysis for
the calibration problem itself will be addressed in a future paper, although first numerical results are promising
(see [24]).

Proper orthogonal decomposition (POD) has been a successful model reduction technique in various applica-
tions of partial differential equations, like diffusion processes and the Navier-Stokes equation. Since we want to
derive error estimates for the reduced models, we require a formulation of the PIDE in a variational setting. Note
that, in particular, the integral operator in (1.3) needs special attention. For the case of a constant volatility σ
Matache, von Petersdorff and Schwab [21] have derived a variational formulation. Since we want to calibrate σ
as function on T and x, we will extend the concept in [21] to suit our model.

The proper variational formulation requires the use of weighted function spaces due to the initial condition,
which is not L2(IR)-integrable as D0(x) x→−∞−→ K0.

Definition 1.1. For μ > 0 we define

L2
−μ(IR) :=

{
v ∈ L1

loc(IR) : v(·)e−μ|·| ∈ L2(IR)
}

with inner product 〈v, w〉L2
−µ

:=
∫

IR v(x)w(x)e−2μ|x|dx and the weighted Sobolev space

H1
−μ(IR) :=

{
v ∈ L1

loc(IR) : v(·)e−μ|·|, v′(·)e−μ|·| ∈ L2(IR)
}

with inner product 〈v, w〉H1
−µ

:= 〈v, w〉L2
−µ

+ 〈v′, w′〉L2
−µ

.

Remark 1.2. L2
−μ(IR) as well as H1

−μ(IR) with the above defined inner products are Hilbert spaces.

It is clear that D0(·) ∈ H1
−μ(IR) for all μ > 0.

We motivate the variational formulation of (1.3) in the following lines. First, we multiply the PIDE (1.3) by
w(x)e−2μ|x| and integrate over IR where μ > 0 and w is an arbitrary function in C∞

0 (IR).

∫
IR

DT (T, x)w(x)e−2μ|x|dx =
∫
IR

σ2(T, x)
2

Dxx(T, x)w(x)e−2μ|x|dx

−
∫
IR

(
r(T ) +

σ2(T, x)
2

− λζ

)
Dx(T, x)w(x)e−2μ|x|dx

−
∫
IR

λ(1 + ζ)D(T, x)w(x)e−2μ|x|dx + λ

∫
IR

∫
IR

D(T, x − y)w(x)e−2μ|x|eyf(y)dy dx.

If the first term on the right hand side of this equation is integrated by parts we obtain the following equation∫
IR

DT (T, x)w(x)e−2μ|x|dx = −a−μ(T ; D(T, ·), w(·))

where the bilinear form a−μ is defined as:

Definition 1.3. Let r(T ), λ, ζ be given constants and assume that σ(T, ·), σ(T, ·)x are continuous and bounded
functions on IR. For each constant μ > 0 and T > 0 the bilinear form

a−μ(T ; ·, ·) : H1
−μ(IR) × H1

−μ(IR) → IR
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is defined as

a−μ(T ; v, w) :=
∫
IR

σ2(T, x)
2

v′(x)w′(x)e−2μ|x|dx (1.6)

+
∫
IR

(
r(T ) +

σ2(T, x)
2

− λζ +
(σ2(T, x))x

2
+ σ2(T, x)μ sign(x)

)
v′(x)w(x)e−2μ|x|dx

+
∫
IR

λ(1 + ζ)v(x)w(x)e−2μ|x|dx − λ

∫
IR

∫
IR

v(x − y)w(x)e−2μ|x|eyf(y)dy dx.

We set

W ([a, b], V ) :=
{

u : u ∈ L2((a, b), V ), u′ ∈ L2((a, b), V ′)
}

a, b ∈ IR, V Hilbert space.

Hence the variational formulation of the Dupire PIDE (1.3) can be expressed in the following form:

Definition 1.4. The variational formulation of the PIDE (1.3) consists of finding
D ∈ W ([0, Tmax], H1

−μ(IR)) such that for all T ∈ (0, Tmax)

d
dT

〈D(T, ·), w(·)〉L2
−µ

+ a−μ(T ; D(T, ·), w(·)) = 0 ∀ w ∈ H1
−μ(IR) (1.7)

holds with initial condition

〈D(0, ·), w(·)〉L2
−µ

= 〈D0(·), w(·)〉L2
−µ

∀ w ∈ H1
−μ(IR). (1.8)

The existence of a solution is guaranteed, if the bilinear form a−μ(T ; v, w) meets some certain demands.
This will be discussed in the following sections.

For the numerical solution of the PIDE above the spatial variable is discretized via a finite element approach,
i.e. after the variational formulation and some transformations we approximate the solution by the linear
combination of spline basis functions. The time variable is discretized by applying either the implicit Euler or
the Crank–Nicolson method as some special cases of the θ-method.

Using a Galerkin approximation of the Hilbert space H1−μ with n basis functions (e.g. linear splines) and
discretizing the time variable with m time steps leads to m linear systems of equations of size n × n. In order
to obtain an approximate solution of the PIDE one has to solve a linear system of equations in each time step.
Since there is a double-integral term in the bilinear form, the stiffness matrix is dense even if we take basis
functions with compact support, hence the cost for matrix vector multiplications can be of the order of O(n2).

This illustrated the potential benefits of a reduced order approach, especially in a calibration process, where
the problem has to be solved several times.

1.2. Proper orthogonal decomposition

We now give a brief introduction to proper orthogonal decomposition (POD), a technique to obtain a problem
of much smaller order than the original discretized version.

Let ui, i = 1, . . . , n, be elements of a real separable Hilbert space H which, for example, approximate the
solution u(ti) of a differential equation at various time instances ti. Those elements ui are sometimes called
”snapshots”. The space spanned by the snapshots has dimension r ≥ 1, i.e. dim(span(u1, . . . , un)) = r. Thus, at
least one snapshot is assumed to be nonzero. Proper orthogonal decomposition consists of first finding elements
Ψj ∈ H , j = 1, . . . , r, that build an orthonormal basis of span(u1, . . . , un) and have the following additional
property: Considering the partial basis Ψ1, . . . , Ψp for an arbitrary p ∈ {1, . . . , r}, there are no other orthonormal
basis functions Φ1, . . . , Φp, which approximate an ”average” element of span(u1, . . . , un) in a better way. The
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projection of a v ∈ span(u1, . . . , un) on the space spanned by arbitrary orthonormal functions {Ψj}p
j=1 can be

computed from its Fourier expansion:

ṽ =
p∑

j=1

〈v, Ψj〉HΨj.

The mathematical formulation for the POD basis functions is formulated as follows:

Definition 1.5. Given vectors u1, ..., un ∈ H , find orthonormal vectors Ψ1, . . . , Ψr ∈ span(u1, . . . , un) by solving
the minimization problem:

min
Ψ1,...,Ψp

n∑
i=1

γi

∣∣∣∣∣
∣∣∣∣∣ui −

p∑
j=1

〈ui, Ψj〉HΨj

∣∣∣∣∣
∣∣∣∣∣
2

H

(1.9)

s.t. 〈Ψk, Ψl〉H = δkl ∀k, l = 1, . . . , p

for all p ∈ {1, . . . , r} with weights γi > 0, i = 1, . . . , n. The first p vectors Ψ1, ..., Ψp are called a POD basis of
rank p. The spanning subspace is denoted by Vp = span(Ψ1, ..., Ψp).

We shortly review how to calculate these POD basis functions. For this purpose we introduce the matrix
K ∈ IRn×n with

Kij :=
√

γiγj〈uj , ui〉H ∀ i, j = 1, . . . , n.

Solving the eigenvalue problem
Kvk = λkvk k = 1, . . . , r

[30] where vk ∈ IRn, the POD basis functions Ψk for a basis of rank p (≤ r) are given by

Ψk =
1√
λk

n∑
i=1

√
γiv

k
i ui

where ui, i = 1, . . . , n are the snapshots from above.
Considering only the first p < r POD basis functions for a representation of the ui, we have to deal with an

approximation, the projection of ui on the space spanned by {Ψk}p
k=1. The error resulting from dropping the

information stored in Ψp+1, . . . , Ψr, i.e. the function value of the minimization problem above is estimated in
the following theorem. See, e.g. [29], for a proof.

Theorem 1.6. Let Ψ1, . . . , Ψp be a solution to the minimization problem (1.9). Then it holds

n∑
i=1

γi

∣∣∣∣∣
∣∣∣∣∣ui −

p∑
j=1

〈ui, Ψj〉HΨj

∣∣∣∣∣
∣∣∣∣∣
2

H

=
r∑

k=p+1

λk. (1.10)

If this technique is applied to the problem outlined above, one has to specify the snapshots. Here we choose
the approximation of the solution of the problem at fixed time steps t1, . . . , tn, i.e. D(·, t1), . . . , D(·, tn) by the
finite element method. We obtain some orthonormal basis functions containing specific information about the
solution of the PIDE. Approximating the PIDE problem via a POD approach means that we replace the finite
element basis functions by the POD basis function calculated from a given solution to the problem. Since we
only need a few basis functions – numerical tests show that 10 is already a sufficient quantity – compared to,
e.g., 1000 finite element basis functions, the systems of equations that have to be solved are quite smaller.
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2. A priori error estimates

Since the original problem, the PIDE, is replaced by a smaller one, the POD approximation, we want to
estimate the error involved in this process. We make the following assumptions on the bilinear form following [10],
p. 509 ff.:

Assumption 2.1.

a.) Let V and H be two real, separable Hilbert spaces with the inner products (·, ·)V and (·, ·)H and the induced
norms || · ||V and || · ||H , respectively. With the dual spaces V ∗ and H∗ they form a Gelfand triple:

V ↪→ H = H∗ ↪→ V ∗ (2.1)

with dense embeddings. Furthermore, assume an α > 0 with ||v||2H ≤ α||v||2V for all v ∈ V .
b.) Let a : [0, T ] × (V × V ) → IR for all t ∈ [0, T ] be a uniformly continuous and coercive bilinear form, i.e.

there exist constants β, κ > 0 independently of t with

|a(t; v, w)| ≤ β||v||V ||w||V ∀ v, w ∈ V ∀ t ∈ [0, T ], (2.2)
a(t; v, v) ≥ κ||v||2V ∀ v ∈ V ∀ t ∈ [0, T ]. (2.3)

In addition let a(·; ·, ·) be Lipschitz-continuous with respect to t, i.e.

|a(t1; v, w) − a(t2; v, w)| ≤ clip|t1 − t2| ||v||V ||w||V ∀ v, w ∈ V. (2.4)

c.) Let L : [0, T ]× V → IR be a linear form with

|L(t; v)| ≤ cL ||v||V ∀ t ∈ [0, T ], v ∈ V (2.5)

With the notation fixed and the assumptions stated, we can formulate the weak form of an abstract parabolic
initial value problem.

Problem 2.2. For given initial value w0 ∈ H find a solution u ∈ W ([0, T ], V ) which satisfies

d
dt

(u(t), v)H + a(t; u(t), v) = L(t; v) ∀ v ∈ V, t ∈ (0, T ) (2.6)

and initial condition

(u(0), v)H = (w0, v)H ∀ v ∈ V. (2.7)

As an abbreviation we set for the finite difference quotient

∂̄ui :=
ui − ui−1

Δt
·

The discretized version in time of Problem 2.2 on the subspace Vp of V with equidistant time steps t1, . . . , tm
(i.e. Δt = ti − ti−1 ∀i = 1, . . . , m) looks as follows:

Problem 2.3. For given initial value w0 ∈ H and some θ ∈ [0, 1] find{uPOD
i }m

i=0 ⊂ Vp with(
∂̄uPOD

i , v
)

H
+ θ · a

(
ti; uPOD

i , v
)

+ (1 − θ) · a
(
ti−1; uPOD

i−1 , v
)

= θ · L(ti; v) + (1 − θ) · L(ti−1, v) (2.8)

∀ v ∈ Vp, i = 1, . . . , m

and initial condition(
uPOD

0 , v
)

H
= (w0, v)H ∀ v ∈ Vp. (2.9)
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Using the stated assumptions we can invoke an existence and uniqueness theorem in [10], p. 512 ff., to conclude
that there exists a unique solution for both problems.

Since there are different possibilities to create a POD basis we want to clarify which ones we use and which
errors we address.

Error 1. Average error between the solution u(t) of Problem 2.2 and the solution on the POD subspace,
discretized in time via the θ-method (this is Problem 2.3). The POD basis functions are calculated
from the snapshots of the solution u(t) and the corresponding difference quotients, i.e. the snapshots
are yi = u(ti−1), i = 1, . . . , n + 1 and yi+n+1 = u(ti)−u(ti−1)

Δt , i = 1, . . . , n. To avoid confusion we call
the POD solution uPOD,1

ERR1 =
1
n

n∑
i=1

∣∣∣∣∣∣uPOD,1
i − u(ti)

∣∣∣∣∣∣2
H

(2.10)

Error 2. Average error between the finite element approximation uFEM discretized in time and space (this is the
solution of Problem 2.3 in which we replace the POD space Vp by the finite element subspace Hm)
and the POD approximation discretized in time (Problem 2.3), whereas the POD basis functions
are calculated from the snapshots of the finite element solution and the corresponding difference
quotients (uPOD,2)

ERR2 =
1
n

n∑
i=1

∣∣∣∣∣∣uPOD,2
i − uFEM

i

∣∣∣∣∣∣2
H

(2.11)

The fact that the difference quotients are included in the calculation of the POD basis is often reported
to yield numerically better approximation results. Here we note, that it also facilitates the proof for the error
estimates.

In the proof we use two different projections and in the next lemma we show some characteristic properties
of these projections.

Definition 2.4. Let Vp be a subspace of V . We define the H-projection Πp
H

Πp
H : V → Vp ⇔ 〈Πp

Hu − u, v〉H = 0 ∀ v ∈ Vp

and the Ritz-projection Πp
a,t

Πp
a,t : V → Vp ⇔ a(t; Πp

a,tu − u, v) = 0 ∀ v ∈ Vp, t ∈ [0, T ].

We show a relationship of the Ritz-projection to the H-projection and the Lipschitz-continuity for the
Ritz-projection with respect to the time variable.

Lemma 2.5. For the projections we have

||Πp
a,tu − u||2V ≤ β

κ
||v − u||2V v ∈ Vp, in particular v = Πp

Hu (2.12)

||(Πp
a,t − Πp

a,s)u||V ≤ |t − s|clip

κ
||Πp

a,sv − v||V . (2.13)

Proof. Using (2.2) and (2.3) one easily verifies the following inequalities:

κ||Πp
a,tu − u||2V ≤ a(t; Πp

a,tu − u, Πp
a,tu − u) ≤ a(t; v − u, v − u) ≤ β||v − u||2V
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for all t ∈ [0, T ] and v ∈ Vp. The coercivity (2.3) yields

κ||(Πp
a,t − Πp

a,s)u||2V ≤ a(t; (Πp
a,t − Πp

a,s)u, (Πp
a,t − Πp

a,s)u)

and using the Ritz-projection property as well as the Lipschitz continuity (2.4) we get

a(t; (Πp
a,t − Πp

a,s)u, (Πp
a,t − Πp

a,s)u) = a(s; Πp
a,su − u, (Πp

a,t − Πp
a,s)u) − a(t; Πp

a,su − u, (Πp
a,t − Πp

a,s)u)
≤ clip|t − s| ||Πp

a,su − u||V ||(Πp
a,t − Πp

a,s)u||V .

Combining these two results yields the second statement. �

By Assumption 2.1 we have ||v||2H ≤ α||v||2V for all v ∈ V . A reverse inequality holds, if we consider the
finite-dimensional subspace Vr

||u||V ≤
√
||S||2||u||H ∀u ∈ Vr with S ∈ IRr×r, Sij = 〈Ψj , Ψi〉V (2.14)

see e.g. [20], Lemma 2.
For the POD error compared to the Ritz-projection we have the following error estimate.

Lemma 2.6. For the implicit Euler method (θ = 1) we have∣∣∣∣∣∣uPOD,1
i − Πp

a,ti
u(ti)

∣∣∣∣∣∣
H

≤
∣∣∣∣∣∣uPOD,1

i−1 − Πp
a,ti−1

u(ti−1)
∣∣∣∣∣∣

H
+ Δt||vi||H (2.15)

and for the Crank–Nicolson scheme (θ = 1/2)∣∣∣∣∣∣uPOD,1
i − Πp

a,ti
u(ti)

∣∣∣∣∣∣
H

≤ (1 + 4ξΔt3)
∣∣∣∣∣∣uPOD,1

i−1 − Πp
a,ti−1

u(ti−1)
∣∣∣∣∣∣

H
+ 2Δt||vi||H (2.16)

provided ξΔt3 < 1/2 with ξ = c2
lipα||S||22/(32κ). Here vi is defined as

vi = θ · ut(ti) + (1 − θ) · ut(ti−1) − ∂̄Πp
a,ti

u(ti). (2.17)

Proof. Set
wi = uPOD,1

i − Πp
a,ti

u(ti).

In the equalities below, for the first equation we use the definition of wi, for the second equation recall (2.8)
for the first part and Definition 2.4b for the second part (note that wi ∈ Vp). Thus we have for an arbitrary
Ψ ∈ Vp:

〈∂̄wi, Ψ〉H + θ · a(ti; wi, Ψ) + (1 − θ) · a(ti−1; wi−1, Ψ)

= 〈∂̄uPOD,1
i , Ψ〉H + θ · a

(
ti; uPOD,1

i , Ψ
)

+ (1 − θ) · a
(
ti−1; uPOD,1

i−1 , Ψ
)

− 〈∂̄Πp
a,ti

u(ti), Ψ〉H − θ · a(ti; Πp
a,ti

u(ti), Ψ) − (1 − θ) · a(ti−1; Πp
a,ti

u(ti−1), Ψ)
= θ · L(ti; Ψ) + (1 − θ) · L(ti−1; Ψ)
− 〈∂̄Πp

a,ti
u(ti), Ψ〉H − θ · a(ti; u(ti), Ψ) − (1 − θ) · a(ti−1; u(ti−1), Ψ).

Since u(t) is the solution of (2.6) we obtain

〈∂̄wi, Ψ〉H + θ · a(ti; wi, Ψ) + (1 − θ) · a(ti−1; wi−1, Ψ)
= θ · 〈ut(ti), Ψ〉H + (1 − θ) · 〈ut(ti−1), Ψ〉H − 〈∂̄Πp

a,ti
u(ti), Ψ〉H = 〈vi, Ψ〉H (2.18)

with vi defined in (2.17).
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If we set Ψ = wi we obtain for the implicit Euler method (θ = 1)

||wi||2H = 〈wi, wi−1〉H − Δt a(ti; wi, wi) + Δt〈vi, wi〉H
≤ ||wi||H ||wi−1||H − Δt

κ

α
||wi||2H + Δt||vi||H ||wi||H

and hence

||wi||H ≤ 1
1 + Δt κ

α

(||wi−1||H + Δt||vi||H) ≤ ||wi−1||H + Δt||vi||H . (2.19)

Before we derive the estimate for the Crank–Nicolson scheme we show that

a(ti; wi, wi + wi−1) + a(ti−1; wi−1, wi + wi−1) ≥ −c2
lipα||S||22

16κ
Δt2(||wi||H + ||wi−1||H)2.

We use the assumptions on the bilinear form to derive

a(ti; wi, wi + wi−1) + a(ti−1; wi−1, wi + wi−1)
= a(ti; wi + wi−1, wi + wi−1) + (a(ti−1; wi−1, wi + wi−1) − a(ti; wi−1, wi + wi−1))
≥ κ||wi + wi−1||2V − clip|ti − ti−1| ||wi−1||V ||wi + wi−1||V

and similarly

a(ti; wi, wi + wi−1) + a(ti−1; wi−1, wi + wi−1) ≥ κ||wi + wi−1||2V − clip|ti − ti−1| ||wi||V ||wi + wi−1||V .

First, we add the last two inequalities and divide by 2, then use wi ∈ Vp to estimate with (2.14), and finally
complete the squares to obtain

a(ti; wi, wi + wi−1) + a(ti−1; wi−1, wi + wi−1)

≥ κ||wi + wi−1||2V − 1
2
clipΔt(||wi||V + ||wi−1||V )||wi + wi−1||V

≥ κ

α

(||wi + wi−1||2H − clipα||S||2
2κ

Δt(||wi||H + ||wi−1||H)||wi + wi−1||H
)

=
κ

α

((||wi + wi−1||H − clipα||S||2
4κ

Δt(||wi||H + ||wi−1||H)
)2

− c2
lipα2||S||22

16κ2
Δt2(||wi||H + ||wi−1||H)2

)
≥ −2ξΔt2(||wi||H + ||wi−1||H)2

with ξ := c2
lipα||S||22/(32κ), which was claimed to be shown above.

We return to formula (2.18) and use Ψ = wi + wi−1 ∈ Vp in the Crank–Nicolson case (θ = 1/2)

||wi||2H = ||wi−1||2H − Δt

2
(a(ti; wi, wi + wi−1) + a(ti−1; wi−1, wi + wi−1))

+ Δt〈vi, wi + wi−1〉H
≤ ||wi−1||2H + ξΔt3(||wi||H + ||wi−1||H)2 + Δt||vi||H(||wi||H + ||wi−1||H)

and therefore

||wi||H − ||wi−1||H =
||wi||2H − ||wi−1||2H
||wi||H + ||wi−1||H ≤ ξΔt3(||wi||H + ||wi−1||H) + Δt||vi||H .

If we assume that Δt is chosen so small that ξΔt3 < 1/2 we obtain

||wi||H ≤ 1 + ξΔt3

1 − ξΔt3
||wi−1||H +

1
1 − ξΔt3

Δt||vi||H ≤ (1 + 4ξΔt3)||wi−1||H + 2Δt||vi||H . (2.20)

�
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After proving these lemmas, we can state and show the main error estimate. First, we consider Error 1 as
defined in (2.10).

Theorem 2.7. Let u(t) be the solution of Problem 2.2, {uPOD,1
i }n

i=0 the solution of Problem 2.3. Then with
appropriate constants Ci (i = 0, 1, 2), independent of n, we have

1
n

n∑
i=1

∣∣∣∣
∣∣∣∣u(ti) − uPOD,1

i

∣∣∣∣
∣∣∣∣
2

H

≤ C0||u(t0) − Πp
Hu(t0)||2H + C1Δtj + C2||S||2

r∑
j=p+1

λj

with j = 2 for the implicit Euler method assuming utt ∈ L2([0, T ]; H)
and j = 4 for the Crank–Nicolson method, assuming uttt ∈ L2([0, T ]; H) and Δt sufficiently small.
Furthermore, for some constant C we have

||u(t0) − Πp
Hu(t0)||2H ≤ n C

r∑
j=p+1

λj .

Proof. Define the snapshots yi:

yi = u(ti−1) i = 1, . . . , n + 1

yi+n+1 = ∂̄u(ti) =
u(ti) − u(ti−1)

Δt
i = 1, . . . , n

Let dim(span(y1, . . . , y2n+1)) = r. We compute the POD basis Ψ1, . . . , Ψr with the corresponding eigenvalues
λ1, . . . , λr using the norm || · ||H . For simplicity, the weighting factors are set constant, i.e. γi = 1

2n+1 ∀ i.
However, a different choice with γi 
= γj , for i 
= j, would only cause slight modifications. Denote by Vp the
space spanned by {Ψi}p

i=1. Then (1.10) yields:

1
2n + 1

n∑
i=0

∣∣∣∣∣∣u(ti) − Πp
Hu(ti)

∣∣∣∣∣∣2
H

+
1

2n + 1

n∑
i=1

∣∣∣∣∣∣∂̄u(ti) − Πp
H ∂̄u(ti)

∣∣∣∣∣∣2
H

=
r∑

k=p+1

λk. (2.21)

Let us define
w1

i = uPOD,1
i − Πp

a,ti
u(ti) and w2

i = Πp
a,ti

u(ti) − u(ti)

so that the triangle inequality yields:

1
n

n∑
i=1

∣∣∣∣∣∣uPOD,1
i − u(ti)

∣∣∣∣∣∣2
H

≤ 2
n

n∑
i=1

∣∣∣∣w1
i

∣∣∣∣2
H

+
2
n

n∑
i=1

∣∣∣∣w2
i

∣∣∣∣2
H

. (2.22)

Let us first give an estimate for w2
i . Using the assumption on the norms of the Hilbert spaces in Assumption 2.1a,

Lemma 2.5 (2.12)–(2.21):

1
n

n∑
i=1

||w2
i ||2H ≤ 1

n

αβ||S||2
κ

n∑
i=1

∣∣∣∣∣∣u(ti) − Πp
Hu(ti)

∣∣∣∣∣∣2
H

≤ 3αβ||S||2
κ

r∑
j=p+1

λj . (2.23)

Since we included the difference quotients in the set of snapshots we obtain analogously:

1
n

n∑
i=1

||∂̄u(ti) − Πp
a,ti

∂̄u(ti)||2H ≤ 3αβ||S||2
κ

r∑
j=p+1

λj (2.24)

a result, which will be needed later.
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Estimates for w1
i are provided in Lemma 2.6: for the implicit Euler we have

||w1
i ||H ≤ ||w1

i−1||H + Δt||vi||H (2.25)

and for Crank–Nicolson

||w1
i ||H ≤ (1 + 4ξΔt3)||w1

i−1||H + 2Δt||vi||H (2.26)

with vi = ri + zi from (2.17), where

ri := θ · ut(ti) + (1 − θ) · ut(ti−1) − ∂̄u(ti) and zi := ∂̄u(ti) − ∂̄Πp
a,ti

u(ti).

If we apply Lemma 2.8 formulated below to (2.25) and (2.26) this leads to

θ = 1 :
1
n

n∑
i=1

||w1
i ||2H ≤ max

1≤i≤n
||w1

i ||2H ≤ 2
∣∣∣∣w1

0

∣∣∣∣2
H

+ 2n

n∑
k=1

Δt2||vk||2H

≤ 2
∣∣∣∣w1

0

∣∣∣∣2
H

+ 4TΔt

n∑
k=1

(||rk||2H + ||zk||2H) (2.27)

θ =
1
2

:
1
n

n∑
i=1

∣∣∣∣w1
i

∣∣∣∣2
H

≤ 2e8Δt3ξn

( ∣∣∣∣w1
0

∣∣∣∣2
H

+
1 − e−8Δt3ξn

8Δt3ξ

n∑
k=1

4Δt2||vk||2H
)

= 2e8Δt2ξT

( ∣∣∣∣w1
0

∣∣∣∣2
H

+
1 − e−8Δt2ξT

2Δtξ

n∑
k=1

||vk||2H
)

≤ C̃CN ||w1
0 ||2H + CCNΔt

n∑
k=1

(||rk||2H + ||zk||2H). (2.28)

We split zi as follows and use Lemma 2.5 (2.13)

||zi||2H ≤ 2||∂̄u(ti) − Πp
a,ti

∂̄u(ti))||2H + 2||Πp
a,ti

∂̄u(ti) − ∂̄Πp
a,ti

u(ti)||2H
= 2||∂̄u(ti) − Πp

a,ti
∂̄u(ti)||2H +

2
Δt

||Πp
a,ti

u(ti−1) − Πp
a,ti−1

u(ti−1)||2H
≤ 2||∂̄u(ti) − Πp

a,ti
∂̄u(ti)||2H +

clip

κ
||w2

i−1||2H .

We use (2.24) for the first part we apply Lemma 2.5 (2.13) and (2.23) for the second to get

1
n

n∑
i=1

||zi||2H ≤ 6αβ||S||2
κ

r∑
j=p+1

λj +
c2
lip

κ2

6αβ||S||2
κ

r∑
j=p+1

λj (2.29)

With regard to ri one can easily show the following results

θ = 1 :
n∑

i=1

||ut(ti) − ∂̄u(ti)||2H ≤ Δt

T∫
0

||utt(s)||2H ds = C̄Δt (2.30)

θ =
1
2

:
n∑

i=1

∣∣∣∣
∣∣∣∣12ut(ti) +

1
2
ut(ti−1) − ∂̄u(ti)

∣∣∣∣
∣∣∣∣
2

H

≤ Δt3

16

T∫
0

||uttt(s)||2H ds = C̃Δt3 (2.31)

under the assumption that utt ∈ L2([0, T ]; H) for θ = 1 and uttt(t) ∈ L2([0, T ]; H) for θ = 1
2 ·
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Altogether, we obtain for ERR1 = 1
n

n∑
i=1

||uPOD,1
i − u(ti)||2H combining (2.22) and (2.23)

ERR1 ≤ 2
n

n∑
i=1

∣∣∣∣w1
i

∣∣∣∣2
H

+
2
n

n∑
i=1

∣∣∣∣w2
i

∣∣∣∣2
H

≤ 2
n

n∑
i=1

∣∣∣∣w1
i

∣∣∣∣2
H

+
6αβ||S||2

κ

r∑
j=p+1

λj .

With appropriate constants d1, ..., d4 we estimate further using (2.27)–(2.30) or (2.28)–(2.31) and j = 2 for
implicit Euler and j = 4 for Crank–Nicolson

ERR1 ≤ d1

∣∣∣∣w1
0

∣∣∣∣2
H

+ d2Δt
n∑

k=1

(||rk||2H + ||zk||2H) +
6αβ||S||2

κ

r∑
j=p+1

λj

≤ d1

∣∣∣∣w1
0

∣∣∣∣2
H

+ d3Δtj + d4

r∑
j=p+1

λj

what yields to the proposition. �

The following lemma gives a useful estimate which is being used in the proof of the previous theorem.

Lemma 2.8. Assume that ri ≤ (1 + δ)ri−1 + bi, i = 1, . . . , n, holds for some given sequence bi and some r0.
Then

max
1≤i≤n

|ri|2 ≤ 2e2δn

(
r2
0 +

1 − e−2δn

2δ

n∑
k=1

b2
k

)
if δ > 0 (2.32)

max
1≤i≤n

|ri|2 ≤ 2r2
0 + 2n

n∑
k=1

b2
k if δ = 0. (2.33)

Proof. We only prove the proposition for δ > 0 since the special case δ = 0 can easily be obtained from this.
From the assumption we infer that ri ≤ eδir0 +

∑i
k=1 eδ(i−k)bk. Since δ > 0 an application of the binomial

formula as well as the Cauchy–Schwarz inequality and a geometric series argument we obtain that

max
1≤i≤n

|ri|2 ≤ 2e2δnr2
0 + 2

(
n∑

k=1

eδ(n−k)bk

)2

≤ 2e2δnr2
0 + 2

(
n∑

k=1

e2δ(n−k)
n∑

k=1

b2
k

)

≤ 2e2δn

(
r2
0 + 2

1 − e−2δn

e2δ − 1

n∑
k=1

b2
k

)
≤ 2e2δn

(
r2
0 + 2

1 − e−2δn

2δ

n∑
k=1

b2
k

)
. �

In the next theorem, we take a look at Error 2. Here we estimate the difference between the POD solution
compared to the discretized FEM solution as defined in (2.11).

Theorem 2.9. Let
{
uFEM

i

}n

i=0
be the finite element solution using the finite element space Hm in the Galerkin

approximation. Let
{
uPOD,2

i

}n

i=0
be the solution of Problem 2.3 based on the FEM snapshots.

Then with appropriate constants C̃0, C̃1 independent of n we have for the implicit Euler method and, for suffi-
ciently small Δt, also for the Crank–Nicolson method

1
n

n∑
i=1

∣∣∣∣∣∣uFEM
i − uPOD,2

i

∣∣∣∣∣∣2
H

≤ C̃0 ||uFEM
0 − Πp

HuFEM
0 ||2H + C̃1||S||2

r∑
j=p+1

λj

where ||uFEM
0 − Πp

HuFEM
0 ||2H ≤ 3n

∑r
j=p+1 λj.
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Proof. The proof is analogous to Theorem 2.7. Instead of u(ti) we use the snapshots uFEM
i . Defining w1

i =
uPOD,2

i − P p
ti

uFEM
i the main difference is:

〈∂̄w1
i , Ψ〉H + θ · a(ti; w1

i , Ψ) + (1 − θ) · a(ti−1; w1
i−1, Ψ)

= 〈∂̄uPOD,2
i , Ψ〉H + θ · a(ti; uPOD,2

i , Ψ) + (1 − θ) · a(ti−1; uPOD,2
i−1 , Ψ)

− 〈∂̄Πp
a,ti

uFEM
i , Ψ〉H − θ · a(ti; Πp

a,ti
uFEM

i , Ψ) − (1 − θ) · a(ti−1; Πp
a,ti

uFEM
i−1 , Ψ)

= θ · L(ti; Ψ) + (1 − θ) · L(ti−1; Ψ)

− θ · a(ti; uFEM
i , Ψ) − (1 − θ) · a(ti−1; uFEM

i−1 , Ψ) − 〈∂̄P p
ti
uFEM

i , Ψ〉H
= 〈∂̄uFEM

i − ∂̄Πp
a,ti

uFEM
i , Ψ〉H =: 〈vi, Ψ〉H .

Compared to Theorem 2.7 the ri’s drop out, which leads immediately to the statement of the theorem. �

If we use the maximal number of POD basis functions, the whole error is equal to zero, because the error
resulting from the time discretization is present in both solutions.

Note that the norm ||S||2, which occurs in the estimates in Theorem 2.7 and 2.9, in general depends on n.
This can be avoided by using the stronger topology V in (1.9) (cf. [20]).

Error 2 seems to be more interesting because in practice we do not have the exact solution u(t) for our PIDE,
but only an approximation, e.g. from a finite element method, available.

3. Example PIDE

In the previous section we derived several the error estimates for the abstract model. As mentioned in the
two first sections, we are interested in reduced order models for a partial integro-differential equation which is
one of the fundamental differential equations in mathematical finance. We showed in the second section, how
this PIDE can be cast into a weak formulation using time-dependent variational inequalities.

The error estimates in the previous section for the reduced order models were obtained under certain condi-
tions on the underlying problem, in particular its bilinear form defining the variational form of the PIDE. The
objective in this section is to provide the groundwork for verifying the assumptions of the theory of the previous
sections. In particular, we will address all the assumptions to be met for the bilinear form in Definition 1.3.

The Gelfand triple we use in our special case is given by the Hilbert spaces

H = L2
−μ(IR), V = H1

−μ(IR).

The next task is to check if the requirements concerning the bilinear form a−μ(T ; v, w) are met. Recall that it
is defined by

a−μ(T ; v, w) :=
∫

IR

σ2(T, x)
2

v′(x)w′(x)e−2μ|x|dx

+
∫
IR

(
r(T ) +

σ2(T, x)
2

− λζ +
(σ2(T, x))x

2
+ σ2(T, x)μ sign(x)

)
v′(x)w(x)e−2μ|x|dx

+
∫
IR

λ(1 + ζ)v(x)w(x)e−2μ|x|dx − λ

∫
IR

∫
IR

v(x − y)w(x)e−2μ|x|eyf(y)dy dx.

We impose the following assumptions on the functions r and σ, which are not restrictive for the application in
finance.
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Assumption 3.1. For each T ∈ [0, Tmax], let σ(T, ·) be continuously differentiable on IR. Furthermore, let
r(·), σ(·, x) and σx(·, x) be uniformly Lipschitz-continuous functions in the variable T with Lipschitz constants
rlip, σlip, σx,lip. We assume that there are constants rmax, σmin, σmax, σder which satisfy

0 ≤ r(T ) ≤ rmax ∀ T ∈ [0, Tmax],
0 < σmin ≤ σ(T, x) ≤ σmax (T, x) ∈ [0, Tmax] × IR,

|σx(T, x)| ≤ σder (T, x) ∈ [0, Tmax] × IR.

In the following theorem we prove that the bilinear form defined in Definition 1.3 is bounded and that Garding’s
inequality holds. For this to hold, we need an assumption on the asymptotic decay of the function f .

Assumption 3.2. For some μ > 0 assume that
∫
IR

ey+μ|y|yf(y) dy < ∞.

We will show at the end of this section that this condition is usually satisfied for common choices of f in
finance.

Theorem 3.3. If Assumptions 3.1 and 3.2 hold, then there exist constants c1, c2 > 0 and c3 ∈ IR independent
of T ∈ [0, Tmax], such that the following inequalities hold for the bilinear form (1.3) of the PIDE (1.7):

|a−μ(T ; v, w)| ≤ c1 ||v||H1
−µ

||w||H1
−µ

∀ T ∈ [0, Tmax] (3.1)

a−μ(T ; v, v) + c3 ||v||2L2
−µ

≥ c2 ||v||2H1
−µ

∀ T ∈ [0, Tmax] (3.2)

|a−μ(T1; v, w) − a−μ(T2; v, w)| ≤ clip |T1 − T2| ||v||H1
−µ

||w||H1
−µ

(3.3)

∀ T1, T2 ∈ [0, Tmax], v, w ∈ H1
−μ

Proof. In order to prove the continuity of the bilinear form, we estimate the terms in a−μ separately: first∣∣∣∣∣∣
∫
IR

σ2(T, x)
2

v′(x)w′(x)e−2μ|x| dx

∣∣∣∣∣∣ ≤
σ2

max

2
||v||H1

−µ
||w||H1

−µ
. (3.4)

If we set k1 = |rmax + σ2
max
2 + λζ + σmaxσder + μσ2

max| we obtain for the next term of the bilinear form:∣∣∣∣∣∣
∫
IR

(
r(T ) +

σ2(T, x)
2

− λζ +
(

σ(T, x)
2

)
x

+ σ2(T, x)μ sign(x)

)
v′(x)w(x)e−2μ|x| dx

∣∣∣∣∣∣
≤ k1〈v′(x), w(x)〉L2

−µ
≤ k1 · ||v′||L2

−µ
||w||L2

−µ
≤ k1 · ||v||H1

−µ
||w||H1

−µ
. (3.5)

The two remaining terms are merged using 1 + ζ =
∫

IR
eyf(y)dy (see (1.3))

g(v, w) :=λ

∣∣∣∣∣∣
∫
IR

(
(1 + ζ)v(x)w(x) −

∫
IR

v(x − y)eyf(y) dy w(x)

)
e−2μ|x|dx

∣∣∣∣∣∣
= λ

∣∣∣∣∣∣
∫
IR

∫
IR

(v(x) − v(x − y))eyf(y) dy w(x)e−2μ|x| dx

∣∣∣∣∣∣
= λ

∣∣∣∣∣∣
∫
IR

∫
IR

1∫
0

v′(x − ξy) · y dξ eyf(y) dy w(x)e−2μ|x| dx

∣∣∣∣∣∣ .
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We rearrange the order of integration, use the Cauchy–Schwarz inequality and a variable transformation by
introducing z = x − ξy

g(v, w) = λ

∣∣∣∣∣∣
1∫

0

∫
IR

∫
IR

v′(x − ξy)w(x)e−2μ|x| dx y · eyf(y) dy dξ

∣∣∣∣∣∣
≤ λ

∣∣∣∣∣∣
1∫

0

∫
IR

(∫
IR

v′2(x − ξy)e−2μ|x| dx
)1/2

||w||L2
−µ

y · eyf(y) dy dξ

∣∣∣∣∣∣
≤ λ

∣∣∣∣∣∣
∫
IR

( ∫
IR

v′2(z)e−2μ|z|e2μ|y| dz
)1/2

||w||L2
−µ

y · eyf(y) dy

∣∣∣∣∣∣
≤ λ

∣∣∣∣∣∣
∫
IR

y · eμ|y|+yf(y) dy||v′||L2
−µ

||w||L2
−µ

∣∣∣∣∣∣ . (3.6)

By Assumption 3.2 we can define a constant k2 =
∫

IR
ey+μ|y|yf(y) dy and finally obtain

g(v, w) ≤ λ · k2 · ||v′||L2
−µ

||w||L2
−µ

≤ λ · k2 · ||v||H1
−µ

||w||H1
−µ

. (3.7)

Collecting the estimates from (3.4)–(3.7) the continuity of the bilinear form is proven

|a−μ(T ; v, w)| ≤
(

σ2
max

2
+ k1 + λ · k2

)
· ||v||H1

−µ
||w||H1

−µ
.

Next we prove Garding’s inequality for the bilinear form. We estimate the first term by∫
IR

σ2(T, x)
2

v′2(x)e−2μ|x| dx ≥ σ2
min

2

∫
IR

v′2(x)e−2μ|x| dx

=
σ2

min

2
||v′||2L2

−µ
=

σ2
min

2
· ||v||2H1

−µ
− σ2

min

2
||v||2L2

−µ
. (3.8)

Due to (3.5), (3.6) we obtain for the remaining terms∫
IR

(
r(T ) +

σ2(T, x)
2

− λζ +
(

σ2(T, x)
2

)
x

+ σ2(T, x)μ sign(x)
)

v′(x)v(x)e−2μ|x| dx

+ λ

∫
IR

⎛
⎝(1 + ζ)v(x)w(x) −

∫
IR

v(x − y)eyf(y) dy v(x)

⎞
⎠ e−2μ|x|dx

≥ −(k1 + k2 · λ) · ||v′||L2
−µ

||v||L2
−µ

≥ −k2
arb

4
||v′||2L2

−µ
− (k1 + k2 · λ)2

k2
arb

||v||2L2
−µ

≥ −k2
arb

4
||v||2H1

−µ
− (k1 + k2 · λ)2

k2
arb

||v||2L2
−µ

(3.9)

for any (arbitrary) constant karb > 0. If we chose karb = σmin, then the estimates (3.8) and (3.9) lead to

a−μ(T ; v, v) ≥ σ2
min

4
||v||2H1

−µ
−
(

(k1 + k2 · λ)2

σ2
min

+
σ2

min

2

)
||v||2L2

−µ
.
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Finally, we address the Lipschitz-continuity (3.3) of the bilinear form. Similar to the proof of the continuity
we divide the bilinear form into three different parts. Since the term g(v, w) is independent of time, it can be
ignored. For the next term we obtain∣∣∣∣∣∣

∫
IR

σ2(T1, x) − σ2(T2, x)
2

v′(x)w′(x)e−2μ|x| dx

∣∣∣∣∣∣ ≤ |T1 − T2|σlipσmax

2
||v||H1

−µ
||w||H1

−µ
(3.10)

where σlip is the Lipschitz-constant of σ(·, x). The remaining term can be treated analogously

∣∣∣∣∣∣
∫
IR

((
r(T1) +

σ2(T1, x)
2

− λζ +
(

σ2(T1, x)
2

)
x

+ σ2(T1, x)μ sign(x)

)

−
(

r(T2) +
σ2(T2, x)

2
− λζ +

(
σ2(T2, x)

2

)
x

+ σ2(T2, x)μ sign(x)

))
v′(x)w(x)e−2μ|x| dx

∣∣∣∣∣
≤ |T1 − T2|(rlip + σlipσmax + σlipσder + σx,lipσmax + 2σlipσmaxμ) ||v||H1

−µ
||w||H1

−µ
(3.11)

which completes the proof. �

It is well-known, that the boundedness of a−μ together with the weak coercivity (3.2) yields the existence of
a unique solution of the variational equality.

Theorem 3.4. If Assumptions 3.1 and 3.2 hold, then there exists a unique solution D ∈ W ([0, Tmax], H1
−μ(IR))

of the PIDE (1.7) with initial condition (1.8).

Proof. Under the given assumptions, we can define a new bilinear form on L2
−μ

ã−μ(T ; v, w) = a−μ(T ; v, w) + c3〈v, w〉,
which satisfies all the assumptions on the boundedness, the coercivity and Lipschitz continuity as spelled out
previously.

According to Theorem 3.3 this bilinear form is uniformly bounded and coercive on the Hilbert space H1−μ.
By [10], p. 509 ff., there exists a unique solution D̃ ∈ W ([0, Tmax], H1

−μ(IR)) of the variational equality for all
T ∈ (0, Tmax)

d
dT

〈D̃(T, ·), w(·)〉L2
−µ

+ ã−μ(T ; D̃(T, ·), w(·)) = 0 ∀ w ∈ H1
−μ(IR) (3.12)

with initial condition
〈D̃(0, ·), w(·)〉L2

−µ
= 〈D0(·), w(·)〉L2

−µ
∀ w ∈ H1

−μ(IR). (3.13)

Then it is easy to verify that
D(T, x) = e−c3T D̃(T, x)

satisfies the desired variational equality (1.7) with initial condition (1.8). �

In financial applications the two following distribution functions f play an important role in the formulation
of PIDEs. For those, we check the assumption∫

IR

ey+μ|y|yf(y) dy < ∞.
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Remark 3.5. The following models specified by the functions f(y) defined below satisfy the requirement∫
IR ey+μ|y|yf(y) dy < ∞.

• Merton model [22]: f(y) =
1√

2πσM

exp
{
− (y − μM )2

2σ2
M

}
• Kou model [19]: f(y) = p · η1 · e−η1y · 1{y≥0} + (1 − p) · η2 · eη2y · 1{y<0}

with η1 > 1 and η2 > 0.

Proof. Regarding the Merton model, the finiteness of the integral term is clear, since we have a (shifted) −y2-
term in the density function.

For the proof in the case of the Kou model we divide the integral into two terms. First, for a given η1 > 1
there is a μ > 0 sufficiently small, such that −η1 + μ + 1 < 0. Hence, we obtain∫ +∞

0

p · η1 · e−η1yeμy+yy dy

∫ +∞

0

p · η1e(−η1+μ+1)yy dy < ∞.

For the other half of the integration interval, let μ > 0 be small enough such that η2 − μ + 1 > 0, which can be
achieved, since η2 > 0 by assumption. Then∫ 0

−∞
(1 − p) · η2 · eη2ye−μ2y+yy dy =

∫ 0

−∞
(1 − p) · η2e(η2−μ2+1)yy dy < ∞ �

Note that infinite activity models like Variance Gamma or CGMY with σ = 0 do not fit the theory presented
here and need to be analyzed differently.

4. Numerical results

We now give some numerical results concerning the accuracy of a solution which is calculated via the POD
approach. As our test problem we use the PIDE problem developed by Merton (see Rem. 3.5), where the
parameters are set as follows:

r(T ) ≡ 3%, σ(x, T ) ≡ 30%, S0 = 1, λ = 50%, μM = 0%, σM = 50%.

Fortunately, at least for constant volatility there exists a closed form solution for the Merton model in terms
of an infinite series of Black–Scholes prices. So we can show results concerning the POD error compared to
this closed form solution (as in (2.10)) and compared to the finite element solution (as in (2.11)). Thus, the
snapshots that are used to compute the POD basis functions are taken from the closed form solution and the
finite element solution, respectively. Note that the snapshots of the closed form solution are calculated for a
discretization grid with 4000 x-steps and 400 T -steps.

In Table 1 we see in column two the error as defined in (2.10) between the closed-form solution and the
corresponding POD solution, i.e. ERR1 =

∑n
i=1 ||u(ti) − uPOD,1

i ||2H(−R,R), where we choose R = 5.
We compare this error with the sum over the remaining eigenvalues in column three depending on the number

p of POD basis functions that are used. We include two pairs of tables, one including difference quotients and
the other without. At the beginning, the reduction of the true errors occurs in a similar way the reduction in the
sum of the remaining eigenvalues. For p > 10 (incl diff. quot.) and p > 8 (excl. diff. quot.), respectively, we see
no further decrease because here the error is dominated by the time discretization error of the POD solution.

As expected this effect is not observable in Table 2, where we compare a finite element solution with the
corresponding POD solution, analogously. The discretization of the FEM solution consists of 4000 x-steps and
400 T -steps. Thus, the time discretization error occurs in both methods.

After having complemented the error estimation theory above with numerical results, we now turn to some
results concerning the time. The solution of the original system, i.e. the generation of the snapshots was achieved
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Table 1. Compare between the error as defined in (2.10) and the sum of the remaining eigen-
values for Merton’s model.

Incl. difference quotients Excl. difference quotients

p ERR1

∑r
k=p+1 λk ERR1

∑r
k=p+1 λk

5 1.03e-003 5.93e-003 5.13e-005 4.01e-005
6 2.31e-004 1.55e-003 1.09e-005 7.22e-006
7 5.00e-005 3.85e-004 3.62e-006 1.57e-006
8 1.08e-005 9.22e-005 2.52e-006 3.61e-007
9 3.10e-006 2.14e-005 3.52e-006 8.03e-008
10 2.55e-006 4.81e-006 5.61e-006 1.71e-008
11 4.04e-006 1.06e-006 8.41e-006 3.51e-009
12 6.57e-006 2.28e-007 1.13e-005 7.03e-010
13 9.66e-006 4.78e-008 1.36e-005 1.38e-010
14 1.25e-005 9.84e-009 1.47e-005 2.64e-011
15 1.44e-005 1.98e-009 1.45e-005 5.07e-012

Table 2. Compare between the error as defined in (2.11) and the sum of the remaining eigen-
values for Merton’s model.

Incl. difference quotients Excl. difference quotients

p ERR2

∑r
k=p+1 λk ERR2

∑r
k=p+1 λk

5 1.87e-003 1.16e-002 5.13e-005 4.04e-005
6 7.81e-004 5.24e-003 1.07e-005 7.56e-006
7 3.44e-004 2.48e-003 3.03e-006 1.90e-006
8 1.54e-004 1.19e-003 1.13e-006 6.31e-007
9 6.88e-005 5.66e-004 5.21e-007 2.57e-007
10 3.05e-005 2.67e-004 2.47e-007 1.15e-007
11 1.34e-005 1.25e-004 1.11e-007 5.26e-008
12 5.85e-006 5.81e-005 5.08e-008 2.40e-008
13 2.52e-006 2.68e-005 2.31e-008 1.09e-008
14 1.08e-006 1.23e-005 1.03e-008 4.90e-009
15 4.55e-007 5.54e-006 4.61e-009 2.19e-009

by the use of an iterative solver combined with a fast Fourier transformation to solve the dense systems of
equations in each time step in an efficient way. Indeed, in Table 3 using a Crank–Nicolson scheme we can
observe an almost linear relation of problem size (nT and nx represent the number of discretization steps in
time and space, respectively) and computing time (see column three; FEM-LSE is the time for solving the
Linear Systems of Equations in the finite element approach) proving the efficiency of this solution approach.
We have already noted that p = 10 seems to provide sufficient accuracy for the POD system. This was the size
of the POD system which one has to solve, i.e. a linear system of equations of size 10 × 10 per time step. The
computing for this step is listed in column four and is almost negligible. More expensive is the calculation of
the POD basis function, i.e. the solution of the eigenvalue problem (see column five). The timings show clearly
that once the POD model has been set up, it is almost free to use and its computational cost is a small fraction
of the cost for generating the snapshots.

5. Conclusion and Outlook

In this paper we have shown that POD is a successful model reduction technique for PIDEs. Using weighted
function spaces and time-dependent bilinear forms, we provide a rigorous framework for the existence of solutions
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Table 3. Computing times of FE- and POD-method for different mesh sizes: Merton’s model

Discretization Computing times (s)

nT nx FEM − LSE POD − LSE POD − Basis

200 4000 2.96 0.02 0.05
8000 6.15 0.03 0.14

400 4000 5.76 0.04 0.30
8000 12.18 0.03 0.56

of PIDEs and their discretizations. Furthermore, this gives the basis for a proof of a priori error estimates for
the reduced order model through POD. It can be shown, that this theory is applicable to realistic models in
option pricing using Lévy processes. The numerical results confirm the theoretical findings. Techniques from a
posteriori estimates could lead to improved information for more refined statements on the optimal allocation
of snapshots and optimal number of POD basis functions.
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